On the topological complexity and zero-divisor cup-length of
real Grassmannians

Marko Radovanovi¢*

March 6, 2022

Abstract
Topological complexity naturally appears in the motion planning in robotics. In this
paper we consider the problem of finding topological complexity of real Grassmann man-
ifolds G (R™). We use cohomology methods to give estimates on the zero-divisor cup-
length of G (R™) for various 2 < k < n, which in turn give us lower bounds on topological
complexity. Our results correct and improve several results from [9)].

1 Introduction

For a path-connected space X we denote its topological complexity by TC(X). In [9] the
author considered the problem of finding TC(G(R"™)) for various 2 < k < n (in this paper,
Gr(R™) denotes the real Grassmann manifold of k-dimensional subspaces in R™). Unfortu-
nately, there is a problem with the proof of the main lemma of that paper (Lemma 4.4) and
the consequential results on the topological complexity (Theorems 4.5, 4.8 and 4.12); see [10].
In this paper we reconsider this problem, and as an outcome correct and improve several
results from [9]. As in [9], we use the cohomology method to obtain our results.

This paper closely follows and builds on the ideas presented in [9] (so, for background,
motivation and all undefined notions, the reader is advised to consult [9]). Throughout the
paper we will use, as much as possible, the notation from [9]. In particular, we will be working
with the unreduced topological complexity, as defined by Farber in [5] (for example, by this
definition the topological complexity of a contractible space is equal to 1).

The paper is organized as follows. In Section 2 we describe the cohomology method
mentioned above and give an overview of the cohomology of real Grassmannians. In Section
3 we consider the case k = 2. We obtain the exact value of the zero-divisor cup-length of
G2(R¥+1) (denoted by zcl(G2(R?**1)), and defined in Section 2) for s > 2; additionally, for
s> 3,2°+4 < n <2 we prove a lower bound for zcl(Go(R™)). These results show that
the value of the zero-divisor cup-length given in [9, Theorem 4.5] is not correct; what is more
interesting, our results improve lower bounds for topological complexity stated in the same
theorem. Section 4 is devoted to the case k = 3. Separately, we prove lower bounds for
zcl(G3(R™)) in the cases n = 25 + 1 (for s > 3), and 2° + 3 < n < 257! (for s > 2). The first
result shows that the corresponding result from [9, Theorem 4.8] is not correct, and improves
the stated lower bound for topological complexity of G3(R?**1) (for s > 5). In Section 5 we
give a general lower bound for zcl(G(R™)) (for £ > 4). For k > 9 this result improves the
bounds stated in [9, Theorem 4.10].
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2 Background and notation

As mentioned in Introduction, to obtain our results we use the so called cohomology method,
which we now (briefly) explain.
Let A : X — X x X denote the diagonal map. Then the elements of

Ker(A* : HY(X x X;Z) — H*(X;Z))

are called zero-divisors. Further, the zero-divisor cup-length of X, denote by zcl(X), is defined
to be the maximum number of elements from KerA* whose product is non-zero. In [5], Farber
proved that zcl(X) gives a lower bound for TC(X), that is TC(X) > zcl(X) + 1. Hence, a
lower bound for zcl(X) immediately gives a lower bound for TC(X). Note that for every
w € H*(X;Z2) the element

Aw)=wel+10we H (X x X;Zy)

is in KerA* (since A*(z(w)) = w-1+1-w = 0). Then, by [2, Lemma 5.2], KerA* is generated
as an ideal by these elements, that is by the set {z(w) : w € H*(X;Zs)}. So, if zcl(X) = ¢,
then there are classes x1,xo,...,x¢ € H*(X;Zs) such that z(x1)z(ze) - - z(x) # 0.

To get the best possible results on TC(G(R™)) using the cohomology method, one requires
fine understanding of the cohomology algebra H*(G(R™);Zs). There are several ways to
describe this algebra; in this paper we will use the one due to Borel (see [1]):

H*(Gr(R"); Zo) = Zo[wi, wa, ..., wk] /I n,

where w1y, ws, ..., wy are the Stiefel-Whitey classes of the canonical k-dimensional vector
bundle over G,(R"), and I, = (Wp—k+1, Wn—k+2;---,Wn) is the ideal generated by dual
classes.

Although Borel’s description of H*(Gy(R™); Z2) appears simple enough, it turns out that
performing concrete calculations in this algebra can be rather difficult. Hence, one usually
needs to apply some additional methods and properties of H*(Gy(R");Z2). The following
result gives an additive basis for this algebra (see, e.g. [7, 11]).

a

Proposition 2.1 The set By, = {wi* ---w,* : 0 <ay + -+ ap <n—k} is an additive
basis for H*(G(R™); Za).

The height of a class ¢ € H*(X;Zs), denoted by ht(c), is the largest m € N such that
™ # 0. For k > 2, the height of w1 € H*(Gg(R");Zs2) is obtained by Stong in [12]: if
2 <k <n—kand s is the unique positive integer such that 2° < n < 25%!, then

25t 2 if k=2 or (k,n) = (3,25 + 1),

ht(w) = { 251 _ 1, otherwise. =

In this paper we will often use Stong’s method from [12] for calculating in H*(G(R"); Z2)
(later this method was generalized by Korbas and Loérinc to all flag manifolds, see [8]). In
what follows we briefly explain this method.

Let Flag(R™) denote the (real) complete flag manifold (n > 2). Denote by e; := wi(y;)
the first Stiefel-Whitney class of the canonical line bundle 7; over Flag(R"), for 1 < i < n.
Then we have the map 7 : Flag(R") — G (R"™), given by

7T<Sla"'7skask+la"'75n):(Sl@"'@sk)5k+l@"'@5n)'



The following result will be very useful for our calculations in H*(Gp(R");Z2) (and
H* (Flag(R"); Z5)).

