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Abstract

It was conjectured in [6] that for a complex flag manifold F every endomorphism ϕ :
H∗(F ;Z) → H∗(F ;Z) is either a grading endomorphism or a projective endomorphism.
In this paper we verify this conjecture for a new class of complex flag manifolds that
captures all cases for which the conjecture was previously known to be true. This allows
us to calculate the noncoincidence index (invariant that naturally generalizes the fixed-
point property) for these manifolds.

1 Introduction

It is well-known that for any n ∈ N and any continuous map

f : CP 2n → CP 2n

there exists x ∈ CP 2n such that f(x) = x, i.e. CP 2n has the fixed-point property (FPP).
Moreover, CP 2n+1 does not have the FPP.

A natural generalization of complex projective spaces are (complex) Grassmann manifolds
Gk,n (here Gk,n denotes the Grassmann manifold of k-dimensional spaces in Cn+k; one has
G1,n = CPn). Somewhat surprisingly, classification of Grassmann manifolds that have the
FPP is still open. It was conjectured in [13] that Gk,n has the FPP if and only if n 6= k and
nk is even (”only if” part is proven in Section 2 of [13]). This conjecture is proven only for
k = 2 (in [13]), k = 3 (in [5]), and if n ≥ 2k2 − k− 1 (in [5]). (We note that there are similar
conjectures and results for real and quaternionic Grassmannians – see [5].)

The (complex) flag manifold F (n1, . . . , nr), where r ≥ 2, n1, . . . , nr ∈ N and n = n1 +
· · ·+ nr, consists of complex flags in Cn of type (n1, . . . , nr), that is, r-tuples (V1, . . . , Vr) of
mutually orthogonal complex vector subspaces of Cn with dimC(Vi) = ni for 1 ≤ i ≤ r (in
this paper we only work with complex flag manifolds, so we omit the word ”complex” when
we refer to it). Note that for r = 2 the flag manifold F (n1, n2) is actually the Grassmann
manifold Gn1,n2 , while the flag manifold with n1 = · · · = nr = 1 is the complete complex flag
manifold. In [7] Glover and Homer conjectured that F (n1, . . . , nr) has the FPP if and only if
the numbers ni are distinct and at most one of them is odd (in the same paper they prove the
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”only if” part of this conjecture). Other than for the above-mentioned cases of Grassmann
manifolds, the only flag manifolds for which the ”if” part of this conjecture is proven are
F (1, p, q) for p ≥ 2 and q ≥ 2p2 − 1 (see [6]).

In this paper we consider a related question. Let M be a connected topological manifold.
We say that self-maps f and g of M are coincident if there exists x ∈M such that f(x) = g(x).
Let m be the maximum number of self-maps of M such that none of them has the FPP and
that no two of them are coincident. Then the noncoincidence index of M (defined in [9]) is

NI(M) =

{
m+ 1, if m is finite,
∞, otherwise.

Obviously, M has the FPP if and only if NI(M) = 1.
Let F := F (n1, . . . , nr). In this paper we calculate NI(F ) for certain flag manifolds F . To

do so we consider endomorphisms ϕ : H∗(F ;Z)→ H∗(F ;Z). It was conjectured in [6] that any
such endomorphism is either a grading endomorphism or a projective endomorphism (these
notions will be defined in Sections 5.1 and 4, respectively). We note that this conjecture is
proven only in the following cases: r = 2 and n1 ≤ 3 or n2 ≥ 2n21−n1−1 (see [5]), r = 3, n1 = 1
and n3 ≥ 2n22 − 1 (see [6]), n1 = · · · = nr = 1 (see [11]), and later for n1 = · · · = nr−1 = 1
(see [9]), while some partial results where obtained for (general) Grassmann manifolds in [8].
Assuming this conjecture, in [10] Hoffman computed NI(F ) (for all flag manifolds F ).

The main result of this paper is the following extension of the previously mentioned results.
We note that our proof works equally well for the cohomology with rational coefficients (this
will be used in some of our applications).

Throughout the paper we will use the following notation: for l ∈ N and a ∈ Z we denote

a...l := a, a, . . . , a︸ ︷︷ ︸
l

.

Theorem 1.1 Let F := F (1...j , k,m), where k,m ∈ N, j ≥ 0, k ≥ 2 and m ≥ 2k2 − 1.
Then every endomorphism ϕ : H∗(F ;Z)→ H∗(F ;Z) is either a grading endomorphism or a
projective endomorphism.

Remark 1.2 In [9] this theorem is proven in the case k = 1 (so in this paper we only consider
the case k ≥ 2).

We note that the bound for m in the previous theorem is the same as the bound from [6]
(where j = 1).

As an immediate consequence of Theorem 1.1, and Theorems 5.2 and 5.3 from [10] we
have the following result.

Theorem 1.3 Let F := F (1...j , k,m), where j ≥ 0, k ≥ 2 and m ≥ 2k2 − 1. Then

NI(F ) =

{
j!, if at most one of j, k,m is odd,

2j!, otherwise.

The paper is organized as follows. In Section 2 we recall some basic properties and
identities for the cohomology of flag manifolds that are going to be used throughout the
paper. In Section 3, for any flag manifold F we determine all nonzero classes in H2(F ;Z)
with the minimal height. This result will be used repeatedly in the proof of Theorem 1.1.
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In Section 4 we prove that there are no j-projective endomorphisms (which we define in the
same section) other than projective endomorphisms. In Section 5 we prove Theorem 1.1. In
Section 6, using Theorem 1.1 we prove that for certain pairs of flag manifolds all continuous
maps between them are rationally null-homotopic.

2 Cohomology of flag manifolds

Throughout the paper, for t ∈ N we denote [t] := {1, 2, . . . , t}.
Let F := F (n1, . . . , nr,m) be a flag manifold. Then we denote with γF1 , . . . , γ

F
r+1 (or

simply with γ1, . . . , γr+1) the canonical complex vector bundles over F (dimC(γFi ) = ni, for
i ∈ [r], dimC(γFr+1) = m). Further, let ci,j ∈ H2j(F ;Z), for i ∈ [r] and j ∈ [ni], be the j-th
Chern class of the bundle γFi , and c′j ∈ H2j(F ;Z), for j ∈ [m], be the j-th Chern class of the

bundle γFr+1 (in most of our proofs we will not use classes c′j , and hence this asymmetry in
notation; this will become more clear in the following subsection). Then

(1 + c1,1 + · · ·+ c1,n1) · · · (1 + cr,1 + · · ·+ cr,nr)(1 + c′1 + · · ·+ c′m) = 1. (2.1)

By Borel’s description (see [1]) this relation fully determines the cohomology H∗(F ;Z),
that is

H∗(F ;Z) ∼= Z[c1,1, . . . , c1,n1 , . . . , cr,1, . . . , cr,nr ]/IF ,

where IF is the ideal generated by the polynomials cm+1, cm+2, . . . , cn, and we denote NF :=
n = n1 + · · ·+ nr +m.

Remark 2.1 We abuse the notation and use ci,j to denote both the class of the cohomology
algebra H∗(F ;Z) and the element of the polynomial ring Z[c1,1, . . . , c1,n1 , . . . , cr,1, . . . , cr,nr ].

The polynomials (classes) ci for i ≥ 0, are obtained from the equation (we denote c0 = 1)

(1 + c1 + c2 + · · · ) ·
r∏
i=1

(1 + ci,1 + ci,2 + · · ·+ ci,ni) = 1, (2.2)

which implies

1 + c1 + c2 + · · · =
r∏
i=1

∑
di≥0

∑
ai,1+···+ai,ni

=di

(−1)di [ai,1, . . . , ai,ni ]c
ai,1
i,1 · · · c

ai,ni
i,ni

, (2.3)

where for σ = (s1, . . . , sk) ∈ Nk0, [σ] denotes the corresponding multinomial coefficient, that
is

[σ] =

(
s1 + s2 + · · ·+ sk

s1

)(
s2 + · · ·+ sk

s2

)
· · ·
(
sk
sk

)
.

For i ∈ [r] and an ni-tuple α = (a1, a2, . . . , ani) ∈ Nni
0 we use the notation Cαi for the

monomial ca1i,1c
a2
i,2 · · · c

ani
i,ni

and |α| = a1+ · · ·+ani . Also, let S0 := m and Si := m+n1+ · · ·+ni,
for i ∈ [r].

The following theorem gives an additive basis for H∗(F ;Z) in terms of Chern classes of
complex vector bundles γi.
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Theorem 2.2 ([14]) The set

BF :=
{
C
α(1)
1 C

α(2)
2 · · ·Cα(r)r : |α(i)| ≤ Si−1 for i ∈ [r]

}
is an additive basis for H∗(F ;Z).

