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Abstract

In this paper, we consider automated solving of triangle straightedge-and-
compass construction problems by reducing them to automated planning. We
consider the problems from the Wernick’s list, where each problem assumes that
locations of three significant points of a triangle are given, and the goal is to
construct all three vertices of the triangle. We develop two different models of
the corresponding planning problem. In the first model, the planning problem is
described using the PDDL language, which is suitable for solving with dedicated
automated planners. The second model assumes that the planning problem is first
expressed as a finite-domain constraint satisfaction problem, and then encoded in
the MiniZinc language. Such model is suitable for solving with constraint solvers.
In both cases, we employ existing artificial intelligence tools in search for a solu-
tion of our construction problem. The main benefit of using the existing tools
for such purpose, instead of developing dedicated tools, is that we can rely on
the efficient search that is already implemented within the tool, enabling us to
focus on geometric aspects of the problem. We evaluate our approach on 74 solv-
able problems from the Wernick’s list, and compare it to the dedicated triangle
construction solver ArgoTriCS. The results show that our approach tends to be
superior to dedicated tools in terms of efficiency, while it requires much less effort
to implement. Also, we are often able to find shorter construction plans, thanks
to the optimization capabilities offered by the modern planners and constraint
solvers. The presented approach is only a search method and does not address
proving the correctness of the obtained constructions and discussing when solu-
tions exist, leaving these tasks to other tools. Although the paper focuses on a
specific set of construction problems, the approach can be generalized to other
classes of problems, which will be explored in future work.
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1 Introduction

Construction problems are among the oldest and the most studied problems in geome-
try. Such a problem is usually defined as follows: given some elements of a figure (such
as triangle), the goal is to find a sequence of steps to construct the remaining elements
of the figure using the available tools – typically a straightedge and a compass. Such
a sequence is called a construction plan, and the obtained figure is called a solution
of that construction problem. Solving construction problems usually requires specific,
and often very deep geometric knowledge. Many construction problems turned out to
be very challenging.

From the algorithmic point of view, the construction problems are search problems,
and the search space is usually very large: at each step we have to choose between
many different types of elementary construction steps and many possible objects that
can be constructed, and the number of steps required to solve a specific problem can
be quite large. There are two possible approaches here: one is to develop a specific
search algorithm in some programming language with required geometric knowledge
compiled into it, and the other is to use existing artificial intelligence tools that are
good in solving search problems in general. In the second case, one should only specify
the problem and the required knowledge using an appropriate input language and then
leave the search to an appropriate tool.

The first approach is considered, for instance, by Marinković [12]. In this paper, we
consider the second approach. More specifically, we show how construction problems
can be expressed as planning problems [9], and then solved by tools that are already
available for such problems. We use two types of tools for that purpose. The first type
of tools are dedicated solvers for planning problems (known as planners). For such
tools, we develop a model of our problem in PDDL language [1], understood by most
modern planners. The second type of tools are constraint solvers, such as finite-domain
solvers [17], or SAT/SMT solvers [4]. In order to use these tools, we have to express
our planning problem as a constraint satisfaction problem (CSP), and then encode it
in a suitable language (we use the MiniZinc [14] constraint modeling language for that
purpose).

The main benefit of using off-the-shelf tools as search procedures is that we may
focus on geometric aspects of the problem and on modeling the geometric knowledge
required for its solving, and leave the search to the tool that is good at it. That way,
we save our time and effort. Moreover, we can expect that the search will be less
time-consuming, since we are using well-tuned and highly optimized tools for that
purpose.

A single construction problem instance may be solved using different construction
plans, as the same object can often be constructed in different ways, relying on differ-
ent fragment of our geometric knowledge. Among these construction plans, we prefer
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shorter ones (i.e. plans involving fewer construction steps), because they are easier to
follow and understand and tend to have simpler visual presentations. To achieve this,
we must incorporate optimization capabilities into our search procedure with the goal
of minimizing the construction plan length. Such capabilities already exist in state-
of-the-art tools, and we would need to implement them manually if we developed our
own search tool from scratch. This is another benefit of using existing tools as search
procedures.

Note that solving construction problems involves more than just the search. After
a construction plan is found, one must prove that the obtained solution is correct,
i.e. that the constructed objects indeed satisfy the specification of the problem. More-
over, a discussion on the conditions for the existence of a solution is typically the final
phase of solving a construction problem instance. Having this in mind, we must stress
that the method we are considering in this paper is purely a search method, and it
does not deal with the remaining phases of solving construction problems. The goal
of the proposed method is to isolate the search component of the problem and solve
it in a simple and efficient way, using off-the-shelf solvers. The obtained construction
plans can then be fed into other tools (such as theorem provers) to handle the rest of
the solving process.

In this paper, we consider a specific class of construction problems – the
straightedge-and-compass triangle construction problems from the Wernick’s set [21].
The problems from this set assume that locations of three significant points of a tri-
angle (such as the centroid, the orthocenter, the feet of the altitudes, etc.) are given
in a plane, and the goal is to construct the vertices of the triangle. The set consists
of 139 problems, 74 of which are proven to be solvable by a straightedge and a com-
pass. We evaluate our approach on these 74 solvable instances, and compare it to
the state-of-the-art tool for automated generation of triangle constructions ArgoTriCS
[12], developed in the Prolog programming language, also primarily targeting the prob-
lems from the Wernick’s list. The comparison is made in terms of efficiency (measured
by solving time) and the quality of the obtained construction plans (measured by the
plan length). Note that ArgoTriCS is not just a search procedure. It can detect redun-
dant, symmetric and locus dependent problems. It can also generate data needed for
the proving and the discussion phases. However, since the focus of this paper is on the
search (and our method does only the search part), we do not consider those other
functionalities of ArgoTriCS in the comparison.

Although the work presented in this paper can be viewed as a case study of a partic-
ular class of problems, the method could be generalized to other classes of construction
problems. The general idea can be summarized as follows:

� fix a class of construction problems that we want to solve. In our case, we consider
the Wernick’s set of problems.

� specify a set of construction step types that are allowed to be used in the construc-
tions. In our case, we use a set of construction step types that can be performed by
a straightedge and a compass (virtually the same set as the one used by ArgoTriCS
[12]), but this can be generalized to other tools and the step types that can be
performed by such tools (e.g. tools offered by some dynamic geometry software).
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� identify the geometric knowledge needed for solving the problems from the chosen
class. Such knowledge is represented by a set of relevant objects (such as points,
lines, or circles) and the set of facts about these objects (given by a set of definitions
and lemmas). In our work, we rely on the knowledge presented in [12], on which
ArgoTriCS is also based.

� compile the identified knowledge into the model (in the form of relations between
the objects).

� incorporate the chosen set of construction step types into the model (in the form of
actions that can be executed in our plans).

� generate a set of problem instances (in our case, we generate the set of 74 solvable
Wernick’s instances)

� run a chosen of-the-shelf solver on the generated instances
� collect the obtained construction plans and fed them into other tools that will handle
other phases of the solving process (proving correctness, discussion, visualization,
etc.).

In this work, we cover all these points, except the last one, for the set of Wernick’s
problems. We hope that the success of this case study will motivate other researchers
to apply the same approach to other classes of construction problems.

Some of the results shown in this paper were preliminarily presented at the ADG
2023 conference [13]. This paper extends those results in the following ways:

� The MiniZinc model is optimized by removing some symmetries that we noticed.
This significantly improved the results obtained by finite-domain constraint solvers
that were presented in [13].

� We present the results obtained by SMT solvers (applied to the MiniZinc model).
SMT solvers were not used in experiments in [13].

