On the topological complexity and zero-divisor cup-length of real Grassmannians

Marko Radovanović*

March 6, 2022

Abstract

Topological complexity naturally appears in the motion planning in robotics. In this paper we consider the problem of finding topological complexity of real Grassmann manifolds $G_{k}\left(\mathbb{R}^{n}\right)$. We use cohomology methods to give estimates on the zero-divisor cuplength of $G_{k}\left(\mathbb{R}^{n}\right)$ for various $2 \leqslant k<n$, which in turn give us lower bounds on topological complexity. Our results correct and improve several results from [9].

1 Introduction

For a path-connected space X we denote its topological complexity by $\operatorname{TC}(X)$. In [9] the author considered the problem of finding $\mathrm{TC}\left(G_{k}\left(\mathbb{R}^{n}\right)\right.$) for various $2 \leqslant k<n$ (in this paper, $G_{k}\left(\mathbb{R}^{n}\right)$ denotes the real Grassmann manifold of k-dimensional subspaces in $\left.\mathbb{R}^{n}\right)$. Unfortunately, there is a problem with the proof of the main lemma of that paper (Lemma 4.4) and the consequential results on the topological complexity (Theorems 4.5, 4.8 and 4.12); see [10]. In this paper we reconsider this problem, and as an outcome correct and improve several results from [9]. As in [9], we use the cohomology method to obtain our results.

This paper closely follows and builds on the ideas presented in [9] (so, for background, motivation and all undefined notions, the reader is advised to consult [9]). Throughout the paper we will use, as much as possible, the notation from [9]. In particular, we will be working with the unreduced topological complexity, as defined by Farber in [5] (for example, by this definition the topological complexity of a contractible space is equal to 1).

The paper is organized as follows. In Section 2 we describe the cohomology method mentioned above and give an overview of the cohomology of real Grassmannians. In Section 3 we consider the case $k=2$. We obtain the exact value of the zero-divisor cup-length of $G_{2}\left(\mathbb{R}^{2^{s}+1}\right)$ (denoted by $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{2^{s}+1}\right)\right)$, and defined in Section 2) for $s \geqslant 2$; additionally, for $s \geqslant 3,2^{s}+4 \leqslant n \leqslant 2^{s+1}$ we prove a lower bound for $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{n}\right)\right)$. These results show that the value of the zero-divisor cup-length given in $[9$, Theorem 4.5] is not correct; what is more interesting, our results improve lower bounds for topological complexity stated in the same theorem. Section 4 is devoted to the case $k=3$. Separately, we prove lower bounds for $\operatorname{zcl}\left(G_{3}\left(\mathbb{R}^{n}\right)\right)$ in the cases $n=2^{s}+1$ (for $s \geqslant 3$), and $2^{s}+3 \leqslant n \leqslant 2^{s+1}$ (for $s \geqslant 2$). The first result shows that the corresponding result from [9, Theorem 4.8] is not correct, and improves the stated lower bound for topological complexity of $G_{3}\left(\mathbb{R}^{2^{s}+1}\right)$ (for $s \geqslant 5$). In Section 5 we give a general lower bound for $\operatorname{zcl}\left(G_{k}\left(\mathbb{R}^{n}\right)\right.$) (for $k \geqslant 4$). For $k \geqslant 9$ this result improves the bounds stated in [9, Theorem 4.10].

[^0]
2 Background and notation

As mentioned in Introduction, to obtain our results we use the so called cohomology method, which we now (briefly) explain.

Let $\Delta: X \rightarrow X \times X$ denote the diagonal map. Then the elements of

$$
\operatorname{Ker}\left(\Delta^{*}: H^{*}\left(X \times X ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(X ; \mathbb{Z}_{2}\right)\right)
$$

are called zero-divisors. Further, the zero-divisor cup-length of X, denote by $\mathrm{zcl}(X)$, is defined to be the maximum number of elements from $\operatorname{Ker} \Delta^{*}$ whose product is non-zero. In [5], Farber proved that $\operatorname{zcl}(X)$ gives a lower bound for $\operatorname{TC}(X)$, that is $\operatorname{TC}(X) \geqslant \operatorname{zcl}(X)+1$. Hence, a lower bound for $\operatorname{zcl}(X)$ immediately gives a lower bound for $\operatorname{TC}(X)$. Note that for every $w \in H^{*}\left(X ; \mathbb{Z}_{2}\right)$ the element

$$
z(w)=w \otimes 1+1 \otimes w \in H^{*}\left(X \times X ; \mathbb{Z}_{2}\right)
$$

is in $\operatorname{Ker} \Delta^{*}\left(\right.$ since $\left.\Delta^{*}(z(w))=w \cdot 1+1 \cdot w=0\right)$. Then, by [2, Lemma 5.2], $\operatorname{Ker} \Delta^{*}$ is generated as an ideal by these elements, that is by the set $\left\{z(w): w \in H^{*}\left(X ; \mathbb{Z}_{2}\right)\right\}$. So, if $\operatorname{zcl}(X)=t$, then there are classes $x_{1}, x_{2}, \ldots, x_{t} \in H^{*}\left(X ; \mathbb{Z}_{2}\right)$ such that $z\left(x_{1}\right) z\left(x_{2}\right) \cdots z\left(x_{t}\right) \neq 0$.

To get the best possible results on $\mathrm{TC}\left(G_{k}\left(\mathbb{R}^{n}\right)\right)$ using the cohomology method, one requires fine understanding of the cohomology algebra $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$. There are several ways to describe this algebra; in this paper we will use the one due to Borel (see [1]):

$$
H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[w_{1}, w_{2}, \ldots, w_{k}\right] / I_{k, n}
$$

where $w_{1}, w_{2}, \ldots, w_{k}$ are the Stiefel-Whitey classes of the canonical k-dimensional vector bundle over $G_{k}\left(\mathbb{R}^{n}\right)$, and $I_{k, n}=\left(\bar{w}_{n-k+1}, \bar{w}_{n-k+2}, \ldots, \bar{w}_{n}\right)$ is the ideal generated by dual classes.

Although Borel's description of $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ appears simple enough, it turns out that performing concrete calculations in this algebra can be rather difficult. Hence, one usually needs to apply some additional methods and properties of $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$. The following result gives an additive basis for this algebra (see, e.g. [7, 11]).

Proposition 2.1 The set $B_{k, n-k}=\left\{w_{1}^{a_{1}} \cdots w_{k}^{a_{k}}: 0 \leqslant a_{1}+\cdots+a_{k} \leqslant n-k\right\}$ is an additive basis for $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$.

The height of a class $c \in \widetilde{H}^{*}\left(X ; \mathbb{Z}_{2}\right)$, denoted by $\operatorname{ht}(c)$, is the largest $m \in \mathbb{N}$ such that $c^{m} \neq 0$. For $k \geqslant 2$, the height of $w_{1} \in H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ is obtained by Stong in [12]: if $2 \leqslant k \leqslant n-k$ and s is the unique positive integer such that $2^{s}<n \leqslant 2^{s+1}$, then

$$
\operatorname{ht}\left(w_{1}\right)= \begin{cases}2^{s+1}-2, & \text { if } k=2 \text { or }(k, n)=\left(3,2^{s}+1\right) \tag{2.1}\\ 2^{s+1}-1, & \text { otherwise }\end{cases}
$$

In this paper we will often use Stong's method from [12] for calculating in $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ (later this method was generalized by Korbaš and Lörinc to all flag manifolds, see [8]). In what follows we briefly explain this method.

Let $\operatorname{Flag}\left(\mathbb{R}^{n}\right)$ denote the (real) complete flag manifold $(n \geqslant 2)$. Denote by $e_{i}:=w_{1}\left(\gamma_{i}\right)$ the first Stiefel-Whitney class of the canonical line bundle γ_{i} over $\operatorname{Flag}\left(\mathbb{R}^{n}\right)$, for $1 \leqslant i \leqslant n$. Then we have the map $\pi: \operatorname{Flag}\left(\mathbb{R}^{n}\right) \rightarrow G_{k}\left(\mathbb{R}^{n}\right)$, given by

$$
\pi\left(S_{1}, \ldots, S_{k}, S_{k+1}, \ldots, S_{n}\right)=\left(S_{1} \oplus \cdots \oplus S_{k}, S_{k+1} \oplus \cdots \oplus S_{n}\right)
$$

The following result will be very useful for our calculations in $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ (and $\left.H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)\right)$.

Proposition 2.2 (1) The set $B_{n}=\left\{e_{1}^{a_{1}} e_{2}^{a_{2}} \ldots e_{n-1}^{a_{n-1}}: 0 \leqslant a_{i} \leqslant n-i\right\}$ is an additive basis for $H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$.
(2) $\operatorname{ht}\left(e_{i}\right)=n-1$ for $1 \leqslant i \leqslant n$. In particular $e_{i}^{n}=0$ for $1 \leqslant i \leqslant n$.
(3) A monomial $e_{1}^{a_{1}} e_{2}^{a_{2}} \cdots e_{n}^{a_{n}} \in H^{\binom{n}{2}}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ is non-zero if and only if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a permutation of the n-tuple $(n-1, n-2, \ldots, 1,0)$.
(4) If $u \in H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ and

$$
v=e_{1}^{k-1} e_{2}^{k-2} \cdots e_{k-1} \cdot e_{k+1}^{n-k-1} e_{k+2}^{n-k-2} \cdots e_{n-1} \in H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)
$$

then $\pi^{*}(u) \cdot v \in H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$, and $u \neq 0$ if and only if $\pi^{*}(u) \cdot v \neq 0$.
(5) For $1 \leqslant i \leqslant k, \pi^{*}\left(w_{i}\right)$ is the i-th elementary symmetric polynomial in the variables $e_{1}, e_{2}, \ldots, e_{k}$.

Heights of the classes $z\left(w_{1}\right)$ and $z\left(w_{k}\right)$ will be very useful in our calculations. In what follows we determine these values.