Endomorphisms ϕ1, ϕ2 : H∗(F ;Z) → H∗(F ;Z) are equal up to a conjugation if there
exists a permutation π ∈ Sym(r) that satisfies ni = ni′ whenever π(i) = i′, and such that

ϕ1(ci,s) = ϕ2(cπ(i),s) for all i ∈ [r] and s ∈ [ni].

2.1 Flag manifolds F (1...j, nj+1, . . . , nj+t,m)

In this paper we consider a special case of flag manifolds, namely F :=
F (1...j , nj+1, . . . , nj+t,m), where j ∈ N. Then NF := j + nj+1 + · · · + nj+t + m, n1 =
· · · = nj = 1 and nj+t+1 = m. For our proofs we will need several variants of the identity
(2.2), which we give in this subsection. Also, we simplify the notation, by denoting xi = ci,1,
for i ∈ [j], yi,l = ci,l, for i ∈ [j + t] \ [j] and l ∈ [ni], yj+t+1,l = cj+t+1,l, for l ∈ [m], and
zi = ci, for i ≥ 0. In the special case t = 1 (which will be the most interesting to us), we
denote yi = y1,i.

The identity (2.2) now simplifies to

∑
i≥0

zi ·
j∏
s=1

(1 + xs) ·
j+t∏

s=j+1

(1 + ys,1 + ys,2 + · · ·+ ys,ns) = 1

and in the case t = 1 and nj+1 = k to

(1 + y1 + · · ·+ yk) ·
j∏
s=1

(1 + xs) ·
∑
i≥0

zi = 1. (2.4)

For J ⊂ [j] the previous identities can also be written as

∑
i≥0

zi ·
∏
s∈J

(1 + xs) ·
j+t∏

s=j+1

(1 + ys,1 + ys,2 + · · ·+ ys,ns) =
∏

s∈[j]\J

∑
l≥0

(−xs)l (2.5)

and (in the case t = 1 and nj+1 = k)

(1 + y1 + · · ·+ yk) ·
∏
s∈J

(1 + xs) ·
∑
i≥0

zi =
∏

s∈[j]\J

∑
l≥0

(−xs)l. (2.6)

If t = 1 and nj+1 = k, then for α = (a1, . . . , aj) ∈ Nj0, β = (b1, . . . , bk) ∈ Nk0, we denote

xα := xa11 x
a2
2 · · ·x

aj
j and yβ := yb11 y

b2
2 · · · y

bk
k .

So, in the case t = 1 and nj+1 = k identity (2.3) leads to

∑
i≥0

zi =

j∏
s=1

∑
l≥0

(−xs)l ·
∑
l≥0

∑
|α|=l

(−1)l[α]yα

=
∑
µ∈Nj

0

(−1)|µ|xµ
∑
σ∈Nk

0

(−1)|σ|[σ]yσ. (2.7)
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Recall that the height of a class c ∈ H̃∗(F ;Z), denoted by ht(c), is the largest n ∈ N such
that cn 6= 0.

At the end of this section, we prove several technical results for H∗(F ;Z). Let N :=
NF . First, we recall Corollary 10 from [14]. More precisely, with the notation from that
paper, we apply this corollary for the flag manifold F ′ := F (nj+1, . . . , nj+t, 1

...j ,m) which is
homeomorphic to F ; also, let xi be the first Chern class of γF

′
j+t−i+1. Then, using the notation

from Corollary 8 of [14], for k = j + t − r + 1 and each s ≥ N − r + 1 = Sk−1 + 1, we have

c
(k)
s = 0 (in H∗(F ′;Z)), that is

(−1)s
∑

b1+···+br=s
xb11 · · ·x

br
r = 0. (2.8)

Note that the sum in the previous identity is in fact the complete symmetric polynomial on
variables x1, . . . , xr of degree s.

Since ht(x1) = ht(x2) = N − 1 (see Corollary 3.3), the identity (2.8) for k = j + t− 1 and
s = 2N − 3 ≥ N − 1 = Sk−1 + 1 implies

0 =
∑

b1+b2=2N−3
xb11 x

b2
2 = xN−11 xN−22 + xN−21 xN−12 .

By symmetry, this implies that for all 1 ≤ i < i′ ≤ j one has

xN−1i xN−2i′ + xN−2i xN−1i′ = 0. (2.9)

Lemma 2.3 For r ∈ [j] and a ∈ Z the following identity holds in H∗(F ;Z)

r∏
i=1

N−1∑
l=0

(−axi)l =
∑

0≤b1+···+br≤N−r
(−a)b1+···+brxb11 · · ·x

br
r .

proof — Our proof is by induction on r. Base case r = 1 is trivial. So, we assume that it

is true for r − 1 ≤ j − 1 and prove it for r. For l ≥ 0, we denote with hl (resp. h
(r−1)
l ) the

complete symmetric polynomial of degree l on the variables x1, . . . , xr (resp. x1, . . . , xr−1).
Then

hl = h
(r−1)
l + xrh

(r−1)
l−1 + · · ·+ xlr.

By the inductive hypothesis, identity (2.8) and since xlr = 0, for l ≥ N (in H∗(F ;Z))

r∏
i=1

N−1∑
l=0

(−axi)l =
∑

0≤l≤N−r+1

(−a)lh
(r−1)
l ·

N−1∑
l=0

(−axr)l

=
∑

0≤l≤N−1
(−a)lh

(r−1)
l ·

N−1∑
l=0

(−axr)l

=
∑

0≤l≤2N−2
(−a)l(h

(r−1)
l + xrh

(r−1)
l−1 + · · ·+ xlr)

=
∑

0≤l≤2N−2
(−a)lhl =

∑
0≤l≤N−r

(−a)lhl

=
∑

0≤b1+···+br≤N−r
(−a)b1+···+brxb11 . . . xbrr ,

which completes the proof of this lemma. 2
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3 Heights of the classes in H2(F ;Z)

The heights of all classes in H2(F ;Z) are known by the following result.

Theorem 3.1 ([2]) Let F := F (n1, . . . , nl) and ti = c1(γ
F
i ), for i ∈ [l]. For

w = a1t1 + a2t2 + · · ·+ altl ∈ H∗(F ;Z),

let Bw = {b1 < b2 < · · · < bg} be the set of different values of ai and mj =
∑
ai=bj

ni, for j ∈ [g].

Then
ht(w) =

∑
1≤p<q≤g

mpmq.

Using this result (and keeping the same notation) we obtain all nonzero elements that
have the minimal height in H2(F ;Z).

Lemma 3.2 Let µ = min{n1, . . . , nl}. Then the nonzero elements of the minimal height in
H2(F ;Z) are aiti, where i ∈ [l] and satisfies ni = µ and ai ∈ Z \ {0}.

proof — Let NF := n1 + · · ·+ nl and

w = a1t1 + a2t2 + · · ·+ altl,

be a nonzero element of minimal height in H2(F ;Z). Note that t1 + · · · + tl = 0 (by (2.1)),
so |Bw| 6= 1. Let I ⊆ [l] be the set of all indices i that satisfy ai = b1. Then m1 =

∑
i∈I ni.

Assume that |Bw| = s ≥ 3. Then, by Theorem 3.1

ht(w) = m1

∑
i≥2

mi +
∑

1<i<i′≤s
mimi′ > m1

∑
i≥2

mi.

So, for a, b ∈ Z, a 6= b, and w′ = a
∑

i∈I ti + b
∑

i 6∈I ti, one has Bw′ = {a, b} and

ht(w′) =
∑
i∈I

ni
∑
i 6∈I

ni = m1

∑
i≥2

mi < ht(w),

which is a contradiction.
Hence |Bw| = 2 and let Bw = {a, b}. Then m1 + m2 = NF , and µ ≤ m1,m2 ≤ NF − µ.

Let i ∈ [l] be such that ni = µ. Then, by Theorem 3.1, the height of w′′ = ati + b
∑

i′ 6=i ti′ is
ht(w′′) = ni

∑
i′ 6=i ni′ = µ(NF −µ). Since m1(NF −m1) ≥ µ(NF −µ) with the equality if and

only if m1 ∈ {µ,NF −µ} (this inequality is equivalent to (m1−µ)(NF −µ−m1) ≥ 0), by the
minimality of ht(w) we conclude that m1 ∈ {µ, nF − µ}. If m1 = µ, then m1 = ni′ = µ, for
some i′ ∈ [l], and hence w = ati′+b

∑
i′′ 6=i′ ti′′ = (a−b)ti′ , as desired. Similarly, ifm1 = NF−µ,

then m2 = ni′ = µ, for some i′ ∈ [l], and hence w = a
∑

i′′ 6=i′ ti′′ + bti′ = (b− a)ti′ . 2

Using the notation from Section 2.1, we have the following corollary.