� The PDDL model and the usage of PDDL-based automated planners were not
considered at all in [13], so it is a completely new contribution of this paper.

The rest of this paper is organized as follows. In Section 2, we introduce needed
concepts and notation used in the rest of this paper. In Section 3 we provide a brief
overview of the geometric knowledge needed for solving the problems from Wernick’s
set and discuss the representation of that knowledge in our models. In Section 4
we describe our models (both PDDL and MiniZinc). Section 5 provides a detailed
evaluation of the approach. Finally, in Section 6, we give some conclusions and mention
some directions of the further work.

2 Background

2.1 Straightedge-and-Compass Triangle Constructions

In straightedge-and-compass triangle construction problems, the goal is to construct
all three vertices of a triangle (usually denoted as A, B and C), assuming that some
elements of the triangle (such as points, lines or angles) are given in advance. A
construction plan consists of a sequence of steps, where in each step some new objects
(points, lines, angles or circles) are constructed based on the objects constructed in
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previous steps. Constructions performed in each of the steps are usually elementary
ones, such as constructing the line passing through two given points, or the point
that is the intersection of two given lines, or the circle centered at a given point
that contains another given point. However, in order to simplify the description of a
triangle construction, some higher-level construction steps are also considered, such as
constructing the tangents to a given circle from a given point, or the line perpendicular
or parallel to a given line and passing through a given point, etc. Such higher-level
constructions are called compound constructions, since they can be easily decomposed
into sequences of elementary construction steps.

In this paper, we focus on triangle construction problems from the Wernick’s list
[21]. Each problem from the list assumes that locations of three different points from
the following set are given: the triangle vertices A, B, C, the circumcenter O, the
incenter I, the orthocenter H, the centroid G, the feet of the altitudes Ha, Hb, Hc,
the feet of the internal angles bisectors Ta, Tb, Tc and the midpoints of the triangle
sides Ma, Mb, Mc. The goal is to construct the vertices1 A, B and C of the triangle
(if some of them are given, the goal is to construct the remaining ones).

From these 16 characteristic points of a triangle, we can form
(
16
3

)
= 560 different

point triples that can be considered. However, only 139 among them represent signif-
icantly different problems (that is, mutually non-symmetric). Among these, only 74
problems are proven to be solvable by a straightedge and a compass (others either con-
tain redundant points, or are undetermined, i.e. may have infinitely many solutions,
or are proven to be unsolvable [18]). In our work, we consider only these 74 solvable
problems from the Wernick’s list.

For instance, assume that the locations of the vertex A, the orthocenter H and the
centroid G of a triangle are given. The goal is to construct the remaining vertices B
and C. This can be achieved by the following construction plan:

1. construct the line through points A and H (the altitude ha)

2. construct the point X such that
−−→
AX = 3

2 ·
−→
AG (this is the midpoint Ma of the side

BC).

3. construct the point Y such that
−−→
HY = 3

2 ·
−−→
HG (this is the circumcenter O)

4. construct the line through Ma perpendicular to the line ha (this is the line a
containing the side BC)

5. construct the circle with the center O that contains the point A (this is the
circumcircle k(O,A) of the triangle)

6. construct both intersections of the circumcircle with the line a (these are the vertices
B and C).

The corresponding solution is illustrated in Figure 1. Note that we have to be equipped
with some geometric knowledge in order to come up with a construction plan like
this one (and also to prove its correctness). For instance, we have to know that the
orthocenterH is the intersection of the altitudes (so it belongs to ha), that the centroid

G divides the segment AMa such that
−→
AG = 2 ·

−−−→
GMa, that the circumcenter O, the

centroid G and the orthocenter H are colinear and that
−−→
HG = 2 ·

−−→
GO, etc. Such

1Note that the construction of the triangle sides is not required. Of course, this can be easily achieved
once the locations of the vertices are known.
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geometric knowledge can be expressed by a finite set of definitions (that introduce new
objects by relating them to already known objects) and lemmas (proven statements
about the properties of the objects that follow from the definitions and the axioms of
the Euclidean geometry). A detailed list of definitions and lemmas needed for solving
the problems from the Wernick’s list is given in [12].

Fig. 1 An illustration of a solution for the problem (A,G,H). Blue-colored points are given, and

other elements denoted in black are constructed. It holds
−−→
HO = 3

2
·
−−→
HG and

−−−→
AMa = 3

2
·
−→
AG. The

dashed segments are not constructed; they are depicted only to aid visualization.

Solutions of triangle construction problems may include constructions of many
auxiliary objects (points, lines, circles and angles). For such constructions to be useful
for achieving our final goal (construction of the vertices A, B and C), the constructed
objects must be related to other triangle objects through definitions and lemmas that
form the foundation of our geometric knowledge. In other words, only the objects that
we know something about make sense to be constructed. Given a fixed knowledge
base (expressed by a finite set of definitions and lemmas), we obtain a finite set of
objects that may be considered in each step of our construction plan. This gives as a
finite (although quite large) search space when looking for a construction plan. Figure
2 shows some of the objects that may be considered when solving problems from the
Wernick’s list. The exact set of objects and the geometric knowledge that we assume
in this paper is presented by Marinković in [12]. We also assume the set of elementary
and compound construction steps used in that work.

As said earlier, solving a construction problem does not involve only the search for
a construction plan, it also involves proving that the obtained plan is correct, which
means that the constructed objects satisfy the specification of the problem. In our
previous example, one must prove that the points G and H are indeed the centroid and
the orthocenter of the constructed triangle ABC, assuming the construction sequence
given above. In order to prove the correctness, we rely on the same set of lemmas and
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Fig. 2 A triangle and (some of) its significant objects (points, lines and circles).

definitions that we used to obtain the above construction plan. In our example, one
possible proof might be the following:

� by construction, it follows that the point O is the circumcenter of the triangle ABC.
� since

−−−→
AMa = 3

2 ·
−→
AG and

−−→
HO = 3

2 ·
−−→
HG (by construction), we prove that

−−→
AH =

2 ·
−−−→
OMa (by simple vector arithmetics), so the line OMa is parallel to the line ha.

� since the line a is perpendicular to the line ha (by construction), it follows that the
line OMa is also perpendicular to the line a. Since it contains the circumcenter O,
the line OMa is the perpendicular bisector of the side BC, so the point Ma is its
midpoint.

� since
−−−→
AMa = 3

2 ·
−→
AG (by construction), and Ma is the midpoint of BC, the point G

is indeed the centroid of the triangle ABC.
� since

−−→
HO = 3

2

−−→
HG (by construction), the point H is indeed the orthocenter of the

triangle ABC.

A proof like this can be generated by automated theorem provers or manually derived
using interactive theorem provers. To assist with the proof, a procedure that generates
the construction plan may also export a list of used lemmas and definitions, which
can be fed into the theorem prover. For example, such an export is performed by
ArgoTriCS [12]. In our work, we do not consider correctness proofs, so our method
currently does not export this information along with the obtained construction plan.

The final phase of solving construction problems is a discussion on when (and
how many) solutions exist and under which conditions. These conditions are obtained
by analyzing each of the steps in the obtained construction plan. Namely, each step
may have its non-degeneracy conditions (i.e. when the objects constructed by the
step exist), and its determination conditions (i.e. when the objects constructed by the
step are uniquely determined). For instance, we can always construct a line through
two points (there are no non-degeneracy conditions), but the points must be distinct
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for the line to be uniquely determined. On the other hand, if we want to construct
the intersection of two given lines, then the non-degeneracy condition is that the
lines are not parallel, and the determination condition is that the lines are distinct.
The conditions that a solution obtained by the construction plan exists (is uniquely
determined) are obtained simply by conjoining the non-degeneracy (determination)
conditions of the individual steps. In the above example, a solution will exist whenever
the circle k(O,A) and the line a have two points in common, and will be unique if
the points A and H are distinct. Note that the non-degeneracy and determination
conditions are not considered during the search phase, that is, they are discussed only
after the construction plan is obtained. Since our work deals only with the search, we
do not consider the discussion phase in this paper.

