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Abstract
Topological complexity naturally appears in the motion planning in robotics. In this
paper we consider the problem of finding topological complexity of real Grassmann man-
ifolds G (R™). We use cohomology methods to give estimates on the zero-divisor cup-
length of G (R™) for various 2 < k < n, which in turn give us lower bounds on topological
complexity. Our results correct and improve several results from [9)].

1 Introduction

For a path-connected space X we denote its topological complexity by TC(X). In [9] the
author considered the problem of finding TC(G(R"™)) for various 2 < k < n (in this paper,
Gr(R™) denotes the real Grassmann manifold of k-dimensional subspaces in R™). Unfortu-
nately, there is a problem with the proof of the main lemma of that paper (Lemma 4.4) and
the consequential results on the topological complexity (Theorems 4.5, 4.8 and 4.12); see [10].
In this paper we reconsider this problem, and as an outcome correct and improve several
results from [9]. As in [9], we use the cohomology method to obtain our results.

This paper closely follows and builds on the ideas presented in [9] (so, for background,
motivation and all undefined notions, the reader is advised to consult [9]). Throughout the
paper we will use, as much as possible, the notation from [9]. In particular, we will be working
with the unreduced topological complexity, as defined by Farber in [5] (for example, by this
definition the topological complexity of a contractible space is equal to 1).

The paper is organized as follows. In Section 2 we describe the cohomology method
mentioned above and give an overview of the cohomology of real Grassmannians. In Section
3 we consider the case k = 2. We obtain the exact value of the zero-divisor cup-length of
G2(R™) (denoted by zcl(G2(R™))) for s > 2 and n € {2° + 1,25 + 2, 2% 4+ 3}; additionally, for
s> 3,2°+4 < n <25 we prove a lower and upper bound for zcl(G2(R™)). These results
show that the value of the zero-divisor cup-length given in [9, Theorem 4.5] is not correct;
what is more interesting, our results improve lower bounds for topological complexity stated
in the same theorem. Section 4 is devoted to the case k = 3. Separately, we prove lower
bounds for zcl(G3(R™)) in the cases n = 2° + 1, n = 2° +2 and 25+ 3 < n < 257! (for
s = 4). The first two results show that the corresponding results from [9, Theorem 4.8] are
not correct, and improves the stated lower bound for topological complexity of G (RQS“) (for
s > 5). In Section 5 we give a general lower bound for zcl(Gy(R™)) (for k¥ > 4). For k > 9
this result improves the bounds stated in [9, Theorem 4.10].
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2 Background and notation

As mentioned in Introduction, to obtain our results we use the so called cohomology method,
which we now (briefly) explain.
Let A : X — X x X denote the diagonal map. Then the elements of

Ker(A* : H*(X x X;Z2) — H*(X;Z2))

are called zero-divisors. Further, the zero-divisor cup-length of X, denote by zcl(X), is defined
to be the maximum number of elements from KerA* whose product is non-zero. In [5], Farber
proved that zcl(X) gives a lower bound for TC(X), that is TC(X) > zcl(X) + 1. Hence, a
lower bound for zcl(X) immediately gives a lower bound for TC(X). Note that for every
w € H*(X;Z2) the element

zw)=wl+1we H (X x X;Zs)

is in KerA* (since A*(z(w)) = w-1+1-w = 0). Then, by [2, Lemma 5.2], KerA* is generated
by these elements. So, if zcl(X) = t, then there are classes z1, 2, ...,2; € H*(X;Zz) such
that z(zq1)z(xz2) - - - z(x¢) # 0.

To get the best possible results on TC(Gj(R™)) using the cohomology method, one requires
fine understanding of the cohomology algebra H*(G(R™);Zsy). There are several ways to
describe this algebra; in this paper we will use the one due to Borel (see [1]):

H*(Gk(Rn)a ZQ) = ZQ[U)l,’U)Q, ey wk‘}/Ik,na

where wi,ws,...,wy are the Stiefel-Whitey classes of the canonical k-dimensional vector
bundle over Gi(R"), and Iy, = (Wp—k+1,Wn—k+2,--.,Wy) is the ideal generated by dual
classes.

Let us observe H*(G(R");Z2) and the corresponding ideal KerA*. We denote by Zj ,
the ideal generated by the classes z(w1), z(w2), ..., z(wy). Obviously, Zj, C KerA*, but we
can prove more.

Lemma 2.1 2, = KerA*.

PROOF — It is enough to prove that for every p € H*(Gr(R™);Zz), the class p® 1+ 1® p
is in Zj,,. Since p is a polynomial in wi,ws, ..., w, it is enough to consider the case p =
wit - wik, where a; > 0 for 1 < i < k.

We prove by induction on deg(p) = a1 +---+ay, that p@1+1®p € 2, ,. This is obvious
when deg(p) = 1. So, suppose that it is true for all ¢ such that deg(q) < ¢, and prove it for a
given monomial p = w{' - - - w;* such that deg(p) = ¢ > 1. Then a; > 0 for some 1 < i < k;
further, let p = w;q. So, we have

pR1+10p=wig@1l+10wg=w;@1(¢g®1+1®q) +1®qw; ®1+1®w;),

and hence the conclusion follows by induction. O

So, by the previous lemma, if zcl(G(R™)) = t, then it is easy to see that there are
ai,ag,...,a; € Ng such that z(w;) z(w2)2 - - - z(wg )™ # 0.

Although Borel’s description of H*(Gy(R™);Zy) appears simple enough, it turns out that
performing concrete calculations in this algebra can be rather difficult. Hence, one usually
needs to apply some additional methods and properties of H*(G(R"™);Zg). The following
result gives an additive basis for this algebra (see, e.g. [7, 11]).



Proposition 2.2 The set By, = {w]" - - wi*

basis for H*(G(R"); Za).

The height of a class ¢ € H*(X;Zs), denoted by ht(c), is the largest m € N such that
¢™ # 0. For k > 2, the height of w1 € H*(Gg(R");Zs2) is obtained by Stong in [12]: if
2 <k <n—kand s is the unique positive integer such that 2° < n < 25t!, then

25tL 2 if k=2or (k,n) = (3,25 + 1),
ht(w:) = { 251 _ 1, otherwise.

In this paper we will often use Stong’s method from [12] for calculating in H*(G(R"); Z2)
(later this method was generalized by Korbas and Lorinc to all flag manifolds, see [§]). In
what follows we briefly explain this method.

Let Flag(R™) denote the (real) complete flag manifold (n > 2). Denote by e; := w1 (y;)
the first Stiefel-Whitney class of the canonical line bundle 7; over Flag(R™), for 1 < i < n.
Then we have the map = : Flag(R™) — G (R™), given by

T(S1s Sy Sats ey Sn) = (S1 @+ ® Sy, Spsr B -+ ® Sn).

The following result will be very useful for our calculations in H*(Gp(R");Z2) (and
H* (Flag(R"); Z2)).

:0< a1+ +ar <n—k}is an additive

(2.1)

Proposition 2.3 (1) The set B, = {e{*e3*...ex"' : 0 < a; < n — i} is an additive basis
for H*(Flag(R™); Zs).
(2) ht(e;) =n—1 for 1 <i < n. In particular e =0 for 1 <i < n.
(3) A monomial ef‘ey*---elr € ) (Flag(R™); Zg) is mon-zero if and only if
(a1,a2,...,a,) is a permutation of the n-tuple (n —1,n —2,...,1,0).
(4) If u € H*(G(R™); Z2) and
v = e’f_leg_2 e ep_1 eZ;]f_leZ;g_Q en—1 € H*(Flag(R"™); Z2),

then ©*(u) - v € H*(Flag(R™); Z2), and u # 0 if and only if 7*(u) - v # 0.