Corollary 3.3 Nonzero elements of the minimal height in the cohomology algebra
H2(F (1...j , nj+1, . . . , nj+t,m);Z), where ni 6= 1 for i ∈ [j+ t] \ [j], are aixi, for all i ∈ [j] and

ai ∈ Z \ {0}. The height of these classes is NF − 1 =
∑j+t

i=j+1 ni + j +m− 1.
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4 Projective endomorphisms

Throughout this section we use the same notation as in Section 2.1.
Let F := F (1...j , nj+1, . . . , nj+t,m) be a flag manifold, such that j ≥ 1 (it is possible that

ni = 1 for some i ∈ [j + t] \ [j]). Then there is a natural map F → CPNF−1, which induces
a monomorphism of cohomology algebras. An endomorphism ϕ : H∗(F ;Z) → H∗(F ;Z) is
projective if it factors through such a monomorphism. In other words, an endomorphism
ϕ : H∗(F ;Z)→ H∗(F ;Z) is projective if for each z ∈ H∗(F ;Z), ϕ(z) is, up to a conjugation,
a polynomial in x1 (in H∗(F ;Z)). In [6] the authors determined all projective endomorphism
of flag manifolds (in this result j = 1 and n1 = 1).

Theorem 4.1 ([6]) Let F := F (1, n2, . . . , nt+1,m) be a flag manifold. Consider a factor-
ization 1− xNF

1 = P1(x1)P2(x1) · · ·Pt+2(x1) in the polynomial ring Z[x1], where degPi = ni,
1 ≤ i ≤ t+ 1, and degPt+2 = m. If P1(x1) = 1− x1 and λ ∈ Z, then the formula

ϕ(1 + yi,1 + · · ·+ yi,ni) = Pi(λx1), 2 ≤ i ≤ t+ 1,

ϕ(1 + x1) = P1(λx1) and ϕ(1 + yt+2,1 + · · · + yt+2,m) = Pt+2(λx1), gives a well-defined
(projective) endomorphism of H∗(F ;Z). Conversely, every nonzero projective endomorphism
(for any flag manifold with n1 = 1, i.e. j ≥ 1) has this form, up to a conjugation.

Note that in the previous theorem, if λ = 0, then ϕ vanishes in positive dimensions. So,
if ϕ is a projective endomorphism, we may assume that the corresponding λ is nonzero.

In this section we extend this result for all j ∈ N, that is for F := F (1...j , nj+1, . . . , nj+t,m)
we classify all endomorphism ϕ : H∗(F ;Z) → H∗(F ;Z) that factor through the monomor-
phism H∗(F (1...j , NF − j);Z)→ H∗(F ;Z) induced by the natural map F → F (1...j , NF − j)
(this map is defined with (S1, . . . , Sj+t+1) 7→ (S1, . . . , Sj , Sj+1 ⊕ · · · ⊕ Sj+t+1) for a flag
(S1, . . . , Sj+t+1) ∈ F ). Such endomorphisms we call j-projective, and in fact prove that
the only j-projective endomorphisms are projective endomorphisms. Of course, an endomor-
phism ϕ : H∗(F ;Z) → H∗(F ;Z) is j-projective if and only if for each z ∈ H∗(F ;Z), ϕ(z) is
a polynomial in variables x1, x2, . . . , xj (in H∗(F ;Z)), up to a conjugation.

To prove this we will need the following result.

Theorem 4.2 ([15]) For each natural number m, the plane projective curve of degree m
defined by the vanishing of the polynomial

Gm(x, y, z) =
∑

a,b,c≥0
a+b+c=m

xaybzc

is non-singular in characteristic 0 and has zeros at 2m2 points where coordinates x, y and z
are roots of unity.

Corollary 4.3 For m, s ∈ N, s ≥ 2, the polynomial

Gm,s(x1, . . . , xs) =
∑

0≤a1+···+as≤m
xa11 . . . xass

is irreducible in Z[x1, . . . , xs].
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proof — Our proof is by induction on s ≥ 2. First, let s = 2. Suppose that Gm,2 = PQ, for
some P,Q ∈ Z[x1, x2], where degP = k and degQ = l. By Theorem 4.2, Gm,2 is non-singular.
Therefore both P and Q are non-singular and do not go through the origin, and hence curves
P (x1, x2) = 0 and Q(x1, x2) = 0 have at most 2k2 and 2l2, respectively, points of the form
(ζ, ζ ′) where ζ and ζ ′ are roots of unity (see the bottom of page 87 in [15]). By the previous
theorem this implies 2k2 + 2l2 ≥ 2m2 = 2(k + l)2, which is only possible if k = 0 or l = 0.

So, we assume that the result holds for s − 1 ≥ 2 and prove it for s. Suppose that
Gm,s = PQ, for some P,Q ∈ Z[x1, . . . , xs], where P and Q are non-constant polynomials. Let
a (resp. b) be maximal such that xa1 (resp. xb1) is a monomial of P (resp. Q). Then a+ b = m,
a, b > 0, and the coefficients of these monomials are 1 or −1. But then, by letting xs = 0 we
obtain a non-trivial factorization of Gm,s−1, a contradiction. 2

Proposition 4.4 Every j-projective endomorphism ϕ of the flag manifold F :=
F (1...j , nj+1, . . . , nj+t,m) is projective.

proof — Since ϕ is an endomorphism, ht(c) ≥ ht(ϕ(c)) for every c ∈ H2(F ;Z), so, by
Corollary 3.3, ϕ(xi) = aic1(γ

F
s ) for some ai ∈ Z and s ∈ [j + t] such that ns = 1. Since ϕ

is j-projective, this implies that for every i ∈ [j] we have ϕ(xi) = aixs for some s ∈ [j] and
ai ∈ Z. So, up to a conjugation, we may assume that ϕ(xi) = aixi for i ∈ [r], where r ≤ j
is maximal (that is, we assume that the set {s ∈ [j] : ϕ(xi) = aixs for some i ∈ [j]} is equal
to [r]; in other words, for each i ∈ [j] \ [r], ϕ(xi) is not a non-zero multiple of one of the
variables xr+1, xr+2, . . . , xj). Additionally, if at least one of a1, a2, . . . , ar is non-zero, then,
up to a conjugation, we may assume that all of them are non-zero (so, we assume that either
a1 = a2 = · · · = ar = 0, or ai 6= 0 for all i ∈ [r]).

Let N := NF . We apply ϕ on (2.5) for J = {r + 1, r + 2, . . . , j} and observe this identity
in H∗(F ;Z). We have ϕ(zm+1) = ϕ(zm+2) = · · · = ϕ(zN ) = 0 and xN1 = · · · = xNj = 0 (since
ht(x1) = · · · = ht(xj) = N − 1), so (in H∗(F ;Z))

P1 · · ·PtQm
j∏

i=r+1

(1 + ϕ(xi)) =
r∏
i=1

N−1∑
l=0

(−aixi)l, (4.1)

where Pi−j = ϕ(1 + yi,1 + · · ·+ yi,ni), for i ∈ [j + t] \ [j], and Qm = ϕ(1 + z1 + · · ·+ zm) are
polynomials in variables x1, . . . , xj . Clearly, degPi ≤ nj+i, for i ∈ [t], and degQm ≤ m.

Note that F is homeomorphic to F (nj+1, . . . , nj+t, 1
...j ,m), so, by Theorem 2.2, an additive

basis for H∗(F ;Z) is the set

BF =

{
j+t∏
i=j+1

ni∏
l=1

y
bi,l
i,l

j∏
i=1

xaii :

ni∑
l=1

bs,l ≤ m+
s−1∑
i=j+1

ni, ai ≤ N − i,

for s ∈ [j + t] \ [j], i ∈ [j]

}
.

(Note: we have ”sorted 1’s” in F (nj+1, . . . , nj+t, 1
...j ,m) so that the class x1 is a Chern class

of the complex line bundle corresponding to the last 1, x2 a Chern class of the complex line
bundle corresponding to the second to last 1, and so on.) We prove that after expansion
each monomial of the left-hand side of (4.1) is in BF . Indeed, the degree of each variable xl,
for 1 ≤ l ≤ r, is at most

∑j+t
i=j+1 ni + m + j − r = N − r ≤ N − l, and the degree of each
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variable xl, for r+ 1 ≤ l ≤ j, is at most
∑j+t

i=j+1 ni +m = N − j ≤ N − l (since the monomial
ϕ(xr+1) · · ·ϕ(xj) is not divisible by xl).

Next, we show that it is enough to prove a1 = · · · = ar = a. Indeed, suppose that this is
the case, and apply Lemma 2.3 on the right-hand side of (4.1). From the previous paragraph
we conclude that the left-hand side of (4.1) is as a polynomial equal to the right-hand side
of identity from Lemma 2.3. Since the polynomial on the right-hand side of this identity is
by Corollary 4.3 irreducible for r ≥ 2, we conclude that r = 1. Hence, identity (4.1) implies
that polynomials P1, . . . , Pt, Qm, 1 + ϕ(x2), . . . , 1 + ϕ(xj) divide a polynomial in x1, so they
are also polynomial in x1, which completes our proof.