It turns out that if $\operatorname{ht}(w)$ is known, then $\operatorname{ht}(z(w))$ can easily be calculated. This is proven in Lemma 4.3 from [9]. Namely, one has: if $w \in H^{*}\left(X ; \mathbb{Z}_{2}\right)$ and t is the unique non-negative integer such that $2^{t} \leqslant \operatorname{ht}(w)<2^{t+1}$, then

$$
\begin{equation*}
\operatorname{ht}(z(w))=2^{t+1}-1 \tag{2.2}
\end{equation*}
$$

We will apply this identity for $X=G_{k}\left(\mathbb{R}^{n}\right)$, when $2 \leqslant k \leqslant n-k$. If $2^{s}<n \leqslant 2^{s+1}$, then (2.1) implies

$$
\begin{equation*}
\operatorname{ht}\left(z\left(w_{1}\right)\right)=2^{s+1}-1 \tag{2.3}
\end{equation*}
$$

On the other hand, Proposition 2.1 implies $w_{k}^{n-k} \neq 0$, so ht $\left(w_{k}\right)=n-k$ (by observing dimension we conclude that $w_{k}^{n-k+1}=0$). Hence, if t is the unique non-negative integer such that $2^{t} \leqslant n-k<2^{t+1}$, then (2.2) implies

$$
\begin{equation*}
\operatorname{ht}\left(z\left(w_{k}\right)\right)=2^{t+1}-1 \tag{2.4}
\end{equation*}
$$

The following lemma will be particularly useful in Section 3.
Lemma 2.3 Let $m, k, n \in \mathbb{N}, k<n$, and $d_{1}, \ldots, d_{m} \in \mathbb{N}$ be such that $d_{1}+\cdots+d_{m} \geqslant 2 k(n-k)$. If $x_{i} \in H^{d_{i}}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ for $1 \leqslant i \leqslant m$, then

$$
z\left(x_{1}\right) \cdots z\left(x_{m}\right)=0
$$

PROOF - Note that the product $p=z\left(x_{1}\right) \cdots z\left(x_{m}\right)$ is the sum of certain classes of the form $x \otimes y+y \otimes x$, for some $x, y \in H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$. Since p is in dimension at least $2 k(n-k)=$ $2 \operatorname{dim} G_{k}\left(\mathbb{R}^{n}\right)$, so is $x \otimes y$, and hence $x, y \in H^{k(n-k)}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ or $x \otimes y=y \otimes x=0$. There is only one non-zero class in $H^{k(n-k)}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$, namely w_{k}^{n-k} (by Proposition 2.1), and hence $x \otimes y=y \otimes x=0$ or $x \otimes y=w_{k}^{n-k} \otimes w_{k}^{n-k}=y \otimes x$. In both cases $x \otimes y+y \otimes x=0$, which implies $p=0$.

Also, we recall some results from [9] that will be used in our calculations.

Lemma 2.4 a) If $2^{s}<n \leqslant 2^{s+1}$, then $w_{1}^{2^{s}} w_{2}^{n-2^{s}-1} \neq 0$ and $w_{1}^{2^{s}} w_{2}^{n-2^{s}}=0$ in $H^{*}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$.
b) If $2^{s}+3 \leqslant n \leqslant 2^{s+1}$ and $t=n-2^{s}$, then $w_{1}^{2^{s}} w_{2}^{2^{s}} w_{3}^{t-3} \neq 0$ in $H^{*}\left(G_{3}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$.

Throughout the paper we use the same notation as in this section.
Finally, let us say a few words on Lemma 4.4 from [9] and our strategy that bypasses the application of this lemma. In Lemma 4.4 from [9] the author assumes that $u_{1}, \ldots, u_{n} \in$ $H^{*}\left(X ; \mathbb{Z}_{2}\right)$ and $k_{1}, \ldots, k_{n} \in \mathbb{N}$ are such that $u_{1}^{k_{1}} \cdots u_{n}^{k_{n}} \neq 0$, and wants to prove that $A=$ $z\left(u_{1}\right)^{2^{r_{1}}-1} \cdots z\left(u_{n}\right)^{2^{r_{n}}-1} \neq 0$, where r_{i} is the unique integer such that $2^{r_{i}-1} \leqslant k_{i}<2^{r_{i}}$ for $1 \leqslant i \leqslant n$. For this he notices that after expanding A one summand is $u_{1}^{k_{1}} \cdots u_{n}^{k_{n}} \otimes$ $u_{1}^{2_{1}-k_{1}-1} \cdots u_{n}^{2^{r_{n}}-k_{n}-1}$, which is nonzero, and from this immediately concludes that $A \neq 0$. As we will see in the proofs of our results, the problem is that the set

$$
S=\left\{\left(l_{1}, \ldots, l_{n}\right): 0 \leqslant l_{i} \leqslant 2^{r_{i}}-1, u_{1}^{l_{1}} \cdots u_{n}^{l_{n}}=u_{1}^{k_{1}} \cdots u_{n}^{k_{n}}\right\}
$$

can contain more than one element, and hence that the corresponding summands of A with the first coordinate equal to $u_{1}^{k_{1}} \cdots u_{n}^{k_{n}}$ may cancel out. So, in our proofs we choose the n-tuple (k_{1}, \ldots, k_{n}) a bit more carefully to ensure that

$$
\sum_{\left(l_{1}, \ldots, l_{n}\right) \in S} u_{1}^{2^{r_{1}}-l_{1}-1} \cdots u_{n}^{2^{r_{n}}-l_{n}-1} \neq 0
$$

and that this further leads to $A \neq 0$ (note: in our applications the degree of $z\left(u_{i}\right)$ in A will not always be $2^{r_{i}}-1$, so we will have slightly different formulas than the one given above).

3 The basic-zero-divisor cup-length of $G_{2}\left(\mathbb{R}^{n}\right)$

Let s be the unique integer such that $2^{s}<n \leqslant 2^{s+1}$. In this section we consider $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{n}\right)\right)$. We note that Propositions 3.7 and 3.10 , that we prove in this section, show that the corresponding results of [9, Theorem 4.5] are not correct (see also Remark 3.9). Fortunately, correct versions give better lower bounds for the topological complexity of $G_{2}\left(\mathbb{R}^{n}\right)$.

We will compare our results with the following upper bound from [9] (this result is a consequence of a general result from [3, Theorem 1]).

Proposition 3.1 If $1 \leqslant k<n$, then $\mathrm{TC}\left(G_{k}\left(\mathbb{R}^{n}\right)\right) \leqslant 2 k(n-k)$. In fact, if $k \neq 1$ and $(k, n) \neq\left(2,2^{d}+1\right)$ for all $d \in \mathbb{N}$, then $\mathrm{TC}\left(G_{k}\left(\mathbb{R}^{n}\right)\right) \leqslant 2 k(n-k)-1$.

3.1 Preliminary lemmas

Let n be a positive integer and $n=\sum_{i=0}^{t} \alpha_{i} \cdot 2^{i}$, where $\alpha_{i} \in\{0,1\}$ for $0 \leqslant i \leqslant t$ and $\alpha_{t}=1$, its representation in base 2 . Then we write $n:=\left(\alpha_{t}, \ldots, \alpha_{1}, \alpha_{0}\right)_{2}$.

As we use \mathbb{Z}_{2} coefficient the following special case of Lucas' theorem will be particularly useful to us: if $n:=\left(\alpha_{t}, \ldots, \alpha_{1}, \alpha_{0}\right)_{2}$ and $m:=\left(\beta_{r}, \ldots, \beta_{1}, \beta_{0}\right)_{2}$, then

$$
\binom{n}{m} \equiv 1 \quad(\bmod 2) \quad \text { if and only if } \quad t \geqslant r \quad \text { and } \quad \alpha_{i} \geqslant \beta_{i} \text { for } 0 \leqslant i \leqslant r .
$$

We will use the following two consequences of Lucas' theorem throughout the paper. Let $w \in H^{*}\left(X ; \mathbb{Z}_{2}\right)$. By Lucas' theorem, $\binom{2^{m}}{i}$ is even for $1 \leqslant i \leqslant 2^{m}-1$, and so

$$
z(w)^{2^{m}}=(w \otimes 1+1 \otimes w)^{2^{m}}=w^{2^{m}} \otimes 1+1 \otimes w^{2^{m}}
$$

On the other hand, by Lucas' theorem $\left({\left(2^{m}-1\right.}_{i}^{i}\right)$ is odd for all $0 \leqslant i \leqslant 2^{m}-1$, and hence

$$
z(w)^{2^{m}-1}=(w \otimes 1+1 \otimes w)^{2^{m}-1}=\sum_{i=0}^{2^{m}-1} w^{i} \otimes w^{2^{m}-1-i} .
$$

We will also need the following result.
Lemma 3.2 Let n be a non-negative integer. Then:
a) $\binom{2 n}{n}$ is odd if and only if $n=0$;
b) $\binom{2 n}{n+1}$ is odd if and only if $n=2^{t+1}-1$ for some $t \in \mathbb{N}_{0}$.

Proof - Part a) immediately follows from Lucas' theorem.
For part b) we note that $C_{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$ is the n-th Catalan number. Then the result follows from part a) and the fact that C_{n} (for $n \geqslant 1$) is odd if and only if $n=2^{t+1}-1$ for some $t \in \mathbb{N}_{0}$ (see [4]).

