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Abstract

Topological complexity naturally appears in the motion planning in robotics. In this
paper we consider the problem of finding topological complexity of real Grassmann man-
ifolds Gk(Rn). We use cohomology methods to give estimates on the zero-divisor cup-
length of Gk(Rn) for various 2 6 k < n, which in turn give us lower bounds on topological
complexity. Our results correct and improve several results from [9].

1 Introduction

For a path-connected space X we denote its topological complexity by TC(X). In [9] the
author considered the problem of finding TC(Gk(Rn)) for various 2 6 k < n (in this paper,
Gk(Rn) denotes the real Grassmann manifold of k-dimensional subspaces in Rn). Unfortu-
nately, there is a problem with the proof of the main lemma of that paper (Lemma 4.4) and
the consequential results on the topological complexity (Theorems 4.5, 4.8 and 4.12); see [10].
In this paper we reconsider this problem, and as an outcome correct and improve several
results from [9]. As in [9], we use the cohomology method to obtain our results.

This paper closely follows and builds on the ideas presented in [9] (so, for background,
motivation and all undefined notions, the reader is advised to consult [9]). Throughout the
paper we will use, as much as possible, the notation from [9]. In particular, we will be working
with the unreduced topological complexity, as defined by Farber in [5] (for example, by this
definition the topological complexity of a contractible space is equal to 1).

The paper is organized as follows. In Section 2 we describe the cohomology method
mentioned above and give an overview of the cohomology of real Grassmannians. In Section
3 we consider the case k = 2. We obtain the exact value of the zero-divisor cup-length of
G2(Rn) (denoted by zcl(G2(Rn))) for s > 2 and n ∈ {2s + 1, 2s + 2, 2s + 3}; additionally, for
s > 3, 2s + 4 6 n 6 2s+1 we prove a lower and upper bound for zcl(G2(Rn)). These results
show that the value of the zero-divisor cup-length given in [9, Theorem 4.5] is not correct;
what is more interesting, our results improve lower bounds for topological complexity stated
in the same theorem. Section 4 is devoted to the case k = 3. Separately, we prove lower
bounds for zcl(G3(Rn)) in the cases n = 2s + 1, n = 2s + 2 and 2s + 3 6 n 6 2s+1 (for
s > 4). The first two results show that the corresponding results from [9, Theorem 4.8] are
not correct, and improves the stated lower bound for topological complexity of G3(R2s+1) (for
s > 5). In Section 5 we give a general lower bound for zcl(Gk(Rn)) (for k > 4). For k > 9
this result improves the bounds stated in [9, Theorem 4.10].

∗University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia.

1



2 Background and notation

As mentioned in Introduction, to obtain our results we use the so called cohomology method,
which we now (briefly) explain.

Let ∆ : X → X ×X denote the diagonal map. Then the elements of

Ker(∆∗ : H∗(X ×X;Z2)→ H∗(X;Z2))

are called zero-divisors. Further, the zero-divisor cup-length of X, denote by zcl(X), is defined
to be the maximum number of elements from Ker∆∗ whose product is non-zero. In [5], Farber
proved that zcl(X) gives a lower bound for TC(X), that is TC(X) > zcl(X) + 1. Hence, a
lower bound for zcl(X) immediately gives a lower bound for TC(X). Note that for every
w ∈ H∗(X;Z2) the element

z(w) = w ⊗ 1 + 1⊗ w ∈ H∗(X ×X;Z2)

is in Ker∆∗ (since ∆∗(z(w)) = w ·1+1 ·w = 0). Then, by [2, Lemma 5.2], Ker∆∗ is generated
by these elements. So, if zcl(X) = t, then there are classes x1, x2, . . . , xt ∈ H∗(X;Z2) such
that z(x1)z(x2) · · · z(xt) 6= 0.

To get the best possible results on TC(Gk(Rn)) using the cohomology method, one requires
fine understanding of the cohomology algebra H∗(Gk(Rn);Z2). There are several ways to
describe this algebra; in this paper we will use the one due to Borel (see [1]):

H∗(Gk(Rn);Z2) ∼= Z2[w1, w2, . . . , wk]/Ik,n,

where w1, w2, . . . , wk are the Stiefel-Whitey classes of the canonical k-dimensional vector
bundle over Gk(Rn), and Ik,n = (wn−k+1, wn−k+2, . . . , wn) is the ideal generated by dual
classes.

Let us observe H∗(Gk(Rn);Z2) and the corresponding ideal Ker∆∗. We denote by Zk,n
the ideal generated by the classes z(w1), z(w2), . . . , z(wk). Obviously, Zk,n ⊆ Ker∆∗, but we
can prove more.

Lemma 2.1 Zk,n = Ker∆∗.

proof — It is enough to prove that for every p ∈ H∗(Gk(Rn);Z2), the class p ⊗ 1 + 1 ⊗ p
is in Zk,n. Since p is a polynomial in w1, w2, . . . , wk, it is enough to consider the case p =
wa11 · · ·w

ak
k , where ai > 0 for 1 6 i 6 k.

We prove by induction on deg(p) = a1 + · · ·+ak, that p⊗1+1⊗p ∈ Zk,n. This is obvious
when deg(p) = 1. So, suppose that it is true for all q such that deg(q) < `, and prove it for a
given monomial p = wa11 · · ·w

ak
k such that deg(p) = ` > 1. Then ai > 0 for some 1 6 i 6 k;

further, let p = wiq. So, we have

p⊗ 1 + 1⊗ p = wiq ⊗ 1 + 1⊗ wiq = wi ⊗ 1(q ⊗ 1 + 1⊗ q) + 1⊗ q(wi ⊗ 1 + 1⊗ wi),

and hence the conclusion follows by induction. 2

So, by the previous lemma, if zcl(Gk(Rn)) = t, then it is easy to see that there are
a1, a2, . . . , ak ∈ N0 such that z(w1)

a1z(w2)
a2 · · · z(wk)ak 6= 0.

Although Borel’s description of H∗(Gk(Rn);Z2) appears simple enough, it turns out that
performing concrete calculations in this algebra can be rather difficult. Hence, one usually
needs to apply some additional methods and properties of H∗(Gk(Rn);Z2). The following
result gives an additive basis for this algebra (see, e.g. [7, 11]).
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Proposition 2.2 The set Bk,n−k = {wa11 · · ·w
ak
k : 0 6 a1 + · · ·+ ak 6 n− k} is an additive

basis for H∗(Gk(Rn);Z2).

The height of a class c ∈ H̃∗(X;Z2), denoted by ht(c), is the largest m ∈ N such that
cm 6= 0. For k > 2, the height of w1 ∈ H∗(Gk(Rn);Z2) is obtained by Stong in [12]: if
2 6 k 6 n− k and s is the unique positive integer such that 2s < n 6 2s+1, then

ht(w1) =

{
2s+1 − 2, if k = 2 or (k, n) = (3, 2s + 1),
2s+1 − 1, otherwise.

(2.1)

In this paper we will often use Stong’s method from [12] for calculating in H∗(Gk(Rn);Z2)
(later this method was generalized by Korbaš and Lörinc to all flag manifolds, see [8]). In
what follows we briefly explain this method.

Let Flag(Rn) denote the (real) complete flag manifold (n > 2). Denote by ei := w1(γi)
the first Stiefel-Whitney class of the canonical line bundle γi over Flag(Rn), for 1 6 i 6 n.
Then we have the map π : Flag(Rn)→ Gk(Rn), given by

π(S1, . . . , Sk, Sk+1, . . . , Sn) = (S1 ⊕ · · · ⊕ Sk, Sk+1 ⊕ · · · ⊕ Sn).

The following result will be very useful for our calculations in H∗(Gk(Rn);Z2) (and
H∗(Flag(Rn);Z2)).

Proposition 2.3 (1) The set Bn = {ea11 e
a2
2 . . . e

an−1

n−1 : 0 6 ai 6 n − i} is an additive basis
for H∗(Flag(Rn);Z2).

(2) ht(ei) = n− 1 for 1 6 i 6 n. In particular eni = 0 for 1 6 i 6 n.

(3) A monomial ea11 e
a2
2 · · · eann ∈ H(n2)(Flag(Rn);Z2) is non-zero if and only if

(a1, a2, . . . , an) is a permutation of the n-tuple (n− 1, n− 2, . . . , 1, 0).

(4) If u ∈ H∗(Gk(Rn);Z2) and

v = ek−11 ek−22 · · · ek−1 · en−k−1k+1 en−k−2k+2 · · · en−1 ∈ H∗(Flag(Rn);Z2),

then π∗(u) · v ∈ H∗(Flag(Rn);Z2), and u 6= 0 if and only if π∗(u) · v 6= 0.

(5) For 1 6 i 6 k, π∗(wi) is the i-th elementary symmetric polynomial in the variables
e1, e2, . . . , ek.

Heights of the classes z(w1) and z(wk) will be very useful in our calculations. In what
follows we determine these values.