So, let us prove that a1 = · · · = ar = a. By the assumption made at the beginning of the
proof, we may assume that ai 6= 0 for all i ∈ [r]. Also, we may assume that r ≥ 2, and, by
symmetry, it is enough to show a1 = a2. We apply ϕ on the identity (2.5) for J = {3, 4, . . . , j}
and observe this identity in H∗(F ;Z). Similarly as for (4.1), we have

P1 · · ·PtQm
j∏
i=3

(1 + ϕ(xi)) =

2∏
i=1

N−1∑
l=0

(−aixi)l. (4.2)

Suppose that a1 6= a2. By (2.9), and since ht(x1) = N − 1, we have

xN−11 xN−12 = x1x
N−2
1 xN−12 = −x1xN−11 xN−22 = 0,

and also (again by (2.9))

(−a1x1)N−1(−a2x2)N−2 + (−a1x1)N−2(−a2x2)N−1

= (a1a2)
N−2(−a1 + a2)x

N−1
1 xN−22 .

Since xN−11 xN−22 ∈ BF , we conclude that the nonzero monomial of the largest degree on the
right-hand side of (4.2) is

(a1a2)
N−2(−a1 + a2)x

N−1
1 xN−22 .

On the other hand, each monomial on the left-hand side of (4.2) is in dimension at most∑j+t
i=j+1 ni +m+ j − 2 = N − 2, a contradiction. 2

5 Endomorphisms

In this section we prove the main result of this paper, i.e. we classify all endomorphisms of
H∗(F (1...j , k,m);Z). Throughout this section we use the notation from Section 2.1, but, for
simplicity and readability, we denote H∗(F (1...j , k,m);Z) with Aj,k,m and the ideal IF with
Ij,k,m. So, by Borel’s description,

Aj,k,m ∼= Z[x1, . . . , xj , y1, . . . , yk]/Ij,k,m,

where Ij,k,m = 〈zm+1, . . . , zm+j+k〉.
From now on we observe Z[x1, . . . , xj , y1, . . . , yk] as a graded algebra, where deg xi = 2, for

i ∈ [j], and deg yi = 2i, for i ∈ [k]. For simplicity we denote this algebra with Z[X(j), Y (k)].
Also, for σ = (s1, . . . , sk) ∈ Nk0, we define wt(σ) =

∑k
i=1 isi.

Let θ : Aj,k,m → Aj,k,m be an endomorphism of the (graded) algebra Aj,k,m. Then
θ is determined by θ(x1), . . . , θ(xj), θ(y1), . . . , θ(yk), which are polynomials in the variables
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x1, . . . , xj , y1, . . . , yk. Also, ht(xi) ≥ ht(θ(xi)), for i ∈ [j], and hence, by Corollary 3.3, there
is a function π : [j] → [j], such that θ(xi) = aixπ(i), where ai ∈ Z. Note that there is a

unique (graded) endomorphism ϕ : Z[X(j), Y (k)] → Z[X(j), Y (k)], such that ϕ(xi) = θ(xi),
i ∈ [j], and ϕ(yi) = θ(yi), i ∈ [k]. By the definition, ϕ satisfies ϕ(Ij,k,m) ⊆ Ij,k,m. So,
in order to classify all endomorphism of Aj,k,m, we will find all grading endomorphism of
ϕ : Z[X(j), Y (k)]→ Z[X(j), Y (k)] that satisfy the following two conditions:

(1) ϕ(Ij,k,m) ⊆ Ij,k,m;

(2) for i ∈ [j], ϕ(xi) = aixπ(i), where ai ∈ Z and π : [j]→ [j] is some function.

This is what we do in the remaining of this section. In this situation we say that ϕ corresponds
to θ (of course, ϕ uniquely determines θ).

Because of the grading, condition (1) implies that for i ∈ [m+ j + k] \ [m]:

ϕ(zi) = αizi +
∑

1≤|µ|+wt(σ)≤i−m−1

α(i)
µσx

µyσzi−|µ|−wt(σ), (5.1)

where αi and α
(i)
µσ are some integers. In particular,

ϕ(zm+1) = αm+1zm+1. (5.2)

Again, because of the grading, the following identities hold

ϕ(y1) = λy1 +

j∑
i=1

γixi,

and
ϕ(yi) = λiyi +

∑
|µ|+wt(σ)=i

c(i)µσx
µyσ, 2 ≤ i ≤ k, (5.3)

where λ, γi, λi, c
(i)
µσ ∈ Z. We also define c

(1)
µσ := γi, for µ = (0...(i−1), 1, 0, . . . , 0) and σ = 0.

Let k ≥ 3 and t = xµya11 · · · y
ak
k a monomial of zm+i, for some i ∈ [j + k]. Then, in ϕ(t)

the degree of yk in each monomial is at most ak, and if it is dk, then the coefficient of this
monomial is a multiple of λdkk (since only ϕ(yk) can contain yk as a monomial). Additionally,

if y
bk−1

k−1 y
bk
k divides a monomial of ϕ(t), then bk ≤ ak and bk−1 + bk ≤ ak−1 + ak (since only

ϕ(yk) can contain yk and only ϕ(yk−1) and ϕ(yk) can contain yk−1 as a monomial); also, if

bk−1 ≥ ak − bk, then the coefficient of this monomial is a multiple of λ
bk−1+bk−ak
k−1 λbkk . We will

call this Property (?) and use in this section.
We break our proof in two cases, ϕ(zm+1) 6= 0 and ϕ(zm+1) = 0, and resolve each of them

in a separate subsection.
We will need the following result from [5, Proposition 1].

Lemma 5.1 ([5]) Let m0, n0 ∈ Z and p ∈ N. If d is an integer such that

d ≥ p(p− 1) + n0p+m0(p− 1),

then there exist integers m ≥ m0 and n ≥ n0 such that

m(p− 1) + np = d.
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5.1 Case ϕ(zm+1) 6= 0

Let Φ : H∗(F (n1, . . . , nr);Z) → H∗(F (n1, . . . , nr);Z) be an endomorphism of
H∗(F (n1, . . . , nr);Z). Then Φ is a grading endomorphism if there is a permutation π ∈ Sym(r)
that satisfies ni = ni′ whenever π(i) = i′, and λ ∈ Z, such that

Φ(ci,s) = λscπ(i),s for all i ∈ [r] and s ∈ [ni].

We prove that ϕ corresponds to a grading endomorphism. By [6], this is true for j = 1,
so we assume that j ≥ 2.

Let Si = {s ∈ [j] : π(s) = i} for i ∈ [j]. Then for some i ∈ [j] we have |Si| ≤ 1. W.l.o.g.
assume that i = 1; additionally, if |S1| = 1, then, up to a conjugation, we have ϕ(x1) = a1x1
(note: if |S1| = 0, then ϕ(x1) = a1xi for some 2 ≤ i ≤ j).

Let I = 〈x2, x3, . . . , xj〉 and θ : Z[X(1), Y (k)]→ Z[X(1), Y (k)] be the endomorphism defined
with:

θ(x1) = ϕ(x1) mod I and θ(yi) = ϕ(yi) mod I for i ∈ [k].

(Note that: θ(x1) = 0 for |S1| = 0, and θ(x1) = a1x1 for |S1| = 1.)
Let us prove that θ induces an endomorphism of A1,k,m. To prove this it is enough to

show θ(I1,k,m) ⊆ I1,k,m. By the definition we have θ(t) = ϕ(t) mod I for every monomial
t ∈ Z[X(1), Y (k)]. Let z̃i = zi mod I for all i ≥ 1. By (2.4), it is clear that z̃m+i, for
i ∈ [k + 1], are the polynomials that generate I1,k,m. Since ϕ(xi) ∈ I for all i ∈ [j] \ {1}, we
have ϕ(xi) mod I = 0 for all i ∈ [j] \ {1}, and hence

θ(z̃i) = ϕ(z̃i) mod I = ϕ(zi) mod I for i ≥ 1.

For t̃ ∈ I1,k,m, we have t̃ =
∑k+1

i=1 piz̃m+i, and hence

θ(t̃) =

k+1∑
i=1

θ(pi)θ(z̃m+i) =

k+1∑
i=1

ϕ(pi)ϕ(zm+i) mod I

= ϕ(t) mod I,

where t =
∑k+1

i=1 pizm+i. Since t ∈ Ij,k,m it follows ϕ(t) ∈ Ij,k,m, i.e. ϕ(t) =
∑k+j

i=1 qizm+i.
Finally,

θ(t̃) = ϕ(t) mod I =

k+j∑
i=1

q̃iz̃m+i ∈ I1,k,m,

where q̃i = qi mod I for i ∈ [k + j] (note that, by (2.4), z̃m+i ∈ I1,k,m for all i ≥ 1).
So, θ induces an endomorphism of the algebra A1,k,m, and we can use the results of [6].