Proposition 2.2 (1) The set B, = {e{*e3*...ex" ' : 0 < a; < n—i} is an additive basis
for H*(Flag(R™); Zs).

(2) ht(e;) =n—1 for 1 <i < n. In particular e} =0 for 1 <i < n.

(3) A monomial ef‘ey*---eln € a() (Flag(R™); Zsg) is mon-zero if and only if
(a1,a2,...,a,) is a permutation of the n-tuple (n — 1,n —2,...,1,0).

(4) If u € H*(Gx(R™); Z2) and
v=elleh 2 ey - eZ;fﬁlerr;“*? -ep—1 € H*(Flag(R"™); Z2),

then 7 (u) - v € H*(Flag(R™); Z2), and u # 0 if and only if 7*(u) - v # 0.
(5) For 1 < i < k, 7*(w;) is the i-th elementary symmetric polynomial in the variables
€1,€2,...,€L.

Heights of the classes z(w1) and z(wy) will be very useful in our calculations. In what
follows we determine these values.

It turns out that if ht(w) is known, then ht(z(w)) can easily be calculated. This is proven
in Lemma 4.3 from [9]. Namely, one has: if w € H*(X;Zy) and t is the unique non-negative
integer such that 2! < ht(w) < 2/7!, then

ht(z(w)) = 2071 — 1. (2.2)

We will apply this identity for X = G3(R"), when 2 < k <n — k. If 2° < n < 2°%! then
(2.1) implies
ht(z(wy)) = 25T — 1. (2.3)

On the other hand, Proposition 2.1 implies wz_k # 0, so ht(wg) = n — k (by observing

dimension we conclude that wZ_kH =0).

that 28 <n —k < 2171 then (2.2) implies

Hence, if ¢ is the unique non-negative integer such

ht(z(wy)) = 207 — 1. (2.4)
The following lemma will be particularly useful in Section 3.

Lemma 2.3 Letm,k,n €N, k <n, anddy,...,d, € N be such that di+- - -+d, > 2k(n—k).
If 2; € H%(GR(R™); Zs) for 1 <i < m, then

z(x1) -+ 2(xm) = 0.

PROOF — Note that the product p = z(x1) - - - z(x;,) is the sum of certain classes of the form
r®y+y®x, for some x,y € H*(G(R™);Za). Since p is in dimension at least 2k(n — k) =
2dim G1(R™), so is © @ y, and hence z,y € H*"F) (G (R™); Zs) or @ y = y @ x = 0. There
is only one non-zero class in H*¥"=%) (G, (R"); Z3), namely wz_k (by Proposition 2.1), and
hence x®y=y®x:00r$®y:w2_k®wz_k =y®x. Inboth cases rQy+yRxz =0,
which implies p = 0. O

Also, we recall some results from [9] that will be used in our calculations.



Lemma 2.4 a) If 2° < n < 2571, then w¥wi™ ™1 # 0 and w¥wi™? = 0 in
H*(G2(R™); Zs).
b) If2° +3<n <257 and t = n — 2%, then w¥ w3 w3 # 0 in H*(G3(R"); Zs).

Throughout the paper we use the same notation as in this section.

Finally, let us say a few words on Lemma 4.4 from [9] and our strategy that bypasses
the application of this lemma. In Lemma 4.4 from [9] the author assumes that uy,...,u, €
H*(X;Zo) and ky,...,k, € N are such that u’fl ---ufr #£ 0, and wants to prove that A =
2(u)?" 7t 2(un )" # 0, where r; is the unique integer such that 271 < k; < 27
for 1 < ¢ < n. For this he notices that after expanding A one summand is u’fl ek ®
u%rl_kl_l -2 ~kn=1"which is nonzero, and from this immediately concludes that A # 0.
As we will see in the proofs of our results, the problem is that the set

S={(1,.. . ln) : 0<L; <2 =1, bt o oule = bt oyfny

n

can contain more than one element, and hence that the corresponding summands of A with

the first coordinate equal to ulfl ---uf" may cancel out. So, in our proofs we choose the
n-tuple (k1,...,k,) a bit more carefully to ensure that

2" -1 -1 2™ —[,—1
g uy ceeuy T F£Q

(I1,.,ln)ES

and that this further leads to A # 0 (note: in our applications the degree of z(u;) in A will
not always be 2" — 1, so we will have slightly different formulas than the one given above).

3 The basic-zero-divisor cup-length of G2(R")

Let s be the unique integer such that 2° < n < 2571, In this section we consider zcl(G2(R")).
We note that Propositions 3.7 and 3.10, that we prove in this section, show that the cor-
responding results of [9, Theorem 4.5] are not correct (see also Remark 3.9). Fortunately,
correct versions give better lower bounds for the topological complexity of Go(R™).

We will compare our results with the following upper bound from [9] (this result is a
consequence of a general result from [3, Theorem 1]).

Proposition 3.1 If 1 < k < n, then TC(G(R™)) < 2k(n — k). In fact, if K # 1 and
(k,n) # (2,2 + 1) for all d € N, then TC(G(R"™)) < 2k(n — k) — 1.