It turns out that if ht(w) is known, then ht(z(w)) can easily be calculated. This is proven
in Lemma 4.3 from [9]. Namely, one has: if w ∈ H∗(X;Z2) and t is the unique non-negative
integer such that 2t 6 ht(w) < 2t+1, then

ht(z(w)) = 2t+1 − 1. (2.2)

We will apply this identity for X = Gk(Rn), when 2 6 k 6 n− k. If 2s < n 6 2s+1, then
(2.1) implies

ht(z(w1)) = 2s+1 − 1. (2.3)

On the other hand, Proposition 2.2 implies wn−kk 6= 0, so ht(wk) = n − k (by observing

dimension we conclude that wn−k+1
k = 0). Hence, if t is the unique non-negative integer such

that 2t 6 n− k < 2t+1, then (2.2) implies

ht(z(wk)) = 2t+1 − 1. (2.4)

The following lemma will be very useful in Section 3.
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Lemma 2.4 Let m, k, n ∈ N, k < n, and d1, . . . , dm ∈ N be such that d1+· · ·+dm > 2k(n−k).
If xi ∈ Hdi(Gk(Rn);Z2) for 1 6 i 6 m, then

z(x1) · · · z(xm) = 0.

proof — Note that the product p = z(x1) · · · z(xm) is the sum of certain classes of the form
x⊗ y + y ⊗ x, for some x, y ∈ H∗(Gk(Rn);Z2). Since p is in dimension at least 2k(n− k) =
2 dimGk(Rn), so is x⊗ y, and hence x, y ∈ Hk(n−k)(Gk(Rn);Z2) or x⊗ y = y⊗ x = 0. There
is only one non-zero class in Hk(n−k)(Gk(Rn);Z2), namely wn−kk (by Proposition 2.2), and

hence x⊗ y = y ⊗ x = 0 or x⊗ y = wn−kk ⊗ wn−kk = y ⊗ x. In both cases x⊗ y + y ⊗ x = 0,
which implies p = 0. 2

Also, we recall some results from [9] that will be used in our calculations.

Lemma 2.5 a) If 2s < n 6 2s+1, then w2s
1 w

n−2s−1
2 6= 0 and w2s

1 w
n−2s
2 = 0 in

H∗(G2(Rn);Z2).

b) If 2s + 3 6 n 6 2s+1 and t = n− 2s, then w2s
1 w

2s
2 w

t−3
3 6= 0 in H∗(G3(Rn);Z2).

Throughout the paper we use the same notation as in this section.
Finally, let us say a few words on Lemma 4.4 from [9] and our strategy that bypasses

the application of this lemma. In Lemma 4.4 from [9] the author assumes that u1, . . . , un ∈
H∗(X;Z2) and k1, . . . , kn ∈ N are such that uk11 · · ·uknn 6= 0, and wants to prove that A =
z(u1)

2r1−1 · · · z(un)2
rn−1 6= 0, where ri is the unique integer such that 2ri−1 6 ki < 2ri

for 1 6 i 6 n. For this he notices that after expanding A one summand is uk11 · · ·uknn ⊗
u2

r1−k1−1
1 · · ·u2rn−kn−1n , which is nonzero, and from this immediately concludes that A 6= 0.

As we will see in the proofs of our results, the problem is that the set

S = {(l1, . . . , ln) : 0 6 li 6 2ri − 1, ul11 · · ·u
ln
n = uk11 · · ·u

kn
n }

can contain more than one element, and hence that the corresponding summands of A with
the first coordinate equal to uk11 · · ·uknn may cancel out. So, in our proofs we choose the
n-tuple (k1, . . . , kn) a bit more carefully to ensure that∑

(l1,...,ln)∈S

u2
r1−l1−1

1 · · ·u2rn−ln−1n 6= 0

and that this further leads to A 6= 0 (note: in our applications the degree of z(ui) in A will
not always be 2ri − 1, so we will have slightly different formulas than the one given above).

3 The zero-divisor cup-length of G2(Rn)

Let s be the unique integer such that 2s < n 6 2s+1. In this section we consider zcl(G2(Rn)).
We note that Propositions 3.7, 3.9, 3.11 and 3.12, that we prove in this section, show that
the corresponding results of [9, Theorem 4.5] are not correct. Fortunately, correct versions
give better lower bounds for the topological complexity of G2(Rn).

We will compare our results with the following upper bound from [9] (this result is a
consequence of a general result from [3, Theorem 1]).

Proposition 3.1 If 1 6 k < n, then TC(Gk(Rn)) 6 2k(n − k). In fact, if k 6= 1 and
(k, n) 6= (2, 2d + 1) for all d ∈ N, then TC(Gk(Rn)) 6 2k(n− k)− 1.
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3.1 Preliminary lemmas

Let n be a positive integer and n =
∑t

i=0 αi · 2i, where αi ∈ {0, 1} for 0 6 i 6 t and αt = 1,
its representation in base 2. Then we write n := (αt, . . . , α1, α0)2.

As we use Z2 coefficient the following special case of Lucas’ theorem will be particularly
useful to us: if n := (αt, . . . , α1, α0)2 and m := (βr, . . . , β1, β0)2, then(

n

m

)
≡ 1 (mod 2) if and only if t > r and αi > βi for 0 6 i 6 r.

We will use the following two consequences of Lucas’ theorem throughout the paper. Let
w ∈ H∗(X;Z2). By Lucas’ theorem,

(
2m

i

)
is even for 1 6 i 6 2m − 1, and so

z(w)2
m

= (w ⊗ 1 + 1⊗ w)2
m

= w2m ⊗ 1 + 1⊗ w2m .

On the other hand, by Lucas’ theorem
(
2m−1
i

)
is odd for all 0 6 i 6 2m − 1, and hence

z(w)2
m−1 = (w ⊗ 1 + 1⊗ w)2

m−1 =
2m−1∑
i=0

wi ⊗ w2m−1−i.

We will also need the following result.

Lemma 3.2 Let n be a non-negative integer. Then:

a)
(
2n
n

)
is odd if and only if n = 0;

b)
(

2n
n+1

)
is odd if and only if n = 2t+1 − 1 for some t ∈ N0.

proof — Part a) immediately follows from Lucas’ theorem.
For part b) we note that Cn =

(
2n
n

)
−
(

2n
n+1

)
is the n-th Catalan number. Then the result

follows from part a) and the fact that Cn (for n > 1) is odd if and only if n = 2t+1 − 1 for
some t ∈ N0 (see [4]). 2

Lemma 3.3 Let 0 6 m 6 n− 2 and α0, α1, . . . , αn−1−m ∈ Z2. Then:

a)
n−1−m∑
i=0

αie
m+i
1 en−1−i2 = 0 in H∗(Flag(Rn);Z2) iff α0 = α1 = · · · = αn−1−m;

b) for a polynomial p ∈ H∗(Flag(Rn);Z2) in classes e1 and e2 one has

p · en−33 en−44 · · · en−1 = 0 in H∗(Flag(Rn);Z2)

if and only if p = 0 in H∗(Flag(Rn);Z2).

proof —
a) By Proposition 2.1 from [6] we have en−12 = en−11 + en−21 e2 + · · ·+ e1e

n−2
2 (we use this

proposition for m = 1, k = n − 1 and i = n − 2). Since en1 = 0 (by Proposition 2.3.(2)), we
have

n−1−m∑
i=0

αie
m+i
1 en−1−i2 =

n−1−m∑
i=1

(αi + α0)e
m+i
1 en−1−i2 .
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Since em+1
1 en−22 , em+2

1 en−32 , . . . , en−11 em2 are in the additive basis Bn (from Proposition 2.3.(1)),
the last sum is zero if and only if α1 + α0 = α2 + α0 = · · · = αn−1−m + α0 = 0, i.e. if and
only if α0 = α1 = · · · = αn−1−m.

b) As in part a) we use the identities en−12 = en−11 + en−21 e2 + · · ·+ e1e
n−2
2 and en1 = en2 = 0

to express p in the form
∑
αi,je

i
1e
j
2, where αi,j ∈ {0, 1}, 0 6 i 6 n − 1 and 0 6 j 6 n − 2.

Then
∑
αi,je

i
1e
j
2e
n−3
3 en−44 · · · en−1 (= pen−33 en−44 · · · en−1) is a sum of the elements from the

basis Bn from Proposition 2.3.(1); so this sum is zero if and only if αij = 0 for all i, j, i.e. if
and only if p = 0 (since p is also represented in the basis Bn). 2

Remark 3.4 We will use the following consequence of part a) of this lemma. Let p =
b−a∑
i=0

αie
a+i
1 eb−i2 ∈ Ha+b(Flag(Rn);Z2) for some 0 6 a 6 n − 2, a 6 b 6 n − 1. If there

exist 0 6 i′ 6= i′′ 6 b− a such that αi′ = 0 and αi′′ = 1, then p 6= 0.
Further, if q ∈ Hc(Flag(Rn);Z2), where c 6 2n−3, is written as a sum of some monomials

of the form ei1e
j
2, then after removing all summands with i > n or j > n (since they are 0 by

Proposition 2.3.(2)), we get that q is written in the same way as p above.

Lemma 3.5 If 2s < n 6 2s+1 and a, b ∈ N0 are such that a+ 2b = 2(n− 2), then wa1w
b
2 6= 0

in H2n−4(G2(Rn);Z2) if and only if

(a, b) = (2l+1 − 2, n− 2l − 1) for some 0 6 l 6 s.

proof — By Proposition 2.3.(4), wa1w
b
2 6= 0 in H2n−4(G2(Rn);Z2) if and only if

π∗(wa1w
b
2)e1e

n−3
3 · · · en−1 = (e1 + e2)

a(e1e2)
be1e

n−3
3 · · · en−1 6= 0

in H∗(Flag(Rn);Z2). After expanding we have

(e1 + e2)
a(e1e2)

be1e
n−3
3 · · · en−1 = en−33 · · · en−1

a∑
i=0

(
a

i

)
ei+1+b
1 ea−i+b2 .