Indeed, since θ(z̃m+1) = αm+1z̃m+1 6= 0 and m ≥ 2k2 − 1, by Lemma 5.3 and Lemma 5.4
from [6] we have that θ corresponds to a grading endomorphism (of A1,k,m). In particular,
θ(x1) = λx1 6= 0 (and hence |S1| = 1), and

θ(y1) = λy1 = λy1 + γ1x1, i.e. γ1 = 0,

θ(yk−1) = λk−1yk−1 = λk−1yk−1 + pk−1,

θ(yk) = λkyk = λkyk + c1,k−1y1yk−1 + b
(1)
1,k−1x1yk−1 + pk,
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that is b
(1)
1,k−1 = c1,k−1 = 0, where c1,k−1 = c

(k)
(0,...,0)(1,0,...,0,1,0), b

(i)
1,k−1 =

c
(k)

(0...(i−1),1,0...(j−i))(0,...,0,1,0)
for i ∈ [j], λk−1 = λk−1 and λk = λk (in the identities above pk−1

(resp. pk) denotes some polynomial that does not have yk−1 (resp. yk, y1yk−1 and x1yk−1) as
its monomial (resp. monomials)).

Now, let us go back to ϕ. Since |S1| = 1, we know that there exists some ` ∈ [j] \ {1}
such that |S`| ≤ 1. Now, in a similar way as above, we conclude that |S`| = 1. Therefore, by
reiterating the proof, we have that |Si| = 1 for all i ∈ [j]. We conclude that

λk−1 = λk−1, λk = λk, c1,k−1 = 0, (5.4)

ai = λ, γi = 0, b
(i)
1,k−1 = 0 for i ∈ [j]. (5.5)

Let l and r be positive integers such that m + 1 = l(k − 1) + rk (they exist by Lemma
5.1 since m ≥ 2k2 − 1). We now analyse the coefficient of ylk−1y

r
k in (5.2). This monomial

appears in zm+1, so (2.7) and (5.2) imply that its coefficient is (−1)l+r[σ]αm+1 in αm+1zm+1,
where σ = (0, . . . , 0, l, k). From (2.7) and (5.3), we deduce that the coefficient of ylk−1y

r
k in

ϕ(zm+1) is (−1)l+r[σ]λlk−1λ
r
k because none of non-yσ terms in zm+1 can be mapped into yσ

(for k ≥ 3 this is clear; for k = 2 we also use the fact that c1,k−1 = 0 and that ϕ(xi) does not
have y1 as its monomial). Hence, by (5.4):

αm+1 = λlk−1λ
r
k = λl(k−1)+rk = λm+1. (5.6)

By (5.4) and (5.5), c
(1)
µσ = 0 for µ = (0...(i−1), 1, 0, . . . , 0) and σ = 0; c

(k)
µσ = 0 for µ =

(0...(i−1), 1, 0, . . . , 0) and σ = (0, . . . , 0, 1, 0); c
(k)
µσ = 0 for µ = 0 and σ = (1, . . . , 0, 1, 0). Now,

we arrange the (j + k)-tuples (µ, σ) (where µ is a j-tuple and σ a k-tuple) in lexicographical

order, denoted by ≺lex, and prove by induction on this order that c
(i)
µσ = 0 (note that i is

uniquely determined by (µ, σ)). Let us recall that the lexicographical order is defined with:
for α = (a1, a2, . . . , aj+k) and β = (b1, b2, . . . , bj+k), α 6= β, we have

α ≺lex β iff ai < bi where i = min{s | s ∈ [j + k], as 6= bs}.

We note that our proof is similar to the corresponding proofs in [5] and [6], but we give it for
the sake of completeness.

So, suppose that c
(i′)
µ′σ′ = 0 for all (µ′, σ′) ≺lex (µ, σ) and prove that c

(i)
µσ = 0. We may

assume that (µ, σ) is not one of the (j + k)-tuples from the previous paragraph; then σ =
(s1, . . . , sk−2, 0, 0), for some s1, . . . , sk−2 ∈ N ∪ {0}. Since m + 1 − k ≥ k(k − 1), by Lemma
5.1 there exist l, r ≥ 0 such that l(k − 1) + rk = m+ 1− i ≥ m+ 1− k. Let us compare the
coefficient of xµyσylk−1y

r
k on the left-hand and right-hand side of (5.2); denote them by L and

R, respectively. On the right-hand side the coefficient is (by (5.6)):

αm+1(−1)|µ|+|σ|+l+r[σ, l, r] = λm+1(−1)|µ|+|σ|+l+r[σ, l, r] = R

since αm+1 = λm+1. Let us prove that there are two nonzero coefficients on the left-hand
side; one comes from ϕ((−1)|µ|+|σ|+l+r[σ, l, r]xµyσylk−1y

r
k) and is equal to R. So, let ϕ(xτyχ)

for some (τ, χ) 6= (µ, σ, l, r) be such that it contains the monomial xµyσylk−1y
r
k (with nonzero

coefficient). Then xτ | xµ, and by (5.4), ylk−1y
r
k | yχ. Hence xµ−τyσ is a monomial of ϕ(t)
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for some t | yχ; by the inductive hypothesis this is only possible if t = yi and τ = 0. So,
yχ = yiy

l
k−1y

r
k and the corresponding coefficient is

(−1)1+l+r[0...(j+i−1), 1, 0...(k−i−2), l, r]c(i)µσλ
l(k−1)+rk, if i ∈ [k − 2];

(−1)1+l+r[0, . . . , 0, l + 1, r]c(k−1)µσ (l + 1)λl(k−1)+rk, if i = k − 1;

(−1)1+l+r[0, . . . , 0, l, r + 1]c(k)µσ (r + 1)λl(k−1)+rk, if i = k.

By our previous calculations this coefficient is equal to zero, and so c
(i)
µσ = 0.

We conclude that ϕ corresponds to a grading endomorphism of Aj,k,m.

5.2 Case ϕ(zm+1) = 0

We treat this case by induction on j ≥ 1; further, we assume that ϕ does not vanish in
positive dimensions and prove that ϕ corresponds to a projective endomorphism. For j = 1,
this follows from [6]. So, let us assume that it is true for j − 1 ≥ 1 and prove it for j.

We divide the proof in several steps (the claim in each step is valid only in the case that
it is proven in).

(A) ϕ(zm+i) = 0 for i ∈ [k].

First, note that (5.2) and ϕ(zm+1) = 0 imply αm+1 = 0. For i ∈ [k], let l(i) ≥ 1 and
r(i) ≥ k be integers such that

l(i)(k − 1) + r(i)k = m+ i

(they exist by Lemma 5.1 since m + i ≥ m + 1 ≥ k(k − 1) + k2 + k − 1 = 2k2 − 1). In the
remaining of the proof of (A) we assume k ≥ 3, while the proof in the case k = 2 is given in
Appendix.

The monomial yσ, where σ = (0...(k−2), l(1), r(1)), is a monomial of zm+1, so (2.7) and
(5.2) imply that yσ has the coefficient (−1)l+r[σ]αm+1 = 0 in ϕ(zm+1). From (2.7), (5.3) and

Property (?) we deduce that the coefficient of yσ in ϕ(zm+1) is (−1)l+r[σ]λl
(1)

k−1λ
r(1)

k . Hence
λk−1λk = 0.

Let us observe ϕ(zm+i), for i ∈ [k− 1] \ {1}. For τ = (0...(k−2), l(i), r(i)), similarly as above
we conclude that the only monomial of ϕ(zm+i) that contains yτ is also a monomial of ϕ(yτ ).

The coefficient of yτ in ϕ(yτ ) is λl
(i)

k−1λ
r(i)

k , which is equal to 0. Hence, the coefficient of yτ

on the right-hand side of (5.1) is also 0. But the only polynomial there that contains yτ is
αm+izm+i (since for each σ in the sum, one has wt(σ) ≤ i− 1 ≤ k− 2), and hence αm+i = 0.