2.2 Automated Planning

In our approach, triangle construction problems are considered as problems of
automated planning [9]. An automated planning problem consists of the following:

� a set S of possible states. Each state is represented by a subset of a given set of
facts F that are considered to be true in that particular state. These facts are
usually described in a first-order fashion – as predicates applied to objects (such as
is open(door) or holds(monkey, banana)). One distinguished state S0 ∈ S is the
initial state.

� a set of actions (or operators) A, where each action a ∈ A consists of a precondition
Ca describing the conditions (in terms of facts from F) that must be satisfied in the
current state in order to apply the action, and a set of effects Ea describing how
the current state is changed when the action a is applied to it (this may include
both introducing new facts from F into the state, and removing some existing facts
from the current state). For instance, we may have an action with the precondi-
tion holds(monkey, banana) and the effects {+eaten(banana),−hungry(monkey)},
meaning that the first fact is added to the state, and the second fact is removed from
the state. The state obtained by applying an action a to some state S is denoted
by a(S).

� a goal G, describing the conditions (again, given in terms of the facts from F) that
must be satisfied in the final state.

The objective of automated planning is to find a plan, that is, a finite sequence
of actions a1, . . . , an from A that can be successively applied to the initial state S0

(i.e. for each i ∈ {1, . . . , n}, we have Si = ai(Si−1), and the state Si−1 satisfies the
precondition Cai) producing the final state Sn satisfying the goal G. The number n
of actions used in a plan is called the length of the plan.

In order to solve a planning problem, we first have to model it using a suitable
language. Two most popular languages for modeling planning problems are STRIPS
[8] and PDDL [1]. In our work, we use PDDL for modeling planning problems. PDDL
enables expressing the planning problems in a very natural way, since it directly
supports declaring objects, predicates, actions (with preconditions) and goals. The
modeling is usually divided into two parts. The first part is the model itself, which
defines the general class of problems, in terms of supported object types, available
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predicates, and actions whose preconditions and effects are parameterized with vari-
ables that can be instantiated with arbitrary objects. The second part considers a
particular problem, given by a concrete set of objects, the initial state (given as a set
of facts), and the goal.

After the problem is described in a modeling language such as PDDL, it can be
automatically solved by an appropriate tool. Such tools are known as AI planners (or
just planners, for short). Modern planners are usually based on some advanced search
algorithm (such as A∗), equipped with heuristics that are well-tuned for planning
problems. Another approach is to reduce the planning problem to constraint solving,
which will be considered in the next section.

2.3 Constraint Solving

One way of solving planning problems is to reduce them to constraint satisfaction
problems [17]. A finite-domain constraint satisfaction problem (CSP) consists of a
finite set of variables X = {x1, . . . , xn}, each taking values from its given finite domain
Di = D(xi), and a finite set of constraints C = {C1, . . . , Cm}, which are relations over
subsets of these variables. A solution of a CSP is an assignment (x1 = d1, . . . , xn = dn)
of values to variables (di ∈ Di), such that all the constraints of that CSP are satisfied.
A CSP is satisfiable if it has at least one solution, otherwise is unsatisfiable. The
optimization version of CSP, known as a constrained optimization problem (COP)
additionally assumes a function f over the variables of the problem that should be
minimized (or maximized), with respect to the constraints from C.

Tools that implement procedures for solving CSPs (and COPs) are called constraint
solvers. They are usually based on a combination of a backtrack-based search and
constraint propagation [17]. Constraint solvers have been successfully used for solving
many real-world problems in many fields, such as scheduling, timetabling, resource
allocation, combinatorial design, and so on.

An important step in using constraint solvers is constraint modeling, that is, repre-
senting a real-world problem in terms of variables and constraints. A constraint model
is described using an appropriate modeling language. One such language supported
by many modern constraint solvers is MiniZinc [14], which we use in our work. This
language offers a very flexible high-level environment for modeling different kinds of
constraints, enabling a compact and elegant way to represent some very complex prob-
lems. Examples of some high level language elements include tuples, multi-dimensional
arrays, sets, aggregate functions, finite quantification and so on. Since most of these
high level constructs are not supported by backend solvers, each MiniZinc model must
be translated into an equivalent FlatZinc form, containing only primitive language
constructs and constraints supported by a chosen backend solver. MiniZinc supports
modeling of both CSPs and COPs.

In MiniZinc, we distinguish variables from parameters. MiniZinc variables corre-
spond to the variables of a CSP, i.e. we declare their domains and expect from the
solver to find their values satisfying the constraints. On the other hand, parameters are
just named constants, and their values must be known when the model is translated
to the FlatZinc form (i.e. before the solving starts). Parameters are the language’s
construct that allow us to specify a general model for a class of problems, and then to
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choose a specific instance of the problem by fixing the values of the model’s parame-
ters. Parameter values are usually provided in separate files (called data files), so that
we can easily combine the same model with different data.

A planning problem for a fixed plan length n can be reduced to a CSP problem
[9, 16]. The plan of a minimal possible length can be found by successively checking
for existence of plans of lengths n = 1, 2, 3, . . ., that is, by solving the corresponding
sequence of CSPs until a satisfiable one is encountered. Another approach is to consider
n as a CSP variable, and try to find a solution that minimizes n (that is, to solve a
COP). We consider both approaches in the context of solving construction problems
(Section 5).

2.4 SAT and SMT Solving

SAT [4] and SMT [3] solvers are typically used to solve problems that arise in verifi-
cation of formal systems, such as hardware and software, but are also used in other
areas, such as constraint solving, combinatorial design, cryptanalysis, theorem prov-
ing, optimization, program synthesis, etc. In SAT, a problem instance is expressed as
a propositional formula in conjunctive normal form (CNF) which is tested for satisfi-
ability. On the other hand, SMT problems are problems of satisfiability of first-order
formulae with respect to given theories. Theories that are usually supported by modern
SMT solvers are the theory of equality with uninterpreted functions, real and integer
arithmetics, the theory of arrays, the theory of finite-size bitvectors, etc. [3]. Standard
input languages used by SAT and SMT solvers are DIMACS CNF2 and SMT-LIB [2],
respectively.

SAT and SMT solvers are commonly used as constraint solvers [20], [19], [5], [7].
Although CSP problems might be encoded directly in the languages supported by
SAT and SMT solvers, this is usually inconvenient. Fortunately, there are tools that
can translate inputs given in some constraint modeling languages to the languages
native for SAT and SMT. In case of the MiniZinc modeling language, there are tools
that can convert a FlatZinc input into SMT-LIB format. One such tool is provided by
the SMT solver MathSAT [7]. Its optimization version OptiMathSAT can understand
inputs given in FlatZinc and automatically solve CSP problems expressed in such
format. It is also capable of just translating the given FlatZinc instance to the SMT-
LIB language, without solving. The obtained SMT-LIB output can be then given to
any other SMT solver that is available, in order to solve the problem. On the other
hand, there is no publicly available tool for translation of inputs in MiniZinc/FlatZinc
into DIMACS CNF, to the author’s knowledge.