Note that by Proposition 2.3.(3) the only non-zero monomials in this sum are the ones for
i that satisfies (i + 1 + b, a − i + b) ∈ {(n − 1, n − 2), (n − 2, n − 1)} and

(
a
i

)
is odd, i.e.

i ∈ {n− 2− b, n− 3− b} and
(
a
i

)
is odd.

If i = n− 2− b, then
(
a
i

)
=
(2(n−2−b)
n−2−b

)
=
(
2m
m

)
(here 2m = 2(n− 2− b) = a). By Lemma

3.2 this number is odd only if m = 0, i.e. (a, b) = (0, n− 2).

Let us now consider the case i = n − 3 − b. Then
(
a
i

)
=
(2(n−2−b)
n−3−b

)
=
(

2m
m−1

)
=
(

2m
m+1

)
(again 2m = 2(n− 2− b) = a). By Lemma 3.2 this number is odd if and only if m = 2l − 1
for some l > 1. Then a = 2l+1 − 2 and b = n− 2l − 1 > 0, which completes our proof. 2

Remark 3.6 If wa1w
b
2 6= 0 and a + 2b = 2(n − 2), then, by Proposition 2.2, wa1w

b
2 = wn−22

(since wn−22 is the only non-zero class in H2(n−2)(G2(Rn);Z2)).
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3.2 Some exact values

In this section we calculate zcl(G2(Rn)) for s > 2 and n ∈ {2s + 1, 2s + 2, 2s + 3}.
In the proofs of the main result of this section we will use the following observation. Let

n > 4. Then, by Lemma 2.1 we conclude: if zcl(G2(Rn)) = t, then there are a, b, c ∈ N0 such
that z(w1)

az(w2)
bz(x1) · · · z(xc) 6= 0, where a + b + c = t and x1, x2, . . . , xt are some classes

of H∗(G2(Rn);Z2) each in dimension at least 3.

Proposition 3.7 For s > 2 and n = 2s + 1 one has

zcl(G2(Rn)) = 2s+1 + 2s − 4 and TC(G2(Rn)) > 2s+1 + 2s − 3.

proof — First, we prove that z(w1)
2s+1−1z(w2)

2s−3 6= 0. After expanding, we con-
sider all summands of the form wn−22 ⊗ x, for some x ∈ H∗(G2(Rn);Z2). By Lemma

3.5 each such summand is of the form w2l+1−2
1 w2s−2l

2 ⊗ w2s+1−2l+1+1
1 w2l−3

2 (for l > 2)

with coefficient
(
2s+1−1
2l+1−2

)(
2s−3
2s−2l

)
. By Lucas’ theorem each of these binomial coefficients is

odd, so z(w1)
2s+1−1z(w2)

2s−3 contains wn−22 ⊗
s∑
l=2

w2s+1−2l+1+1
1 w2l−3

2 . Since wn−22 is the

only non-zero class in H2(n−2)(G2(Rn);Z2) (by Proposition 2.2), it is enough to prove
s∑
l=2

w2s+1−2l+1+1
1 w2l−3

2 6= 0 (in H∗(G2(R2s+1);Z2)).

Note that by Lemma 2.5, w2s
1 w2 = 0, and so w2s+1−2l+1+1

1 w2l−3
2 = 0 for 2 6 l 6 s − 1.

Hence, it is enough to prove that w1w
2s−3
2 = w1w

n−4
2 6= 0, which follows from the fact that

w1w
n−4
2 is in the additive basis B2,n−2 (Proposition 2.2). So, zcl(G2(R2s+1)) > 2s+1 + 2s− 4.

Let us now prove that zcl(G2(R2s+1)) 6 2s+1 + 2s − 4. Suppose that this is not the case
and let a, b, c ∈ N0 and x1, . . . , xc ∈ H∗(G2(R2s+1);Z2) be some classes each in dimension at
least 3, such that a + b + c > 2s+1 + 2s − 3 and z(w1)

az(w2)
bz(x1)z(x2) · · · z(xc) 6= 0. By

Lemma 2.4, a+ 2b+ 3c 6 4(2s − 1)− 1 = 2s+2 − 5, and hence b+ 2c 6 2s − 2. Further, since
z(w1)

2s+1
= 0 (by (2.3)), we have a 6 2s+1 − 1 and hence b + c = (a + b + c) − a > 2s − 2.

This implies c = 0 and b = 2s − 2. Finally, a+ b+ c > 2s+1 + 2s − 3 and a 6 2s+1 − 1 imply
a = 2s+1 − 1.

So, it is enough to prove A = z(w1)
2s+1−1z(w2)

2s−2 = 0. Suppose that this is not the
case. Note that the dimension of A is 2s+1 − 1 + 2(2s − 2) = 4(n− 2)− 1, so every summand
of A is of the form x′ ⊗ x′′ where one of the classes x′ and x′′ has dimension 2(n − 2) and
the other 2(n − 2) − 1. Note that, by Proposition 2.2, the only class in H∗(G2(Rn);Z2) of
dimension 2(n−2) (resp. 2(n−2)−1) is wn−22 (resp. w1w

n−3
2 ). By symmetry, this and A 6= 0

implies A = wn−22 ⊗ w1w
n−3
2 + w1w

n−3
2 ⊗ wn−22 . Now, we proceed as in the first part of the

proof to prove that the coefficient of wn−22 ⊗ w1w
n−3
2 in A is zero. By Lemma 3.5 each such

summand in A = z(w1)
2s+1−1z(w2)

2s−2 is of the form w2l+1−2
1 w2s−2l

2 ⊗w2s+1−2l+1+1
1 w2l−2

2 (for

some s > l > 1) with coefficient
(
2s+1−1
2l+1−2

)(
2s−2
2s−2l

)
. By Lucas’ theorem this coefficient is 1, so it

is enough to prove
s∑
l=1

w2s+1−2l+1+1
1 w2l−2

2 = 0.

Again, by Lemma 2.5, w2s
1 w2 = 0, so w2s+1−2l+1+1

1 w2l−2
2 = 0 for 2 6 l 6 s− 1. Hence, the

previous sum is equal to w2s+1−3
1 + w1w

2s−2
2 . By (2.1), w2s+1−3

1 6= 0, so w2s+1−3
1 = w1w

n−3
2 =

w1w
2s−2
2 , and hence A = 0. 2
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Remark 3.8 By Proposition 3.1, TC(G2(R2s+1)) 6 2s+2 − 4, so there is a gap of 2s − 1
between our lower bound and this bound. For example, 9 6 TC(G2(R5)) 6 12.

Proposition 3.9 For s > 1 and n = 2s + 2 one has

zcl(G2(Rn)) = 2s+1 + 2s − 2 and TC(G2(Rn)) > 2s+1 + 2s − 1.

proof — First, we prove that A = z(w1)
2s+1−2z(w2)

2s 6= 0. Note that w2s
2 = wn−22 6= 0 (by

Proposition 2.2) and x · w2s
2 = 0 for every x ∈ H̃∗(G2(Rn);Z2). Hence

z(w1)
2s+1−2z(w2)

2s = z(w1)
2s+1−2(w2s

2 ⊗ 1 + 1⊗ w2s

2 ) = w2s

2 ⊗ w2s+1−2
1 + w2s+1−2

1 ⊗ w2s

2 .

Since w2s+1−2
1 6= 0 (by (2.1)) and w2s+1−2

1 6= w2s
2 , we conclude that A 6= 0. So, zcl(G2(Rn)) >

2s+1 + 2s − 2.
Let us now prove that zcl(G2(R2s+2)) 6 2s+1 + 2s − 2. Suppose that this is not the case

and let a, b, c ∈ N0 and x1, . . . , xc ∈ H∗(G2(R2s+1);Z2) be some classes each in dimension at
least 3, such that a+ b+ c > 2s+1 + 2s− 1 and B = z(w1)

az(w2)
bz(x1)z(x2) · · · z(xc) 6= 0. By

Lemma 2.4, a+2b+3c 6 4 ·2s−1 = 2s+2−1, and hence b+2c 6 2s. Also, since z(w1)
2s+1

= 0
(by (2.3)), we have a 6 2s+1− 1, and hence b+ c = (a+ b+ c)− a > 2s, which implies b = 2s

and c = 0. Finally, a+ b+ c > 2s+1 + 2s − 1 now implies a = 2s+1 − 1.
So, B = z(w1)

2s+1−1z(w2)
2s . Since x · w2s

2 = 0 for every x ∈ H̃∗(G2(Rn);Z2), and

w2s+1−1
1 = 0 (by (2.3)), we have

B = z(w1)
2s+1−1(w2s

2 ⊗ 1 + 1⊗ w2s

2 ) = w2s

2 ⊗ w2s+1−1
1 + w2s+1−1

1 ⊗ w2s

2 = 0,

a contradiction. 2

Remark 3.10 By Proposition 3.1, TC(G2(R2s+2)) 6 2s+2−1, so there is a gap of 2s between
our lower bound and this bound. For example, 5 6 TC(G2(R4)) 6 7.