Finally, let us observe ϕ(zm+k), and let δ = (0...(k−2), l(k), r(k)). As before, we conclude
that the only polynomials on the right-hand side of (5.1) that contain yδ are αm+kzm+k and

α
(m+k)

(0...j),(0...(k−1),k−1)yk−1zm+1, and hence

0 = αm+k · [δ]− α · [0...(k−2), l(k) − 1, r(k)],

where α = α
(m+k)

(0...j),(0...(k−2),1,0)
. This implies (l(k) + r(k))αm+k = l(k) ·α. Similarly, by observing

the monomial yδ
′
, for δ′ = (0...(k−2), l(k) + k, r(k) − k + 1), we obtain

0 = αm+k · [δ′]− α · [0...(k−2), l(k) + k − 1, r(k) − k + 1],
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that is (l(k) + r(k) + 1)αm+k = (l(k) + k)α. Hence,

0 = αm+k((l
(k) + r(k))(l(k) + k)− l(k)(l(k) + r(k) + 1))

= αm+k(k(l(k) + r(k))− l(k)),

and so αm+k = α = 0.

Let us denote α
(m+i)

(0...j),(0...k)
:= αm+i = 0, for i ∈ [k]. We now fix i and prove that α

(m+i)
µσ = 0,

where 0 ≤ |µ|+wt(σ) ≤ i−1, by induction on (µ, σ) w.r.t. the graded lexicographical ordering
denoted by ≺grlex. This ordering is defined in the following way:

α ≺grlex β iff |α| < |β|, or |α| = |β| and α ≺lex β.

For (µ, σ) = ((0...j), (0...k)), the claim holds, so we assume that it is true for all (µ′, σ′),
such that 0 ≤ |µ′| + wt(σ′) ≤ i − 1 and (µ′, σ′) ≺grlex (µ, σ), and prove it for (µ, σ). Since

α
(m+k)

(0...j),(0...(k−2),1,0)
= 0, we may also assume that (µ, σ) 6= ((0...j), (0...(k−2), 1, 0)). Let s =

i−|µ|−wt(σ). Then 1 ≤ s ≤ i ≤ k, so let τ = (0...(k−2), l′, r′), such that (k−1)l′+kr′ = m+s,
l′ ≥ k and r′ > 0 (l′ and r′ exist by Lemma 5.1, since m + s ≥ m + 1 ≥ k(k − 1) + k(k −
1) + k = 2k2 − k). Let us observe the coefficient of the monomial xµyσ+τ in ϕ(zm+i). Since,
(µ, σ) 6= ((0...j), (0...(k−2), 1, 0)), if xµyσ+τ is a monomial of ϕ(t), where t is a monomial in
zm+i such that the degree of yk−1 (resp. yk) in t is a (resp. b), then b ≥ r′ and a+ b ≥ l′ + r′.
If a+ b 6= l′ + r′, then

m+ i ≥ a(k − 1) + bk = (a+ b)(k − 1) + b

≥ (l′ + r′ + 1)(k − 1) + r′ = m+ s+ k − 1 ≥ m+ i,

with the equality only if b = r′; hence a ≥ l′ and the coefficient of xµyσ+τ in ϕ(t) is a
multiple of λl

′
k−1λ

r′
k . If a + b = l′ + r′, then a 6= 0 (since otherwise m + i ≥ bk = (l′ +

r′)k = m + s + l′ ≥ m + s + k > m + i), and hence the coefficient of xµyσ+τ in ϕ(t) is a
multiple of λk−1λk. So, in both cases the coefficient of xµyσ+τ in ϕ(t) is equal to 0. On the
other hand, by (5.1), the coefficient of xµyσ+τ in ϕ(zm+i) is the sum of the coefficients of

this monomial in nonzero polynomial α
(m+i)
µ′σ′ xµ

′
yσ
′
zm+i′ , where i′ + |µ′| + wt(σ′) = i. Since

xµyσ+τ is a monomial of xµ
′
yσ
′
zm+i′ only if a multiple of yτ is a monomial of zm+i′ (since

(µ′, σ′) 6∈ {(0...j , 0...k), (0...j , 0...(k−2), 1, 0)}), we have wt(τ) ≤ m+ i′ and hence |µ′|+ wt(σ′) =
m + i − m − i′ = |µ| + wt(σ) + wt(τ) − m − i′ ≤ |µ| + wt(σ), with the equality only for
(µ′, σ′) = (µ, σ). Hence, the conclusion follows by induction.

So, ϕ(zm+i) = 0 for i ∈ [k], as desired.

After possibly renaming the variables, by Corollary 3.3 we may assume that, up to a
conjugation, ϕ(xj) = ajxj (it is possible that aj = 0). For a polynomial q ∈ Z[X(j), Y (k)], let
q denote its reduction modulo xj .

(B) The map ϕ : Z[X(j−1), Y (k)]→ Z[X(j−1), Y (k)] defined with

ϕ(p) := ϕ(p) for p ∈ Z[X(j−1), Y (k)],

is clearly an endomorphism. Let us prove that ϕ induces an endomorphism of Aj−1,k,m. To
prove this it is enough to show ϕ(Ij−1,k,m) ⊆ Ij−1,k,m. Since ϕ(xj) = ajxj and ϕ is an

endomorphism, for q ∈ Z[X(j−1), Y (k)] we have ϕ(q) = ϕ(q) = ϕ(q). By (2.4), it is clear that
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the polynomials zm+i, for i ∈ [k + j − 1], generate Ij−1,k,m. Now, for t′ ∈ Ij−1,k,m, we have

t′ =
∑k+j−1

i=1 pizm+i, and hence

ϕ(t′) =

k+j−1∑
i=1

ϕ(pi)ϕ(zm+i) =

k+j−1∑
i=1

ϕ(pi)ϕ(zm+i)

= ϕ(t),

where t =
∑k+j−1

i=1 pizm+i. Since t ∈ Ij,k,m it follows ϕ(t) ∈ Ij,k,m, i.e. ϕ(t) =
∑k+j

i=1 qizm+i.
Finally,

ϕ(t′) = ϕ(t) =

k+j∑
i=1

qizm+i ∈ Ij−1,k,m

(note that, by (2.4), zm+i ∈ Ij−1,k,m for all i ≥ 1). By the inductive hypothesis, ϕ vanishes
in positive dimensions or ϕ corresponds to a projective endomorphism of Aj−1,k,m.

CASE 1. ϕ : Z[X(j−1), Y (k)]→ Z[X(j−1), Y (k)] vanishes in positive dimensions.

By Corollary 3.3, ϕ(xi) = aixj , for i ∈ [j]. Applying ϕ on the identity (2.6) (for J = ∅)
gives

(1 + ϕ(y1) + · · ·+ ϕ(yk))
∑
i≥0

ϕ(zi) =

j∏
i=1

∑
l≥0

(−aixj)l

=
∑
l≥0

(−1)lhl(a1, . . . , aj)x
l
j , (5.7)

where hl denotes the complete symmetric polynomial on j variables of degree l.

(C) hm+k+i(a1, . . . , aj) = 0 and ϕ(zm+k+i) = 0, for i ∈ [j − 1].

The proof is by induction on i. From (5.7) and (A) we have

ϕ(zm+k+1) = ϕ(zm+k+1) + ϕ(y1)ϕ(zm+k) + · · ·+ ϕ(yk)ϕ(zm+1)

= (−1)m+k+1hm+k+1(a1, . . . , aj)x
m+k+1
j .

By Corollary 3.3, ht(xj) = m + j + k − 1 ≥ m + k + 1, and hence xm+k+1
j 6∈ Ij,k,m; since

ϕ(zm+k+1) ∈ Ij,k,m, this implies hm+k+1(a1, . . . , aj) = 0 and ϕ(zm+k+1) = 0. This proves the
base case i = 1.

So, let us now assume that our claim is true for all l ∈ [i− 1], and prove it for i ≤ j − 1.
From (A) and the inductive hypothesis ϕ(zm+s) = 0 for all 1 ≤ s ≤ k + i− 1. So, by (5.7),

ϕ(zm+k+i) = ϕ(zm+k+i) + ϕ(y1)ϕ(zm+k+i−1) + · · ·+ ϕ(yk)ϕ(zm+i)

= (−1)m+k+ihm+k+i(a1, . . . , aj)x
m+k+i
j .

Again, by Corollary 3.3, ht(xj) = m + j + k − 1 ≥ m + i + k, and hence xm+k+1
j 6∈ Ij,k,m,

which implies hm+k+i(a1, . . . , aj) = 0 and ϕ(zm+k+i) = 0.

To apply (C) we need the following lemma from [9].
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Lemma 5.2 ([9]) Let l, r be integers, l ≥ 0, r ≥ 2, and b1, . . . , br some real numbers, such
that

hl+i(b1, . . . , br) = 0 for i ∈ [r − 1].

Then unless r = 2 and l is even, b1 = · · · = br = 0. If r = 2 and l is even, then b2 = −b1.

We consider the following cases.

Case 1.1. j ≥ 3.