Lemma 3.3 Let $0 \leqslant m \leqslant n-2$ and $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1-m} \in \mathbb{Z}_{2}$. Then:
a) $\sum_{i=0}^{n-1-m} \alpha_{i} e_{1}^{m+i} e_{2}^{n-1-i}=0$ in $H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ iff $\alpha_{0}=\alpha_{1}=\cdots=\alpha_{n-1-m}$;
b) for a polynomial $p \in H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ in classes e_{1} and e_{2} one has

$$
p \cdot e_{3}^{n-3} e_{4}^{n-4} \cdots e_{n-1}=0 \quad \text { in } \quad H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)
$$

if and only if $p=0$ in $H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$.
PROOF -
a) By Proposition 2.1 from [6] we have $e_{2}^{n-1}=e_{1}^{n-1}+e_{1}^{n-2} e_{2}+\cdots+e_{1} e_{2}^{n-2}$ (we use this proposition for $m=1, k=n-1$ and $i=n-2$). Since $e_{1}^{n}=0$ (by Proposition 2.2.(2)), we have

$$
\sum_{i=0}^{n-1-m} \alpha_{i} e_{1}^{m+i} e_{2}^{n-1-i}=\sum_{i=1}^{n-1-m}\left(\alpha_{i}+\alpha_{0}\right) e_{1}^{m+i} e_{2}^{n-1-i} .
$$

Since $e_{1}^{m+1} e_{2}^{n-2}, e_{1}^{m+2} e_{2}^{n-3}, \ldots, e_{1}^{n-1} e_{2}^{m}$ are in the additive basis B_{n} (from Proposition 2.2.(1)), the last sum is zero if and only if $\alpha_{1}+\alpha_{0}=\alpha_{2}+\alpha_{0}=\cdots=\alpha_{n-1-m}+\alpha_{0}=0$, i.e. if and only if $\alpha_{0}=\alpha_{1}=\cdots=\alpha_{n-1-m}$.
b) As in part a) we use the identities $e_{2}^{n-1}=e_{1}^{n-1}+e_{1}^{n-2} e_{2}+\cdots+e_{1} e_{2}^{n-2}$ and $e_{1}^{n}=e_{2}^{n}=0$ to express p in the form $\sum \alpha_{i, j} e_{1}^{i} e_{2}^{j}$, where $\alpha_{i, j} \in\{0,1\}, 0 \leqslant i \leqslant n-1$ and $0 \leqslant j \leqslant n-2$. Then $\sum \alpha_{i, j} e_{1}^{i} e_{2}^{j} e_{3}^{n-3} e_{4}^{n-4} \cdots e_{n-1}\left(=p e_{3}^{n-3} e_{4}^{n-4} \cdots e_{n-1}\right)$ is a sum of the elements from the basis B_{n} from Proposition 2.2.(1); so this sum is zero if and only if $\alpha_{i j}=0$ for all i, j, i.e. if and only if $p=0$ (since p is also represented in the basis B_{n}).

Remark 3.4 We will use the following consequence of part a) of this lemma. Let $p=$ $\sum_{i=0}^{b-a} \alpha_{i} e_{1}^{a+i} e_{2}^{b-i} \in H^{a+b}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ for some $0 \leqslant a \leqslant n-2, a \leqslant b \leqslant n-1$. If there exist $0 \leqslant i^{\prime} \neq i^{\prime \prime} \leqslant b-a$ such that $\alpha_{i^{\prime}}=0$ and $\alpha_{i^{\prime \prime}}=1$, then $p \neq 0$.

Further, if $q \in H^{c}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$, where $c \leqslant 2 n-3$, is written as a sum of some monomials of the form $e_{1}^{i} e_{2}^{j}$, then after removing all summands with $i \geqslant n$ or $j \geqslant n$ (since they are 0 by Proposition 2.2.(2)), we get that q is written in the same way as p above.

Lemma 3.5 If $2^{s}<n \leqslant 2^{s+1}$ and $a, b \in \mathbb{N}_{0}$ are such that $a+2 b=2(n-2)$, then $w_{1}^{a} w_{2}^{b} \neq 0$ in $H^{2 n-4}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ if and only if

$$
(a, b)=\left(2^{l+1}-2, n-2^{l}-1\right) \quad \text { for some } 0 \leqslant l \leqslant s .
$$

PROOF - By Proposition 2.2.(4), $w_{1}^{a} w_{2}^{b} \neq 0$ in $H^{2 n-4}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ if and only if

$$
\pi^{*}\left(w_{1}^{a} w_{2}^{b}\right) e_{1} e_{3}^{n-3} \cdots e_{n-1}=\left(e_{1}+e_{2}\right)^{a}\left(e_{1} e_{2}\right)^{b} e_{1} e_{3}^{n-3} \cdots e_{n-1} \neq 0
$$

in $H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$. After expanding we have

$$
\left(e_{1}+e_{2}\right)^{a}\left(e_{1} e_{2}\right)^{b} e_{1} e_{3}^{n-3} \cdots e_{n-1}=e_{3}^{n-3} \cdots e_{n-1} \sum_{i=0}^{a}\binom{a}{i} e_{1}^{i+1+b} e_{2}^{a-i+b}
$$

Note that by Proposition 2.2.(3) the only non-zero monomials in this sum are the ones for i that satisfies $(i+1+b, a-i+b) \in\{(n-1, n-2),(n-2, n-1)\}$ and $\binom{a}{i}$ is odd, i.e. $i \in\{n-2-b, n-3-b\}$ and $\binom{a}{i}$ is odd.

If $i=n-2-b$, then $\binom{a}{i}=\binom{2(n-2-b)}{n-2-b}=\binom{2 m}{m}$ (here $2 m=2(n-2-b)=a$). By Lemma 3.2 this number is odd only if $m=0$, i.e. $(a, b)=(0, n-2)$.

Let us now consider the case $i=n-3-b$. Then $\binom{a}{i}=\binom{2(n-2-b)}{n-3-b}=\binom{2 m}{m-1}=\binom{2 m}{m+1}$ (again $2 m=2(n-2-b)=a$). By Lemma 3.2 this number is odd if and only if $m=2^{l}-1$ for some $l \geqslant 1$. Then $a=2^{l+1}-2$ and $b=n-2^{l}-1 \geqslant 0$, which completes our proof.

Remark 3.6 If $w_{1}^{a} w_{2}^{b} \neq 0$ and $a+2 b=2(n-2)$, then, by Proposition 2.1, $w_{1}^{a} w_{2}^{b}=w_{2}^{n-2}$ (since w_{2}^{n-2} is the only non-zero class in $H^{2(n-2)}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$).

3.2 Some exact values

In this section we calculate $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{n}\right)\right)$ for $n=2^{s}+1$.
In the proof of the main result we will use the following observation. Let $n \geqslant 4$. Then, by Proposition 2.1, every class in $H^{1}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ is of the form $\alpha w_{1}, \alpha \in \mathbb{Z}_{2}$, while every class in $H^{2}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ is of the form $\beta w_{1}^{2}+\gamma w_{2}, \beta, \gamma \in \mathbb{Z}_{2}$. Since $z\left(w_{1}^{2}\right)=z\left(w_{1}\right)^{2}$, we conclude: if $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{n}\right)\right)=t$, then there are $a, b, c \in \mathbb{N}_{0}$ such that $z\left(w_{1}\right)^{a} z\left(w_{2}\right)^{b} z\left(x_{1}\right) \cdots z\left(x_{c}\right) \neq 0$, where $a+b+c=t$ and x_{1}, \ldots, x_{c} are some classes of $H^{*}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ each in dimension at least 3.

Proposition 3.7 For $s \geqslant 2$ and $n=2^{s}+1$ one has

$$
\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{n}\right)\right)=2^{s+1}+2^{s}-4 \quad \text { and } \quad \operatorname{TC}\left(G_{2}\left(\mathbb{R}^{n}\right)\right) \geqslant 2^{s+1}+2^{s}-3
$$

PROOF - First, we prove that $z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s}-3} \neq 0$. After expanding, we consider all summands of the form $w_{2}^{n-2} \otimes x$, for some $x \in H^{*}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$. By Lemma 3.5 each such summand is of the form $w_{1}^{2^{l+1}-2} w_{2}^{2^{s}-2^{l}} \otimes w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{l}-3}$ (for $l \geqslant 2$) with coefficient $\binom{2^{s+1}-1}{2^{l+1}-2}\binom{2^{s}-3}{2^{s}-2^{l}}$. By Lucas' theorem each of these binomial coefficients is odd, so $z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s}-3}$ contains $w_{2}^{n-2} \otimes \sum_{l=2}^{s} w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{l}-3}$. Since w_{2}^{n-2} is the only non-zero class in $H^{2(n-2)}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ (by Proposition 2.1), it is enough to prove $\sum_{l=2}^{s} w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{l}-3} \neq 0\left(\right.$ in $\left.H^{*}\left(G_{2}\left(\mathbb{R}^{2^{s}+1}\right) ; \mathbb{Z}_{2}\right)\right)$.

Note that by Lemma 2.4, $w_{1}^{2^{s}} w_{2}=0$, and so $w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{l}-3}=0$ for $2 \leqslant l \leqslant s-1$. Hence, it is enough to prove that $w_{1} w_{2}^{2^{s}-3}=w_{1} w_{2}^{n-4} \neq 0$, which follows from the fact that $w_{1} w_{2}^{n-4}$ is in the additive basis $B_{2, n-2}$ (Proposition 2.1). So, $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{2^{s}+1}\right)\right) \geqslant 2^{s+1}+2^{s}-4$.

Let us now prove that $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{2^{s}+1}\right)\right) \leqslant 2^{s+1}+2^{s}-4$. Suppose that this is not the case and let $a, b, c \in \mathbb{N}_{0}$ and $x_{1}, \ldots, x_{c} \in H^{*}\left(G_{2}\left(\mathbb{R}^{2^{s}+1}\right) ; \mathbb{Z}_{2}\right)$ be some classes each in dimension at least 3 , such that $a+b+c \geqslant 2^{s+1}+2^{s}-3$ and $z\left(w_{1}\right)^{a} z\left(w_{2}\right)^{b} z\left(x_{1}\right) \cdots z\left(x_{c}\right) \neq 0$. By Lemma 2.3, we have $a+2 b+3 c \leqslant 4\left(2^{s}-1\right)-1=2^{s+2}-5$, and hence $b+2 c \leqslant 2^{s}-2$. Further, since $z\left(w_{1}\right)^{2^{s+1}}=0$ (by (2.3)), we have $a \leqslant 2^{s+1}-1$ and hence $b+c=(a+b+c)-a \geqslant 2^{s}-2$. This implies $b=2^{s}-2$ and $c=0$. Finally, $a+b+c \geqslant 2^{s+1}+2^{s}-3$ and $a \leqslant 2^{s+1}-1$ imply $a=2^{s+1}-1$.