(5) For 1 < i < k, m*(w;) is the i-th elementary symmetric polynomial in the variables
€1,€2,. .., €.

Heights of the classes z(w;) and z(wy) will be very useful in our calculations. In what
follows we determine these values.

It turns out that if ht(w) is known, then ht(z(w)) can easily be calculated. This is proven

in Lemma 4.3 from [9]. Namely, one has: if w € H*(X;Zs) and t is the unique non-negative
integer such that 2¢ < ht(w) < 2!*! then

ht(z(w)) = 2071 — 1. (2.2)

We will apply this identity for X = G(R"), when 2 < k <n — k. If 2° < n < 25" then
(2.1) implies
ht(z(wy)) = 25T — 1. (2.3)
On the other hand, Proposition 2.2 implies wZ*k # 0, so ht(wg) = n — k (by observing
dimension we conclude that w?ik“ = 0). Hence, if ¢ is the unique non-negative integer such
that 2t <n —k < 2871 then (2.2) implies
ht(z(wy)) = 2071 — 1. (2.4)

The following lemma will be very useful in Section 3.



Lemma 2.4 Letm,k,n € N, k <n, anddy,...,d, € N be such that di+- - -+d,, = 2k(n—k).
If x; € Hdi(Gk(R”);Zg) for 1 <i<m, then

z(x1) -+ z2(xm) = 0.

PROOF — Note that the product p = z(x1) - - - z(2,) is the sum of certain classes of the form
r®y+y® ez, for some x,y € H*(G(R™);Zz). Since p is in dimension at least 2k(n — k) =
2dim G(R"), so is  ® y, and hence x,y € H*"F) (G (R"); Zy) or t @y = y @ x = 0. There
is only one non-zero class in H*"~%) (G} (R™); Zs), namely wZ*k (by Proposition 2.2), and
hence x®y:y®x200rx®y:wsz®w,?*k =y®x. In both cases t @y +y®x =0,
which implies p = 0. O

Also, we recall some results from [9] that will be used in our calculations.

Lemma 2.5 a) If 2° < n < 2571, then w¥wi™ ™1 # 0 and w¥wi™® = 0 in
H*(G2(R™); Zs2).
b) If 25 +3 <n <257 and t = n — 2%, then w w3 wh™> # 0 in H*(G3(R"); Z).

Throughout the paper we use the same notation as in this section.

Finally, let us say a few words on Lemma 4.4 from [9] and our strategy that bypasses
the application of this lemma. In Lemma 4.4 from [9] the author assumes that uy,...,u, €
H*(X;Zo) and ky,...,k, € N are such that u]fl -..ufr £ 0, and wants to prove that A =
2(ug)? 7 2(uy)? " # 0, where r; is the unique integer such that 2771 < k; < 27
for 1 < ¢ < n. For this he notices that after expanding A one summand is u]fl . ulﬁb" ®
u%”*krl <o 2" ~Fn=1 " which is nonzero, and from this immediately concludes that A # 0.
As we will see in the proofs of our results, the problem is that the set

S={(1,.. . ln) : 0<L; <2 =1, bt o oule = bt ofny

n

can contain more than one element, and hence that the corresponding summands of A with

the first coordinate equal to u]fl ---uf" may cancel out. So, in our proofs we choose the
n-tuple (k1,...,k,) a bit more carefully to ensure that
(h,,ln)ES

and that this further leads to A # 0 (note: in our applications the degree of z(u;) in A will
not always be 2" — 1, so we will have slightly different formulas than the one given above).

3 The zero-divisor cup-length of G5(R")

Let s be the unique integer such that 2% < n < 25*1. In this section we consider zcl(Ga(R")).
We note that Propositions 3.7, 3.9, 3.11 and 3.12, that we prove in this section, show that
the corresponding results of [9, Theorem 4.5] are not correct. Fortunately, correct versions
give better lower bounds for the topological complexity of Ga(R"™).

We will compare our results with the following upper bound from [9] (this result is a
consequence of a general result from [3, Theorem 1]).

Proposition 3.1 If 1 < k < n, then TC(G(R")) < 2k(n — k). In fact, if kK # 1 and
(k,n) # (2,294 1) for all d € N, then TC(Gx(R™)) < 2k(n — k) — 1.



3.1 Preliminary lemmas

Let n be a positive integer and n = Zfzo a; -2, where o;; € {0,1} for 0 < i <t and a; = 1,

its representation in base 2. Then we write n := (o, ..., a1, ap)a.
As we use Zo coefficient the following special case of Lucas’ theorem will be particularly
useful to us: if n := (ay,...,01,0)2 and m := (B,,..., b1, Bo)2, then

<n>51 (mod 2) if and only if t>r and o;>=F;for0<i<r
m

We will use the following two consequences of Lucas’ theorem throughout the paper. Let
w € H*(X;Zz). By Lucas’ theorem, (Qi ) is even for 1 <7< 2™ — 1, and so

2w =wel+low)? =vw" 91+10w?”

On the other hand, by Lucas’ theorem (mel) is odd for all 0 < ¢ < 2™ — 1, and hence

2w T =(wel+low)? = Z w' @ w1

We will also need the following result.

Lemma 3.2 Let n be a non-negative integer. Then:
a) (2:) is odd if and only if n = 0;
b) (ngfl) is odd if and only if n = 271 — 1 for some t € Ny.

PROOF — Part a) immediately follows from Lucas’ theorem.
For part b) we note that C,, = (27?) —( 2n ) is the n-th Catalan number. Then the result

n+1
follows from part a) and the fact that C,, (for n > 1) is odd if and only if n = 2!*1 — 1 for
some t € Ny (see [4]). O
Lemma 3.3 Let 0 <m <n—2 and ap,a1,...,0n_1-m € Zo. Then:
n—1-m
a) Z aie] ey =0 in H*(Flag(R™); Zo) iff co = 01 = -+ = 01

b) for a polynomial p € H*(Flag(R™);Z2) in classes e; and e3 one has

n—3 _n—

pref el e, 1 =0 in  H*(Flag(R");Zs)
if and only if p =0 in H*(Flag(R"); Z2).

PROOF —
a) By Proposition 2.1 from [6] we have e} ' = €' + ¢ 2eg + -+ + e1eh 2 (we use this
proposition for m =1, k =n — 1 and ¢ = n — 2). Since ef = 0 (by Proposwlon 2.3.(2)), we

have
n—1l—m n—l—m

E: a;e m+zn 1- z: 2: (al+a0)6§n+zeg 1— z

i=1

b}



Since e" el 72 T2l ™3 el el are in the additive basis B,, (from Proposition 2.3.(1)),
the last sum is zero if and only if a1 + g = as + g = -+ = ap—1-m + ag = 0, i.e. if and

onlyifag=a1 ="+ = an_1-m-

b) As in part a) we use the identities ef ' = €' + e} %ea+- - +ereh % and €] = e} =0
to express p in the form Zai,jeieé, where o ; € {0,1}, 0<i<n—land0<j<n—2
Then Y oy jeleden3el™ . e, 1 (= pei el ™ .. e,_1) is a sum of the elements from the
basis B,, from Proposition 2.3.(1); so this sum is zero if and only if a;; = 0 for all ¢, 7, i.e. if
and only if p = 0 (since p is also represented in the basis By,). O

Remark 3.4 We will use the following consequence of part a) of this lemma. Let p =
b—a
Zam‘f“e?i € H“H’(Flag(R”);Zg) for some 0 < a <n—2,a<b<< n—1. If there
=0

exist 0 < i’ #1i" < b—a such that ay =0 and a;r = 1, then p # 0.
Further, if ¢ € H°(Flag(R"); Zz), where ¢ < 2n—3, is written as a sum of some monomials
of the form €€}, then after removing all summands with i > n or j > n (since they are 0 by

Proposition 2.53.(2)), we get that q is written in the same way as p above.