In this case we prove that ϕ vanishes in positive dimensions. By (C) and Lemma 5.2,
a1 = · · · = aj = 0, i.e. ϕ(x1) = · · · = ϕ(xj) = 0. Hence, it is enough to prove that ϕ(yi) = 0
for i ∈ [k]. Suppose that this is not the case, and let i ≤ k be maximal such that ϕ(yi) 6= 0.
By (5.7)

0 = ϕ(zl+k) + ϕ(y1)ϕ(zl+k−1) + . . .+ ϕ(yk)ϕ(zl)

= ϕ(zl+k) + ϕ(y1)ϕ(zl+k−1) + . . .+ ϕ(yi)ϕ(zl+k−i),

for all l ≥ 0. In particular, for l = m+ i− k, from (A) we get ϕ(yi)ϕ(zm) = 0, i.e. ϕ(zm) = 0.
Now, an easy reverse induction on s ≤ m gives ϕ(zs) = 0 for all s ≥ 1. For s = 1 this gives
ϕ(−y1) = −ϕ(−z1 − x1 − . . . − xj) = ϕ(z1) = 0. Also, from (2.7), we have zl = −yl + pl,
for l ∈ [k] \ {1}, where pl is a polynomial in variables x1, . . . , xj , y1, . . . , yl−1. So, an easy
induction on l ≥ 1 gives ϕ(yl) = 0, for all l ∈ [k], a contradiction.

Case 1.2. j = 2.

By (C) and Lemma 5.2, we have two possibilities: a1 = a2 = 0, or a2 = −a1 6= 0 and
m + k is even. The first one is dealt with as in Case 1.1, and leads to ϕ ≡ 0. So, we may
assume that a2 = −a1 = a 6= 0.

Applying ϕ on (2.6) for J = ∅, we get

(1 + ϕ(y1) + · · ·+ ϕ(yk))
∑
i≥0

ϕ(zi) =
∑
i≥0

(ax2)
i
∑
i≥0

(−ax2)i =
∑
i≥0

(ax2)
2i.

By (A) and (C), comparing polynomials of degree 2(m + k + 2) (w.r.t. the grading) in the
previous identity gives

ϕ(zm+k+2) = ϕ(zm+k+2) + · · ·+ ϕ(yk)ϕ(zm+2) = (ax2)
m+k+2.

Let ui, for i ∈ [k + 2], be the polynomial of degree 2i w.r.t. the grading, such that

1 + u1 + · · ·+ uk+2 = (1 + x1)(1 + x2)(1 + y1 + · · ·+ yk).

Using this notation and applying ϕ on (2.4) we get

(1 + ϕ(u1) + · · ·+ ϕ(uk+2)) ·
∑
i≥0

ϕ(zi) = 1. (5.8)

Let N := m+ k + 2. We prove that

ϕ(zN+r) = (ax2)
Nϕ(zr), for N + r ≥ m+ 1

(here, ϕ(zr) = 0 for r < 0). We prove this identity by induction on N + r ≥ m + 1. By
(A) and (C), the identity is true for r such that m + 1 ≤ N + r ≤ N . So, we assume that
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N + r ≥ N + 1 and that the identity holds for N + r − 1, N + r − 2, . . . , N + r − k − 2, and
prove it for N + r.

By (5.8) and the inductive hypothesis, we get

ϕ(zN+r) = −ϕ(zN+r−1)ϕ(u1)− · · · − ϕ(zN+r−k−2)ϕ(uk+2)

= −(ax2)
Nϕ(zr−1)ϕ(u1)− · · · − (ax2)

Nϕ(zr−k−2)ϕ(uk+2)

= −(ax2)
N (ϕ(zr−1)ϕ(u1) + · · ·+ ϕ(zr−k−2)ϕ(uk+2))

= (ax2)
Nϕ(zr),

which completes the inductive step.
Now, an easy induction on l proves that for l ≥ 0 and r ∈ [N − 1] ∪ {0}, ϕ(zlN+r) =

(ax2)
lNϕ(zr).

Hence, ∑
i≥0

ϕ(zi) = (1 + ϕ(z1) + . . .+ ϕ(zm))
∑
i≥0

(ax2)
iN

= (1 + ϕ(z1) + . . .+ ϕ(zm))(1− (ax2)
N )−1.

By applying ϕ on (2.4) we get

(1 + ϕ(x1))(1 + ϕ(x2))

(
1 +

k∑
i=1

ϕ(yk)

)
m∑
i=0

ϕ(zi) = 1− (ax2)
N .

So, 1+ϕ(x1), 1+ϕ(x2) and 1+ϕ(y1)+· · ·+ϕ(yk) are in Z[x2], and hence ϕ indeed corresponds
to a projective endomorphism of Aj,k,m.

CASE 2. ϕ : Z[X(j−1), Y (k)] → Z[X(j−1), Y (k)] corresponds to a projective endomorphism
of Aj−1,k,m.

By Theorem 4.1, we have j ∈ {2, 3} (indeed, for every n the polynomial 1 − xn has at
most two rational roots, i.e. 1 and −1, and each of them has multiplicity at most one, so
j − 1 ≤ 2).

Case 2.1. j = 3.

Since ϕ corresponds to a (nonzero) projective endomorphism, by Theorem 4.1, we may
assume that ϕ(x1) = a1x1 and ϕ(x2) = −a1x1, a1 6= 0 which implies ϕ(x1) = a1x1 and
ϕ(x2) = −a1x1 (by Corollary 3.3). Note that ϕ was constructed by reducing modulo x3; in a
similar way the function ϕ̂ that reduces polynomials modulo x1 could be constructed. Then,
if ϕ̂ vanishes in positive dimensions, the proof follows as in Case 1; otherwise ϕ̂ corresponds to
a projective endomorphism, which, by Theorem 4.1, implies ϕ̂(x2) = −ϕ̂(x3), a contradiction.

Case 2.2. j = 2.

First, we prove that ϕ(1 + y1 + · · · + yk), ϕ(1 + z1 + · · · + zm) ∈ Z[x1, x2]. Again, let
N := m + k + 2. Since ϕ corresponds to a projective endomorphism, by Theorem 4.1,
ϕ(x1) = a1x1.

If a1 = 0, then ϕ vanishes in positive dimensions (by Theorem 4.1). So, we may assume
that a1 6= 0. Again by Theorem 4.1, ϕ(y1) ∈ Z[x1], ϕ(x1) = a1x1, and hence, by Corollary
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3.3, ϕ(x1) = a1x1. Similarly, we can conclude that the reduction of ϕ(y1) modulo x1 is in
Z[x2], and hence that ϕ(y1) ∈ Z[x1, x2].

Applying ϕ to (2.6) for J = ∅, and compering polynomials of degree 2(N − 1) (w.r.t. the
grading) gives

ϕ(zN−1) = ϕ(zN−1) + ϕ(y1)ϕ(zN−2) + · · ·+ ϕ(yk)ϕ(zm+1)

=

N−1∑
i=0

(−a1x1)i(−a2x2)N−1−i,

and of degree 2N (w.r.t. the grading)

ϕ(zN ) + ϕ(y1)ϕ(zN−1) = ϕ(zN ) + ϕ(y1)ϕ(zN−1) + · · ·+ ϕ(yk)ϕ(zm+2)

=
N∑
i=0

(−a1x1)i(−a2x2)N−i,

which implies ϕ(zN−1), ϕ(zN ) ∈ Z[x1, x2].
Let t1 := ϕ(zN−1) and

t2 := ϕ(zN )− t1ϕ(z1) = ϕ(zN ) + t1ϕ(x1 + x2 + y1) ∈ Z[x1, x2].

We prove that
ϕ(zN+r) = t1ϕ(zr+1) + t2ϕ(zr), for N + r ≥ m+ 1 (5.9)

(here, ϕ(zr) = 0 for r < 0). We prove this identity by induction on N + r ≥ m + 1. By
(A) and (C), the identity is true for r such that m + 1 ≤ N + r ≤ N . So, we assume that
N + r ≥ N + 1 and that the identity holds for N + r − 1, N + r − 2, . . . , N + r − k − 2, and
prove it for N + r.

By (5.8) and inductive hypothesis, we conclude that ϕ(zN+r) is equal to (where r′ =
r − k − 2)

−ϕ(zN+r−1)ϕ(u1)− ϕ(zN+r−2)ϕ(u2)− · · · − ϕ(zN+r′)ϕ(uk+2)

= −(t1ϕ(zr) + t2ϕ(zr−1))ϕ(u1)− · · · − (t1ϕ(zr′+1) + t2ϕ(zr′))ϕ(uk+2)

= −t1(ϕ(zr)ϕ(u1) + · · ·+ ϕ(zr′+1)ϕ(uk+2))

− t2(ϕ(zr−1)ϕ(u1) + · · ·+ ϕ(zr′)ϕ(uk+2))

= t1ϕ(zr+1) + t2ϕ(zr),

which completes the inductive step.
Now, (5.9) implies

(t1 + t2)
∑
i≥0

ϕ(zi) =
∑
i≥−1

(t1ϕ(zi+1) + t2ϕ(zi)) =
∑

i≥N−1
ϕ(zi).