So, it is enough to prove $A=z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s}-2}=0$. Suppose that this is not the case. Note that the dimension of A is $2^{s+1}-1+2\left(2^{s}-2\right)=4(n-2)-1$, so every summand of A is of the form $x^{\prime} \otimes x^{\prime \prime}$ where one of the classes x^{\prime} and $x^{\prime \prime}$ has dimension $2(n-2)$ and the other $2(n-2)-1$. Note that, by Proposition 2.1 , the only class in $H^{*}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ of dimension $2(n-2)($ resp. $2(n-2)-1)$ is $w_{2}^{n-2}\left(\right.$ resp. $\left.w_{1} w_{2}^{n-3}\right)$. By symmetry, this and $A \neq 0$ imply $A=w_{2}^{n-2} \otimes w_{1} w_{2}^{n-3}+w_{1} w_{2}^{n-3} \otimes w_{2}^{n-2}$. Now, we proceed as in the first part of the proof to prove that the coefficient of $w_{2}^{n-2} \otimes w_{1} w_{2}^{n-3}$ in A is zero. By Lemma 3.5 each such summand in $A=z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s}-2}$ is of the form $w_{1}^{2^{l+1}-2} w_{2}^{2^{s}-2^{l}} \otimes w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{l}-2}$ (for some $1 \leqslant l \leqslant s$) with coefficient $\binom{2^{s+1}-1}{2^{l+1}-2}\binom{2^{s}-2}{2^{s}-2^{l}}$. By Lucas' theorem this coefficient is 1 , so it is enough to prove $\sum_{l=1}^{s} w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{l}-2}=0$.

Again, by Lemma 2.4, $w_{1}^{2^{s}} w_{2}=0$, so $w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{l}-2}=0$ for $2 \leqslant l \leqslant s-1$. Hence, the previous sum is equal to $w_{1}^{2^{s+1}-3}+w_{1} w_{2}^{2^{s}-2}$. By $(2.1), w_{1}^{2^{s+1}-3} \neq 0$, so $w_{1}^{2^{s+1}-3}=w_{1} w_{2}^{n-3}=$ $w_{1} w_{2}^{2^{s}-2}$, and hence $A=0$.

Remark 3.8 By Proposition 3.1, $\mathrm{TC}\left(G_{2}\left(\mathbb{R}^{2^{s}+1}\right)\right) \leqslant 2^{s+2}-4$, so there is a gap of $2^{s}-1$ between our lower bound and this bound. For example, $9 \leqslant \operatorname{TC}\left(G_{2}\left(\mathbb{R}^{5}\right)\right) \leqslant 12$.

Remark 3.9 Ideas from this paper can be used to prove the following:
(1) If $s \geqslant 1$, then $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{2^{s}+2}\right)\right)=3 \cdot 2^{s}-2$ (one has $z\left(w_{1}\right)^{2^{s+1}-2} z\left(w_{2}\right)^{2^{s}} \neq 0$). So, by Proposition 3.1, $3 \cdot 2^{s}-1 \leqslant \mathrm{TC}\left(G_{2}\left(\mathbb{R}^{2^{s}+2}\right)\right) \leqslant 2^{s+2}-1$.
(2) If $s \geqslant 2$, then $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{2^{s}+3}\right)\right)=3 \cdot 2^{s}$ (one has $z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s}+1} \neq 0$). So, by Proposition 3.1, $3 \cdot 2^{s}+1 \leqslant \mathrm{TC}\left(G_{2}\left(\mathbb{R}^{2^{s}+3}\right)\right) \leqslant 2^{s+2}+3$.

Complete proofs of these results can be found in the extended version of this paper which is available on the author's website.

3.3 General bounds for $\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{n}\right)\right)$

Let $2^{s}+4 \leqslant n \leqslant 2^{s+1}$ and $t=n-2^{s}$. Also, we assume $s \geqslant 3$ (i.e. $n \neq 8$). Further, let r be the unique integer such that $2^{r-1}<t \leqslant 2^{r}$. Since $t \geqslant 4$, we have $r \geqslant 2$. Let j be the smallest positive integer such that the digit on position j in the binary representation of $t-2$ is equal to $1(j$ is well-defined since $t-2 \geqslant 2)$; in other words, $t-2$ has the binary representation of the following form

$$
t-2=2^{m}+\alpha_{m-1} 2^{m-1}+\cdots+\alpha_{j+1} 2^{j+1}+2^{j}+\alpha_{0},
$$

for some $\alpha_{0}, \alpha_{j+1}, \alpha_{j+2}, \ldots, \alpha_{m-1} \in\{0,1\}$ and $1 \leqslant j \leqslant m$. Since $2^{m} \leqslant t-2 \leqslant 2^{r}-2 \leqslant 2^{s}-2$, we additionally have $1 \leqslant j \leqslant m<r \leqslant s$.

Proposition 3.10 If n, s, t, r and j are as above, then

$$
\operatorname{zcl}\left(G_{2}\left(\mathbb{R}^{n}\right)\right) \geqslant 2^{s+1}+2^{s}+2^{r}-\varepsilon-2
$$

and $\operatorname{TC}\left(G_{2}\left(\mathbb{R}^{n}\right)\right) \geqslant 2^{s+1}+2^{s}+2^{r}-\varepsilon-1$, where $\varepsilon=\left\{\begin{array}{rr}2^{j}, & \text { if } t \text { is even } \\ 2^{j}+1, & \text { otherwise. }\end{array}\right.$
PROOF - It is enough to prove that $z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s}+2^{r}-\varepsilon-1} \neq 0$. After expanding, we consider all summands of the form $w_{2}^{n-2} \otimes x$, for some $x \in H^{*}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$. By Lemma 3.5 each such summand is of the form $w_{1}^{2^{l+1}-2} w_{2}^{2^{s}+t-2^{l}-1} \otimes w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{r}+2^{l}-\varepsilon-t}, 0 \leqslant l \leqslant s$, with coefficient $\alpha_{l}=\binom{2^{s+1}-1}{2^{l+1}-2}\binom{2^{s}+2^{r}-\varepsilon-1}{2^{s}+t-2^{l}-1}=\binom{2^{s}+2^{r}-\varepsilon-1}{2^{s}+t-2^{l}-1}$. (Note: if $2^{r}+2^{l}-\varepsilon-t<0$, then $2^{s}+2^{r}-\varepsilon-1<2^{s}+t-2^{l}-1$ and hence $\alpha_{l}=0$, so there is no need to discard summands $\alpha_{l} w_{1}^{2^{l+1}-2} w_{2}^{2^{s}+t-2^{l}-1} \otimes w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{r}+2^{l}-\varepsilon-t}$ when $2^{r}+2^{l}-\varepsilon-t<0$.) Since w_{2}^{n-2} is the only non-zero class in $H^{2(n-2)}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ (by Proposition 2.1), it is enough to prove

$$
A=\sum_{l=0}^{s} \alpha_{l} w_{1}^{2^{s+1}-2^{l+1}+1} w_{2}^{2^{r}+2^{l}-\varepsilon-t} \neq 0 \quad \text { in } H^{*}\left(G_{2}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right) .
$$

Let us first consider the case when t is even. Then $\varepsilon=2^{j}$. Note that $2^{s}+2^{r}-2^{j}-1=$ $2^{s}+2^{r-1}+2^{r-2}+\cdots+2^{j+1}+2^{j-1}+2^{j-2}+\cdots+1(j<r)$. So, by Lucas' theorem, α_{0} and α_{s} are even (since both $2^{s}+t-2$ and $t-1$ have digit 1 on the j-th position in the binary representation), while α_{j} is odd (since $2^{s}+t-1-2^{j}$ has digit 0 on the j-th position in the binary representation).

Let us denote $\tau=2^{r}-2^{j}-t$. Note that $t-2+2^{j} \leqslant 2^{r}$, i.e. $\tau \geqslant-2$. By Proposition 2.2.(4), $A \neq 0$ if and only if

$$
\sum_{l=0}^{s} \alpha_{l}\left(e_{1}+e_{2}\right)^{2^{s+1}-2^{l+1}+1}\left(e_{1} e_{2}\right)^{2^{l}+\tau} \cdot e_{1} \cdot e_{3}^{n-3} e_{4}^{n-4} \ldots e_{n-1} \neq 0
$$

and, by part b) of Lemma 3.3, if and only if

$$
p_{1}=\sum_{l=0}^{s} \alpha_{l}\left(e_{1}+e_{2}\right)^{2^{s+1}-2^{l+1}+1}\left(e_{1} e_{2}\right)^{2^{l}+\tau} \cdot e_{1} \neq 0 .
$$

To prove that $p_{1} \neq 0$ we will use Remark 3.4, i.e. we write p_{1} as in Remark 3.4 and find suitable indices i^{\prime} and $i^{\prime \prime}$ (as in that remark). We denote

$$
\begin{aligned}
q_{1} & =\sum_{l=0}^{s} \alpha_{l}\left(e_{1}+e_{2}\right)^{2^{s+1}-2^{l+1}}\left(e_{1} e_{2}\right)^{2^{l}+\tau}=\sum_{l=0}^{s} \alpha_{l}\left(e_{1}^{2^{l+1}}+e_{2}^{2^{l+1}}\right)^{2^{s-l}-1}\left(e_{1} e_{2}\right)^{2^{l}+\tau} \\
& =\sum_{l=0}^{s} \alpha_{l} \sum_{i=0}^{2^{s-l}-1} e_{1}^{i \cdot 2^{l+1}+2^{l}+\tau} e_{2}^{\left(2^{s-l}-1-i\right) \cdot 2^{l+1}+2^{l}+\tau} .
\end{aligned}
$$

Let us observe a monomial $e_{1}^{a} e_{2}^{b}$ that appears in the inner sum for l. Then $a+b=2^{s+1}+2 \tau$ and $a-b=\left(2 i+1-2^{s-l}\right) 2^{l+1}$, i.e. $2^{l+1} \| a-b$ for $s \neq l$ (that is $2^{l+1} \mid a-b$ and $2^{l+2} \nmid a-b$) and $a=b$ for $s=l$; so, $e_{1}^{a} e_{2}^{b}$ appears only once in q_{1} and its coefficient is α_{l}. Now, since α_{s} is even this implies that the coefficient of $\left(e_{1} e_{2}\right)^{2^{s}+\tau}$ in q_{1} is 0 , and since α_{0} is even that the coefficients of $e_{1}^{2^{s}+\tau-1} e_{2}^{2^{s}+\tau+1}$ and $e_{1}^{2^{s}+\tau+2^{j}-1} e_{2}^{2^{s}+\tau-2^{j}+1}$ in q_{1} are 0 . On the other hand, since α_{j} is odd the coefficient of $e_{1}^{2^{s}+\tau+2^{j}} e_{2}^{2^{s}+\tau-2^{j}}$ in q_{1} is 1 .