3.1 Preliminary lemmas

Let n be a positive integer and n = 3"i_, a; - 2¢, where a; € {0,1} for 0 <i <t and oy = 1,

its representation in base 2. Then we write n := (o, ..., a1, ap)2.
As we use Zy coefficient the following special case of Lucas’ theorem will be particularly
useful to us: if n:= (ay,...,a1,00)2 and m := (B, ..., 51, 5o)2, then

<n>51 (mod 2) ifand only if ¢t>r and o; > pfifor0<i<r.
m

We will use the following two consequences of Lucas’ theorem throughout the paper. Let
w € H*(X;Z2). By Lucas’ theorem, (27; ) is even for 1 <7< 2™ — 1, and so

2w)? " =(wel+l1ow)? =" @1+10w?".



On the other hand, by Lucas’ theorem (Qmi_l) is odd for all 0 <7 < 2™ — 1, and hence

2w M= (wel+lew)? = Zw ®w?"

We will also need the following result.

Lemma 3.2 Let n be a non-negative integer. Then:
a) (2:) is odd if and only if n = 0;
b) (anI) is odd if and only if n = 271 — 1 for some t € Ny.

PROOF — Part a) immediately follows from Lucas’ theorem.

For part b) we note that C,, = (277) - (nzfl) is the n-th Catalan number. Then the result

follows from part a) and the fact that C,, (for n > 1) is odd if and only if n = 2!*1 — 1 for
some t € Ny (see [4]). O
Lemma 3.3 Let 0 < m<n—2 and ag,a1,...,0n_1-m € Zo. Then:
n—1-m
a) Z e m“ 5 =i =0 in H*(Flag(R™); Zs) iff ao =1 = -+ = Qp—1—m;

b) for a polynomial p € H*(Flag(R™);Zs) in classes ey and ey one has

3 4

p-es ey " -rep_1 =0 in  H*(Flag(R");Zo)

if and only if p =0 in H*(Flag(R"); Z2).
PROOF —
a) By Proposition 2.1 from [6] we have e} ' = /™! + e 2eg 4+ - -- + e1eh 2 (we use this

proposition for m =1, k =n — 1 and ¢ = n — 2). Since e] = 0 (by Prop031tlon 2.2.(2)), we
have

n—1—-m n—1l-m
Z a;e m+z n 1—i _ Z (az—lrozo)einﬂeg 1— z
i=1
Since " Tlel =2 e T2l =3 el el are in the additive basis B,, (from Proposition 2.2.(1)),
the last sum is zero if and only ifoar+ayg=as+ayg=-+=an_1-m+ag =0, ie. if and
only if ag =a1 =+ = ap_1-m-

b) As in part a) we use the identities ) ' = e 4" %eg 4+ - +ee) 2 and e’f =ey =0
to express p in the form Y «; jelel, where a;; € {0,1},0<i<n—1land 0<j <n—2.
Then Zoz”ele2 5 362 doen (= pey™ 362 4 +-ep—1) is a sum of the elements from the
basis By, from Proposition 2.2.(1); so this sum is zero if and only if a;; = 0 for all 4, j, i.e. if

and only if p = 0 (since p is also represented in the basis B,,). O



Remark 3.4 We will use the following consequence of part a) of this lemma. Let p =
ZO‘@ atie b i H“+b(F1ag(R");Z2) for some 0 < a <n-—2,a<b< n—1. If there

emst 0<i #1i" <b—a such that ay =0 and a;r = 1, then p # 0.

Further, z'fq € H¢(Flag(R"); Za), where ¢ < 2n—3, is written as a sum of some monomials
of the form €€}, then after removing all summands with i > n or j > n (since they are 0 by
Proposition 2.2.(2)), we get that q is written in the same way as p above.

Lemma 3.5 If2° < n < 2°t! and a,b € Ny are such that a + 2b = 2(n — 2), then wiwh # 0
in H*"=4(Go(R"); Zs) if and only if

(a,b) = (21 —2,n — 2" — 1) for some 0 <1 < s.

PROOF — By Proposition 2.2.(4), w{w$ # 0 in H?>"~4(G(R"); Zs) if and only if

W*(w%wg)elegg’ covep—1 = (€1 + 62)“(6162)%16;73 coren_1#0

in H*(Flag(R™); Zy). After expanding we have

(61 + 62)0'(6162){)616373 ey = 63 cen_1 Z ( > Z+l+b a Z+b

Note that by Proposition 2.2.(3) the only non-zero monomials in this sum are the ones for
i that satisfies (i + 1 +b,a —i+b) € {(n —1,n—2),(n — 2,n — 1)} and () is odd, i.e.
i€{n—2-bn—3->b}and (9 is odd.

If i =n—2—0b, then (¢) = (2(77__22__;)) = (27:?) (here 2m = 2(n — 2 — b) = a). By Lemma
3.2 this number is odd only if m = 0, i.e. (a,b) = (0,n — 2).

Let us now consider the case i = n — 3 — b. Then (‘;) = (2(::32:;’)) = (W%Tl) = (73:1)
(again 2m = 2(n — 2 — b) = a). By Lemma 3.2 this number is odd if and only if m = 2! — 1
for some [ > 1. Then a = 271 — 2 and b = n — 2/ — 1 > 0, which completes our proof. O

Remark 3.6 If wiwh # 0 and a + 2b = 2(n — 2), then, by Proposition 2.1, wiw$ = wSiQ
(since wy ™2 is the only non-zero class in H*"=2)(Go(R"); Zs)).

3.2 Some exact values

In this section we calculate zcl(G2(R™)) for n = 2% 4 1.