Proposition 3.11 For s > 2 and n = 2s + 3 one has

zcl(G2(Rn)) = 2s+1 + 2s and TC(G2(Rn)) > 2s+1 + 2s + 1.

proof — First, we prove that A = z(w1)
2s+1−1z(w2)

2s+1 6= 0. Note that w2s+1
2 = wn−22 6= 0

(by Proposition 2.2), but x · w2s+1
2 = 0 for every x ∈ H̃∗(G2(Rn);Z2) and wk1w

2s
2 = 0 for all

k > 3 (by observing dimension). Additionally, by Remark 3.6, w2s+1−2
1 w2

2 = wn−22 = w2s+1
2 6=

0 and hence w2s+1−3
1 w2 6= 0. Now, since w2s+1−1

1 = 0 (by (2.1)), and w3
1w

2s
2 = 0, we have

A = z(w1)
2s+1−1(w2s

2 ⊗ 1 + 1⊗ w2s

2 )(w2 ⊗ 1 + 1⊗ w2)

= z(w1)
2s+1−1(w2s+1

2 ⊗ 1 + w2s

2 ⊗ w2 + w2 ⊗ w2s

2 + 1⊗ w2s+1
2 )

= w1w
2s

2 ⊗ w2s+1−2
1 w2 + w2

1w
2s

2 ⊗ w2s+1−3
1 w2 + w2s+1−3

1 w2 ⊗ w2
1w

2s

2 + w2s+1−2
1 w2 ⊗ w1w

2s

2 .

Since w1w
2s
2 ⊗ w2s+1−2

1 w2 6= 0 (w1w
2s
2 ∈ B2,n−2 and w2s+1−2

1 w2
2 = wn−22 6= 0) and w1w

2s
2

is distinct from w2
1w

2s
2 , w

2s+1−2
1 w2, w

2s+1−3
1 w2 (they are in dimensions 2(n − 2), 2(n − 2) −

2, 2(n − 2) − 3, while w1w
2s
2 is in dimension 2(n − 2) − 1), we conclude that A 6= 0. So,

zcl(G2(Rn)) > 2s+1 + 2s.
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Let us now prove that zcl(G2(R2s+3)) 6 2s+1 + 2s. Suppose that this is not the case and
let a, b, c ∈ N0 and x1, . . . , xc ∈ H∗(G2(R2s+1);Z2) be some classes each in dimension at least
3, such that a + b + c > 2s+1 + 2s + 1 and B = z(w1)

az(w2)
bz(x1)z(x2) · · · z(xc) 6= 0. By

Lemma 2.4, a+ 2b+ 3c 6 4(2s + 1)− 1 = 2s+2 + 3, and hence b+ 2c 6 2s + 2. Further, since
z(w1)

2s+1
= 0 (by (2.3)), we have a 6 2s+1 − 1 and hence b + c = (a + b + c) − a > 2s + 2.

This implies c = 0 and b = 2s + 2. Finally, a+ b+ c > 2s+1 + 2s + 1 and a 6 2s+1 − 1 imply
a = 2s+1 − 1.

So, B = z(w1)
2s+1−1z(w2)

2s+2. Since w2s+2
2 = 0 and w3

1w
2s
2 = 0:

B = z(w1)
2s+1−1z(w2s

2 )z(w2
2)

= z(w1)
2s+1−1(w2s

2 ⊗ w2
2 + w2

2 ⊗ w2s

2 )

= w1w
2s

2 ⊗ w2s+1−2
1 w2

2 + w2
1w

2s

2 ⊗ w2s+1−3
1 w2

2 + w2s+1−3
1 w2

2 ⊗ w2
1w

2s

2 + w2s+1−2
1 w2

2 ⊗ w1w
2s

2 .

As mentioned above w2s+1−2
1 w2

2 = wn−22 = w2s+1
2 6= 0; also, this implies w2s+1−3

1 w2
2 6= 0

and hence w2s+1−3
1 w2

2 = w1w
2s
2 (by Proposition 2.2, w1w

2s
2 is the only class in dimension

2(n− 2)− 1). Let us prove that w2
1w

2s
2 = wn−22 = w2s+1

2 6= 0. By Proposition 2.3.(4), this is
equivalent with

p = π∗(w2
1w

2s

2 ) · e1 · en−33 · · · en−1 = (e1 + e2)
2(e1e2)

2se1 · en−33 · · · en−1 6= 0.

This follows from

p = e2
s+3

1 e2
s

2 e
n−3
3 · · · en−1 + e2

s+1
1 e2

s+2
2 en−33 · · · en−1 = en−21 en−12 en−33 · · · en−1 6= 0

(by Proposition 2.3.(2)). So,

B = w1w
2s

2 ⊗ w2s+1
2 + w2s+1

2 ⊗ w1w
2s

2 + w1w
2s

2 ⊗ w2s+1
2 + w2s+1

2 ⊗ w1w
2s

2 = 0,

a contradiction. 2

3.3 General bounds for zcl(G2(Rn))

Let 2s + 4 6 n 6 2s+1 and t = n− 2s. Also, we assume s > 3 (i.e. n 6= 8). Further, let r be
the unique integer such that 2r−1 < t 6 2r. Since t > 4, we have r > 2. Let j be the smallest
positive integer such that the digit on position j in the binary representation of t− 2 is equal
to 1 (j is well-defined since t− 2 > 2); in other words, t− 2 has the binary representation of
the following form

t− 2 = 2m + αm−12
m−1 + · · ·+ αj+12

j+1 + 2j + α0

for some α0, αj+1, αj+2, . . . , αm−1 ∈ {0, 1} and 1 6 j 6 m. Since 2m 6 t−2 6 2r−2 6 2s−2,
we additionally have 1 6 j 6 m < r 6 s.

Proposition 3.12 If n, s, t, r and j are as above, then

2s+1 + 2s + 2r − ε− 2 6 zcl(G2(Rn)) 6 2s+1 + 2s + 2r − 2

and TC(G2(Rn)) > 2s+1 + 2s + 2r − ε− 1, where ε =

{
2j , if t is even

2j + 1, otherwise.
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proof — First, we prove that zcl(G2(Rn)) 6 2s+1 + 2s + 2r − 2. Suppose that this is not
the case and let a, b > 0 be such that A = z(w1)

az(w2)
b 6= 0 and a+ b > 2s+1 + 2s + 2r − 1.

Since z(w1)
2s+1

= 0 and z(w2)
2s+1

= 0 (by (2.3) and (2.4)), we have a, b 6 2s+1−1 and hence
a, b > 2s + 2r. Then

A = z(w1)
a−2sz(w2s

1 )z(w2)
b−2s−2rz(w2s

2 )z(w2r

2 )

= z(w1)
a−2sz(w2)

b−2s−2r(w2s

1 ⊗ 1 + 1⊗ w2s

1 )(w2s

2 ⊗ w2r

2 + w2r

2 ⊗ w2s

2 )

(the last equality holds since 2s + 2r > 2s + t = n and wn2 = 0). But w2s
1 w

t
2 = 0 (by Lemma

2.5) and t 6 2r 6 2s, so (w2s
1 ⊗ 1 + 1⊗ w2s

1 )(w2s
2 ⊗ w2r

2 + w2r
2 ⊗ w2s

2 ) = 0, a contradiction.
Let us now prove that z(w1)

2s+1−1z(w2)
2s+2r−ε−1 6= 0, which would imply zcl(G2(Rn)) >

2s+1+2s+2r−ε−2. After expanding, we consider all summands of the form wn−22 ⊗x, for some

x ∈ H∗(G2(Rn);Z2). By Lemma 3.5 each such summand is of the form w2l+1−2
1 w2s+t−2l−1

2 ⊗
w2s+1−2l+1+1
1 w2r+2l−ε−t

2 , 0 6 l 6 s, with coefficient αl =
(
2s+1−1
2l+1−2

)(
2s+2r−ε−1
2s+t−2l−1

)
=
(
2s+2r−ε−1
2s+t−2l−1

)
.

(Note: if 2r + 2l − ε − t < 0, then 2s + 2r − ε − 1 < 2s + t − 2l − 1 and hence αl = 0, so

there is no need to discard summands αlw
2l+1−2
1 w2s+t−2l−1

2 ⊗ w2s+1−2l+1+1
1 w2r+2l−ε−t

2 when
2r + 2l − ε − t < 0.) Since wn−22 is the only non-zero class in H2(n−2)(G2(Rn);Z2) (by
Proposition 2.2), it is enough to prove

A =
s∑
l=0

αlw
2s+1−2l+1+1
1 w2r+2l−ε−t

2 6= 0 in H∗(G2(Rn);Z2).

Let us first consider the case when t is even. Then ε = 2j . Note that 2s + 2r − 2j − 1 =
2s + 2r−1 + 2r−2 + · · ·+ 2j+1 + 2j−1 + 2j−2 + · · ·+ 1 (j < r). So, by Lucas’ theorem, α0 and
αs are even (since both 2s + t − 2 and t − 1 have digit 1 on the j-th position in the binary
representation), while αj is odd (since 2s + t− 1− 2j has digit 0 on the j-th position in the
binary representation).

Let us denote τ = 2r − 2j − t. Note that t − 2 + 2j 6 2r, i.e. τ > −2. By Proposition
2.3.(4), A 6= 0 if and only if

s∑
l=0

αl(e1 + e2)
2s+1−2l+1+1(e1e2)

2l+τ · e1 · en−33 en−44 . . . en−1 6= 0,

and, by part b) of Lemma 3.3, if and only if

p1 =
s∑
l=0

αl(e1 + e2)
2s+1−2l+1+1(e1e2)

2l+τ · e1 6= 0.