Lemma 3.5 If2° < n < 2°"! and a,b € Ny are such that a + 2b = 2(n — 2), then wiw§ # 0
in H?"~4(Go(R™); Zs) if and only if

(a,b) = (2" —2,n—2' —1)  for some 0 <1< s.
PROOF — By Proposition 2.3.(4), wiw} # 0 in H?"~*(Go(R"); Zs) if and only if
W*(w%wg)eleg_:)’ cren—1 = (e1 + eg)a(eleg)bele§_3 cven 1 #0

in H*(Flag(R"™);Zs). After expanding we have
a
(e1 + ez)a(eleg)beleg ey = ey 3 en Z <i>eﬁ+l+be§ b,
=0

Note that by Proposition 2.3.(3) the only non-zero monomials in this sum are the ones for
i that satisfies (i +1+ba—i+b) € {(n—1,n—2),(n—2,n— 1)} and (}) is odd, i.e.
i€{n—2-bn—3-0b}and () is odd.

If i =n—2—0b, then (§) = (2(::22:;’)) = (2;:”) (here 2m = 2(n — 2 — b) = a). By Lemma
3.2 this number is odd only if m = 0, i.e. (a,b) = (0,n — 2).

Let us now consider the case ¢ = n — 3 — b. Then (}) = (2%:32__;’)) = (qufl) = (nle)
(again 2m = 2(n — 2 — b) = a). By Lemma 3.2 this number is odd if and only if m = 2! — 1
for some [ > 1. Then a = 2! — 2 and b =n — 2! — 1 > 0, which completes our proof. O

Remark 3.6 If wiw$ # 0 and a + 2b = 2(n — 2), then, by Proposition 2.2, wiw$ = wh 2
(since wh™? is the only non-zero class in H>"=2)(Go(R™); Zy)).



3.2 Some exact values

In this section we calculate zcl(Go(R™)) for s > 2 and n € {2° +1,2° 4+ 2,25 + 3}.

In the proofs of the main result of this section we will use the following observation. Let
n > 4. Then, by Lemma 2.1 we conclude: if zcl(G2(R™)) = ¢, then there are a,b, ¢ € Ny such
that z(w1)%2(w2)?2(z1) - - - 2(z.) # 0, where a + b+ c =t and z1,x9,...,7; are some classes
of H*(G2(R™);Z2) each in dimension at least 3.

Proposition 3.7 For s > 2 and n = 2° +1 one has
zel(Go(R™)) = 271 425 — 4 and TC(G2(R™)) > 2571 25 — 3.

PROOF — First, we prove that z(wl)ZSH*1 (wg)* =3 # 0. After expanding, we con-
sider all summands of the form w}) 2 @ , for some r € H*(G2(R");Z2). By Lemma

s l s+1_ol+1 l_
3.5 each such summand is of the form w% 2wl @ w? T s TP (for 1 > 2)

2S+171) (25—3)

i+1_5) (9s_o1). By Lucas’ theorem each of these binomial coefficients is

with coefficient (

S

odd, so z(w1)®" ' "1z(wy)? 3 contains wl 2 ® wasﬂdlﬂﬂwgl*y’. Since wh™? is the
1=2

only non-zero class in H*"~2)(G5(R");Zs) (by Proposition 2.2), it is enough to prove

S
S w8 0 (in B (Go(RY ) Za)).
1=2

Note that by Lemma 2.5, w? wy = 0, and so w%5+1_21+1+1 21_ =0for2<li<s—1.
Hence, it is enough to prove that wlwgsf?’ = wiwsy -4 = 0, which follows from the fact that
wlw;_4 is in the additive basis Ba,_2 (Proposition 2.2). So, zcl(Go(R*'+1)) > 251 425 — 4,

Let us now prove that zcl(Go(R* 1)) < 2571 + 25 — 4. Suppose that this is not the case
and let a,b,c € Ny and z1,...,z. € H*(G2(R?***1): Zs) be some classes each in dimension at
least 3, such that a + b+ ¢ > 271 + 2% — 3 and z(w;)%(w2)?2(21)2(x2) - - - 2(z.) # 0. By
Lemma 2.4, a + 2b+3c < 4(2° — 1) — 1 = 2572 — 5 and hence b+ 2c < 2° — 2. Further, since
2(w)2™ =0 (by (2.3)), we have a < 2571 — 1 and hence b+c = (a+b+c¢) —a > 25 — 2.
This implies ¢ = 0 and b= 2° — 2. Finally, a + b+ ¢ > 2°T! + 2% — 3 and a < 2°7! — 1 imply
a=25"1 —1.

So, it is enough to prove A = z(w)?" ~1z(w2)? "2 = 0. Suppose that this is not the
case. Note that the dimension of A is 25! — 1+ 2(2% — 2) = 4(n — 2) — 1, so every summand
of A is of the form 2’ ® 2" where one of the classes 2’ and z” has dimension 2(n — 2) and
the other 2(n — 2) — 1. Note that, by Proposition 2.2, the only class in H*(G2(R");Z3) of
dimension 2(n — 2) (resp. 2(n —2) — 1) is wj > (resp. wiwy™?). By symmetry, this and A # 0
implies A = wh™2 @ wiwh™> + wlwg_g’ ® w2_ Now, we proceed as in the first part of the

proof to prove that the coefficient of w3~ 2® wiwy 3in A is zero. By Lemma 3.5 each such

. 41 o I+1_ s_ol s+1__ol+1 I
summand in A = z(w1)?" “z(we)? "% is of the form w?  "*w3 % @w? 2 Tlwi % (for
9 +1 s__ . . . .
some s >1>1) Wlth coefficient (21+1 ;) (2237221). By Lucas’ theorem this coefficient is 1, so it
s+1_ol+1 1
is enough to prove E w7 2 72 = .
=1
. K s+1_9l+1 l

Again, by Lemma 2.5, w%gwg =0, so fw% ZrA g =0 for 2 <1< s—1. Hence, the

. . s+ s+1__ s+1_
previous sum is equal to w% S fawpws T2 By (2.1), w? TP #0,s0 w? TP = wiw) T =
wlwg ~2_ and hence A = 0. O



Remark 3.8 By Proposition 3.1, TC(Gy(R?**1)) < 25%2 — 4, s0 there is a gap of 2° — 1
between our lower bound and this bound. For example, 9 < TC(G2(R%)) < 12.

Proposition 3.9 For s > 1 and n = 2° + 2 one has
zcl(Go(R™)) = 271 425 — 2 and TC(Go(R™)) > 257! 425 — 1.

PROOF — First, we prove that A = z(w;)2" ~2z(w2)2" # 0. Note that w3’ = wy 2 #0 (by
Proposition 2.2) and x - w2” = 0 for every x € H*(G2(R"); Z3). Hence

Z(w1)25+1722(w2)25 _ Z(w1)2s+172(w§s ® 1 + 1 ® wgs) _ w2s ® w%s+1_2 + w%erl_Q ® w%s'

Since w%sﬂ*z # 0 (by (2.1)) and wfsﬂd # w3, we conclude that A # 0. So, zcl(G2(R™)) >
25T 425 — 2,

Let us now prove that zcl(Go(R? 72)) < 25+ 425 — 2. Suppose that this is not the case
and let a,b,c € Ny and z1,...,z. € H*(G2(R?***1); Zs) be some classes each in dimension at
least 3, such that a +b+c > 2571 425 — 1 and B = z(wy)%(ws)b2z(x1)2(22) - - - 2(2c) # 0. By
Lemma 2.4, a+2b+3c < 4-2°—1 =272 — 1, and hence b+2¢ < 2%. Also, since z(wl)Qs+1 =0
(by (2.3)), we have a < 2571 — 1, and hence b+ ¢ = (a + b+ c) —a > 2%, which implies b = 2°
and ¢ = 0. Finally, a + b+ ¢ > 2571 4+ 2% — 1 now implies a = 251! — 1.