In the proof of the main result we will use the following observation. Let n > 4. Then, by
Proposition 2.1, every class in H'(G2(R");Zy) is of the form aw;, o € Zy, while every class
in H?(G2(R™); Zs) is of the form Bw] +~wa, B, € Za. Since z(w) = z(w1)?, we conclude: if
zcl(G2(R™)) = t, then there are a,b,c € Ny such that z(w1)%2(w9)’z(z1) - - - 2(x.) # 0, where
a+b+c=tand zi,...,x. are some classes of H*(G2(R™);Zz) each in dimension at least 3.

Proposition 3.7 For s > 2 and n = 2%+ 1 one has

7cl(Go(R™)) = 2°%1 425 — 4 and TC(Go(R™)) > 2511 425 — 3.



PROOF — First, we prove that z(wl)QSH*1 (wg)* =3 # 0. After expanding, we con-
sider all summands of the form w}) 2 @ , for some x € H*(G2(R");Z2). By Lemma

_ s l s+1__ol+1 l_
3.5 each such summand is of the form w% 2wl @wl TPl T (for 1> 2)

with coefficient (22::11:21) (22::2?}) By Lucas’ theorem each of these binomial coefficients is

S
+1_ s_ . _ s+1__ol+1 1 A o .
12(wg)* 3 contains w2 ® g w? 72T 2 73 Since whT? is the

1=2
only non-zero class in H*"~2)(G5(R");Zs) (by Proposition 2.1), it is enough to prove
S

S w8 0 (in B (Go(RY ) Za)).
1=2

Note that by Lemma 2.4, w%swg = 0, and so wy I <s—1.
Hence, it is enough to prove that wlwgsf?’ = wiwsy “4 = 0, which follows from the fact that
wiwy 4| is in the additive basis By, _2 (Proposition 2.1). So, zcl(Go(R*'+1)) > 2571 425 — 4,

Let us now prove that zcl(Go(R* 1)) < 2571 + 25 — 4. Suppose that this is not the case
and let a,b,c € Ny and z1,...,2. € H*(G2(R?***1); Z3) be some classes each in dimension at
least 3, such that a + b+ ¢ > 2‘“rl + 2% — 3 and z(w1)%2(we)’z(z1) - - - 2(2) # 0. By Lemma
2.3, we have a +2b+3c < 4(2° —1) —1 = 252 — 5, and hence b+ 2c < 2° — 2. Further, since
2(w)2™ =0 (by (2.3)), we have a < 2571 — 1 and hence b+c = (a+b+c¢) —a > 25 — 2.
This implies b = 2° — 2 and ¢ = 0. Finally, a + b+ ¢ > 2°T! + 2% — 3 and a < 257! — 1 imply
a=25"1 —1.

So, it is enough to prove A = z(w1)2" Lz (w, = 0. Suppose that this is not the
case. Note that the dimension of A is 25! — 1 +2(2% —2) = 4(n — 2) — 1, so every summand
of A is of the form 2’ ® 2 where one of the classes 2’ and z” has dimension 2(n — 2) and
the other 2(n — 2) — 1. Note that, by Proposition 2.1, the only class in H*(G2(R");Z3) of
dimension 2(n —2) (resp. 2(n—2) — 1) is wg % (resp. wywh~?). By symmetry, this and A # 0
imply A = wh™ 2 ®@ wywy > + wiw)? @ wh™2. Now, we proceed as in the first part of the
proof to prove that the coefficient of wg_Z ® wlwg_?’ in A is zero. By Lemma 3.5 each such

odd, so z(w;)?*

s+1__ol+1 l_
2 27y wy =0 for 2 <

)25—2

. 41 . I+1_ s_ol s+1_ol+1 I
summand in A = z(wy)? ! (w2)25 2is of the form w? w3 ~? @w? ~* Tlwi % (for
S . . . .
some 1 <1 < s) w1th coefficient (21+1 ;) (2237221). By Lucas’ theorem this coefficient is 1, so it
s+1_ol+1 l
is enough to prove g w2 ZT+l % =0.
=1
. s+1__ol+1

Again, by Lemma 2.4, w%swg =0, so fw% 2 +1wg =0 for 2 <1< s—1. Hence, the

. . s+1_ s__ s+1_ +1_
previous sum is equal to w% 34 wlfwg 2 By (2.1), % 340, so fw% 3 — = wiwy 3 —
wlwg ~2_ and hence A = 0. O

Remark 3.8 By Proposition 3.1, TC(Ga(R?'*t1)) < 25%2 — 4, s0 there is a gap of 2° — 1
between our lower bound and this bound. For example, 9 < TC(G2(R%)) < 12.

Remark 3.9 Ideas from this paper can be used to prove the following:

(1) If s > 1, then zcl(Go(R¥*2)) = 3-2° — 2 (one has z(w1)*" ~2z(ws)® # 0). So, by
Proposition 3.1, 3-2° —1 < TC(G, (RQ*H)) <252 1.

1

(2) If s > 2, then zcl(Go(R2+3)) = 3.2% (one has z(w)?™"
Proposition 3.1, 3-2° +1 < TC(Gy(R*+3)) € 25+2 4 3,

“L2(w)¥+ # 0). So, by



Complete proofs of these results can be found in the extended version of this paper which is
available on the author’s website.

3.3 General bounds for zcl(G2(R"))

Let 2° +4 <n <2°T' and t = n — 2°. Also, we assume s > 3 (i.e. n # 8). Further, let r be
the unique integer such that 2"~! < ¢ < 2". Since t > 4, we have r > 2. Let j be the smallest
positive integer such that the digit on position j in the binary representation of ¢t — 2 is equal
to 1 (j is well-defined since ¢t — 2 > 2); in other words, ¢ — 2 has the binary representation of
the following form

t—2=2"m +C¥m—12m71 + -+ Oéj+12j+1 + 2J + ap,

for some o, a1, 042, ..., m—1 € {0,1} and 1 < j < m. Since 2™ <t—2 < 2" -2 < 2° -2,
we additionally have 1 < j<m <r <s.