Now, we expand $p_{1}=\left(e_{1}^{2}+e_{1} e_{2}\right) q_{1}$. Note that the degree of each monomial in p_{1} is $2^{s+1}+2 \tau+2=2^{s+1}+2^{r+1}-2 t-2^{j+1}+2 \leqslant 2^{s+1}+4(t-1)-2 t-2=2 n-6$, and hence, after removing all monomials of the form $e_{1}^{a} e_{2}^{b}$ when $a \geqslant n$ or $b \geqslant n$, we get p_{1} written as in Remark 3.4. Let us observe a monomial $e_{1}^{a} e_{2}^{b}$ in p_{1}. By the previous identity, its coefficient is the sum of coefficients of $e_{1}^{a-2} e_{2}^{b}$ and $e_{1}^{a-1} e_{2}^{b-1}$ in q_{1}. So, the coefficient of $\left(e_{1} e_{2}\right)^{2^{s}+\tau+1}$ is 0 , while the coefficient of $e_{1}^{2^{s}+\tau+2^{j}+1} e_{2}^{2^{s}+\tau-2^{j}+1}$ is 1 . Since $2^{s}+\tau+2^{j}+1=2^{s}+2^{r}-t+1 \leqslant 2^{s}+t-1=n-1$, the degrees of e_{1} and e_{2} in these monomials are less than n, so we can apply Lemma 3.3 and Remark 3.4 to conclude $p_{1} \neq 0$.

Finally, we consider the case when t is odd. Then $\varepsilon=2^{j}+1$. Note that $2^{s}+2^{r}-2^{j}-2=$ $2^{s}+2^{r-1}+2^{r-2}+\cdots+2^{j+1}+2^{j-1}+2^{j-2}+\cdots+2$, while $t-2=2^{j+1} t^{\prime}+2^{j}+1<2^{r} \leqslant 2^{s}$ for some $t^{\prime} \geqslant 0$. So, by Lucas' theorem, we have that $\alpha_{0}=\binom{2^{s}+2^{r}-2^{j}-2}{2^{s}+2^{j+1} t^{\prime}+2 j^{j}+1}$ and $\alpha_{1}=\binom{2^{s}+2^{r}-2^{j}-2}{2^{s}+2^{j+1} t^{\prime}+2^{j}}$ are even, while

$$
\alpha_{2}=\binom{2^{s}+2^{r}-2^{j}-2}{2^{s}+t-5}=\binom{2^{s}+2^{r-1}+\cdots+2^{j+1}+2^{j-1}+\cdots+2}{2^{s}+2^{j+1} t^{\prime}+2^{j-1}+2^{j-2}+\cdots+2}
$$

is odd.
Let us denote $\theta=2^{r}-2^{j}-t-1$. Note that $2^{j}+t-2 \leqslant 2^{r}+1$, i.e. $\theta \geqslant-4$. By Proposition 2.2.(4), $A \neq 0$ if and only if

$$
\sum_{l=0}^{s} \alpha_{l}\left(e_{1}+e_{2}\right)^{2^{s+1}-2^{l+1}+1}\left(e_{1} e_{2}\right)^{2^{l}+\theta} \cdot e_{1} \cdot e_{3}^{n-3} e_{4}^{n-4} \ldots e_{n-1} \neq 0
$$

and, by Lemma 3.3.b), if and only if $p_{2}=\sum_{l=0}^{s} \alpha_{l}\left(e_{1}+e_{2}\right)^{2^{s+1}-2^{l+1}+1}\left(e_{1} e_{2}\right)^{2^{l}+\theta} e_{1}$ is non-zero. Let us denote

$$
q_{2}=\sum_{l=0}^{s} \alpha_{l}\left(e_{1}+e_{2}\right)^{2^{s+1}-2^{l+1}}\left(e_{1} e_{2}\right)^{2^{l}+\theta}=\sum_{l=0}^{s} \alpha_{l}\left(e_{1}^{2^{l+1}}+e_{2}^{2^{l+1}}\right)^{2^{s-l}-1}\left(e_{1} e_{2}\right)^{2^{l}+\theta} .
$$

Now, as in the previous part of the proof we conclude: the coefficients of $e_{1}^{2^{s}+\theta-1} e_{2}^{2^{s}+\theta+1}$, $e_{1}^{2^{s}+\theta-2} e_{2}^{2^{s}+\theta+2}$ and $e_{1}^{2^{s}+\theta-3} e_{2}^{2^{s}+\theta+3}$ in q_{2} are 0 (since α_{0} and α_{1} are even); the coefficient of
$e_{1}^{2^{s}+\theta-4} e_{2}^{2^{s}+\theta+4}$ in q_{2} is 1 (since α_{2} is odd). So, in the polynomial $p_{2}=\left(e_{1}^{2}+e_{1} e_{2}\right) q_{2}$ the coefficient of $e_{1}^{2^{s}+\theta} e_{2}^{2^{s}+\theta+2}$ is 0 , while the coefficient of $e_{1}^{2^{s}+\theta-2} e_{2}^{2^{s}+\theta+4}$ is 1 . Since the total degree of each monomial of p_{2} is $2^{s+1}+2 \theta+2=2^{s+1}+2^{r+1}-2^{j+1}-2 t \leqslant 2^{s+1}+4 t-8-2 t=2 n-8$ and $2^{s}+\theta+4=2^{s}+2^{r}-2^{j}-t+3 \leqslant 2^{s}+2^{r}-t+1 \leqslant 2^{s}+t-1=n-1$, we can apply Lemma 3.3 and Remark 3.4 to conclude $p_{2} \neq 0$.

4 The zero-divisor cup-length of $G_{3}\left(\mathbb{R}^{n}\right)$

Let s be the unique integer such that $2^{s}<n \leqslant 2^{s+1}$. In this section we give some bounds for $\operatorname{zcl}\left(G_{3}\left(\mathbb{R}^{n}\right)\right)$.

In the following proposition we consider the case $n=2^{s}+1$. This result will show that the corresponding result of [9, Theorem 4.8] is not correct (see also Remark 4.2). Fortunately, this proposition gives a better lower bound for topological complexity.

Proposition 4.1 Let $n=2^{s}+1$, where $s \geqslant 3$. Then

$$
\operatorname{zcl}\left(G_{3}\left(\mathbb{R}^{n}\right)\right) \geqslant 2^{s+1}+2^{s}+2^{s-2}-7 \text { and } \operatorname{TC}\left(G_{3}\left(\mathbb{R}^{n}\right)\right) \geqslant 2^{s+1}+2^{s}+2^{s-2}-6
$$

PROOF - It is enough to show $A=z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s-1}+2^{s-2}-2} z\left(w_{3}\right)^{2^{s-1}-4} \neq 0$.
First, we prove that $w_{1}^{2^{s}} w_{3}=0$. By Proposition 2.2, this follows from

$$
\begin{aligned}
p_{3} & =\pi^{*}\left(w_{1}^{2^{s}} w_{3}\right) e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =\left(e_{1}+e_{2}+e_{3}\right)^{2^{s}}\left(e_{1} e_{2} e_{3}\right) e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =\left(e_{1}^{2^{s}+3} e_{2}^{2} e_{3}+e_{1}^{3} e_{2}^{2^{s}+2} e_{3}+e_{1}^{3} e_{2}^{2} e_{3}^{2^{s}+1}\right) e_{4}^{n-4} \cdots e_{n-1}=0
\end{aligned}
$$

Since $w_{1}^{2^{s}} w_{3}=0$, we have

$$
\begin{aligned}
A & =z\left(w_{1}\right)^{2^{s}-1} z\left(w_{2}\right)^{2^{s-1}+2^{s-2}-2} z\left(w_{1}^{2^{s}}\right) z\left(w_{3}\right)^{2^{s-1}-4} \\
& =z\left(w_{1}\right)^{2^{s}-1} z\left(w_{2}\right)^{2^{s-1}+2^{s-2}-2}\left(w_{1}^{2^{s}} \otimes w_{3}^{2^{s-1}-4}+w_{3}^{2^{s-1}-4} \otimes w_{1}^{2^{s}}\right)
\end{aligned}
$$

Let us observe all classes of the form $w_{3}^{n-3} \otimes x$ for some $x \in H^{*}\left(G_{3}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ after expanding the expression for A; since w_{3}^{n-3} is the only non-zero class in $H^{3(n-3)}\left(G_{3}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ (by Proposition 2.1), to prove that A is non-zero it is enough to show that the sum of all such x is non-zero. To do so, we determine all monomials x^{\prime} and $x^{\prime \prime}$ in classes w_{1} and w_{2}, such that $w_{1}^{2^{s}} x^{\prime}=w_{3}^{n-3}=w_{3}^{2^{s}-2}$ and $w_{3}^{2^{s-1}-4} x^{\prime \prime}=w_{3}^{2^{s}-2}$.