So, B = z(w1)¥" ~lz(wy)?’. Since z - w?d’ = 0 for every & € H*(Go(R™);Zsy), and
w%SH_l =0 (by (2.3)), we have

B — Z(w1)2s+1_1(w%s ® 1 + 1 ® w%s) _ wgs ® w%s+171 + w%s+171 ® w%s _ 0’

a contradiction. O

Remark 3.10 By Proposition 3.1, TC(G2(R?*'+2)) < 2512 -1, so there is a gap of 2° between
our lower bound and this bound. For example, 5 < TC(G2(R*)) < 7.

Proposition 3.11 For s > 2 and n = 2° + 3 one has
zcl(Go(R™)) = 271 + 25 and TC(G2(R™)) > 271 +2° + 1.

PROOF — First, we prove that A = z(w1)®" ~Lz(wy)2 ! # 0. Note that wi = wh™? £ 0

(by Proposition 2.2), but z - w32 ™ = 0 for every x € H*(G2(R™); Z3) and whw?” = 0 for all
k > 3 (by observing dimension). Additionally, by Remark 3.6, w%s+l_2w% e
0 and hence w%sﬂ_?’wg £ 0. Now, since w? " "1 =0 (by (2.1)), and wiw3 = 0, we have

A=zw)? T w¥ @1+1@wd ) (we @1+ 18 w)
2541

— 2(w)? T T W @ 1+ wd @ wy 4wy @ wi 4 1@ wi )

2 25+17 2 25+17 s+173

s 2 2,28 3 2 2 25+1_2
= wiwy; Q@ wj w2 + wijwy & wy w2 + wj

wy @ wiws + w? wy @ wiws .
Since wiw3 ® w%SH*QwQ # 0 (ww?d € By 2 and wlsH*Zw% = wg“z # 0) and wjw3
is distinct from w%w%s,w%sll_zwg,w%sﬂ_‘?wg (they are in dimensions 2(n — 2),2(n — 2) —
2,2(n — 2) — 3, while wjw3 is in dimension 2(n — 2) — 1), we conclude that A # 0. So,
zcl(Go(R™)) > 251 4 25,



Let us now prove that zcl(Go(R?+3)) < 25+ 425, Suppose that this is not the case and
let a,b,c € Ng and z1,...,2. € H*(G2(R**1); Zs) be some classes each in dimension at least
3, such that a +b+c¢ > 25T + 25 + 1 and B = z(w1)%2(w2)’2(x1)2(x2) - - 2(x.) # 0. By
Lemma 2.4, a +2b+3c < 4(2° +1) — 1 = 2572 4+ 3, and hence b + 2¢ < 2° + 2. Further, since
2(w1)2 =0 (by (2.3)), we have a < 257! — 1 and hence b+c = (a+b—+¢) —a > 2° + 2.
This implies ¢ = 0 and b = 2° + 2. Finally, a + b+ ¢ > 25t + 2 + 1 and a < 2°*! — 1 imply
a =25t 1.

So, B = z(w1)?" ~Lz(wy)¥ 2. Since w3 % =0 and wiwd = 0:

B = z(w)*" 2 (w))z(w3)

= 2(w)”" (W @ wh +wl ®u)

23 2519 9 28 25+1_3 2 25+1_3 2 28 +l_g 9 2s

= wiwy, K wj wy + w1w2 @ wy wy + Wy wy & w1w2 +w wh @ wrwy .

: 25t1—2 9o _  n-—2 2°+1 Tl
As mentioned above wj w2 = wy ° = w; # 0; also, this implies wl 240

s+1_
and hence w} = wd = wiwd (by Proposmon 2.2, wiw3 is the only class in d1mens1on

2(n —2) — 1). Let us prove that wiw? = wj~ 2 1 —£ (. By Proposition 2.3.(4), this is
equivalent with

p=m"(wiws ) er-ef P en1 = (e1 +ea)(eren)er e ey #£0.

This follows from

2543 n—3 +12+2n3 n2n1n3
p=e] 6263 en1+el es “ep—1 =€ ey, eg cvep—1 #0

(by Proposition 2.3.(2)). So,
B =wws @ws T +wi @wwd +wwd @w: T+ wi T @ wiwi =0,

a contradiction. O

3.3 General bounds for zcl(G2(R"))

Let 2° +4<n <2 and t = n — 25, Also we assume s > 3 (i.e. n # 8). Further, let r be
the unique integer such that 2”1 < t < 2". Since ¢t > 4, we have r > 2. Let j be the smallest
positive integer such that the digit on pos1t10n j in the binary representation of ¢ — 2 is equal
to 1 (j is well-defined since ¢ — 2 > 2); in other words, ¢ — 2 has the binary representation of
the following form

t—2=2"+ 12"+ a2+ 20+ ag

for some ag, aj11, ajy2, ..., am—1 € {0,1} and 1 < j < m. Since 2™ <t -2 < 2" -2 < 2% -2,
we additionally have 1 < j < m<7r<s.

Proposition 3.12 Ifn, s, t, r and j are as above, then
25T 125 197 e — 2 < zel(Ga(RY)) < 25T 425 427 — 2

20, ift is even

ny) > 9s+1 s T~ = .
and TC(G2(R™)) > 27 + 2% 42" —ec — 1, where € { 9 +1. otherwise.
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PROOF — First, we prove that zcl(Go(R™)) < 25F! + 2% 4 2" — 2. Suppose that this is not
the case and let a,b > 0 be such that A = z(w1)%2(ws)? # 0 and a + b > 25+ +25 427 — 1.
Since z(w1)2" =0 and z(w2)2"" =0 (by (2.3) and (2.4)), we have a,b < 2571 —1 and hence
a,b>2°+2". Then

A= z(w)* 2 2(w¥)z(w)? 7Y 2 (W) z(wd)
2 2

= z(w)* ? 2(w2)" T (W @1+ 1@ w] ) (Wl @ uwl +ul @)

(the last equality holds since 2° + 2" > 25 + ¢ = n and wh = 0). But w? w} = 0 (by Lemma

2.5) and t < 2" < 2%, 50 (w¥ @1+ 1@ w?)(w @w? +wd ®@w?’) =0, a contradiction.
Let us now prove that z(w;)?" ~1z(wy)2 2 ~¢=1 £ 0, which would imply zcl(G2(R")) >

25t1 495497 o2 After expanding, we consider all summands of the form w3_2®$, for some

x € H*(G2(R™); Z2). By Lemma 3.5 each such summand is of the form w%lﬂfzw%sﬂﬂl*l ®

2stl_ol+l g orgol ¢ . . 28Tl 1N (25427 —e—1\ _ (25427 —e—1
wy w; , 0 <1 < s, with coefficient o = (21+172)(23+t72171) = (2$+t72171).