Proposition 3.10 Ifn, s, t, r and j are as above, then
zcl(Go(R™)) > 25t 425 427 — ¢ — 2

27 if t is even

n)) > 9s+1 s T~ = .
and TC(G2(R™)) > 257" +2° + 2" —e — 1, where € { 9 +1. otherwise.

PROOF — It is enough to prove that z(wi)2" ~1z(wg)? 2 ~¢=1 £ 0. After expanding, we
consider all summands of the form w} 2 ® x, for some x € H*(G2(R"); Zy). By Lemma 3.5

. +1_ s _ol__ s+1__ol+1 r l_
each such summand is of the form wf 2w§ =21 o w% 2 Hw% +2—e t, 0<1l<s,

. . (25T 1y (25427 -1\ _ (25427 —e—1 L l

with coefficient o = (2l+172)(2~9+t72171) = (2s+t72171). (Note: if 2" + 2" —e —t < 0, then

254+ 2" —e—1<2°+t—2"—1 and hence a; = 0, so there is no need to discard summands
l s l s ! T l

qw? +172w§ T2l @ g T2 +1+1w% T2 when 27 + 20 — e — ¢ < 0.) Since wh? is the

only non-zero class in H2("=2)(Gy(R"); Zy) (by Proposition 2.1), it is enough to prove

S
A= Z alwfsﬂﬂlﬂﬂwgmﬁl%*t #0 in H*(G2(R"); Zya).
=0

Let us first consider the case when ¢ is even. Then £ = 2/. Note that 2° + 2" — 2/ — 1 =
25 4 or=lpor=2 4 ..oy il L 9i=1 1 9572 1 ...+ 1 (j <r). So, by Lucas’ theorem, o and
as are even (since both 2° +¢ — 2 and ¢ — 1 have digit 1 on the j-th position in the binary
representation), while «; is odd (since 2° +¢ —1 — 2J has digit 0 on the j-th position in the
binary representation).

Let us denote 7 = 2" — 27 — t. Note that t — 2 + 2/ < 27, i.e. 7 > —2. By Proposition
2.2.(4), A # 0 if and only if

S
s+1__ol+1 l _ _
Z ai(e] + 62)2 2 +1(€162)2 T e - es 362 4 ent #0,
=0
and, by part b) of Lemma 3.3, if and only if

S

+1_olf1 l
p1 = Zal(el + 62)25 T e1e9)? T ey # 0.
=0



To prove that p; # 0 we will use Remark 3.4, i.e. we write p; as in Remark 3.4 and find
suitable indices 7' and i (as in that remark). We denote

25+1 2l+1 2l 2+1 2l+1 95— l -1 2[
¢ = § arfer + e2) 1e2)” T = § (e ) (e1eg)” *7
=0
s 2511

oL+l ol 257l—1—4)-2t41 42
:E :al § 6112 +2+T€é i) + +7'.

Let us observe a monomial efe} that appears in the inner sum for I. Then a + b = 257! 4 27
and a—b = (2i+1—25"0)2H1 je 241 || a—bfor s # 1 (that is 21 | a — b and 272 a — b)
and a = b for s = [; so, e‘feg appears only once in ¢; and its coefficient is a;. Now, since oy
is even this implies that the coefficient of (6162)28+T in g1 is 0, and since «g is even that the

J_ s
coefficients of 62 +r-1 2 7+ and 62 Tr+2-1 2 +T=2741

o is odd the coefﬁment of e% T §5+T 2 in q is 1.

Now, we expand p; = (€2 + ejea)qr. Note that the degree of each monomial in p; is
25ty or 42 =2stlportl _9p 9+l 4 9 L 25T L 4(t—1) -2t —2 = 2n — 6, and hence, after
removing all monomials of the form e‘feg when a > n or b > n, we get p; written as in Remark
3.4. Let us observe a monomial ef 62 in p1. By the previous identity, its coefficient is the sum

of coefficients of €2 2e} and e 'eS™! in ¢;. So, the coefficient of (eje2)?*+7+! is 0, while the

coefficient of e% +T+2J+1 gs‘” QJH is 1. Since 254+7+274+1 = 25427 —t+1 < 2°4+t—1 =n—1,
the degrees of e; and es in these monomials are less than n, so we can apply Lemma 3.3 and
Remark 3.4 to conclude p; # 0.

Finally, we consider the case when ¢ is odd. Then e = 2/ +1. Note that 2° +2" -2/ —2 =
28 4or=lqor=2 4. .4 oitl 1 9i= 14 9i=2 ... 42 whilet—2 = 2071/ 427 +1 < 2" < 2° for some

/ 2542727 2 2542727 2
t’ > 0. So, by Lucas’ theorem, we have that ag = (25+2j+1t/+2j+1) and o = (25+2j+1t,+2j) are
even, while

in ¢; are 0. On the other hand, since

25 2 — 27 -2 28420 g 20T il g2
2 2 4+t—5 25 4 2014 421 4272 ... 42

is odd.
Let us denote § = 2" —27 —t —1. Note that 2/ +¢ -2 < 2741, i.e. § > —4. By Proposition
2.(4), A # 0 if and only if

+1_ol+1 l
Zal(el +e9)? 2 +1<6162)2 0. e es” 3 ey 4 en_1 #0,
1=0

S
and, by Lemma 3.3.b), if and only if p; = Zal(el + 62)2S+172l+1+1(6162)2l+061 is non-zero.