Since planning problems can be reduced to CSPs and COPs, we can also use
SAT and SMT solvers to tackle planning problems [16]. In fact, there are tools that
automatically convert planning problems described in STRIPS or PDDL languages
into SAT or SMT instances, and then solve them using SAT/SMT solvers [11], [22],
[6]. In our work, we do not use such tools, and we develop our own CSP model of our
specific planning problem using the MiniZinc language instead. This enables us to use
both finite-domain solvers and SMT solvers (by translating FlatZinc to SMT-LIB, as
previously described) to solve our problem.

2https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
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3 Geometric Setup

In this section, we consider the geometric knowledge that we rely on in this work.
Most of it resembles the knowledge described in [12], so we refer the interested reader
to that work. Here we deal mainly with the representation of that knowledge in the
form that is suitable for expressing the construction problems as planning problems,
and that will be assumed in the further text.

3.1 Representation of Geometric Knowledge

The geometric knowledge needed for solving construction problems considered in this
paper can be represented by a set of geometric objects and relations between them. We
consider four types of objects: points, lines, circles and angles (or, more precisely, angle
measures). The sets of objects of these types that we consider in our constructions
will be denoted respectively by P, L, C and A. These sets represent the significant
objects of a triangle, covered by our geometric knowledge. They are finite and their
elements are enumerated in advance (i.e. the sets are fixed). The enumerated objects
are the only objects that can be used in constructions. In total, we consider 31 points,
42 lines, 50 circles and 9 angles.

As we said above, the elements of A are not individual angles (in the sense of two
half-lines with a common endpoint), but rather angle measures, i.e. classes of mutually
congruent angles. Note that if we have constructed an angle of some measure ϕ, we
can construct angles whose measures are expressible3 in terms of ϕ. For instance, we
can construct, by a straightedge and a compass, an angle whose measure is equal ϕ/2
or ϕ + π/2. This means that an element ϕ ∈ A does not denote only that particular
angle measure ϕ, but the class of measures containing all angle measures ψ such that
ψ is constructible (by a straightedge and a compass) from ϕ and vice-versa. We denote
such class of angle measures as [ϕ]. We consider an angle measure ϕ ∈ A as constructed
if and only if an angle of any measure ψ ∈ [ϕ] is constructed.

The relations between the relevant geometric objects are expressed as finite rela-
tions over the sets P, L, C and A. These relations contain only the information relevant
for the search. Namely, during the search, we do not have to know exact vector ratios,
homothety coefficients, or expressions relating angle measures from the same class. For
the purpose of the search, we only need to know that this information is available to
the user (or tool) that will execute the construction sequence once it has been found.

To further clarify this, recall the example given in Section 2.1 (the Wernick’s
problem (A,G,H)). The presented construction plan for this problem includes the
construction of the point Ma (midpoint of the triangle side BC) based on the fact

that
−−−→
AMa = 3

2 ·
−→
AG. The search procedure does not have to know that the exact ratio

is 3
2 . It only has to know that the point Ma can be constructed if the points A and

G are given. This enables the search procedure to include such construction step in
the construction plan (i.e. the step that says “construct the point Ma from the points
A and G using the known vector ratio”). On the other hand, the entity (whether a

3Note that not all angle measures that are algebraically expressible in terms of ϕ can be constructed
from ϕ by a straightedge and a compass. For instance, an angle whose measure is ϕ/3 is not constructible
in general case.

11



human user or a tool) that executes the generated construction plan must know that
the exact ratio is 3

2 in order to apply that construction step.
We consider the following relations between objects:

� inc point line ⊆ P ×L and inc point circle ⊆ P × C, representing the information
about which points are incident with which lines and circles, respectively

� parallel lines ⊆ L×L and perp lines ⊆ L×L, representing the information about
pairs of lines that are parallel or perpendicular, respectively

� tangent line ⊆ C ×L, representing the information about lines that are tangents of
the related circles

� circle diameter ⊆ P×P×C, representing the information about segments (i.e. pairs
of points) that are diameters of the related circles

� circle center ⊆ P × C, representing the information about points that are centers
of the related circles

� known ratio triples ⊆ P × P × P, representing the information about the triples

of collinear points (X,Y, Z) such that the ratio
−−→
XY /

−−→
Y Z is known. Similarly, the

relation known ratio quadruples ⊆ P×P×P×P represents the information about

quadruples of points (X,Y, Z,W ) such that the ratio
−−→
XY /

−−→
ZW is known. The exact

value of the ratio is not stored in the knowledge base, since it is not relevant for the
search.

� angle def ⊆ L × L × A, representing the information about the measures of the
angles between the lines. A triple (p, q, ϕ) ∈ angle def means that the measure ψ
of the angle formed by the lines p and q is in [ϕ]. The exact expression that relates
ψ and ϕ is not relevant for the search.

� perp bisector ⊆ P × P × L, representing the information about the perpendicular
bisectors of line segments, which are given as pairs of their endpoints.

� harmonic quadruples ⊆ P × P × P × P, containing the quadruples of points
(X,Y, Z,W ) such that the points X and Y are harmonic conjugates of each other
with respect to the pair (Z,W ).

� locus def ⊆ P × P ×A× C, where a tuple (X,Y, ϕ, c) ∈ locus def means that the
locus of points such that the segment XY is seen at an angle whose measure ψ is
in [ϕ] is an arc of the circle c. Again, the exact expression that relates ψ and ϕ is
not relevant for the search.

� homothety triples ⊆ P×L×L, where a triple (X, p, q) ∈ homothety triples encodes
that the line q is the image of the line p by homothety centered in the point X (the
homothety coefficient is not relevant for the search, so it is not represented in the
knowledge base).

The tuples composing the above relations are enumerated in advance, based on our
knowledge about the geometric properties of our objects. Namely, since our knowledge
is expressed by a finite and fixed set of definitions and lemmas (listed in [12]), our
relations are also finite and fixed. The knowledge base is generated manually, by
carefully replicating the knowledge given in [12]. We took a special care to ensure the
consistency of the knowledge base. However, we must stress that our knowledge base
is not formally verified by any means. It is only carefully reviewed by hand for errors
and inconsistencies, and we strongly believe that it is error-free.
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Note that our geometric knowledge establishes many different relationships
between our objects, which means that most objects belong to multiple tuples in our
relations. As a consequence, we usually have multiple ways to construct the same
object. For instance, if the vertices A and B and the centroid G of a triangle are given,
then we can construct the vertex C in (at least) two different ways:

� we can construct the point Mc (the midpoint of the side AB), and then construct

the point C, having in mind that
−−−→
McC = 3 ·

−−−→
McG (an illustration is given in Figure

3).
� we can construct the point Ma (the midpoint of the side BC) since we know that
−−−→
AMa = 3

2 ·
−→
AG. Then we can construct the vertex C, having in mind that

−−→
BC =

2 ·
−−−→
BMa (an illustration is given in Figure 4).

Fig. 3 The first way to construct the vertex C, given the vertices A and B and the centroid G. It

holds
−−−→
AMc = 1

2
·
−→
AB and

−−−→
McC = 3 ·

−−−→
McG.

These multiple possibilities in our constructions lead to different construction plans
for the same problem.

3.2 Construction Steps

In this section, we describe types of construction steps that can be used in construc-
tions. They are mostly the same as those used in [12], with few technical differences.
In the following list, when we say that some object is given, we mean that it is either
given initially, or it is constructed in some of the previous steps. Each construction
step is also accompanied by preconditions specifying when it can be applied. The pre-
conditions are expressed in terms of the relations within our knowledge base, and are
used to guide the search (that is, to determine which significant objects of the triangle
can be constructed from the already constructed ones, based on our knowledge).
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Fig. 4 The second way to construct the vertex C, given the vertices A and B and the centroid G.