(Note: if 2" +28 —e—t <0, then2°+2" —e—1< 25+¢t—2 —1 and hence oy = 0, so

. . +1_ s _ol__ s+1__ol+1 r L
there is no need to discard summands alwf ng H-2-1 g w% 2 +1w§ 2=~ when

2"+ 2 — e —t < 0.) Since wy ? is the only non-zero class in H?"~2)(Go(R™); Zy) (by
Proposition 2.2), it is enough to prove

S
A= Z alwfsﬂ_yﬂﬂwgrﬂl_s_t #0 in H*(G2(R"™); Zs).
1=0

Let us first consider the case when ¢ is even. Then ¢ = 2/. Note that 2% +2" — 2/ — 1 =
28 4 2r—lpor=2 4 ... 4 il 4 27=1 4 9772 4 ... 41 (j <r). So, by Lucas’ theorem, ag and
as are even (since both 2° + ¢ — 2 and ¢ — 1 have digit 1 on the j-th position in the binary
representation), while «; is odd (since 2° +¢ —1 — 2J has digit 0 on the j-th position in the
binary representation).

Let us denote 7 = 2" — 2/ — ¢. Note that t — 2 4+ 27 < 27, i.e. 7 > —2. By Proposition
2.3.(4), A # 0 if and only if

s

+1__ol41 1 _ _
Z ager + 62)25 2 +1<6162)2 e - es 362 4 en1 #£0,
=0

and, by part b) of Lemma 3.3, if and only if

S
41 ol+1 1
p1 = E ag(er +e2)® 2 Tl(ere2)? T e #£ 0.
=0

To prove that p; # 0 we will use Remark 3.4, i.e. we write p; as in Remark 3.4 and find
suitable indices ¢’ and i” (from that remark). We denote

S S
+1_9l+1 l 1+1 I+1 —l_ l
a1 = Z aler +e2)” TP (ere2)? 1T = Z 041(6% + e% )25 Herea)® t7

=0 =0
5 27711 1 N old1 ol
_ Z o Z ei.gz+1+gl+76525* —1—3)-2!+142 +r_
=0 i=0
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Let us observe a monomial efe} that appears in the inner sum for [. Then a + b = 257! 4 27
and b—a = (2i+1—25"1)21 je 241 || a — b for s # 1 (that is 27! | a — b and 272 f @ — b)
and a = b for s = [; so, e‘feg appears only once in ¢; and its coefficient is «;. Now, since ag
is even this implies that the coefficient of (6162)23+T in ¢ is 0, and since «q is even that the

. s _ s s J_ s _93 . .
coefficients of e% + 16% 7+ and e% 742 16% +7=2+1 in g1 are 0. On the other hand, since

a; is odd the coefficient of e%s+7+2] €§S+7‘723 in ¢ is 1.

Now, we expand p; = (e% + e1e2)q1. Note that the degree of each monomial in pp is
25t por 2 =25l portl _9p 20+l 4 2 <25 4 4(t —1) — 2t — 2 = 2n — 6, and hence, after
removing all monomials of the form e‘feg when a > n or b > n, we get p; written as in Remark
3.4. Let us observe a monomial e‘feg in p1. By the previous identity, its coefficient is the sum
of coefficients of €224 and e 1e5™1 in ¢;. So, the coefficient of (eje2)?’+7+! is 0, while the
coefficient of els+7+2]+1egs+772]+1 is 1. Since 254+ 7+274+1 = 25427 —t4+1 < 2°4+t—1=n—1,
the degrees of e; and ey in these monomials are less than n, so we can apply Lemma 3.3 and
Remark 3.4 to conclude p; # 0.

Finally, we consider the case when ¢t is odd. Then ¢ = 27 + 1. Note that 2° +2" —2/ —2 =
254 or—tpor=24 .. .4 oitl 9i-1 49721 .. 492 whilet—2 = 271/ 42741 < 2" < 2° for some

s T_9J__ s T_9j__
25427 -2 Z)anda1:<2+2 27 -2

! I _
t" > 0. So, by Lucas’ theorem, we have that ag = (23+2j+1t,+2j+1 95403 +11/ 427

even, while
(2542 —20 =2\ 2542l 20t oitl g2
a2= 254+t—5 S\ 25420ty 4 20l 4 292 2

) are

is odd.
Let us denote § = 2" — 2/ —t—1. Note that 2/ +t—2 < 2"+1, i.e. # > —4. By Proposition
2.3.(4), A # 0 if and only if
S
Z al(el + 62)2s+1_2l+1+1(6162)gl+6 ep- 63—36274 e en_1 75 0,
=0
S

and, by Lemma 3.3.b), if and only if ps = Zal(el + 62)25+1_2l+1+1(6162)2l+961 is non-zero.

Let us denote =

S S
0 = Z al(el n 62)25+172z+1 (6162)21+0 _ Z al(e%H—l n e%l+l)28_lil(6162)21+0.

=0 =0
Now, as in the previous part of the proof we conclude: the coeflicients of €%S+9_1635+9+1,
e TO-22° 042 and €%S+0736§S+9+3 in g2 are 0 (since ap and «; are even); the coefficient
of eX 0742 H0H4 iy gy is 1 (since ay is odd). So, in the polynomial py = (€ 4 eiez)qo
the coefficient of 6%3+9€§S+9+2 is 0, while the coefficient of 6%S+972633+0+4 is 1. Since the
total degree of each monomial of py is 25t! + 20 + 2 = 25tL L or+l _9iFl _ 9t 1 1 <
254 4(t—1)—2t—3 = 2n—T7 and 25+0+4 = 254272/ —t+43 < 25427 —t+1 < 25+t—1 = n—1,
we can apply Lemma 3.3 and Remark 3.4 to conclude ps # 0. O

4 The zero-divisor cup-length of G3(R")

Let s be the unique integer such that 2% < n < 25!, In this section we give some bounds for
zcl(G3(R™)).
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In the following two propositions we consider the cases n € {2° + 1,2° + 2}. These results
will show that the corresponding results of [9, Theorem 4.8] are not correct. Fortunately,
these propositions give a better lower bounds for topological complexity.

Proposition 4.1 Let n =2° 41, where s > 3. Then
2cl(G3(R™) > 2571 4+ 2° 4+ 2°72 — 7 and TC(G5(R™)) > 2571 +2° 4+ 2°72 — 6.

PROOF — It is enough to show A = z(w1)2 " ~1z(wy)? 2"~ 2z(w3)2 4 £ 0.
First, we prove that w? ws = 0. By Proposition 2.3, this follows from

2 n—4

" 25
p3 = 7 (w] ws)ejezel cen_1

=(e1 +ex+ 63)25 (616263)6%6262_4 Tt ep—1

s s 2 2°41 —4
= (X T3eZes + efed T2e3 +ededer el e, = 0.

Since w? w3 = 0, we have
A= Z(w1)25—1Z(w2)25*1+25*2—2z(w25)Z(w3)25*1—4

s__ s—1 s—2__ s s—1_ s—1_ s
251 257742 2(w2 ®w2 4+w2 4® 2)'

= z(w1) z(w2) 1 3 3 wy

Let us observe all classes of the form wf ~3®c for some ¢ € H*(G3(R™); Zs) after expanding the
expression for A; since wgfg is the only non-zero class in H3("=3)(G3(R"); Zs) (by Proposition
2.2), to prove that A is non-zero it is enough to show that the sum of all such z is non-
zero. To do so, we determine all monomials 2’ and z” in classes w; and wsy, such that
wr' = wy™? = w2 7% and w35_1_4:r” = w2

Let 2/ = wjw} be such that w? T*wh = w2 ~2. Then a + 2b = 2(2° — 3). Next, we use
Proposition 2.3:

% 25+a_ . by 2 n—4
p1 =7 (w] T"wy)etesey " -

= (e} +¢3 +¢3)(e1 +e2+e3)"(erea + exes + ezer ) efese) -

.. en_l
.. enil

= e%s (e1 + 62)a<6162)b+1€162_4 ceeep—1

a

_ 28 A\ i+b+2 a—i+b+l _n—4

= €3 <i>el () Ty ccr€p—1.
i=0

Note that by Proposition 2.3.(3) the only non-zero monomials in this sum are the ones for i
that satisfies (i + b+ 2,a —i+b+1) € {(2° — 1,25 — 2),(2° — 2,2° — 1)} and () is odd, i.e.
i€{25—-3-b,2°—4—b} and () is odd.