=0
Let us denote

+1_ol+1 l 1+1 I+1 —1_ l
g2 = a(er + 62)28 2 (6162)2 T = al(ef + 6% )25 1(@162)2 e

=0 =0

Now, as in the previous part of the proof we conclude: the coeflicients of 62 +0-1 25+9+1

S
3 T2 3 02 and 2 073627043 in gy are 0 (since ap and o are even); the coefﬁ<31ent of



e%s+9_4egs+9+4 in gg is 1 (since ag is odd). So, in the polynomial py = (e? + ejes)go the
coefficient of €%s+gegs+9+2 is 0, while the coefficient of e%s+9_2egs+9+4 is 1. Since the total
degree of each monomial of po is 25142042 = 251 2r+l 27+l _9p < 2514 44 82t = 2n—8
and 2° +0+4=25+2" -2 —t4+3<254+2" —t+1<2°+t—1=n—1, we can apply
Lemma 3.3 and Remark 3.4 to conclude py # 0. O

4 The zero-divisor cup-length of G5(R")

Let s be the unique integer such that 2% < n < 25! In this section we give some bounds for
zcl(Gs(R™)).

In the following proposition we consider the case n = 2° 4+ 1. This result will show that
the corresponding result of [9, Theorem 4.8] is not correct (see also Remark 4.2). Fortunately,
this proposition gives a better lower bound for topological complexity.

Proposition 4.1 Let n =2°+ 1, where s > 3. Then
2cl(G3(R™)) > 2511 4+ 25 42572 — 7 and TC(G3(R")) > 2511 425 42572 6,

PROOF — It is enough to show A = z(wy)2" ~1z(wy)2  +2 22 (ws)2 4 £ 0.
First, we prove that w%swg = 0. By Proposition 2.2, this follows from

28 2 —4
ps =7 (w] ws)ejezey " --ep_1
_ 28 2 n—4
= (e1 + ez + e3)” (e1eze3)etesey " - -ep_1
s s S —
= (X 3eZes + efed T2es +ededer el e, = 0.

. S
Since w} w3 = 0, we have

A= z(w1)25_1z(w2)2571+2572_2z(w%5 z(w3)2571_4

)
_ Z(wl)287lz(w2)2s_1+2s_272(w%s ® wgsfl_zl + w3571_4 ® w%s)

Let us observe all classes of the form ng*:j’ ® z for some z € H*(G3(R™);Z2) after expand-
ing the expression for A; since w§ ® is the only non-zero class in H3"3)(G3(R"); Zs) (by
Proposition 2.1), to prove that A is non-zero it is enough to show that the sum of all such x
is non-zero. To do so, we determine all monomials 2’ and z” in classes wq and wo, such that
wz' = wy™? = wd "% and w557174x” = w2 2

Let 2’ = wiwy be such that w? Twh = w§S_2. Then a+2b = 2(2°—3). We use Proposition
2.2:

p1 = 77"‘(w%sJrawlz’)e%egezf4 R |

= (e} +¢3 +e3)(e1 +e2+e3)(erea + eaes + ezer) efese) -

3 (e1 4 e2)(eren)lere -

.. en_l

.. 677/_1

a

_ 28 A\ i+b+2 a—i+b+l _n—4

=e3 <i>61 €y N R I,
i=0

10



Note that by Proposition 2.2.(3) the only non-zero monomials in this sum are the ones for 4
that satisfies (i + b+ 2,a —i+b+1) € {(2° — 1,25 — 2),(2° — 2,2° — 1)} and () is odd, i.e.
i€{25—-3-b,2°—4—0b} and () is odd.

If i = 2% — 3 — b, then (%) = (2 27) = (¥) (here 26 = 2(2° — 3 — b) = a). By Lemma
3.2, this number is odd only if 6 = 0, i.e. (a,b) = (0 2% — 3). Let us now consider the case
1 =2°—=4—10b. Then (‘Z) = (2(215:43:1)17)) = (62_61) = (5+1) Again, by Lemma 3.2, this number
is odd only if 6 = 2/ — 1, and hence a = 21 — 2 and b= 2% — 2! — 2 for some 1 <1 < s — 1.

Let us now go back to our expression for A. Here we only consider pairs (a, b) that satisfy
a<2—1landb< 251 +252 -2 hence b =2° -2 —2onlyifl € {s —2,5— 1}, so we have
two pairs to consider: (a,b) € {(2571 —2,2571 42572 _2) (25 —2,2571 —2)} = P.

Next, let 2/ = w®w} be such that 11}‘1’/1113/11}5571_4 = w2 ~2. We denote the set of all
such pairs (a/,b’) with P’. Clearly, if (a/,b') € P/, then a’ + 20 = 3(2°~! + 2), and hence
a' +b > 3(2572 + 1); also, by observing A, it is clear that o’ < 2° — 1.

Now, to prove that A is non-zero, it is enough to prove that B is non-zero, where B is
equal to

_ s—1 s—2 s—1 s s s—1 s—2_o_ !
E w21a2 +2 2b§ 4+§ 2+21a§+2 2b.

(a,b)eP (a/ b)EP!