It holds
−−−→
AMa = 3

2
·
−→
AG and

−−→
BC = 2 ·

−−−→
BMa.

In this work, the following construction step types are supported:

� construction of the line l ∈ L through two given points P,Q ∈ P: in order to apply
this step, the points P and Q must represent distinct objects from our object set4,
and the line l must be incident with both points, according to our knowledge base.

� construction of the point P ∈ P that is the intersection of two given lines t, s ∈ L:
in order to apply this step, the lines t and s must represent distinct objects from
our object set, and the point P must be incident with both lines, according to our
knowledge base.

� construction of the points P,Q ∈ P that are the intersections of a given line l ∈ L
and a given circle c ∈ C: in order to apply this step, the points P and Q must be
incident with both the line l and the circle c, according to our knowledge base. If one
of the intersections is already constructed, we can construct the other intersection.

� construction of the circle c ∈ C whose center is a given point P ∈ P, and that
contains a given point Q ∈ P: in order to apply this step, the circle c must have P
as its center, and must be incident with Q, according to our knowledge base.

� construction of the points P,Q ∈ P that are the intersections of two given circles
c1, c2 ∈ C: in order to apply this step, the points P and Q must be incident with
both circles, according to our knowledge base. Again, if one of the intersections is
already constructed, we can construct the other intersection.

� construction of the circle c ∈ C over the segment PQ as its diameter, where P,Q ∈ P
are given points: in order to apply this step, the segment PQ must be a diameter
of c, according to our knowledge base.

4This requirement is here to forbid the application of such step to construct, for instance, the line a from
the points B and B, which would not make sense, since we know only one point incident with the line.
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� construction of the line l ∈ L passing through a given point P ∈ P that is perpen-
dicular to a given line t ∈ L: in order to apply this step, the line l must be incident
with the point P and perpendicular to the line t, according to our knowledge base.

� construction of the circle c ∈ C whose center is a given point P ∈ P and a given line
l ∈ L is its tangent : in order to apply this step, the point P must be the center of
the circle c, and the line l must be a tangent of c, according to our knowledge base.

� construction of the lines t1, t2 ∈ L that are the tangents to a given circle c ∈ C from
a given point P ∈ P: in order to apply this step, the lines t1 and t2 must be tangents
of the circle c and incident with the given point P , according to our knowledge base.
If one of the tangents is already constructed, we can construct the other tangent.

� construction of the line l ∈ L that is the perpendicular bisector of a segment PQ,
where P,Q ∈ P are given points: in order to apply this step, the line l must be the
perpendicular bisector of the segment PQ, according to our knowledge base.

� construction of the line l ∈ L that is the homothetic image of a given line t ∈ L,
with a given point P ∈ P as the center of the homothety : in order to apply this step,
the line l must be the homothetic image of the line t with the point P as the center
of the homothety, according to our knowledge base.

� construction of the line l ∈ L that is parallel to a given line t ∈ L and contains a
given point P ∈ P: in order to apply this step, the line l must be parallel to t and
incident with P , according to our knowledge base.

� construction of the line l ∈ L that is a side of an angle with the measure constructible
from a given measure ϕ ∈ A, where the other side of the angle is a given line t ∈ L,
and a given point P ∈ P is the vertex of the angle: in order to apply this step, the
lines l and t must be incident with the point P , and the angle between l and t must
be in [ϕ], according to our knowledge base.

� construction of the angle measure ϕ ∈ A determined by the angle between two given
lines s, t ∈ L: in order to apply this step, the measure of the angle formed by the
lines s and t must be in class [ϕ], according to our knowledge base.

� construction of the point X ∈ P determined by two given points Y, Z ∈ P and a

known vector ratio: in order to apply this step, the vector ratio
−−→
XY /

−−→
Y Z must be

known, according to our knowledge base.
� construction of the point X ∈ P determined by three given points Y,Z,W ∈ P and

a known vector ratio: in order to apply this step, the vector ratio
−−→
XY /

−−→
ZW must be

known, according to our knowledge base.
� construction of the point X ∈ P that is the harmonic conjugate of a given point
Y ∈ P with respect to two other given points Z,W ∈ P: in order to apply this
step, the points X and Y must be harmonic conjugates with respect to Z and W ,
according to our knowledge base.

� construction of the circle c ∈ C containing the locus of points from which a given
segment PQ (P,Q ∈ P) is seen at the angle of a measure constructible from a given
measure ϕ ∈ A: in order to apply this step, the circle c must contain the arc from
which the segment PQ is seen at the angle of a measure in [ϕ], according to our
knowledge base.

� construction of the point P ∈ P that is the center of the circle containing three
given points S,R, T ∈ P: in order to apply this step, there must exist a circle c ∈ C
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incident with the points S,R, T , such that P is the center of c, according to our
knowledge base (note that we do not have to construct c).

� construction of the point P ∈ P that is the center of the circle containing two given
points R,S ∈ P, with a given line l ∈ L incident with P : in order to apply this
step, there must exist a circle c ∈ C incident with the points R and S, the point P
must be the center of c and must be incident with l, and the line l must not be the
perpendicular bisector of the segment RS, according to our knowledge base (again,
we do not construct the circle c itself).

Note that the preconditions assigned to some construction step type only tell us
when it is possible to apply such a step. They do not guarantee that the objects
constructed by that step will indeed exist in a specific situation in a plane. That is,
these preconditions should not be confused with the non-degeneracy or determination
conditions for that construction step (discussed in Section 2.1). For instance, given
the circumcircle kO and the line a, we want to apply the step that constructs the
intersections of kO and a (the points B and C). According to the preconditions, such
a step can be applied, since from our knowledge base we know that the points B and
C are incident with both kO and a. On the other hand, the non-degeneracy condition
is that kO and a indeed intersect, which depends on a specific situation in a plane.
As said earlier, such non-degeneracy conditions are not considered during the search
and are analyzed only after the construction plan is obtained (and we do not discuss
them in our work).

4 Construction Problems as Planning Problems

The triangle construction problems that we consider in this paper can be naturally
described as problems of automated planning:

� states correspond to the sets of constructed objects, and the initial state is the set
consisting of given elements of a triangle that we want to construct (three points in
case of Wernick’s problems).

� actions correspond to the construction steps; the precondition for each action is
that objects used as inputs in the corresponding construction step are already
constructed (i.e. belong to the current state), and that the preconditions of the
corresponding construction step are met (as defined in the previous section); the
effect of each action is the addition of the objects constructed by the corresponding
construction step to the current state.

� the goal condition is that the triangle vertices A, B and C belong to the final state.

All we need to do is to encode such a planning problem using some modeling
language and then use an appropriate off-the-shelf tool to solve it. We provide two
such models. The first model is developed in PDDL language. In the second model,
we assume a fixed plan length, and encode the planning problem as a CSP using the
MiniZinc language.5 In the rest of this section, we describe the two models in more
details.