If i =25 — 3 —b, then (%) = (2 27) = (¥) (here 26 = 2(2° — 3 — b) = a). By Lemma
3.2, this number is odd only if 6 = 0, i.e. (a,b) = (0,2° — 3). Let us now consider the case
1=2°—4—10. Then (C;) = (2(225_—43_—[)17)) = (52:51) = (6%31)' Again, by Lemma 3.2, this number
isoddonlyif&le—l7 and hence a =271 —2 and b=25 -2/ — 2 for some 1 <1< s— 1.

Let us now go back to our expression for A. Here we only consider pairs (a, b) that satisfy
a<2—1landb<251 +252 -2 hence b =2° -2 —2onlyifl € {s —2,5— 1}, so we have
two pairs to consider: (a,b) € {(2571 —2,2571 4+ 2572 —2) (25 —2,25°1 —2)} = P.

Next, let 2/ = w®w§ be such that Qu‘l‘/uﬂ?’/ués_l_4 = w2 2. We denote the set of all
such pairs (a/,b’) with P’. Clearly, if (a/,b') € P/, then a’ + 20 = 3(2°~! + 2), and hence
a' + b > 3(2°72 + 1); also, by observing A, it is clear that a’ < 2° — 1.
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Now, to prove that A is non-zero, it is enough to prove that B is non-zero, where B is
equal to

s s—1 5—2 s—1 5198 s—1 s—2 /
§ w21a2 +2 2b§ 4+§ w1+21a§+2 2b

(a,b)eP (a/ p)EP!

By Proposition 2.3.(4), this is equivalent to p = 7*(B)eZeze *---e,_1 # 0. In what follows
we will be working with the additive basis

Bgs+1—{611 a2- egfs|a1<25—1,a2<25—2,a3<25,ai<2$—|—1—zZ 4}

for H*(Flag(R™);Zs), given by Proposition 2.3.(1) and the canonical homeomorphism o :
Flag(R") — Flag(R™) defined by

O_(le L27 L37 L47L57 MR} Ln) - (L37L17 L27 L47 L57 AR 7Ln>

Let d3,,—3 = eZesel)” 4...¢e,_1. Note that

* 25—1— 25125221;2514
P2 =T E wy Ty w3 d3n—3
(a,b)eP
25141 w2 14 25—2  9s—1_y4
=71 (w? Tl + wiw3 w3 )d3 n—3
2571 2572
= ((e1 + ea + e3) + (e1€2 + eze3 +e3e1)” )

s—1__
-(e1 + e2 + e3)(ereze3)® tdsp-s.

Note that the monomials of ps belong to §23+1; indeed, the degree of e; in each monomial is
at most 25714142571 442 = 251, the degree of ey is at most 2571 +14+25"1 441 = 252,
and the degree of e3 is at most 2571 + 142571 —4 = 25 — 3. In particular, each monomial of
p2 is not divisible by e%s. Finally, po # 0 since e% 1633 ' 36? ' 462 4...e,_1 has coefficient
1 in po.

On the other hand,

— ¥ 25425 —1—a’, 2571425722 p
p3= E w) “ws d3n—3
(a/ b )eP!
s s s S_1—qa’
= E (e% —i—e% +€§)(€1+62+€3)2 1=a
(a’ b/ )EP!
23_1-1-23_2—2—()/
- (e1ea + ezez + ezeq) d3n—3
—1—a’ 9s—1 2572_2_()/
= ) ate) T (@) T d3,-3.
(a/,b)eP!

Since @’ +b' > 3(2°72+1), the degree of e; (resp. e3) in each monomial of this sum is at most
2542571 42572 1 — g/ — b <25 —4 (vesp. 25 +2571 42572 2 — ¢/ — b < 2°-5), and
hence, after expansion, each monomial (if any) of p3 is in §2S+1 and divisible by €3" (note: it
is possible that p3 = 0).

Hence, p» and p3 do not have any common monomials from EQSJ’_]_, and so there are no
cancellations between monomials of po and p3. Now, po # 0 implies p = pa + p3 # 0. O
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Proposition 4.2 Let n = 2° + 2 where s > 4. Then
2cl(G3(R™)) > 2571 425 2571 and TC(G3(R™)) > 2571 425 + 2571 1.
PROOF — It is enough to prove A = z(w1)2" ~Lz(wy)? 2" 2(ws) # 0. Note that
A= 2(w)* () z(wd )z (w2 (ws).

First, we prove that w%swgs = 0. By Proposition 2.3.(4), to do so it is enough to prove
that

p=7"(wiwd)edesel ™ epy
= (e1 +ex+e3)? (6162 + ege3 + ezer)? 616262 Loen g
= (2" +e3 +ed)((e1e2)” + (e2e3)® + (eze1)? )edeger ™ eny

is zero in H*(Flag(R"); Zs). Since e 2 = ¢} = 0 (by Proposition 2.3.(2)), we have

p1= (egs + 6?)@263)2 6%6262 toen1 =0

since e% = 628+1 = 0 (by Proposition 2.3.(2)).
Now, we prove w2 w3 = 0. Again, by Proposition 2.3.(4), to do so it is enough to prove
that

p2 = (w3 wy)eese) e eny
= (e1e2 + ege3 + 6361)256162636%6262_4 ceeep_1
= ((e1e2)” + (eae)” + (eze1)” )efesese - eni

is zero in H*(Flag(R™);Zsy). This follows from €2 3 = e =0 and €2 % = ¢} = 0.
Since the dimension of w3 "2 is 2(2° +2571) = 3.2% > 3(n — 3), this class is zero, and
hence
A= z(w)? (w? w%s w3 @ wi +wi @ w%swgs_lwg).
Let us observe all classes of the form w} ° ® x for some xr € H*(G3(R™); Z2) after expanding
the expression for A. Since the d1mens10n of wg ™ is 3(n —3) = 3-2° — 3, the only classes

28 _ s+1_ —
of this form can be (25 3)w2 Swd @ wi T2 95— é)w2 ngs w3 @ wiwd’. By

Lucas’ theorem, (2 _1) and ( _1) are odd, so to conclude our proof it is enough to prove

27w3and(

253 256
s_ _ s s+1_ -1
that w? Swd = wi™3, w? 202 w3 # 0 and w2 0w ws = 0.
. s s o,
Since €2 T = e% *2 = 22 = 0, by Proposition 2.3.(5) we have
p3 = (w? Pwd Neleget - en g
25— 29 2 n—4
= (e1 4+ ea +e3)* P(ereq + ezes +ezer)? efeae] o en g
23 (2 422+ 2541 2 4
= (e1+eg+e3)P (T2 ede2 el 4 e e Vel ey
253 2 2° 1 4
=(e1+ea+ 63) 6162 TeZen e,
2°-1,2°41,2°

and hence, by Proposition 2.3, w2 _3w2 = wg_?’.



Using similar arguments, we calculate
2942, 29~ 2 4
pa =" (w Pwd  wa)efese - en s

s—1

2542 2 2 —4
= (e1 +e2+€2)* TP (erea + exez + eze1)” ereseszeiesel toen_q

= (e + e +e) e +e2+ed)((ere2)? + (eae3)® + (ese1)? )ededesel ™t en g
e2 (et +ed)ed 1653 lei’e%ez ey
(e? 5, 29 1+2+ 28~ 1+3e§g 1+4)€3 “6274---%,1.