By Proposition 2.2.(4), this is equivalent to p = 7r*(B)e%egeff*4 -++ep—1 # 0. In what follows
we will be working with the additive basis

Bos i1 = {e8e8? .65 a3 <2° —1, a9 <2°—2,a3 < 2% a; <2°+1—1i, i >4}

for H*(Flag(R™);Zs), given by Proposition 2.2.(1) and the canonical homeomorphism o :
Flag(R™) — Flag(R™) defined by

U(Lla L27 L37 L4) L57 sy Ln) - (L37L1a L2a L47 L57 cee 7Ln)

Let d3 -3 = 6%6262_4 -+-ep_1. Then

* 271a231+2522b2514
p2=T E wy w; d3n—3

(a,b)eP
25— 1+1 25— 1 —4 25— 2 25— 1 —4
= " (wy ws +wiwy  ws )d3.n—3

92s—1 s—2
= ((e1 +e2+ 63) + (e1eg + eze3 + 6361)2 )
s—1__
-(e1 + ea + e3)(ere2e3)® d3 3.

Note that the monomials of ps belong to §25+1; indeed, the degree of e; in each monomial is
at most 25714142571 —442 = 251, the degree of es is at most 2571 +14+25"1—441 =252,
and the degree of e3 is at most 2571 +1 42571 —4 = 25 — 3. In particular, each monomial of
P2 is not divisible by e%s. Finally, pa # 0 since e% 1635 ' 36:38 ' 462 4...e,_1 has coefficient
1 in ps.

On the other hand,

s s_1_./ s—1 s—2_o_p/
* § : ’11)2 +25—1 aw2 +2 2—b

p3 =T 1 5 d3n—3

(al7b/)€P/

11



= Z (eF +e3 +e2)(er +ea+ 63)25_1_(1,

(a/b)eP!
23—1+23—2_2_b/
- (e1ea + ezez + ezeq) d3n—3
98 25 _1—q/ 9s—1 2572_2_b/
= ) G(a+te) “eren)” d3,-3.
(a’b')eP!

Since a’ +b' > 3(2°72 +1), the degree of e; (resp. ez) in each monomial of this sum is at most
204251 42572 — 1 —a/ — b <25 —4 (resp. 2° + 2571 42572 — 2 —d/ — ¥/ < 2° —5), and
hence, after expansion, each monomial (if any) of p3 is in Bas;1 and divisible by 3™ (note: it
is possible that p3 = 0). N

Hence, ps and p3 do not have any common monomials from Bssy1, and so there are no
cancellations between monomials of ps and p3. Now, ps # 0 implies p = pa + p3 # 0. O

Remark 4.2 Ideas from this paper can be used to prove the following: if s > 4,
then zcl(Gs(R2'42)) > 7. 2571 (one has z(w1)® " ~Lz(wy)¥ 2 z(ws) # 0). Hence,
TC(G3(R**2)) > 7.25"1 4 1. Complete proof of this result can be found in the extended
version of this paper which is available on the author’s website.

Proposition 4.3 Let s >2, n =2+t <2t t >3 and 271 <t < 2". Then
zcl(G3(R™)) > 25%2 — 2" —1 and TC(G3(R™)) > 2572 — 27,
Also, if t —3 = 2571 then zcl(G3(R™)) > 7-25"!1 — 1 and TC(G3(R")) > 72571
PROOF — For the first inequality it is enough to show
A=z(w)? Te(wn) T 2(ws)? £ 0.
Note that w¥ w2 = 0. Indeed, this follows from Proposition 2.2.(4), e?s”r = 0 for

i € {1,2,3} and the following calculations:

%0025 9T\ 2 4
p1 =" (w] wi )ejese]) " - -ep_1

28 2s 28 or 2 —4

= (ef +e; +e3 )(ereze3)” efesey " ---ep_q
S T T ™ T S T ™ T ™ S T _
=(e] "€l ef +eles el +ef e e3 T )efeae] e, 1 =0.
. . S ™ S T

Similarly, one proves that w%swgr =0, wlswg 2" — 0 and w% +2 w%s =0.

Note that 2" > ¢t > 3 implies 7 > 2. Now, we consider the cases 2 <r<s—landr=s
separately.

Case 1: 2 <r <s—1. We have

A= z(w1)2s_1z(w1)25z(w2)25_27'+1z(wg)Qsz(wg)T
= z(wl)QS_lz(wg)zs_QTH(w%swgs @wi +wd @wws).

Since 2 —1=25"14 ... 4 2r+l 4 97 1 9" _ 1 and 25 — 2"+ =25-1 4 ... 4 27+ in a similar
way we get

2r_1 9s  9s 9s_or 23_27‘-{»1 or 9s_9or 23_27‘-{»1 or 95  9s
A= z(wy) (w] wy ®@w] 7 w; w3y +wy T w; ws @ wy wy ).

12



. . . s s . . . s_or s_or+1 r
Since the dimension of w} w3” is greater than the dimension of the class w} ~* w3 2w},

after expanding the expression for A, there is only one summand with the first coordinate in

. . . . - _or gs_or+l .
dimension 3 - 2° + 2" — 1, and this summand is w? ™% "'w}’ @ w? 2w ¥ w3 . Hence, it
_ _or s r+1

is enough to prove that w2 +2 1w2 # 0 and w2 2 w% —2 w3 # 0.