Let $x^{\prime}=w_{1}^{a} w_{2}^{b}$ be such that $w_{1}^{2^{s}+a} w_{2}^{b}=w_{3}^{2^{s}-2}$. Then $a+2 b=2\left(2^{s}-3\right)$. We use Proposition 2.2:

$$
\begin{aligned}
p_{1} & =\pi^{*}\left(w_{1}^{2^{s}+a} w_{2}^{b}\right) e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =\left(e_{1}^{2^{s}}+e_{2}^{2^{s}}+e_{3}^{2^{s}}\right)\left(e_{1}+e_{2}+e_{3}\right)^{a}\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{b} e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =e_{3}^{2^{s}}\left(e_{1}+e_{2}\right)^{a}\left(e_{1} e_{2}\right)^{b+1} e_{1} e_{4}^{n-4} \cdots e_{n-1} \\
& =e_{3}^{2^{s}} \sum_{i=0}^{a}\binom{a}{i} e_{1}^{i+b+2} e_{2}^{a-i+b+1} \cdot e_{4}^{n-4} \cdots e_{n-1} .
\end{aligned}
$$

Note that by Proposition 2.2.(3) the only non-zero monomials in this sum are the ones for i that satisfies $(i+b+2, a-i+b+1) \in\left\{\left(2^{s}-1,2^{s}-2\right),\left(2^{s}-2,2^{s}-1\right)\right\}$ and $\binom{a}{i}$ is odd, i.e. $i \in\left\{2^{s}-3-b, 2^{s}-4-b\right\}$ and $\binom{a}{i}$ is odd.

If $i=2^{s}-3-b$, then $\binom{a}{i}=\binom{2\left(2^{s}-3-b\right)}{2^{s}-3-b}=\binom{2 \delta}{\delta}$ (here $\left.2 \delta=2\left(2^{s}-3-b\right)=a\right)$. By Lemma 3.2 , this number is odd only if $\delta=0$, i.e. $(a, b)=\left(0,2^{s}-3\right)$. Let us now consider the case $i=2^{s}-4-b$. Then $\binom{a}{i}=\binom{2\left(2^{s}-3-b\right)}{2^{s}-4-b}=\binom{2 \delta}{\delta-1}=\binom{2 \delta}{\delta+1}$. Again, by Lemma 3.2, this number is odd only if $\delta=2^{l}-1$, and hence $a=2^{l+1}-2$ and $b=2^{s}-2^{l}-2$ for some $1 \leqslant l \leqslant s-1$.

Let us now go back to our expression for A. Here we only consider pairs (a, b) that satisfy $a \leqslant 2^{s}-1$ and $b \leqslant 2^{s-1}+2^{s-2}-2$; hence $b=2^{s}-2^{l}-2$ only if $l \in\{s-2, s-1\}$, so we have two pairs to consider: $(a, b) \in\left\{\left(2^{s-1}-2,2^{s-1}+2^{s-2}-2\right),\left(2^{s}-2,2^{s-1}-2\right)\right\}=P$.

Next, let $x^{\prime \prime}=w_{1}^{a^{\prime}} w_{2}^{b^{\prime}}$ be such that $w_{1}^{a^{\prime}} w_{2}^{b^{\prime}} w_{3}^{2^{s-1}-4}=w_{3}^{2^{s}-2}$. We denote the set of all such pairs $\left(a^{\prime}, b^{\prime}\right)$ with P^{\prime}. Clearly, if $\left(a^{\prime}, b^{\prime}\right) \in P^{\prime}$, then $a^{\prime}+2 b^{\prime}=3\left(2^{s-1}+2\right)$, and hence $a^{\prime}+b^{\prime} \geqslant 3\left(2^{s-2}+1\right)$; also, by observing A, it is clear that $a^{\prime} \leqslant 2^{s}-1$.

Now, to prove that A is non-zero, it is enough to prove that B is non-zero, where B is equal to

$$
\sum_{(a, b) \in P} w_{1}^{2^{s}-1-a} w_{2}^{2^{s-1}+2^{s-2}-2-b} w_{3}^{2^{s-1}-4}+\sum_{\left(a^{\prime}, b^{\prime}\right) \in P^{\prime}} w_{1}^{2^{s}+2^{s}-1-a^{\prime}} w_{2}^{2^{s-1}+2^{s-2}-2-b^{\prime}}
$$

By Proposition 2.2.(4), this is equivalent to $p=\pi^{*}(B) e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \neq 0$. In what follows we will be working with the additive basis

$$
\widetilde{B}_{2^{s}+1}=\left\{e_{1}^{a_{1}} e_{2}^{a_{2}} \cdots e_{2^{s}}^{a_{2}} \mid a_{1} \leqslant 2^{s}-1, a_{2} \leqslant 2^{s}-2, a_{3} \leqslant 2^{s}, a_{i} \leqslant 2^{s}+1-i, i \geqslant 4\right\}
$$

for $H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$, given by Proposition 2.2.(1) and the canonical homeomorphism σ : $\operatorname{Flag}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Flag}\left(\mathbb{R}^{n}\right)$ defined by

$$
\sigma\left(L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, \ldots, L_{n}\right)=\left(L_{3}, L_{1}, L_{2}, L_{4}, L_{5}, \ldots, L_{n}\right)
$$

Let $d_{3, n-3}=e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1}$. Then

$$
\begin{aligned}
p_{2}= & \pi^{*}\left(\sum_{(a, b) \in P} w_{1}^{2^{s}-1-a} w_{2}^{2^{s-1}+2^{s-2}-2-b} w_{3}^{2^{s-1}-4}\right) d_{3, n-3} \\
= & \pi^{*}\left(w_{1}^{2^{s-1}+1} w_{3}^{2^{s-1}-4}+w_{1} w_{2}^{2^{s-2}} w_{3}^{2^{s-1}-4}\right) d_{3, n-3} \\
= & \left(\left(e_{1}+e_{2}+e_{3}\right)^{2^{s-1}}+\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{2^{s-2}}\right) \\
& \cdot\left(e_{1}+e_{2}+e_{3}\right)\left(e_{1} e_{2} e_{3}\right)^{2^{s-1}-4} d_{3, n-3}
\end{aligned}
$$

Note that the monomials of p_{2} belong to $\widetilde{B}_{2^{s}+1}$; indeed, the degree of e_{1} in each monomial is at most $2^{s-1}+1+2^{s-1}-4+2=2^{s}-1$, the degree of e_{2} is at most $2^{s-1}+1+2^{s-1}-4+1=2^{s}-2$, and the degree of e_{3} is at most $2^{s-1}+1+2^{s-1}-4=2^{s}-3$. In particular, each monomial of p_{2} is not divisible by $e_{3}^{2^{s}}$. Finally, $p_{2} \neq 0$ since $e_{1}^{2^{s}-1} e_{2}^{2^{s-1}-3} e_{3}^{2^{s-1}-4} e_{4}^{n-4} \cdots e_{n-1}$ has coefficient 1 in p_{2}.

On the other hand,

$$
p_{3}=\pi^{*}\left(\sum_{\left(a^{\prime}, b^{\prime}\right) \in P^{\prime}} w_{1}^{2^{s}+2^{s}-1-a^{\prime}} w_{2}^{2^{s-1}+2^{s-2}-2-b^{\prime}}\right) d_{3, n-3}
$$

$$
\begin{aligned}
& =\sum_{\left(a^{\prime}, b^{\prime}\right) \in P^{\prime}}\left(e_{1}^{2^{s}}+e_{2}^{2^{s}}+e_{3}^{2^{s}}\right)\left(e_{1}+e_{2}+e_{3}\right)^{2^{s}-1-a^{\prime}} \\
& \quad \cdot\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{2^{s-1}+2^{s-2}-2-b^{\prime}} d_{3, n-3} \\
& =\sum_{\left(a^{\prime}, b^{\prime}\right) \in P^{\prime}} e_{3}^{2^{s}}\left(e_{1}+e_{2}\right)^{2^{s}-1-a^{\prime}}\left(e_{1} e_{2}\right)^{2^{s-1}+2^{s-2}-2-b^{\prime}} d_{3, n-3}
\end{aligned}
$$

Since $a^{\prime}+b^{\prime} \geqslant 3\left(2^{s-2}+1\right)$, the degree of e_{1} (resp. e_{2}) in each monomial of this sum is at most $2^{s}+2^{s-1}+2^{s-2}-1-a^{\prime}-b^{\prime} \leqslant 2^{s}-4$ (resp. $2^{s}+2^{s-1}+2^{s-2}-2-a^{\prime}-b^{\prime} \leqslant 2^{s}-5$), and hence, after expansion, each monomial (if any) of p_{3} is in $\widetilde{B}_{2^{s}+1}$ and divisible by $e_{3}^{2^{s}}$ (note: it is possible that $p_{3}=0$).

Hence, p_{2} and p_{3} do not have any common monomials from $\widetilde{B}_{2^{s}+1}$, and so there are no cancellations between monomials of p_{2} and p_{3}. Now, $p_{2} \neq 0$ implies $p=p_{2}+p_{3} \neq 0$.

Remark 4.2 Ideas from this paper can be used to prove the following: if $s \geqslant 4$, then $\operatorname{zcl}\left(G_{3}\left(\mathbb{R}^{2^{s}+2}\right)\right) \geqslant 7 \cdot 2^{s-1}$ (one has $z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s}+2^{s-1}} z\left(w_{3}\right) \neq 0$). Hence, $\mathrm{TC}\left(G_{3}\left(\mathbb{R}^{2^{s}+2}\right)\right) \geqslant 7 \cdot 2^{s-1}+1$. Complete proof of this result can be found in the extended version of this paper which is available on the author's website.