Since 2°~! + 5 < 2%, by Proposition 2.3.(1) for the additive basis Bysyo (defined as Basy in
Proposition 4.1), py # 0. Hence, w} ™2 %s ws # 0 (by Proposition 2.3.(4)).
Finally, by Proposition 2.3.(5), we have

ps =T (wfs+1 60p2°" 1w3)e%egeff*4 Ceep—q
=(e1+e2+ 63)25“_6(6162 + egez + 6361)25716162636%626274 celp—1
= (e1+ e+ €3) 7 5(eF + €2 + e ) (eren + ees + ezen)? eedesei e
= (e1 + 62)237663%16%5*1+36%S*1+2€Z—4 e en1
_ (( 2" =6 )eQSeQSl—i—( 2" =6 )6,29 1e2> 21 -4,
92s—1 _ 3 1 %2 9s—1 _ 4 1 2 €3 €4 n—1-

Since s > 4, by Lucas’ theorem (252;__63) and ( 6 ) are even, so ps = 0, and hence, by

25-1_4
Proposition 2.3.(4), w%sﬂf(’jw%klu@ = 0, which completes our proof. O

Proposition 4.3 Let s >2, n =2+t <25, t >3 and 27! <t < 2". Then
2cl(G3(R™)) > 252 —2" — 1 and TC(G3(R™)) > 2572 — 2",
Also, if t —3 = 2571 then zcl(G3(R™)) > 7-2°5"!1 — 1 and TC(G3(R")) > 72571
PROOF — For the first inequality it is enough to show
A= z(w1)QSH_lz(wg)ZSH_QHlz(w3)2r # 0.

Note that wi’wj = 0. Indeed, this follows from Proposition 2.3.(4), ¢> ™" = 0 for
i € {1,2,3} and the following calculations:

25 27\ 2 —4
p1 =7 (w] wi )ejese]) " - -ep_1
25 | 2% | 28 2 2 —4
= (e +e5 +e3 )(erezes) 616262 Ceeep—1
S T s ™ S
= (2T el el L et el el 1 et el 2 T )edegel e = 0.
. . S
Similarly, one proves that w3 w3 = 0, w} w3 2" = 0 and wy
Y p 2 Y3 2

T 25
2542 0.
,,,

Note that 2" >t > 3 implies r > 2. Now, we consider the cases 2 < s—landr=s

separately.
Case 1: 2<r <s—1. We have

A= /2(1401)25_12(101)25z(wg)Qs_QT+1 2(w2)? z(w3)?
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s—1 )25—2T+1( 2 28

= 2(w)* "tz(ws wwd @wi +wl @wdws).

Since 2 —1 =214 ... 4 2rH 4 97 1 97 1 and 25 — 2" =25-1 4 ... 4 27+ in a similar
way we get

211 95 9s 25 _9oT 23727‘+1 or 25 _9oT 23727‘4’1 or 25 98
A=z(w)” " (w] wy @wy 7w wy +wy " wy w3 @wy wy ).

. . . . . . s_or s_or+1
Since the dimension of w} w3” is greater than the dimension of the class w} ~* w3 2w},
after expanding the expression for A, there is only one summand with the first coordinate in

. . . . - _or 9s_grtl .
dimension 3 - 2% + 2" — 1, and this summand is wi T 1w @ w? T wd 7wl Hence, it
r _or s r+1
is enough to prove that w2 2Ly 2* #0and w2 2 w% -2 w3 # 0.

First, we prove that w2 +2 71 %S =% 0. Since e?H = 0 for ¢ € {1,2,3} (by Proposition
2.3.(2)), by Proposition 2.3.( ) it is enough to prove that

po = 7 (wi T _lw% Jelegel ™t en g
= (e1+ea+e3)” (el +e3 +e3)(erer + eaes +ezer)? efese i eny
=(e1 +ex+ 63)2T_1(€1€263) 6%6282 1o
= 1 (w? T w3 )edegel ™ en g

is non-zero in H*(Flag(R™); Zs), i.e. that w? ~'w?” is non-zero in H*(G3(R™);Zy). Observe
the inclusion i : G3(R"~2") C G3(R™). Note that the height of i*(w1) in H*(G3(R""%"); Zs)
is 2" — 1 (by (2.1)). So, let = be a class in H*(G3(R""%");Zsy) such that i*(w1)? ~'z €
H3(=2"=3) (G3(R"2"); Zy) is non-zero (this class exists by Poincare’s duality); further let
T € H*(G3(R™); Zy) be such that i*(Z) = 2. Then, by [12, Lemma 1], the value of w? ~'Z-w3"
is the same as the value of i*(w? ~'Z) = i*(w;)? ~'a, which is non-zero. Hence, w? ~‘w3" # 0.

Finally, we prove that w%sﬁrwgsﬁrﬂw%r # 0. This will immediately follow from
w%s_zrw%s_ng = w¥wd = w%s # 0, which we now prove. Since e?s+2r =0fori € {1,2,3},
by Proposition 2.3.(4) this follows from (here d3,_3 = 6%6262_4 ceeep—1)

—— QTMSLQT s
= (e1 +ex+ 63) (6162 + eges + 6361)287?(616263)2Td37n_3
= (e1 4+ ey +e3)? 1(6162 + ege3 + ezer)? g
-(e1 +ex + 63)2 - (6162 + eges + 6361)25_172T(616263)2rd3,n_3
=(e1 +ex+ 63) (6162 + egez + 6361)25_1_2r(616263)25_1+2rd3,n_3
_ (616263)28—1+2S—2+-~-+2r+zrd37n_3

= (ere2e3)* d3 -3
= (61 + eo + 63)2S (6162 + eses + 6361)25613,”_3

= " (w} w3 )dz 3.

Since w%s € B3 -3, we have w%s # 0, which completes our proof.

Case 2: v = s. Then A = z(w1)* H(w? ® w} + w] @ w{). Since after expanding A
there is only one summand with first coordinate in dimension 2572 — 1, and this summand is
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w? Tt @ w?’, it is enough to prove w? w2 # 0 and w?’ # 0. The second follows from
w%s € B3 ,—3, and the first one is proven after the calculations for ps.

Suppose now that t — 3 > 2571, We will prove that
B = z(wl)QSH*lz(wg)zsz(w3)2371 # 0,

which implies zcl(Gg(R™)) > 257! 425 42571 — 1.
Let us observe all summands of B with first coordinate in dimension 9 - 25~1. Note that

s_ s s s—1
B = z(wy)” " tz(wi )2(wd )z(wi ),

so the only monomial of this form is w%sw%swgs_l ®w%5_1, and hence it is enough to prove that

w%swgsw; # 0 and w? ~ 7& 0 This follows from Lemma 2.5 (indeed, since ¢ — 3 > 2571,
both monomials divide w? w2 w 3 £0). O

Proposition 4.4 Letn =2+t <2t t >3 and 2"~ <t < 2". Then
zcl(G3(R")) < 2°%2 42" — 3.

PROOF — Suppose that this is not the case, and let a,b,¢ > 0 be such that A =
z(wy)%2(w2)? 2 (ws3)® 7é 0and a+b+c > 2572 427 — 2. Since z(w1)? = 0 (by (2.3))
and z(wg)zs+1 = %H R1I+1® wgs+ =0, we have a,b < 25t1 _ 1 and hence ¢ > 27.

Suppose that ¢ > 2° 4+ 2". Since wg +2" — 0, then we have

A = z(w1)%2(wo) 2(w3)* % (wf @ wd +wd @uwd).