First, we prove that w2 T2 1p2® #£ 0. Since e?” = 0 for ¢ € {1,2,3} (by Proposition
2.2.(2)), by Proposition 2.2.(4) it is enough to prove that

p2 = 7" (Wi 242 _lw% Yetegeh ™ en g
= (e1 +ea+e3)? THed +ed el )(eren + eaes +ezer)? edeqe e,
=(e1 +ex+ 63)27_1(616263) 6%6282 4o
= 1 (w? w3 )edegel ™ eny

is non-zero in H*(Flag(R"); Z), i.e. that w? ~'w?" is non-zero in H*(G3(R™); Zy). Observe
the inclusion i : G3(R"~2") C G3(R"). Note that the height of i*(wy) in H*(G3(R"2");Zs)
is 2" — 1 (by (2.1)). So, let = be a class in H*(G3(R""%");Zy) such that i*(w1)? 'z €
H3(n=2°=3)(G3(R"~2"); Zsy) is non-zero (this class exists by Poincare’s duality); further let
T € H*(G3(R™); Z2) be such that i*(z) = x. Then, by [12, Lemma 1], the value of w1 x w?

is the same as the value of i*(w? ~1'T) = i (w1)2r x, which is non-zero. Hence, w? 0.

Finally, we prove that w%s_zrwgs_y“ # 0. This will immediately follow frorn the
identity w? 2 w2 " wi = w¥wld = wf 7$ 0, which we now prove. Since ¢? ™2 = 0 for
i € {1,2,3}, by Proposition 2.2.(4) this follows from (here d3,,_3 = eJege -+ e, 1)

ps =" (wi Fw) 2wl )dy a3
= (61 +eo + 63)2 (6162 + eoe3 + 6361)257?(616263)2rd37n_3

= (e1 +ex+ 63)28 1(6162 + eges + 6361)28 '

)23—172

. (61 +eo + 63)2 (6162 + ese3 + ezeq T(616263)2rd3,n_3

=(e1 +ex+ 63) (6162 + egesz + 6361)2%1727“ (616263)23_1+2Td37n_3

)23—1+23—2+_“+2r+2r

(e1eze3 d3n—3

= (e1e2e3)” ds 3

= (e1 + e + e3)% (e1en + esez + 6361)25d3,n_3
= 7 (wi w3 )dz 3.

Since w%s € B3 -3, we have w%s # 0, which completes our proof.
Case 2: 1 = 5. Then A = z(w1)> " (w? @ w2 +w? ®@w?}"). Since after expanding A there
is only one summand with the first coordinate in dimension 2°t2 — 1, and this summand is

w? "t @ w?’, it is enough to prove w w2 # 0 and w?’ # 0. The second follows from

w% € B3 -3, and the first one is proven after the calculations for ps.

Suppose now that t — 3 > 2571, We will prove that
25+1_1 98 2571
B = z(w1) z(w2)* 2(w3)* ~ #0,

which implies zcl(G3(R™)) > 2571 425 + 271 — 1.
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Let us observe all summands of B with the first coordinate in dimension 9 - 25~1. Note
that

s_ s s s—1
B = z(wi)* 2w} )z(wd )2(wi ),

so the only monomial of this form is w%sw%swgs_l ®w? "', and hence it is enough to prove that

w%swgswgkl # 0 and w? ~! # 0. This follows from Lemma 2.4 (indeed, since t — 3 > 25~1,
both monomials divide w? w3 wi ™3 # 0). O

5 The zero-divisor cup-length of G;(R")
In this section we give a lower bound for Gj(R") for k > 4.
Proposition 5.1 Let 4 <k <n and 25+ k <n <251, Then
2Cl(GL(R™) > ([logy k] +1)-2° =1 and TC(G(R™)) > ([logy k] +1) - 2°.

PROOF — Let 2771 < k < 2". Then [logy k] = r, so it is enough to prove

r—1 r—1
A=z(w)* T ] awe)? = 2(w)® T ] 2(wd) #0.
i=1 =0

r—2
First, let us prove that p = ngf is non-zero in H*(Gy(R");Z2). Let dyp— =
=0
e’ffl---ek_lezﬂfffl---en,l. Since e?” = 0 for 1 < i < k (by Proposition 2.2.(2)) and

r—2
k= ZZi = 2" _ 1 < k we have
=0

r—2
28
pr=n"([]ws | drnr
=0
r—2
_ 28 2% 25
- H z : €a1€ay " Cay din—k

=0 \1<a1<az2<<ay <k

_ 90 ol r—2 25 23 28
=[2",2,...,2"77] E €a1€ay " Cay, din—k,

I<a1<ag<-+<ar <k

where [20, 2l ..., 27"_2] = (20+21+25'+2T72) (21+";2T72) o (3::2) denotes the multinomial coef-
ficient. By Lucas’ theorem, this coefficient is odd. Also, for 1 < ¢ < k the degree of e; in each
monomial in the last expression for p; is at most 2° + k — ¢ < n — ¢, so all monomials in this
expression are distinct members of the basis B,, for H*(Flag(R™);Z2), and hence p; # 0. So,
by Proposition 2.2.(4), p # 0.

Now, let us observe all summands after expanding A with first coordinate in dimension
(2r=1 — 1) - 2%. The dimension of p is (2"~! — 1) - 2%, and it is easy to see that the only term

14



of this form is p ® w%s_lwgf_l. So, to finish the proof it is enough to prove wQS_lwgf_l # 0.

In fact, we prove that w%swgil = (. Since e?SH =0 for 1 <7 < k, we have
2S 23
po =7t (w1 w2r_1) i n—k

(25, 2° 2° 2% 28 28
= (el +ey 4+ Feg ) E R Ak —k
1<a1<ag<-+<ayr—1<k

_ 23 98 28
= E €a1€ar " Cayrry, Ak —k-

I<a1<az<-<agr—1,,<k

Now, as above, 2° + k < n implies that all monomials in the last expression for ps are distinct
members of the basis By, for H*(Flag(R™);Z2), and hence py # 0. By Proposition 2.2.(4), it
follows that w%swgi_l #0. O
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