To prove that p1 6= 0 we will use Remark 3.4, i.e. we write p1 as in Remark 3.4 and find
suitable indices i′ and i′′ (from that remark). We denote

q1 =

s∑
l=0

αl(e1 + e2)
2s+1−2l+1

(e1e2)
2l+τ =

s∑
l=0

αl(e
2l+1

1 + e2
l+1

2 )2
s−l−1(e1e2)

2l+τ

=
s∑
l=0

αl

2s−l−1∑
i=0

ei·2
l+1+2l+τ

1 e
(2s−l−1−i)·2l+1+2l+τ
2 .
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Let us observe a monomial ea1e
b
2 that appears in the inner sum for l. Then a+ b = 2s+1 + 2τ

and b− a = (2i+ 1− 2s−l)2l+1, i.e. 2l+1 ‖ a− b for s 6= l (that is 2l+1 | a− b and 2l+2 - a− b)
and a = b for s = l; so, ea1e

b
2 appears only once in q1 and its coefficient is αl. Now, since αs

is even this implies that the coefficient of (e1e2)
2s+τ in q1 is 0, and since α0 is even that the

coefficients of e2
s+τ−1

1 e2
s+τ+1

2 and e2
s+τ+2j−1

1 e2
s+τ−2j+1

2 in q1 are 0. On the other hand, since

αj is odd the coefficient of e2
s+τ+2j

1 e2
s+τ−2j

2 in q1 is 1.
Now, we expand p1 = (e21 + e1e2)q1. Note that the degree of each monomial in p1 is

2s+1 +2τ +2 = 2s+1 +2r+1−2t−2j+1 +2 6 2s+1 +4(t−1)−2t−2 = 2n−6, and hence, after
removing all monomials of the form ea1e

b
2 when a > n or b > n, we get p1 written as in Remark

3.4. Let us observe a monomial ea1e
b
2 in p1. By the previous identity, its coefficient is the sum

of coefficients of ea−21 eb2 and ea−11 eb−12 in q1. So, the coefficient of (e1e2)
2s+τ+1 is 0, while the

coefficient of e2
s+τ+2j+1

1 e2
s+τ−2j+1

2 is 1. Since 2s+τ+2j+1 = 2s+2r−t+1 6 2s+t−1 = n−1,
the degrees of e1 and e2 in these monomials are less than n, so we can apply Lemma 3.3 and
Remark 3.4 to conclude p1 6= 0.

Finally, we consider the case when t is odd. Then ε = 2j + 1. Note that 2s + 2r− 2j − 2 =
2s+2r−1+2r−2+· · ·+2j+1+2j−1+2j−2+· · ·+2, while t−2 = 2j+1t′+2j+1 < 2r 6 2s for some

t′ > 0. So, by Lucas’ theorem, we have that α0 =
(

2s+2r−2j−2
2s+2j+1t′+2j+1

)
and α1 =

(
2s+2r−2j−2
2s+2j+1t′+2j

)
are

even, while

α2 =

(
2s + 2r − 2j − 2

2s + t− 5

)
=

(
2s + 2r−1 + · · ·+ 2j+1 + 2j−1 + · · ·+ 2

2s + 2j+1t′ + 2j−1 + 2j−2 + · · ·+ 2

)
is odd.

Let us denote θ = 2r−2j− t−1. Note that 2j + t−2 6 2r+1, i.e. θ > −4. By Proposition
2.3.(4), A 6= 0 if and only if

s∑
l=0

αl(e1 + e2)
2s+1−2l+1+1(e1e2)

2l+θ · e1 · en−33 en−44 . . . en−1 6= 0,

and, by Lemma 3.3.b), if and only if p2 =
s∑
l=0

αl(e1 + e2)
2s+1−2l+1+1(e1e2)

2l+θe1 is non-zero.

Let us denote

q2 =
s∑
l=0

αl(e1 + e2)
2s+1−2l+1

(e1e2)
2l+θ =

s∑
l=0

αl(e
2l+1

1 + e2
l+1

2 )2
s−l−1(e1e2)

2l+θ.

Now, as in the previous part of the proof we conclude: the coefficients of e2
s+θ−1

1 e2
s+θ+1

2 ,
e2

s+θ−2
1 e2

s+θ+2
2 and e2

s+θ−3
1 e2

s+θ+3
2 in q2 are 0 (since α0 and α1 are even); the coefficient

of e2
s+θ−4

1 e2
s+θ+4

2 in q2 is 1 (since α2 is odd). So, in the polynomial p2 = (e21 + e1e2)q2
the coefficient of e2

s+θ
1 e2

s+θ+2
2 is 0, while the coefficient of e2

s+θ−2
1 e2

s+θ+4
2 is 1. Since the

total degree of each monomial of p2 is 2s+1 + 2θ + 2 = 2s+1 + 2r+1 − 2j+1 − 2t + 1 6
2s+1+4(t−1)−2t−3 = 2n−7 and 2s+θ+4 = 2s+2r−2j−t+3 6 2s+2r−t+1 6 2s+t−1 = n−1,
we can apply Lemma 3.3 and Remark 3.4 to conclude p2 6= 0. 2

4 The zero-divisor cup-length of G3(Rn)

Let s be the unique integer such that 2s < n 6 2s+1. In this section we give some bounds for
zcl(G3(Rn)).
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In the following two propositions we consider the cases n ∈ {2s + 1, 2s + 2}. These results
will show that the corresponding results of [9, Theorem 4.8] are not correct. Fortunately,
these propositions give a better lower bounds for topological complexity.

Proposition 4.1 Let n = 2s + 1, where s > 3. Then

zcl(G3(Rn)) > 2s+1 + 2s + 2s−2 − 7 and TC(G3(Rn)) > 2s+1 + 2s + 2s−2 − 6.

proof — It is enough to show A = z(w1)
2s+1−1z(w2)

2s−1+2s−2−2z(w3)
2s−1−4 6= 0.

First, we prove that w2s
1 w3 = 0. By Proposition 2.3, this follows from

p3 = π∗(w2s

1 w3)e
2
1e2e

n−4
4 · · · en−1

= (e1 + e2 + e3)
2s(e1e2e3)e

2
1e2e

n−4
4 · · · en−1

= (e2
s+3

1 e22e3 + e31e
2s+2
2 e3 + e31e

2
2e

2s+1
3 )en−44 · · · en−1 = 0.

Since w2s
1 w3 = 0, we have

A = z(w1)
2s−1z(w2)

2s−1+2s−2−2z(w2s

1 )z(w3)
2s−1−4

= z(w1)
2s−1z(w2)

2s−1+2s−2−2(w2s

1 ⊗ w2s−1−4
3 + w2s−1−4

3 ⊗ w2s

1 ).

Let us observe all classes of the form wn−33 ⊗c for some c ∈ H∗(G3(Rn);Z2) after expanding the
expression for A; since wn−33 is the only non-zero class in H3(n−3)(G3(Rn);Z2) (by Proposition
2.2), to prove that A is non-zero it is enough to show that the sum of all such x is non-
zero. To do so, we determine all monomials x′ and x′′ in classes w1 and w2, such that
w2s
1 x
′ = wn−33 = w2s−2

3 and w2s−1−4
3 x′′ = w2s−2

3 .
Let x′ = wa1w

b
2 be such that w2s+a

1 wb2 = w2s−2
3 . Then a + 2b = 2(2s − 3). Next, we use

Proposition 2.3:

p1 = π∗(w2s+a
1 wb2)e

2
1e2e

n−4
4 · · · en−1

= (e2
s

1 + e2
s

2 + e2
s

3 )(e1 + e2 + e3)
a(e1e2 + e2e3 + e3e1)

be21e2e
n−4
4 · · · en−1

= e2
s

3 (e1 + e2)
a(e1e2)

b+1e1e
n−4
4 · · · en−1

= e2
s

3

a∑
i=0

(
a

i

)
ei+b+2
1 ea−i+b+1

2 · en−44 · · · en−1.

Note that by Proposition 2.3.(3) the only non-zero monomials in this sum are the ones for i
that satisfies (i+ b+ 2, a− i+ b+ 1) ∈ {(2s − 1, 2s − 2), (2s − 2, 2s − 1)} and

(
a
i

)
is odd, i.e.

i ∈ {2s − 3− b, 2s − 4− b} and
(
a
i

)
is odd.

If i = 2s − 3− b, then
(
a
i

)
=
(2(2s−3−b)

2s−3−b
)

=
(
2δ
δ

)
(here 2δ = 2(2s − 3− b) = a). By Lemma

3.2, this number is odd only if δ = 0, i.e. (a, b) = (0, 2s − 3). Let us now consider the case

i = 2s − 4 − b. Then
(
a
i

)
=
(2(2s−3−b)

2s−4−b
)

=
(

2δ
δ−1
)

=
(

2δ
δ+1

)
. Again, by Lemma 3.2, this number

is odd only if δ = 2l − 1, and hence a = 2l+1 − 2 and b = 2s − 2l − 2 for some 1 6 l 6 s− 1.
Let us now go back to our expression for A. Here we only consider pairs (a, b) that satisfy

a 6 2s− 1 and b 6 2s−1 + 2s−2− 2; hence b = 2s− 2l − 2 only if l ∈ {s− 2, s− 1}, so we have
two pairs to consider: (a, b) ∈ {(2s−1 − 2, 2s−1 + 2s−2 − 2), (2s − 2, 2s−1 − 2)} = P .