5Both models are available at: https://github.com/milanbankovic/constructions/.
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4.1 PDDL Model

The encoding of our planning problem in the PDDL language is straightforward. First,
we have to define types of objects that we use in our model:

(:types

point line circle angle - object

)

That is, we have four types of objects, and all are subtypes of the most general PDDL
type – object. The objects themselves are defined by enumerating them. For instance:

(:objects

; points

A B C O I G H Ma Mb Mc Ta Tb Tc Ha Hb Hc

Pa Pb Pc Na Nb Nc Ppa Ppb Ppc Sa Sb Sc Tpa Tpb Tpc - point

; lines

la lb lc lma lmb lmc lsa lsb lsc lha lhb lhc ... - line

; circles

kO kI kMa kMb kMc ... - circle

; angles

Alpha Beta Gamma ... - angle

)

Second, we have to define types of predicates that can be used to express facts. In
our case, predicates directly correspond to our relations described in Section 3. For
instance, the predicate:

(incident_point_circle ?p - point ?c - circle)

corresponds to our relation inc point circle ⊆ P × C. Similar predicates (with appro-
priate argument types) are defined for other relations. Facts are now obtained by
applying predicates to objects. For instance:

(incident_point_circle A kO)

represents the fact that the triangle vertex A is incident with the circumcircle of the
triangle, denoted by kO. In addition, there is a predicate:

(constructed ?o - object)

which is applicable to all objects and is used to express the fact that some object is
already constructed, or initially given.

In PDDL, states are represented as sets of facts. As we said earlier, we want our
states to correspond to the sets of constructed objects, i.e. to the sets of facts of the
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form (constructed o), where o is an object of any of our four types. On the other
hand, the facts that represent our knowledge (i.e. the tuples of our relations) must
hold permanently, in all the states. The simplest way to do this is to include all these
tuples in the initial state, and then to keep them in all subsequent states (i.e. not to
remove any of them by actions that are applied to change the state).

The actions directly correspond to our construction steps described in Section 3.
For instance:

(:action line_intersection

:parameters (?l1 - line ?l2 - line ?p - point)

:precondition

(and

(constructed ?l1)

(constructed ?l2)

(not (= ?l1 ?l2))

(incident_point_line ?p ?l1)

(incident_point_line ?p ?l2)

(not (constructed ?p))

)

:effect

(constructed ?p)

)

This action allows us to construct the point P , provided that it is the intersection of
two distinct, already constructed lines l1 and l2. Note that we insist that the point P
is not already constructed, otherwise it would be possible to apply this action even if
the point P is already in the state, without any effect.

The initial state contains the facts representing the relation tuples (which are the
same for any instance of Wernick’s problem) and the facts representing the given three
points (which depend on the specific instance of the Wernick’s problem). For instance,
for the problem (A,G,H) discussed in the example in Section 2.1, we would have the
following encoding of the initial state:

(:init

(and

; relation tuples

(incident_point_line A lb)

(incident_point_line A lc)

;... other relation tuples go here

; given points

(constructed A)

(constructed G)

(constructed H)

)

)
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The goal is given by requiring that the vertices A, B and C belong to the final state:

(:goal

(and

(constructed A)

(constructed B)

(constructed C)

)

)

A solution plan is represented as a sequence of actions. For instance, the output that
corresponds to the solution plan for the problem (A,G,H) presented in Section 2.1
might look like this:

(line_through A H lha)

(known_ratio3 A H Ma)

(perpendicular_line lha Ma la)

(known_ratio3 G H O)

(circle_center_point O A kO)

(line_circle_intersections la kO B C)

In each action, the last argument (or the last two arguments in case of the last action)
represents the constructed object that is added to the current state, and the remaining
arguments are inputs.

4.2 MiniZinc Model

Modeling planning problems in MiniZinc requires a little more effort, since we have
to manually encode the states and the transitions between them (using CSP variables
and constraints). Let us first consider the encoding of the geometric knowledge. Each
type of objects is encoded as an enumeration type in MiniZinc (Point, Line, Circle
and Angle, respectively), and each object is represented by one enumerator of the
corresponding type, e.g.:

Point = { A, B, C, O, I, G, H, Ma, Mb, Mc, Ta, Tb, Tc, Ha, Hb, Hc, Pa,

Pb, Pc, Na, Nb, Nc, Ppa, Ppb, Ppc, Sa, Sb, Sc, Tpa, Tpb, Tpc

};

Relations between the enumerated objects are encoded by the parameters of the model,
using MiniZinc’s arrays, sets and tuples. We define the following parameters in our
MiniZinc model:

� incidence relations are represented by two arrays of sets, inc lines and
inc circles, indexed by points. The set inc lines[p] contains the lines incident
with the point p, and the set inc circles[p] contains the circles incident with the
point p.
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� the relations between lines are represented by two arrays of sets, perp lines and
paralell lines, indexed by lines. The set perp lines[l] contains the lines perpen-
dicular to the line l, and the set parallel lines[l] contains the lines parallel to the
line l.

� the array of points circle center indexed by circles contains information about
circle centers; the array circle diameter of point pairs indexed by circles con-
tains information about circle diameters; the array tangent lines of sets of lines is
indexed by circles, and the set tangent lines[c] contains the lines that are tangents
of the circle c.

� the array known ratio triples (known ratio quadruples) of point triples
(quadruples) stores the information about the known vector ratios.

� the array angle defs of Line×Line×Angle triples encodes the information about
the angles between the lines.

� the array perp bisectors of Point×Point×Line triples encodes the information
about the perpendicular bisectors of line segments.

� the array harmonic quadruples of point quadruples contains the harmonic conju-
gates.

� the array locus defs of Point × Point × Angle × Circle tuples stores the
information about the loci of points.

� the array homothety triples of Point×Line×Line triples stores the information
about lines that are homothetic images of one another.

In order to encode the planning problem as a CSP, we must fix the plan length
n (or, at least, its upper limit) in advance. Recall that the plan length n corre-
sponds to the number of construction steps. Let S0 be the initial state, and let Si be
the state after the ith step (i ∈ {1, . . . , n}). This means that we have n + 1 states
in total. To encode these states, we introduce arrays of set variables known points,
known lines, known circles and known angles, where, for instance, known points[i]
(i ∈ {0, . . . , n}) denotes the set of points belonging to the state Si (similarly for
other arrays). The initial state S0 is given by appropriate constraints (for instance
known points[0] = {A,G,H}, if we want to solve the Wernick’s problem (A,G,H),
discussed in the example in Section 2.1).

To encode the plan, we define the enumeration type ConsType, with one enumerator
for each supported construction step type:

enum ConsType = { LineThrough,

LineIntersect,

...

Locus,

CenterThreePoints,

CenterTwoPointsAndLine

};

We also define the array construct of variables of type ConsType (with indices in
{1, . . . , n}) encoding actions used in each step. For each step, we also need additional
information to fully determine the actual construction (for instance, if we choose to
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construct the intersection of two lines, we must also choose the lines that we want
to intersect). For this reason, we also introduce additional two-dimensional arrays of
variables: for instance, points[i][j] denotes the jth point used in the ith construction
step (similarly we have lines[i][j], circles[i][j] and angles[i][j]).

Finally, to glue the whole plan together, we must add the constraints that connect
the state variables in the successive states, depending on the chosen action in the
corresponding step. This must be done for each i ∈ {1, . . . , n}, and we use MiniZinc’s
finite universal quantification for that purpose:

constraint forall(i in 1..n)

(

construct[i] = LineIntersect ->

% Precondition

(lines[i,1] in known_lines[i-1] /\

lines[i,2] in known_lines[i-1] /\

lines[i,1] != lines[i,2] /\

not (lines[i,1] in parallel_lines[lines[i,2]]) /\

lines[i,1] in inc_lines[points[i,1]] /\

lines[i,2] in inc_lines[points[i,1]] /\

not (points[i,1] in known_points[i-1]) /\

% Effects

known_points[i] = known_points[i-1] union { points[i,1] } /\

known_lines[i] = known_lines[i-1] /\

known_circles[i] = known_circles[i-1] /\

known_angles[i] = known_angles[i - 1]

)

);

That is, for all i ∈ {1, . . . , n}, if the chosen operator is LineIntersect (constructing
the intersection of two lines), then the chosen two lines lines[i, 1] and lines[i, 2] must
belong to the current state Si−1 (i.e. they must have been already constructed), they
must be distinct and not parallel. Also, the chosen point points[i, 1] must belong to
both chosen lines (i.e. it must be their intersection), and it must not belong to the
current state (we do not want to construct a point that is already constructed). If all
these preconditions are met, then the effect is that the set known points[i] is obtained
by adding the intersection point points[i, 1] to the set known points[i− 1] (the sets
of lines, circles and angles remain the same). Similar constraints are defined for all
other types of construction steps.