Since w? w? = 0 and w3 w? = 0 (see Proposition 4.3), we have a,b < 2° — 1, which together
with ¢ < 257! — 1 gives a 4+ b+ ¢ < 2°72 — 3, a contradiction. So, ¢ < 2° 4+ 2" — 1, and hence
a,b > 2% Since w} w3 = w3 (see Proposition 4.3):

A= Z(wl)“_QSZ(wz)b_QSZ(ws)C_QTZ(w%S)Z(wgs)Z(wgr)
2(w2)" ™ 2(ws) ™ (w} Wl @wi +wi ®wiwd)

(i @wi +wi @uwi).

_ 2(11)1)’1728

_ Z(wl)a—Zsz(w2)b—25 (U)S)c 2

Next, we note that w? 2 w%slewg =w? foralll > r. Since e?S”l =0 for i € {1, 2,3}, this
follows as in the calculations for p3 in Proposition 4.3.

Let a —2° = (as_105-2...0)2, b—2° = (Bs_18s—2... Bo)2 and ¢ — 2" = (Vs—17s-2---70)2
be the binary representations of the numbers a — 2%, b — 2° and ¢ — 2" (We allow as_1 = 0,
Be_1 = O and ys—1 = 0). Further for r < I < s, let a, = Z;:zl ;2% a a/ =a—2°—aj
by =S50 B2 b = b—2°—b), and ¢, = Y57 4,20, ¢ = ¢—2"—¢} (note that o/, = b, = ¢, = 0).
We will prove that ay =b; = 25 — 2 and ¢, =0 for every >

Our proof is by reverse induction on [, s > [ > r. The claim is trivial for [ = s. So,
suppose that it is true for [+ 1, s > [+ 1 > r+ 1 and let us prove it for [. First we prove that
oy + B+ = 2. If this were not the case, then by the inductional hypothesis

a+bte=2" 42" by + b+ + (et B ) 2 a0+ o
<2542 42025 -2 420+ 3(2' - 1)
=22 1 97 _ 3,
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a contradiction. So, to finish the inductional step it is enough to prove 7 = 0. Assume this
is not the case. Since wflwgs = 0 for ¢ € {1,2,3} (see Proposition 4.3), by the inductional
hypothesis we have

A= Z(’U)l)a;,-‘rlz(UJQ)bgl-l—lZ(U)S)C;/-‘rl z(w1)2572l+12(w2)2872l+1 (w%s ® w%r + w%T ® w%s)

= 2(wy) 2 A (1) I (w2 el

9s 25_21+1 25_2l+1 or 25_21+1 25_2l+1 or 2s
(w3 ®w) w3 w3 + wj w3 w3 Q@ ws )

= z(wl)af,z(wg)b;/z(wy))cgl
252414 g0l 25_2l+lyg .ol ol ior

9s 25_2l+1 .2l 23_2l+1+ ,2l 2[ or 928
. . . . . s_9ol s_ol+1 l Id
So, to obtain a contradiction, it is enough to prove w% 2 wg 2 wg 2" = 0 and
s_ol+1 s_ol l r . . . . . .
w% 2 wg 2 wg +2" — 0. We prove the first identity, since the proof of the second is similar.
We use Proposition 2.3:
kg, 2520 9s_oltl olyory o  pn—4
pa =7 (wy " Fwj w3 T )ejesey " - ep—i
25 9! 25 —ol+1 2042 2 n—4
= (e1 +ex +e3) (e1ea + ezez + ezeq) (ereze3) e1ezey " -ep—1
2571_2l 2571_214»1 2571 2l 2T 9 n—4
= (e1 +ex +e3) (e1€2 + eze3 + ezeq) (erees) T ejese, T c-rep—1
21 2571 2572 2l+1 2l 2T 9 4
= (e1+ex+e3)? (ereges)” TF TR elege ™ ey
2! 2! 2! 25-2l49r 9 n—4
= (e] +e5 + €3 )(erees) eregey " rrep—1 = 0.
So, the proof by induction is completed. Finally, we have
> p y p Y,
/{ b// /./ 25_21" 25_27" 25 27’ 27" 28
A = z(w1)% z(w2)"r z(w3)r z(wq) z(w3) (ws ®w; +w; Ruws )
1" b// /1 25 23727‘ 25727’ 27‘ 25727’ 23727‘ 21" 23
= 2(w1)" 2(w2)" 2(w3) (w3 @wy 7wy "7 wy +wy T wy T wy Quwy )
1" b// /! 23 23 2S 25
= 2(w1)* 2(w2)" 2(w3) (w3 ®wy +wy ®wy ) =0,
which is a contradiction. O

Remark 4.5 Note that the value of zcl(G3(R™)), where n > 2° + 3, stated in [9, Theorem
4.8] (but not proven correctly), in most cases, i.e. for 2""1 +3 < t < 27, equals the upper
bound for zcl(Gs(R™)) proven in Proposition 4.4.

5 The zero-divisor cup-length of G;(R")

In this section we give a lower bound for G (R") for k > 4.
Proposition 5.1 Let 4 <k <n and 25 +k <n <25 Then

zcl(Gp(R™)) = ([logg k] + 1) -2° =1 and TC(Gg(R"™)) > ([logy k] + 1) - 2°.
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PROOF — Let 27! < k < 2". Then [log, k] = 7, so it is enough to prove

r—1 r—1
s+1_ s s_ s
A=z(w)* ! H 2(wyi)¥ = z(wy)* 7! H z(w3;) # 0.
i=1 i=0

r—2
First, let us prove that p = ngf is non-zero in H*(Gy(R");Z2). Let dpp—r =
=0 L
e’f_l---ek,le’g;’f_l--en_l. Since e%S+ = 0 for 1 < ¢ < k (by Proposition 2.3.(2)) and

r—2
kK = ZQi =92""1 _1 < k we have
i=0

r—2
25
p =7 (H w2i> Ak m—k
=0
-2

r

_ E 28 2% A

- H eal €a2 T eazi dk,n—k‘
K2

i=0 \1<a1<a2<-<ay,; <k

_ 190 ol r—2 28 28 2s
=1[2",2%,...,2"77] E €a1€ay " Cay | Dln—ks
1<ar1<az<<ap <k

where [20,21 ... 2772] = (20+21+2}j'+2r72) (21+";1r27‘72) e (g:;) denotes the multinomial coef-
ficient. By Lucas’ theorem, this coefficient is odd. Also, for 1 < ¢ < k the degree of e; in each
monomial in the last expression for p; is at most 2° + k — ¢ < n — 4, so all monomials in this
expression are distinct members of the basis B,, for H*(Flag(R");Z2), and hence p; # 0. So,
by Proposition 2.3.(4), p # 0.

Now, let us observe all summands after expanding A with first coordinate in dimension
(2r=1 —1).2% The (élimension of pis (27! — 1) - 2%, and it is easy to see that the only term

s_1 9

of this form is p ® wy ~ wj._;. So, to finish the proof it is enough to prove wQS_lwgf,l #0.

In fact, we prove that w%swgf_l = 0. Since e?SH =0 for 1 <7 < k, we have

2S 28
po =7t (w1 w2T_1) i n—k

(2 28 28 28 95 28

= (el +ey + - Feg ) E L Ai—k
1<a1<ag<-<ayr—1<k

o 25 2.5‘ L. 25

= E €a1€ar " Cayrir,y, Ak —k-

I<a1<az<-<ayr—1,,<k

Now, as above, 2° + k < n implies that all monomials in the last expression for po are distinct
members of the basis B,, for H*(Flag(R™);Zs), and hence py # 0. By Proposition 2.3.(4), it
follows that w%swgi,l #0. O
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