Next, let x′′ = wa
′

1 w
b′
2 be such that wa

′
1 w

b′
2 w

2s−1−4
3 = w2s−2

3 . We denote the set of all
such pairs (a′, b′) with P ′. Clearly, if (a′, b′) ∈ P ′, then a′ + 2b′ = 3(2s−1 + 2), and hence
a′ + b′ > 3(2s−2 + 1); also, by observing A, it is clear that a′ 6 2s − 1.
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Now, to prove that A is non-zero, it is enough to prove that B is non-zero, where B is
equal to ∑

(a,b)∈P

w2s−1−a
1 w2s−1+2s−2−2−b

2 w2s−1−4
3 +

∑
(a′,b′)∈P ′

w2s+2s−1−a′
1 w2s−1+2s−2−2−b′

2 .

By Proposition 2.3.(4), this is equivalent to p = π∗(B)e21e2e
n−4
4 · · · en−1 6= 0. In what follows

we will be working with the additive basis

B̃2s+1 = {ea11 e
a2
2 · · · e

a2s
2s | a1 6 2s − 1, a2 6 2s − 2, a3 6 2s, ai 6 2s + 1− i, i > 4}

for H∗(Flag(Rn);Z2), given by Proposition 2.3.(1) and the canonical homeomorphism σ :
Flag(Rn)→ Flag(Rn) defined by

σ(L1, L2, L3, L4, L5, . . . , Ln) = (L3, L1, L2, L4, L5, . . . , Ln).

Let d3,n−3 = e21e2e
n−4
4 · · · en−1. Note that

p2 = π∗

 ∑
(a,b)∈P

w2s−1−a
1 w2s−1+2s−2−2−b

2 w2s−1−4
3

 d3,n−3

= π∗(w2s−1+1
1 w2s−1−4

3 + w1w
2s−2

2 w2s−1−4
3 )d3,n−3

= ((e1 + e2 + e3)
2s−1

+ (e1e2 + e2e3 + e3e1)
2s−2

)

· (e1 + e2 + e3)(e1e2e3)
2s−1−4d3,n−3.

Note that the monomials of p2 belong to B̃2s+1; indeed, the degree of e1 in each monomial is
at most 2s−1+1+2s−1−4+2 = 2s−1, the degree of e2 is at most 2s−1+1+2s−1−4+1 = 2s−2,
and the degree of e3 is at most 2s−1 + 1 + 2s−1 − 4 = 2s − 3. In particular, each monomial of
p2 is not divisible by e2

s

3 . Finally, p2 6= 0 since e2
s−1

1 e2
s−1−3

2 e2
s−1−4

3 en−44 · · · en−1 has coefficient
1 in p2.

On the other hand,

p3 = π∗

 ∑
(a′,b′)∈P ′

w2s+2s−1−a′
1 w2s−1+2s−2−2−b′

2

 d3,n−3

=
∑

(a′,b′)∈P ′
(e2

s

1 + e2
s

2 + e2
s

3 )(e1 + e2 + e3)
2s−1−a′

· (e1e2 + e2e3 + e3e1)
2s−1+2s−2−2−b′d3,n−3

=
∑

(a′,b′)∈P ′
e2

s

3 (e1 + e2)
2s−1−a′(e1e2)

2s−1+2s−2−2−b′d3,n−3.

Since a′+ b′ > 3(2s−2 + 1), the degree of e1 (resp. e2) in each monomial of this sum is at most
2s + 2s−1 + 2s−2 − 1 − a′ − b′ 6 2s − 4 (resp. 2s + 2s−1 + 2s−2 − 2 − a′ − b′ 6 2s − 5), and
hence, after expansion, each monomial (if any) of p3 is in B̃2s+1 and divisible by e2

s

3 (note: it
is possible that p3 = 0).

Hence, p2 and p3 do not have any common monomials from B̃2s+1, and so there are no
cancellations between monomials of p2 and p3. Now, p2 6= 0 implies p = p2 + p3 6= 0. 2
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Proposition 4.2 Let n = 2s + 2 where s > 4. Then

zcl(G3(Rn)) > 2s+1 + 2s + 2s−1 and TC(G3(Rn)) > 2s+1 + 2s + 2s−1 + 1.

proof — It is enough to prove A = z(w1)
2s+1−1z(w2)

2s+2s−1
z(w3) 6= 0. Note that

A = z(w1)
2s−1z(w2s

1 )z(w2s

2 )z(w2s−1

2 )z(w3).

First, we prove that w2s
1 w

2s
2 = 0. By Proposition 2.3.(4), to do so it is enough to prove

that

p = π∗(w2s

1 w
2s

2 )e21e2e
n−4
4 · · · en−1

= (e1 + e2 + e3)
2s(e1e2 + e2e3 + e3e1)

2se21e2e
n−4
4 · · · en−1

= (e2
s

1 + e2
s

2 + e2
s

3 )((e1e2)
2s + (e2e3)

2s + (e3e1)
2s)e21e2e

n−4
4 · · · en−1

is zero in H∗(Flag(Rn);Z2). Since e2
s+2

1 = en1 = 0 (by Proposition 2.3.(2)), we have

p1 = (e2
s

2 + e2
s

3 )(e2e3)
2se21e2e

n−4
4 · · · en−1 = 0

since e2
s+1

2 = e2
s+1

3 = 0 (by Proposition 2.3.(2)).
Now, we prove w2s

2 w3 = 0. Again, by Proposition 2.3.(4), to do so it is enough to prove
that

p2 = π∗(w2s

2 w3)e
2
1e2e

n−4
4 · · · en−1

= (e1e2 + e2e3 + e3e1)
2se1e2e3e

2
1e2e

n−4
4 · · · en−1

= ((e1e2)
2s + (e2e3)

2s + (e3e1)
2s)e31e

2
2e3e

n−4
4 · · · en−1

is zero in H∗(Flag(Rn);Z2). This follows from e2
s+3

1 = en+1
1 = 0 and e2

s+2
2 = en2 = 0.

Since the dimension of w2s+2s−1

2 is 2(2s + 2s−1) = 3 · 2s > 3(n− 3), this class is zero, and
hence

A = z(w1)
2s−1(w2s

1 w
2s−1

2 w3 ⊗ w2s

2 + w2s

2 ⊗ w2s

1 w
2s−1

2 w3).

Let us observe all classes of the form wn−33 ⊗ x for some x ∈ H∗(G3(Rn);Z2) after expanding
the expression for A. Since the dimension of wn−33 is 3(n − 3) = 3 · 2s − 3, the only classes

of this form can be
(
2s−1
2s−3

)
w2s−3
1 w2s

2 ⊗ w
2s+2
1 w2s−1

2 w3 and
(
2s−1
2s−6

)
w2s+1−6
1 w2s−1

2 w3 ⊗ w5
1w

2s
2 . By

Lucas’ theorem,
(
2s−1
2s−3

)
and

(
2s−1
2s−6

)
are odd, so to conclude our proof it is enough to prove

that w2s−3
1 w2s

2 = wn−33 , w2s+2
1 w2s−1

2 w3 6= 0 and w2s+1−6
1 w2s−1

2 w3 = 0.
Since e2

s+2
1 = e2

s+2
2 = e2

s+2
3 = 0, by Proposition 2.3.(5) we have

p3 = π∗(w2s−3
1 w2s

2 )e21e2e
n−4
4 · · · en−1

= (e1 + e2 + e3)
2s−3(e1e2 + e2e3 + e3e1)

2se21e2e
n−4
4 · · · en−1

= (e1 + e2 + e3)
2s−3(e2

s+2
1 e2

s+1
2 + e21e

2s+1
2 e2

s

3 + e2
s+2

1 e2e
2s

3 )en−44 · · · en−1
= (e1 + e2 + e3)

2s−3e21e
2s+1
2 e2

s

3 e
n−4
4 · · · en−1

= e2
s−1

1 e2
s+1

2 e2
s

3 e
n−4
4 · · · en−1,

and hence, by Proposition 2.3, w2s−3
1 w2s

2 = wn−33 .
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Using similar arguments, we calculate

p4 = π∗(w2s+2
1 w2s−1

2 w3)e
2
1e2e

n−4
4 · · · en−1

= (e1 + e2 + e2)
2s+2(e1e2 + e2e3 + e3e1)

2s−1
e1e2e3e

2
1e2e

n−4
4 · · · en−1

= (e2
s

1 + e2
s

2 + e2
s

3 )(e21 + e22 + e23)((e1e2)
2s−1

+ (e2e3)
2s−1

+ (e3e1)
2s−1

)e31e
2
2e3e

n−4
4 · · · en−1

= e2
s+1

3 (e21 + e22)e
2s−1

1 e2
s−1

2 e31e
2
2e
n−4
4 · · · en−1

= (e2
s−1+5

1 e2
s−1+2

2 + e2
s−1+3

1 e2
s−1+4

2 )e2
s+1

3 en−44 · · · en−1.