Proposition 4.3 Let $s \geqslant 2, n=2^{s}+t \leqslant 2^{s+1}, t \geqslant 3$ and $2^{r-1}<t \leqslant 2^{r}$. Then

$$
\operatorname{zcl}\left(G_{3}\left(\mathbb{R}^{n}\right)\right) \geqslant 2^{s+2}-2^{r}-1 \quad \text { and } \quad \mathrm{TC}\left(G_{3}\left(\mathbb{R}^{n}\right)\right) \geqslant 2^{s+2}-2^{r}
$$

Also, if $t-3 \geqslant 2^{s-1}$, then $\operatorname{zcl}\left(G_{3}\left(\mathbb{R}^{n}\right)\right) \geqslant 7 \cdot 2^{s-1}-1$ and $\operatorname{TC}\left(G_{3}\left(\mathbb{R}^{n}\right)\right) \geqslant 7 \cdot 2^{s-1}$.
PROOF - For the first inequality it is enough to show

$$
A=z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s+1}-2^{r+1}} z\left(w_{3}\right)^{2^{r}} \neq 0
$$

Note that $w_{1}^{2^{s}} w_{3}^{2^{r}}=0$. Indeed, this follows from Proposition 2.2.(4), $e_{i}^{2^{s}+2^{r}}=0$ for $i \in\{1,2,3\}$ and the following calculations:

$$
\begin{aligned}
p_{1} & =\pi^{*}\left(w_{1}^{2^{s}} w_{3}^{2^{r}}\right) e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =\left(e_{1}^{2^{s}}+e_{2}^{2^{s}}+e_{3}^{2^{s}}\right)\left(e_{1} e_{2} e_{3}\right)^{2^{r}} e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =\left(e_{1}^{2^{s}+2^{r}} e_{2}^{2^{r}} e_{3}^{2^{r}}+e_{1}^{2^{r}} e_{2}^{2^{s}+2^{r}} e_{3}^{2^{r}}+e_{1}^{2^{r}} e_{2}^{2^{r}} e_{3}^{2^{s}+2^{r}}\right) e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1}=0
\end{aligned}
$$

Similarly, one proves that $w_{2}^{2^{s}} w_{3}^{2^{r}}=0, w_{1}^{2^{s}} w_{2}^{2^{s}+2^{r}}=0$ and $w_{1}^{2^{s}+2^{r}} w_{2}^{2^{s}}=0$.
Note that $2^{r} \geqslant t \geqslant 3$ implies $r \geqslant 2$. Now, we consider the cases $2 \leqslant r \leqslant s-1$ and $r=s$ separately.
Case 1: $2 \leqslant r \leqslant s-1$. We have

$$
\begin{aligned}
A & =z\left(w_{1}\right)^{2^{s}-1} z\left(w_{1}\right)^{2^{s}} z\left(w_{2}\right)^{2^{s}-2^{r+1}} z\left(w_{2}\right)^{2^{s}} z\left(w_{3}\right)^{2^{r}} \\
& =z\left(w_{1}\right)^{2^{s}-1} z\left(w_{2}\right)^{2^{s}-2^{r+1}}\left(w_{1}^{2^{s}} w_{2}^{2^{s}} \otimes w_{3}^{2^{r}}+w_{3}^{2^{r}} \otimes w_{1}^{2^{s}} w_{2}^{2^{s}}\right)
\end{aligned}
$$

Since $2^{s}-1=2^{s-1}+\cdots+2^{r+1}+2^{r}+2^{r}-1$ and $2^{s}-2^{r+1}=2^{s-1}+\cdots+2^{r+1}$, in a similar way we get

$$
A=z\left(w_{1}\right)^{2^{r}-1}\left(w_{1}^{2^{s}} w_{2}^{2^{s}} \otimes w_{1}^{2^{s}-2^{r}} w_{2}^{2^{s}-2^{r+1}} w_{3}^{2^{r}}+w_{1}^{2^{s}-2^{r}} w_{2}^{2^{s}-2^{r+1}} w_{3}^{2^{r}} \otimes w_{1}^{2^{s}} w_{2}^{2^{s}}\right)
$$

Since the dimension of $w_{1}^{2^{s}} w_{2}^{2^{s}}$ is greater than the dimension of the class $w_{1}^{2^{s}-2^{r}} w_{2}^{2^{s}-2^{r+1}} w_{3}^{2^{r}}$, after expanding the expression for A, there is only one summand with the first coordinate in dimension $3 \cdot 2^{s}+2^{r}-1$, and this summand is $w_{1}^{2^{s}+2^{r}-1} w_{2}^{2^{s}} \otimes w_{1}^{2^{s}-2^{r}} w_{2}^{2^{s}-2^{r+1}} w_{3}^{2^{r}}$. Hence, it is enough to prove that $w_{1}^{2^{s}+2^{r}-1} w_{2}^{2^{s}} \neq 0$ and $w_{1}^{2^{s}-2^{r}} w_{2}^{2^{s}-2^{r+1}} w_{3}^{2^{r}} \neq 0$.

First, we prove that $w_{1}^{2^{s}+2^{r}-1} w_{2}^{2^{s}} \neq 0$. Since $e_{i}^{2^{s+1}}=0$ for $i \in\{1,2,3\}$ (by Proposition 2.2.(2)), by Proposition 2.2.(4) it is enough to prove that

$$
\begin{aligned}
p_{2} & =\pi^{*}\left(w_{1}^{2^{s}+2^{r}-1} w_{2}^{2^{s}}\right) e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =\left(e_{1}+e_{2}+e_{3}\right)^{2^{r}-1}\left(e_{1}^{2^{s}}+e_{2}^{2^{s}}+e_{3}^{2^{s}}\right)\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{2^{s}} e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =\left(e_{1}+e_{2}+e_{3}\right)^{2^{r}-1}\left(e_{1} e_{2} e_{3}\right)^{2^{s}} e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1} \\
& =\pi^{*}\left(w_{1}^{2^{r}-1} w_{3}^{2^{s}}\right) e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1}
\end{aligned}
$$

is non-zero in $H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$, i.e. that $w_{1}^{2^{r}-1} w_{3}^{2^{s}}$ is non-zero in $H^{*}\left(G_{3}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$. Observe the inclusion $i: G_{3}\left(\mathbb{R}^{n-2^{s}}\right) \subset G_{3}\left(\mathbb{R}^{n}\right)$. Note that the height of $i^{*}\left(w_{1}\right)$ in $H^{*}\left(G_{3}\left(\mathbb{R}^{n-2^{s}}\right) ; \mathbb{Z}_{2}\right)$ is $2^{r}-1$ (by (2.1)). So, let x be a class in $H^{*}\left(G_{3}\left(\mathbb{R}^{n-2^{s}}\right) ; \mathbb{Z}_{2}\right)$ such that $i^{*}\left(w_{1}\right)^{2^{r}-1} x \in$ $H^{3\left(n-2^{s}-3\right)}\left(G_{3}\left(\mathbb{R}^{n-2^{s}}\right) ; \mathbb{Z}_{2}\right)$ is non-zero (this class exists by Poincare's duality); further, let $\widetilde{x} \in H^{*}\left(G_{3}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$ be such that $i^{*}(\widetilde{x})=x$. Then, by [12, Lemma 1], the value of $w_{1}^{2^{r}-1} \widetilde{x} \cdot w_{3}^{2^{s}}$ is the same as the value of $i^{*}\left(w_{1}^{2^{r}-1} \widetilde{x}\right)=i^{*}\left(w_{1}\right)^{2^{r}-1} x$, which is non-zero. Hence, $w_{1}^{2^{r}-1} w_{3}^{2^{s}} \neq 0$.

Finally, we prove that $w_{1}^{2^{s}-2^{r}} w_{2}^{2^{s}-2^{r+1}} w_{3}^{2^{r}} \neq 0$. This will immediately follow from the identity $w_{1}^{2^{s}-2^{r}} w_{2}^{2^{s}-2^{r}} w_{3}^{2^{r}}=w_{1}^{2^{s}} w_{2}^{2^{s}}=w_{3}^{2^{s}} \neq 0$, which we now prove. Since $e_{i}^{2^{s}+2^{r}}=0$ for $i \in\{1,2,3\}$, by Proposition 2.2.(4) this follows from (here $d_{3, n-3}=e_{1}^{2} e_{2} e_{4}^{n-4} \cdots e_{n-1}$)

$$
\begin{aligned}
p_{3}= & \pi^{*}\left(w_{1}^{2^{s}-2^{r}} w_{2}^{2^{s}-2^{r}} w_{3}^{2^{r}}\right) d_{3, n-3} \\
= & \left(e_{1}+e_{2}+e_{3}\right)^{2^{s}-2^{r}}\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{2^{s}-2^{r}}\left(e_{1} e_{2} e_{3}\right)^{2^{r}} d_{3, n-3} \\
= & \left(e_{1}+e_{2}+e_{3}\right)^{2^{s-1}}\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{2^{s-1}} . \\
& \cdot\left(e_{1}+e_{2}+e_{3}\right)^{2^{s-1}-2^{r}}\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{s-1}-2^{r}\left(e_{1} e_{2} e_{3}\right)^{2^{r}} d_{3, n-3} \\
= & \left(e_{1}+e_{2}+e_{3}\right)^{2^{s-1}-2^{r}}\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{2^{s-1}-2^{r}}\left(e_{1} e_{2} e_{3}\right)^{2^{s-1}+2^{r}} d_{3, n-3} \\
= & \cdots \\
= & \left(e_{1} e_{2} e_{3}\right)^{2^{s-1}+2^{s-2}+\cdots+2^{r}+2^{r}} d_{3, n-3} \\
= & \left(e_{1} e_{2} e_{3}\right)^{2^{s}} d_{3, n-3} \\
= & \left(e_{1}+e_{2}+e_{3}\right)^{2^{s}}\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{2^{s}} d_{3, n-3} \\
= & \pi^{*}\left(w_{1}^{2^{s}} w_{2}^{2^{s}}\right) d_{3, n-3} .
\end{aligned}
$$

Since $w_{3}^{2^{s}} \in B_{3, n-3}$, we have $w_{3}^{2^{s}} \neq 0$, which completes our proof.
Case 2: $r=s$. Then $A=z\left(w_{1}\right)^{2^{s}-1}\left(w_{1}^{2^{s}} \otimes w_{3}^{2^{s}}+w_{3}^{2^{s}} \otimes w_{1}^{2^{s}}\right)$. Since after expanding A there is only one summand with the first coordinate in dimension $2^{s+2}-1$, and this summand is $w_{1}^{2^{s}-1} w_{3}^{2^{s}} \otimes w_{1}^{2^{s}}$, it is enough to prove $w_{1}^{2^{s}-1} w_{3}^{2^{s}} \neq 0$ and $w_{1}^{2^{s}} \neq 0$. The second follows from $w_{1}^{2^{s}} \in B_{3, n-3}$, and the first one is proven after the calculations for p_{2}.