The goal is encoded simply by adding the constraint that requires that the vertices
A, B and C belong to the set known points[n]:

{ A, B, C } subset known_points[n];

The output that corresponds to the solution plan for the problem (A,G,H) presented
in Section 2.1 might look like this:
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Solved in 6 steps;

1. line through points A and H --> ha

2. point with known ratio (3 points): A, G --> Ma

3. point with known ratio (3 points): G, H --> O

4. line perpendicular to line ha through point Ma --> a

5. circle with center O through point A --> kO

6. both intersects of line a and circle kO --> B,C

As it can be seen, the output may be fairly descriptive, since MiniZinc allows a user
to program an arbitrary output format.

Note that n is also a parameter of the MiniZinc model. As said before, we can
search for a plan of the minimal possible length by successively solving the CSPs
for n = 1, 2, . . . until one of them is satisfiable. Another option is to consider n as
a variable (with some finite domain, given in advance), and to solve one COP that
minimizes n. We discuss both approaches in the next section.

5 Evaluation

The models described in the previous section are evaluated on 74 solvable instances
from Wernick’s set [21]. The experiments were performed on a computer with 3.1GHz
processor and 8Gb of RAM. The goal was to find construction plans of minimal
possible lengths for each of the Wernick’s instances.

For evaluation of the PDDL model, we used fast-downward6 planning system. The
system allows different algorithm configurations, and we used the one based on the A∗

algorithm with the landmark-cut heuristic [10]. The system finds the plans of minimal
possible lengths by itself, that is, we rely on its built-in optimization capabilities,
without any additional effort on our side.

When the MiniZinc model is concerned, we used official MiniZinc distribution7

(version 2.7.2) for developing and testing the model, and also for translating the prob-
lem instances to FlatZinc. For solving the obtained FlatZinc instances, we used the
following solvers:

� finite-domain constraint solvers: we experimented with multiple constraint solvers
provided within MiniZinc distribution. By far the best results were obtained by the
solver chuffed8 (version 0.11.0). It is a finite-domain constraint solver based on so-
called lazy clause generation [15] (that is, using a SAT solver as the search engine).
Therefore, we present only the results obtained by chuffed.

� SMT solvers: we used optimathsat9 SMT solver (version 1.7.3) with optimization
capabilities. This solver provides direct support for FlatZinc inputs, which are inter-
nally converted to SMT formulae and solved. A FlatZinc instance can be converted
to an SMT problem either in the theory of linear arithmetics, or in the theory of
finite-length bitvectors. Our preliminary experiments showed a clear superiority of
the bitvector theory, so we present only the results obtained in that way. We have

6https://www.fast-downward.org/
7https://www.minizinc.org/software.html
8https://github.com/chuffed/chuffed
9https://optimathsat.disi.unitn.it/
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also experimented with Z310 SMT solver (version 4.13.0), also with optimization
capabilities. Since it does not support FlatZinc inputs directly, we used fzn2omt11

helper tool that utilizes optimathsat to convert FlatZinc instances to SMT-LIB
format (again in the theory of bitvectors). However, the results obtained by Z3 were
significantly worse than those obtained by optimathsat, so we will not present them
here.

In order to look for plans of minimal possible lengths, we first had to fix an upper
limit for the plan length n. We denote this limit by maxSteps in further text. Such
limit is usually obtained by heuristic methods, using the knowledge about the problem
being solved. In our case, we already knew that the maximal length of construction
sequences obtained by ArgoTriCS [12] on the Wernick’s set of problems was 16. Since
our models use virtually the same geometric knowledge and the same set of possible
construction steps, we assumed that the maximal plan length in our case should have
a similar value. Therefore, we took the value maxSteps = 20 as the upper limit for our
experiments. We used the following two setups for finding plans of minimal lengths:

� linear setup: for each of the problems, we successively look for plans of length n =
1, 2, 3, . . . ,maxSteps, and stop when we encounter a satisfiable CSP, or when the
upper limit maxSteps is exceeded. Note that in this setup the value of maxSteps
does not affect the solving time for problems that our model can solve (that is, using
a greater value of maxSteps would not slow down the search). It only affects those
instances that are unsolvable by our model (because it affects the number of CSPs
that we have to try to solve before we give up).

� minimization setup: we reformulate our model such that the plan length n is not
fixed. Instead, n is a variable with a domain {1, . . . ,maxSteps} and we are trying
to minimize the value of n (that is, we are solving only one constrained optimization
problem).12 In this setup, the value of maxSteps influences the size of the COP
instance, thus affecting the solving time for all instances, even for those that can be
solved in a small number of steps.

As said earlier, our method concerns only the search, and does not handle proving
the correctness of the obtained solutions. Therefore, formally speaking, we cannot
claim that the obtained construction plans are correct. However, in order to further
support the results of this study, we manually reviewed all the obtained construction
plans and, with a fair degree of confidence, we believe that they are correct. The task
of generating formal correctness proofs may be left to other tools, but this is out of
the scope of this paper.

In Table 1, we provide the main results of our evaluation. The table includes
results both for the PDDL model (fast-downward) and the MiniZinc model (both
chuffed and optimathsat solvers using two described setups). We also compared our
approach to the results obtained by the ArgoTriCS dedicated triangle construction

10https://github.com/Z3Prover/z3
11https://github.com/PatrickTrentin88/fzn2omt
12Note that most constraint solvers perform minimization by starting at the upper bound and then

repeatedly tightening that bound until they encounter unsatisfiability. This means that, in some sense, this
strategy is the opposite of the previously described linear setup.
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solver developed by Marinković [12]. ArgoTriCS is implemented in the Prolog pro-
gramming language. As we already mentioned, it uses a very similar knowledge base
and an almost identical set of available construction steps.

Table 1 Overall results for different solvers and setups, compared to ArgoTriCS. Times
are given in seconds

Solver # solved Avg. time Med. time Avg. on solved Std. dev.

fast-downward 63 1.23 1.20 1.23 0.09

chuffed (lin) 63 16.05 8.58 8.09 19.79
chuffed (min) 63 6.65 6.51 6.73 0.69

optimathsat (lin) 63 53.26 26.70 28.12 67.15
optimathsat (min) 63 25.69 22.66 27.03 9.63

ArgoTriCS 65 54.5 21.6 54.4 140.9

Note that the choice of the solver (and the setup) does not affect how many prob-
lems from the Wernick’s list will be solved, since this depends only on the geometric
knowledge that is compiled into our models. In total, we managed to solve 63 of 74
problems (for the remaining 11 problems, the solvers reported unsatisfiability, i.e. non-
existence of a plan). On the other hand, ArgoTriCS solved 2 problems more (which
indicates that we missed to incorporate some of the objects and lemmas known to
ArgoTriCS to our models).

When the efficiency is concerned, the best results are clearly obtained by
fast-downward planner, requiring only 1.23 seconds per instance, on average. The
second best option (chuffed with minimization setup) was over five times slower on
average. This makes PDDL-based approach the best choice, both concerning the effort
needed for modeling (recall that PDDL encoding was very simple and straightforward)
and the time needed for finding a solution plan.