Since 2s−1 + 5 < 2s, by Proposition 2.3.(1) for the additive basis B̃2s+2 (defined as B̃2s+1 in
Proposition 4.1), p4 6= 0. Hence, w2s+2

1 w2s−1

2 w3 6= 0 (by Proposition 2.3.(4)).
Finally, by Proposition 2.3.(5), we have

p5 = π∗(w2s+1−6
1 w2s−1

2 w3)e
2
1e2e

n−4
4 · · · en−1

= (e1 + e2 + e3)
2s+1−6(e1e2 + e2e3 + e3e1)

2s−1
e1e2e3e

2
1e2e

n−4
4 · · · en−1

= (e1 + e2 + e3)
2s−6(e2

s

1 + e2
s

2 + e2
s

3 )(e1e2 + e2e3 + e3e1)
2s−1

e31e
2
2e3e

n−4
4 · · · en−1

= (e1 + e2)
2s−6e2

s+1
3 e2

s−1+3
1 e2

s−1+2
2 en−44 · · · en−1

=

((
2s − 6

2s−1 − 3

)
e2

s

1 e
2s−1
2 +

(
2s − 6

2s−1 − 4

)
e2

s−1
1 e2

s

2

)
e2

s+1
3 en−44 · · · en−1.

Since s > 4, by Lucas’ theorem
(

2s−6
2s−1−3

)
and

(
2s−6

2s−1−4
)

are even, so p5 = 0, and hence, by

Proposition 2.3.(4), w2s+1−6
1 w2s−1

2 w3 = 0, which completes our proof. 2

Proposition 4.3 Let s > 2, n = 2s + t 6 2s+1, t > 3 and 2r−1 < t 6 2r. Then

zcl(G3(Rn)) > 2s+2 − 2r − 1 and TC(G3(Rn)) > 2s+2 − 2r.

Also, if t− 3 > 2s−1, then zcl(G3(Rn)) > 7 · 2s−1 − 1 and TC(G3(Rn)) > 7 · 2s−1.

proof — For the first inequality it is enough to show

A = z(w1)
2s+1−1z(w2)

2s+1−2r+1
z(w3)

2r 6= 0.

Note that w2s
1 w

2r
3 = 0. Indeed, this follows from Proposition 2.3.(4), e2

s+2r

i = 0 for
i ∈ {1, 2, 3} and the following calculations:

p1 = π∗(w2s

1 w
2r

3 )e21e2e
n−4
4 · · · en−1

= (e2
s

1 + e2
s

2 + e2
s

3 )(e1e2e3)
2re21e2e

n−4
4 · · · en−1

= (e2
s+2r

1 e2
r

2 e
2r

3 + e2
r

1 e
2s+2r

2 e2
r

3 + e2
r

1 e
2r

2 e
2s+2r

3 )e21e2e
n−4
4 · · · en−1 = 0.

Similarly, one proves that w2s
2 w

2r
3 = 0, w2s

1 w
2s+2r

2 = 0 and w2s+2r

1 w2s
2 = 0.

Note that 2r > t > 3 implies r > 2. Now, we consider the cases 2 6 r 6 s− 1 and r = s
separately.

Case 1: 2 6 r 6 s− 1. We have

A = z(w1)
2s−1z(w1)

2sz(w2)
2s−2r+1

z(w2)
2sz(w3)

2r
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= z(w1)
2s−1z(w2)

2s−2r+1
(w2s

1 w
2s

2 ⊗ w2r

3 + w2r

3 ⊗ w2s

1 w
2s

2 ).

Since 2s − 1 = 2s−1 + · · ·+ 2r+1 + 2r + 2r − 1 and 2s − 2r+1 = 2s−1 + · · ·+ 2r+1, in a similar
way we get

A = z(w1)
2r−1(w2s

1 w
2s

2 ⊗ w2s−2r
1 w2s−2r+1

2 w2r

3 + w2s−2r
1 w2s−2r+1

2 w2r

3 ⊗ w2s

1 w
2s

2 ).

Since the dimension of w2s
1 w

2s
2 is greater than the dimension of the class w2s−2r

1 w2s−2r+1

2 w2r
3 ,

after expanding the expression for A, there is only one summand with the first coordinate in
dimension 3 · 2s + 2r − 1, and this summand is w2s+2r−1

1 w2s
2 ⊗ w

2s−2r
1 w2s−2r+1

2 w2r
3 . Hence, it

is enough to prove that w2s+2r−1
1 w2s

2 6= 0 and w2s−2r
1 w2s−2r+1

2 w2r
3 6= 0.

First, we prove that w2s+2r−1
1 w2s

2 6= 0. Since e2
s+1

i = 0 for i ∈ {1, 2, 3} (by Proposition
2.3.(2)), by Proposition 2.3.(4) it is enough to prove that

p2 = π∗(w2s+2r−1
1 w2s

2 )e21e2e
n−4
4 · · · en−1

= (e1 + e2 + e3)
2r−1(e2

s

1 + e2
s

2 + e2
s

3 )(e1e2 + e2e3 + e3e1)
2se21e2e

n−4
4 · · · en−1

= (e1 + e2 + e3)
2r−1(e1e2e3)

2se21e2e
n−4
4 · · · en−1

= π∗(w2r−1
1 w2s

3 )e21e2e
n−4
4 · · · en−1

is non-zero in H∗(Flag(Rn);Z2), i.e. that w2r−1
1 w2s

3 is non-zero in H∗(G3(Rn);Z2). Observe
the inclusion i : G3(Rn−2

s
) ⊂ G3(Rn). Note that the height of i∗(w1) in H∗(G3(Rn−2

s
);Z2)

is 2r − 1 (by (2.1)). So, let x be a class in H∗(G3(Rn−2
s
);Z2) such that i∗(w1)

2r−1x ∈
H3(n−2s−3)(G3(Rn−2

s
);Z2) is non-zero (this class exists by Poincare’s duality); further, let

x̃ ∈ H∗(G3(Rn);Z2) be such that i∗(x̃) = x. Then, by [12, Lemma 1], the value of w2r−1
1 x̃·w2s

3

is the same as the value of i∗(w2r−1
1 x̃) = i∗(w1)

2r−1x, which is non-zero. Hence, w2r−1
1 w2s

3 6= 0.

Finally, we prove that w2s−2r
1 w2s−2r+1

2 w2r
3 6= 0. This will immediately follow from

w2s−2r
1 w2s−2r

2 w2r
3 = w2s

1 w
2s
2 = w2s

3 6= 0, which we now prove. Since e2
s+2r

i = 0 for i ∈ {1, 2, 3},
by Proposition 2.3.(4) this follows from (here d3,n−3 = e21e2e

n−4
4 · · · en−1)

p3 = π∗(w2s−2r
1 w2s−2r

2 w2r

3 )d3,n−3

= (e1 + e2 + e3)
2s−2r(e1e2 + e2e3 + e3e1)

2s−2r(e1e2e3)
2rd3,n−3

= (e1 + e2 + e3)
2s−1

(e1e2 + e2e3 + e3e1)
2s−1 ·

· (e1 + e2 + e3)
2s−1−2r(e1e2 + e2e3 + e3e1)

2s−1−2r(e1e2e3)
2rd3,n−3

= (e1 + e2 + e3)
2s−1−2r(e1e2 + e2e3 + e3e1)

2s−1−2r(e1e2e3)
2s−1+2rd3,n−3

= . . .

= (e1e2e3)
2s−1+2s−2+···+2r+2rd3,n−3

= (e1e2e3)
2sd3,n−3

= (e1 + e2 + e3)
2s(e1e2 + e2e3 + e3e1)

2sd3,n−3

= π∗(w2s

1 w
2s

2 )d3,n−3.

Since w2s
3 ∈ B3,n−3, we have w2s

3 6= 0, which completes our proof.

Case 2: r = s. Then A = z(w1)
2s−1(w2s

1 ⊗ w2s
3 + w2s

3 ⊗ w2s
1 ). Since after expanding A

there is only one summand with first coordinate in dimension 2s+2 − 1, and this summand is
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w2s−1
1 w2s

3 ⊗ w2s
1 , it is enough to prove w2s−1

1 w2s
3 6= 0 and w2s

1 6= 0. The second follows from
w2s
1 ∈ B3,n−3, and the first one is proven after the calculations for p2.

Suppose now that t− 3 > 2s−1. We will prove that

B = z(w1)
2s+1−1z(w2)

2sz(w3)
2s−1 6= 0,

which implies zcl(G3(Rn)) > 2s+1 + 2s + 2s−1 − 1.
Let us observe all summands of B with first coordinate in dimension 9 · 2s−1. Note that

B = z(w1)
2s−1z(w2s

1 )z(w2s

2 )z(w2s−1

3 ),

so the only monomial of this form is w2s
1 w

2s
2 w

2s−1

3 ⊗w2s−1
1 , and hence it is enough to prove that

w2s
1 w

2s
2 w

2s−1

3 6= 0 and w2s−1
1 6= 0. This follows from Lemma 2.5 (indeed, since t − 3 > 2s−1,

both monomials divide w2s
1 w

2s
2 w

t−3
3 6= 0). 2

Proposition 4.4 Let n = 2s + t 6 2s+1, t > 3 and 2r−1 < t 6 2r. Then

zcl(G3(Rn)) 6 2s+2 + 2r − 3.

proof — Suppose that this is not the case, and let a, b, c > 0 be such that A =
z(w1)

az(w2)
bz(w3)

c 6= 0 and a + b + c > 2s+2 + 2r − 2. Since z(w1)
2s+1

= 0 (by (2.3))
and z(w2)

2s+1
= w2s+1

2 ⊗ 1 + 1⊗ w2s+1

2 = 0, we have a, b 6 2s+1 − 1 and hence c > 2r.
Suppose that c > 2s + 2r. Since w2s+2r

3 = 0, then we have

A = z(w1)
az(w2)

bz(w3)
c−2s−2r(w2s

3 ⊗ w2r

3 + w2r

3 ⊗ w2s

3 ).