Suppose now that $t-3 \geqslant 2^{s-1}$. We will prove that

$$
B=z\left(w_{1}\right)^{2^{s+1}-1} z\left(w_{2}\right)^{2^{s}} z\left(w_{3}\right)^{2^{s-1}} \neq 0,
$$

which implies $\operatorname{zcl}\left(G_{3}\left(\mathbb{R}^{n}\right)\right) \geqslant 2^{s+1}+2^{s}+2^{s-1}-1$.

Let us observe all summands of B with the first coordinate in dimension $9 \cdot 2^{s-1}$. Note that

$$
B=z\left(w_{1}\right)^{2^{s}-1} z\left(w_{1}^{2^{s}}\right) z\left(w_{2}^{2^{s}}\right) z\left(w_{3}^{2^{s-1}}\right)
$$

so the only monomial of this form is $w_{1}^{2^{s}} w_{2}^{2^{s}} w_{3}^{2^{s-1}} \otimes w_{1}^{2^{s}-1}$, and hence it is enough to prove that $w_{1}^{2^{s}} w_{2}^{2^{s}} w_{3}^{2^{s-1}} \neq 0$ and $w_{1}^{2^{s}-1} \neq 0$. This follows from Lemma 2.4 (indeed, since $t-3 \geqslant 2^{s-1}$, both monomials divide $w_{1}^{2^{s}} w_{2}^{2^{s}} w_{3}^{t-3} \neq 0$).

5 The zero-divisor cup-length of $G_{k}\left(\mathbb{R}^{n}\right)$

In this section we give a lower bound for $G_{k}\left(\mathbb{R}^{n}\right)$ for $k \geqslant 4$.
Proposition 5.1 Let $4 \leqslant k<n$ and $2^{s}+k \leqslant n \leqslant 2^{s+1}$. Then

$$
\operatorname{zcl}\left(G_{k}\left(\mathbb{R}^{n}\right)\right) \geqslant\left(\left\lceil\log _{2} k\right\rceil+1\right) \cdot 2^{s}-1 \quad \text { and } \quad \mathrm{TC}\left(G_{k}\left(\mathbb{R}^{n}\right)\right) \geqslant\left(\left\lceil\log _{2} k\right\rceil+1\right) \cdot 2^{s}
$$

PROOF - Let $2^{r-1}<k \leqslant 2^{r}$. Then $\left\lceil\log _{2} k\right\rceil=r$, so it is enough to prove

$$
A=z\left(w_{1}\right)^{2^{s+1}-1} \prod_{i=1}^{r-1} z\left(w_{2^{i}}\right)^{2^{s}}=z\left(w_{1}\right)^{2^{s}-1} \prod_{i=0}^{r-1} z\left(w_{2^{i}}^{2^{s}}\right) \neq 0
$$

First, let us prove that $p=\prod_{i=0}^{r-2} w_{2^{i}}^{2^{s}}$ is non-zero in $H^{*}\left(G_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$. Let $d_{k, n-k}=$ $e_{1}^{k-1} \cdots e_{k-1} e_{k+1}^{n-k-1} \cdots e_{n-1}$. Since $e_{i}^{2^{s+1}}=0$ for $1 \leqslant i \leqslant k$ (by Proposition 2.2.(2)) and $k^{\prime}:=\sum_{i=0}^{r-2} 2^{i}=2^{r-1}-1<k$ we have

$$
\begin{aligned}
p_{1} & =\pi^{*}\left(\prod_{i=0}^{r-2} w_{2^{i}}^{2^{s}}\right) d_{k, n-k} \\
& =\prod_{i=0}^{r-2}\left(\sum_{1 \leqslant a_{1}<a_{2}<\cdots<a_{2^{i}} \leqslant k} e_{a_{1}}^{2^{s}} e_{a_{2}}^{2^{s}} \cdots e_{a_{2^{i}}}^{2^{s}}\right) d_{k, n-k} \\
& =\left[2^{0}, 2^{1}, \ldots, 2^{r-2}\right]\left(\sum_{1 \leqslant a_{1}<a_{2}<\cdots<a_{k^{\prime}} \leqslant k} e_{a_{1}}^{2^{s}} e_{a_{2}}^{2^{s}} \cdots e_{a_{k^{\prime}}}^{2^{s}}\right) d_{k, n-k}
\end{aligned}
$$

where $\left[2^{0}, 2^{1}, \ldots, 2^{r-2}\right]=\binom{2^{0}+2^{1}+\cdots+2^{r-2}}{2^{0}}\binom{2^{1}+\cdots+2^{r-2}}{2^{1}} \cdots\binom{2^{r-2}}{2^{r-2}}$ denotes the multinomial coefficient. By Lucas' theorem, this coefficient is odd. Also, for $1 \leqslant i \leqslant k$ the degree of e_{i} in each monomial in the last expression for p_{1} is at most $2^{s}+k-i \leqslant n-i$, so all monomials in this expression are distinct members of the basis B_{n} for $H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$, and hence $p_{1} \neq 0$. So, by Proposition 2.2.(4), $p \neq 0$.

Now, let us observe all summands after expanding A with first coordinate in dimension $\left(2^{r-1}-1\right) \cdot 2^{s}$. The dimension of p is $\left(2^{r-1}-1\right) \cdot 2^{s}$, and it is easy to see that the only term
of this form is $p \otimes w_{1}^{2^{s}-1} w_{2^{r-1}}^{2^{s}}$. So, to finish the proof it is enough to prove $w_{1}^{2^{s}-1} w_{2^{r-1}}^{2^{s}} \neq 0$. In fact, we prove that $w_{1}^{2^{s}} w_{2^{r-1}}^{2^{s}} \neq 0$. Since $e_{i}^{2^{s+1}}=0$ for $1 \leqslant i \leqslant k$, we have

$$
\left.\begin{array}{rl}
p_{2} & =\pi^{*}\left(w_{1}^{2^{s}} w_{2^{r-1}}^{2^{s}}\right) d_{k, n-k} \\
& =\left(e_{1}^{2^{s}}+e_{2}^{2^{s}}+\cdots+e_{k}^{2^{s}}\right)\left(\sum_{1 \leqslant a_{1}<a_{2}<\cdots<a_{2 r-1} \leqslant k} e_{a_{1}}^{2^{s}} e_{a_{2}}^{2^{s}} \cdots e_{a_{2} r-1}^{2^{s}}\right) d_{k, n-k} \\
& =\left(\sum_{1 \leqslant a_{1}<a_{2}<\cdots<a_{a^{r-1}+1} \leqslant k} e_{a_{1} s}^{2^{s}} e_{a_{2}}^{2^{s}} \cdots e_{a_{2} r-1+1}^{2^{s}}\right.
\end{array}\right) d_{k, n-k} .
$$

Now, as above, $2^{s}+k \leqslant n$ implies that all monomials in the last expression for p_{2} are distinct members of the basis B_{n} for $H^{*}\left(\operatorname{Flag}\left(\mathbb{R}^{n}\right) ; \mathbb{Z}_{2}\right)$, and hence $p_{2} \neq 0$. By Proposition 2.2.(4), it follows that $w_{1}^{2^{s}} w_{2^{r-1}}^{2^{s}} \neq 0$.

Acknowledgment

The author would like to thank Prof. Petar Pavešić for valuable comments and helpful discussions on the subject. Also, the author would like to thank the anonymous referee for carefully reading the paper and many useful comments and suggestions that improved the paper, and Prof. Mark Grant for pointing to us the paper [2]. The author is partially supported by Ministry of Education, Science and Technological Development of Republic of Serbia (Grant No: 45103-9/2021-14/200104).

References

[1] A. Borel, La cohomologie mod 2 de certains espaces homogenes, Comm. Math. Helv. 27 (1953) 165-197.
[2] D. Cohen, A. Suciu, Boundary manifolds of projective hypersurfaces, Adv. Math. 206 (2006) 538-566.
[3] A. Costa and M. Farber, Motion planning in spaces with small fundamental groups, Commun. Contemp. Math. 12 (2010) 107-119.
[4] Ö. Eğecioğlu, The parity of the Catalan numbers via lattice paths, Fibonacci Quart. 21 (1983) 65-66.
[5] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211-221.
[6] J. González, B. Gutiérrez, D. Gutiérrez and A. Lara, Motion planning in real flag manifolds, Homol. Homotopy Appl. 82:2 (2016) 359-375.
[7] J. Jaworowski, An additive basis for the cohomology of real Grassmannians, Lecture Notes in Math. 1474, Springer-Verlag, Berlin (1991) 231-234.
[8] J. Korbaš and J. Lörinc, The \mathbb{Z}_{2}-cohomology cup-length of real flag manifolds, Fund. Math. 178 (2003), 143-158.
[9] P. Pavešić, Topological complexity of real Grassmannians, P. Roy. Soc. Edinb. A 151:6 (2021), 2013-2029.
[10] P. Pavešić, Erratum to "Topological complexity of real Grassmannians", submitted.
[11] Z. Z. Petrović, B. I. Prvulović and M. Radovanović, Multiplication in the cohomology of Grassmannians via Gröbner bases, J. Algebra 438 (2015) 60-84.
[12] R.E. Stong, Cup products in Grassmannians, Topol. Appl. 13 (1982), 103-113.

[^0]: *University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia.