When the MiniZinc model is concerned, the best average solving time is obtained
by the chuffed solver. The SMT-based approach turned out to be slower, even with
the bitvector arithmetics. We do not know the exact reasons for that, but we must be
aware of an inherent bias in favor of the chuffed solver, since the MiniZinc/FlatZinc is
its native language. On the other hand, SMT solvers require conversion of the FlatZinc
inputs to their native language, probably losing some compactness in expressing the
appropriate constraints.

Compared to ArgoTriCS, when solving times are concerned, it turned out that all
variants of our approach performed significantly better (except the optimathsat with
the linear setup, which was comparable to ArgoTriCS). This confirms our assumption
that using highly optimized, state-of-the-art tools specialized in solving combinatorial
search problems is often a better choice then developing our own algorithm for such
purposes (at least, it turned out to be the case when solving triangle construction
problems).

Let us also compare the performance of different setups for the MiniZinc-based
approach. Table 1 shows that the minimization setup was a better choice in case of
both the chuffed and the optimathsat solvers. However, as we mentioned earlier,
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the average solving time in this setup greatly depends on the choice for the maximal
possible value of n. The results shown in Table 1 are obtained for maxSteps = 20.
We also experimented with some greater values. For instance, for maxSteps = 30
the average solving time was about 10 seconds for the chuffed solver, and about
35 seconds for the optimathsat solver (of course, the number of solved problems
remained the same). FormaxSteps = 40, the chuffed solver required about 15 seconds
on average, and the optimathsat solver required about 46 seconds. Compared to
ArgoTriCS, this is still a better performance. This means that we would obtain fair
results even if we overestimated the upper bound for the plan length (at least to some
extent). Note that the maximal length of all minimal plan lengths found by our model
on the Wernick’s set of problems was 11.

Fig. 5 Survival plot for all solvers and setups, compared to ArgoTriCS. Times are given in seconds

Figure 5, shows the survival plot for all solvers and setups, compared to ArgoTriCS.
Notice that the graphs for fast-downward and the minimization setups are nearly
linear. This indicates that most of the instances required a similar amount of time,
even those that we were not able to solve. This observation is also supported by values
of standard deviations (Table 1) which are significantly below the average solving
times. On the other hand, for the linear setups, unsolved instances consumed much
more time than average, causing the non-linearity of the survival graph (this can be
confirmed by comparing the average solving times on solved instances, with the average
solving times on all instances for both solvers with the linear setup in Table 1). This
was expected for the linear setup, since it had to reach the upper limit maxSteps in
order to report the failure. In case of the ArgoTriCS solver, the non-linearity that can
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be seen in the survival plot is mostly the consequence of only three instances that
ArgoTriCS managed to solve, but for some reason required a lot of time (726, 660 and
789 seconds).

Fig. 6 A per-instance comparison of construction plan lengths between ArgoTriCS and our approach

The final comparison between ArgoTriCS and our approach concerns the lengths
of the obtained construction plans. The average plan length found by our approach
was 6.3, and the maximum was 11 (again, this does not depend on the chosen solver or
setup). On the other hand, the average number of steps in ArgoTriCS’s construction
plans was 7.5 (maximum was 16). Notice that these numbers are comparable, since
the sets of available construction steps in both systems are almost identical. A more
detailed, per-instance comparison is shown in Figure 6. The plot clearly confirms
that our approach is by far superior when finding the shortest construction plans is
concerned. However, for the sake of fairness, we must stress that ArgoTriCS was not
designed with that optimization in mind, that is, it does not even search for the shortest
construction plans. We guess that such a capability could be integrated in ArgoTriCS,
but with much more effort, since it would have to be manually implemented in Prolog
(just like the search itself). On the other hand, in our approach, we rely on the built-
in capabilities of automated planners and constraint solvers to solve optimization
problems efficiently, imposing the minimal possible effort on our side.

The main benefit of finding shorter construction plans is that such plans tend to be
simpler and easier to understand, which is especially important in educational appli-
cations. For instance, consider the instance of Wernick’s problem where the vertices
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A and B and the orthocenter H are given. The plan obtained by our model consists
of the following construction steps:

1. construct the line through the points A and B (the line c)
2. construct the line through the points A and H (the altitude ha)
3. construct the line through the point B perpendicular to the line ha (this is the line
a containing the side BC of the triangle)

4. construct the line through the point H perpendicular to the line c (the altitude hc)
5. construct the point intersection of the lines a and hc (this is the vertex C)

The construction plan consists of 5 steps. The corresponding solution is illustrated in
Figure 7.

Fig. 7 An illustration of the solution for the problem (A,B,H) obtained by our model. Lines a and
ha are perpendicular, and the same holds for lines c and hc. The dashed line is not constructed.

On the other hand, ArgoTriCS finds the following construction plan:

1. construct the midpoint of the segment AB (point Mc)
2. construct the line through the points A and H (the altitude ha)
3. construct the line through the points B and H (the altitude hb)
4. construct the circle k(Mc, A) centered in Mc and passing through A
5. construct the other intersection (distinct from A) of the circle k(Mc, A) and the

line ha (this is the foot Ha of the altitude ha).
6. construct the line through the points B andHa (the line a that contains the triangle

side BC)
7. construct the other intersection (distinct from B) of the circle k(Mc, A) and the

line hb (this is the foot Hb of the altitude hb)
8. construct the line through the points A and Hb (the line b that contains the triangle

side AC)
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9. construct the point intersection of the lines a and b (this is the vertex C)

This plan consists of 9 steps. The corresponding solution is given in Figure 8. Being
almost twice as long as the plan obtained by our model, this sequence is much harder
to follow. Additionally, the drawing in Figure 8 is more difficult to understand, as it
includes a greater number of constructed objects.

Fig. 8 An illustration of the solution for the problem (A,B,H) obtained by ArgoTriCS. The dashed
line is not constructed.

6 Conclusions and Further Work

In this paper we presented and evaluated a method for automated solving of trian-
gle construction problems based on automated planning. The first approach was to
describe our planning problem in the PDDL language and solve it using an off-the-
shelf automated planner. The second approach was to convert the planning problem
to a CSP (or COP) problem and solve it using a constraint solver (we experimented
both with finite-domain solvers and with SMT solvers). We compared our method
to the state-of-the-art dedicated triangle construction solver ArgoTriCS, developed in
the Prolog programming language. We advocate that our approach has two important
advantages. First, our approach is much simpler to implement, since we rely on pow-
erful state-of-the-art tools which can efficiently do the search for us, and we may focus
only on modeling. On the other side, in the ArgoTriCS solver the search is implemented
by hand, in more than 500 lines of code. Second, we can easily employ the built-in
optimization capabilities of modern planners and solvers to search for the shortest pos-
sible construction plans, while implementing such functionality in ArgoTriCS would
require much more effort.

We evaluated our approach on 74 solvable problems from the Wernick’s list. The
results showed that our approach is superior to ArgoTriCS when the average solving
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time is concerned. In addition, our approach often finds shorter construction plans,
due to built-in optimization capability which is missing in ArgoTriCS. The benefit of
shorter construction plans is that they tend to be simpler and easier to follow, which
is especially important in educational applications.

The work presented in this paper is mainly a case study of a particular class of
construction problems. However, our approach can be adapted to support other kinds
of construction problems. This can be done by identifying the relevant geometric
knowledge needed for solving such construction problems and incorporating it into the
model. Such research is left for further work.
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