Since w2s
1 w

2r
3 = 0 and w2s

2 w
2r
3 = 0 (see Proposition 4.3), we have a, b 6 2s−1, which together

with c 6 2s+1 − 1 gives a+ b+ c 6 2s+2 − 3, a contradiction. So, c 6 2s + 2r − 1, and hence
a, b > 2s. Since w2s

1 w
2s
2 = w2s

3 (see Proposition 4.3):

A = z(w1)
a−2sz(w2)

b−2sz(w3)
c−2rz(w2s

1 )z(w2s

2 )z(w2r

3 )

= z(w1)
a−2sz(w2)

b−2sz(w3)
c−2r(w2s

1 w
2s

2 ⊗ w2r

3 + w2r

3 ⊗ w2s

1 w
2s

2 )

= z(w1)
a−2sz(w2)

b−2sz(w3)
c−2r(w2s

3 ⊗ w2r

3 + w2r

3 ⊗ w2s

3 ).

Next, we note that w2s−2l
1 w2s−2l

2 w2l
3 = w2s

3 for all l > r. Since e2
s+2l

i = 0 for i ∈ {1, 2, 3}, this
follows as in the calculations for p3 in Proposition 4.3.

Let a−2s = (αs−1αs−2 . . . α0)2, b−2s = (βs−1βs−2 . . . β0)2 and c−2r = (γs−1γs−2 . . . γ0)2
be the binary representations of the numbers a − 2s, b − 2s and c − 2r (we allow αs−1 = 0,
βs−1 = 0 and γs−1 = 0). Further, for r 6 l 6 s, let a′l =

∑s−1
i=l αi2

i, a′′l = a − 2s − a′l,
b′l =

∑s−1
i=l βi2

i, b′′l = b−2s−b′l, and c′l =
∑s−1

i=l γi2
i, c′′l = c−2r−c′l (note that a′s = b′s = c′s = 0).

We will prove that a′l = b′l = 2s − 2l and c′l = 0 for every l > r.
Our proof is by reverse induction on l, s > l > r. The claim is trivial for l = s. So,

suppose that it is true for l+ 1, s > l+ 1 > r+ 1 and let us prove it for l. First we prove that
αl + βl + γl > 2. If this were not the case, then by the inductional hypothesis

a+ b+ c = 2s+1 + 2r + a′l+1 + b′l+1 + c′l+1 + (αl + βl + γl) · 2l + a′′l + b′′l + c′′l

6 2s+1 + 2r + 2(2s − 2l+1) + 2l + 3(2l − 1)

= 2s+2 + 2r − 3,
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a contradiction. So, to finish the inductional step it is enough to prove γl = 0. Assume this
is not the case. Since w2l

i w
2s
3 = 0 for i ∈ {1, 2, 3} (see Proposition 4.3), by the inductional

hypothesis we have

A = z(w1)
a′′l+1z(w2)

b′′l+1z(w3)
c′′l+1z(w1)

2s−2l+1
z(w2)

2s−2l+1
(w2s

3 ⊗ w2r

3 + w2r

3 ⊗ w2s

3 )

= z(w1)
αl·2l+a′′l z(w2)

βl·2l+b′′l z(w3)
γl·2l+c′′l

· (w2s

3 ⊗ w2s−2l+1

1 w2s−2l+1

2 w2r

3 + w2s−2l+1

1 w2s−2l+1

2 w2r

3 ⊗ w2s

3 )

= z(w1)
a′′l z(w2)

b′′l z(w3)
c′′l

· (w2s

3 ⊗ w
2s−2l+1+αl·2l
1 w2s−2l+1+βl·2l

2 w2l+2r

3 + w2s−2l+1+αl·2l
1 w2s−2l+1+βl·2l

2 w2l+2r

3 ⊗ w2s

3 ).

So, to obtain a contradiction, it is enough to prove w2s−2l
1 w2s−2l+1

2 w2l+2r

3 = 0 and

w2s−2l+1

1 w2s−2l
2 w2l+2r

3 = 0. We prove the first identity, since the proof of the second is similar.
We use Proposition 2.3:

p4 = π∗(w2s−2l
1 w2s−2l+1

2 w2l+2r

3 )e21e2e
n−4
4 · · · en−1

= (e1 + e2 + e3)
2s−2l(e1e2 + e2e3 + e3e1)

2s−2l+1
(e1e2e3)

2l+2re21e2e
n−4
4 · · · en−1

= (e1 + e2 + e3)
2s−1−2l(e1e2 + e2e3 + e3e1)

2s−1−2l+1
(e1e2e3)

2s−1+2l+2re21e2e
n−4
4 · · · en−1

= . . .

= (e1 + e2 + e3)
2l(e1e2e3)

2s−1+2s−2+···+2l+1+2l+2re21e2e
n−4
4 · · · en−1

= (e2
l

1 + e2
l

2 + e2
l

3 )(e1e2e3)
2s−2l+2re21e2e

n−4
4 · · · en−1 = 0.

So, the proof by induction is completed. Finally, we have

A = z(w1)
a′′r z(w2)

b′′r z(w3)
c′′r z(w1)

2s−2rz(w2)
2s−2r(w2s

3 ⊗ w2r

3 + w2r

3 ⊗ w2s

3 )

= z(w1)
a′′r z(w2)

b′′r z(w3)
c′′r (w2s

3 ⊗ w2s−2r
1 w2s−2r

2 w2r

3 + w2s−2r
1 w2s−2r

2 w2r

3 ⊗ w2s

3 )

= z(w1)
a′′l z(w2)

b′′l z(w3)
c′′r (w2s

3 ⊗ w2s

3 + w2s

3 ⊗ w2s

3 ) = 0,

which is a contradiction. 2

Remark 4.5 Note that the value of zcl(G3(Rn)), where n > 2s + 3, stated in [9, Theorem
4.8] (but not proven correctly), in most cases, i.e. for 2r−1 + 3 6 t 6 2r, equals the upper
bound for zcl(G3(Rn)) proven in Proposition 4.4.

5 The zero-divisor cup-length of Gk(Rn)

In this section we give a lower bound for Gk(Rn) for k > 4.

Proposition 5.1 Let 4 6 k < n and 2s + k 6 n 6 2s+1. Then

zcl(Gk(Rn)) > (dlog2 ke+ 1) · 2s − 1 and TC(Gk(Rn)) > (dlog2 ke+ 1) · 2s.
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proof — Let 2r−1 < k 6 2r. Then dlog2 ke = r, so it is enough to prove

A = z(w1)
2s+1−1

r−1∏
i=1

z(w2i)
2s = z(w1)

2s−1
r−1∏
i=0

z(w2s

2i ) 6= 0.

First, let us prove that p =

r−2∏
i=0

w2s

2i is non-zero in H∗(Gk(Rn);Z2). Let dk,n−k =

ek−11 · · · ek−1en−k−1k+1 · · · en−1. Since e2
s+1

i = 0 for 1 6 i 6 k (by Proposition 2.3.(2)) and

k′ :=

r−2∑
i=0

2i = 2r−1 − 1 < k we have

p1 = π∗

(
r−2∏
i=0

w2s

2i

)
dk,n−k

=
r−2∏
i=0

 ∑
16a1<a2<···<a2i6k

e2
s

a1e
2s

a2 · · · e
2s

a2i

 dk,n−k

= [20, 21, . . . , 2r−2]

 ∑
16a1<a2<···<ak′6k

e2
s

a1e
2s

a2 · · · e
2s

ak′

 dk,n−k,

where [20, 21, . . . , 2r−2] =
(
20+21+···+2r−2

20

)(
21+···+2r−2

21

)
· · ·
(
2r−2

2r−2

)
denotes the multinomial coef-

ficient. By Lucas’ theorem, this coefficient is odd. Also, for 1 6 i 6 k the degree of ei in each
monomial in the last expression for p1 is at most 2s + k − i 6 n− i, so all monomials in this
expression are distinct members of the basis Bn for H∗(Flag(Rn);Z2), and hence p1 6= 0. So,
by Proposition 2.3.(4), p 6= 0.

Now, let us observe all summands after expanding A with first coordinate in dimension
(2r−1 − 1) · 2s. The dimension of p is (2r−1 − 1) · 2s, and it is easy to see that the only term
of this form is p⊗ w2s−1

1 w2s

2r−1 . So, to finish the proof it is enough to prove w2s−1
1 w2s

2r−1 6= 0.

In fact, we prove that w2s
1 w

2s

2r−1 6= 0. Since e2
s+1

i = 0 for 1 6 i 6 k, we have

p2 = π∗
(
w2s

1 w
2s

2r−1

)
dk,n−k

=
(
e2

s

1 + e2
s

2 + · · ·+ e2
s

k

) ∑
16a1<a2<···<a2r−16k

e2
s

a1e
2s

a2 · · · e
2s

a2r−1

 dk,n−k

=

 ∑
16a1<a2<···<a2r−1+16k

e2
s

a1e
2s

a2 · · · e
2s

a2r−1+1

 dk,n−k.

Now, as above, 2s+k 6 n implies that all monomials in the last expression for p2 are distinct
members of the basis Bn for H∗(Flag(Rn);Z2), and hence p2 6= 0. By Proposition 2.3.(4), it
follows that w2s

1 w
2s

2r−1 6= 0. 2
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