Since, ϕ(zm+1) = · · · = ϕ(zN−2) = 0, for Qm := ϕ(1 + z1 + · · ·+ zm) ∈ Z[x1, x2, y1, . . . , yk] we
have

(1− t1 − t2)
∑
i≥0

ϕ(zi) = Qm. (5.10)

18



Let Pk := ϕ(1 + y1 + · · · + yk) ∈ Z[x1, x2, y1, . . . , yk]. Applying ϕ on (2.4), then multiplying
by 1− t1 − t2 and using (5.10) we get

1− t1 − t2 = (1 + a1x1)(1 + a2x2)PkQm.

This implies that the polynomials Pk and Qm divide 1 − t1 − t2 ∈ Z[x1, x2], and hence that
Pk, Qm ∈ Z[x1, x2]. This implies that ϕ corresponds to a 2-projective endomorphism , which
by Proposition 4.4 must be projective.

6 Maps between certain complex flag manifolds

It was proven in Theorem 1.1 from [6] that there is a strong connection between homotopy
classes of maps between flag manifolds F and F ′ and homomorphisms between H∗(F ′;Q) and
H∗(F ;Q). Using this result, we prove that for certain flag manifolds F and F ′ every class in
[F, F ′] is rationally null-homotopic. We recall that similar results for Grassmann manifolds
(complex and real) were obtained in [12, 3, 4]

For flag manifolds Fa = F (a1, . . . , as,m
′) and Fb = F (b1, . . . , bs,m

′′) such that m′ ≤ m′′

and ai ≤ bi for i ∈ [s] (we allow ai = 0 for some i), there is a natural imbedding ι : Fa ⊂
Fb, which induces a homomorphism ι∗ : H∗(Fb;Q) → H∗(Fa;Q). In this homomorphism
ι∗(cr(γ

Fb
i )) = cr(γ

Fa
i ), for all i ∈ [s+ 1] and r ≥ 0. In particular, if ai < r ≤ bi (where i ∈ [s]),

then ι∗(cr(γ
Fb
i )) = 0.

Using the same ideas as in the proof of Theorem 1.1 from [3], we prove a partial extension
of this theorem.

Theorem 6.1 Let F1 := F (1...i, k, n) and F2 := F (1...j , l,m), where j, k, l,m and n are
positive integers and i ≥ 0 such that i ≤ j, k ≤ l, n ≤ m, m ≥ 2k2−1 and

(
i
2

)
+ik+in+nk <

m + l + j − 1. Then any homomorphism ϕ : H∗(F1;Q) → H∗(F2;Q) vanishes in positive
dimensions.

proof — It will be convenient to write F1 as F (0...(j−i), 1...i, k, n). Let F := F (1...j , k,m),
and ι1 : F ⊂ F2 and ι2 : F1 ⊂ F , be the imbeddings described above. Then we have the
endomorphism

φ = ι∗1 ◦ ϕ ◦ ι∗2 : H∗(F ;Q)→ H∗(F ;Q).

To prove that ϕ is vanishing in positive dimensions, it is enough to prove that for s ∈ [j+2]
and 0 < r ≤ dim γF1

s , one has ϕ(cr(γ
F1
s )) := pr,s = 0. Let us first consider p1,s ∈ H2(F2;Q),

for s ∈ [j]. If p1,s 6= 0, then, by Corollary 3.3, ht(p1,s) ≥ m + l + j − 1. On the other hand,
ht(p1,s) = ht(ϕ(c1(γ

F1
s ))) ≤ ht(c1(γ

F1
s )) ≤ dimF1 =

(
i
2

)
+ ik + in + nk < m + l + j − 1, a

contradiction (here, dimF1 denotes the complex dimension of F1). Hence, p1,s = 0 for all
s ∈ [j], which implies φ(c1(γ

F
s )) = 0. By Theorem 1.1, φ is a grading endomorphism or a

projective endomorphism, and hence φ vanishes in positive dimensions (this is clear if φ is
a grading endomorphism; if φ is a projective endomorphism, then φ(c1(γ

F
s )) = 0 for s ∈ [j]

implies that for this projective endomorphism λ from Theorem 4.1 is equal to 0 and hence φ
indeed vanishes in positive dimensions). So, ι∗1(pr,s) = 0, for all r > 0 and s ∈ [j+2]. Suppose
that pr,s has a non-zero monomial

∏
ct(γ

F2
q ). Then

∏
ct(γ

F
q ) is a monomial of ι∗1(pr,s), and

since dim γF1
q ≤ dim γFq , for every q, this monomial is non-zero. Since the degree of pr,s is at

most r ≤ max{k, n} ≤ m, each of the monomials
∏
ct(γ

F
p ) is in BF (see Theorem 2.2), and

hence ι∗1(pr,s) 6= 0, a contradiction. 2
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As in the proof of Theorem 1.2 from [3] (this proof uses Theorem 1.1 from [6]), the previous
theorem implies the following.

Theorem 6.2 Let i, j, k, l,m, n, F1, F2 be as in the previous theorem. Then the set [F2, F1]
of homotopy classes of maps is finite and moreover each homotopy class is rationally null-
homotopic.

7 Appendix

We will prove part (A) of Subsection 5.2 when k = 2, that is ϕ(zm+2) = 0.
We rewrite (5.3) for i = 2 and k = 2:

ϕ(y2) = λ2y2 + cy21 +

j∑
s=1

dsxsy1 +
∑

1≤s≤t≤j
d′stxsxt, (7.1)

where λ2, c, ds, d
′
st are some integer coefficients.

We pick two integers l′ and r′ such that m+ 1 = l′ + 2r′:

(l′, r′) =

{
(1,m/2), if m is even

(0, (m+ 1)/2), if m is odd
.

Let σ′ = (l′, r′). Since the degree of y2 in yσ
′

is maximal, the coefficient of this monomial
in ϕ(zm+1) is the same as its coefficient in ϕ(yσ

′
), which is equal to (−1)l

′+r′ [σ′]λl
′
λr
′

2 . Now,
ϕ(zm+1) = 0 implies

αm+1 = λl
′
λr
′

2 = 0. (7.2)

Let us rewrite (5.1) for i = 2:

ϕ(zm+2) = αm+2zm+2 + βy1zm+1 +

j∑
i=1

βixizm+1, (7.3)

where β := α
(m+2)

(0...j)(1,0)
and βi := α

(m+2)

(0...(i−1),1,0...(j−i))(0,0)
. Now we analyse the coefficients of

monomials in ϕ(zm+2) depending on whether m is odd or even.
First, let us consider the case when m is odd; then (7.2) immediately implies λ2 = 0.

Also, let r := r′ ≥ 4.

(1) µ = (0...j), σ = (1, r). The equations (7.3) and (2.7) imply that the coefficient of y1y
r
2 in

ϕ(zm+2) is (−1)r+1[1, r]αm+2 + (−1)r[0, r]β. However, since λ2 = 0, this coefficient equals 0
from (2.7) and (7.1). Therefore,

(r + 1)αm+2 = β. (7.4)

(2) µ = (0...j), σ = (3, r − 1). In the same fashion as in the previous point, we obtain
(−1)r+2[3, r − 1]αm+2 + (−1)1+r[2, r − 1]β = 0. When we combine this identity with (7.4),
we deduce αm+2 = β = 0.

(3) µ = (0...(i−1), 1, 0...(j−i)), σ = (0, r). By comparing the coefficients of xiy
r
2 in (7.3), since

λ2 = 0, it is easy to see that βi = 0 (using (2.7) and (7.1)).
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This just leaves the case when m is even. Let r := (m + 2)/2 > 4. Then (7.2) implies
λλ2 = 0.

(4) µ = (0...j), σ = (0, r). From equations (7.3) and (2.7) the coefficient of yr2 in ϕ(zm+2) is
(−1)r[0, r]αm+2. On the other hand, the equations (2.7) and (7.1) show that the coefficient
is (−1)r[0, r]λr2. Therefore, we have

αm+2 = λr2. (7.5)

(5) µ = (0...j), σ = (2, r−1). Now we use the equation (2.7) both for i = m+1 and i = m+2.
Similarly to the previous step, using (7.3) and (2.7), we deduce that the coefficient of y21y

r−1
2

in ϕ(zm+2) is (−1)r+1[2, r − 1]αm+2 + (−1)r[1, r − 1]β. Also, from (2.7) and (7.1), it is equal
to (−1)r[0, r]

(
r
1

)
cλr−12 because λλ2 = 0. Using (7.5), this leads to

β =
r + 1

2
λr2 + cλr−12 . (7.6)

(6) µ = (0...j), σ = (4, r−2). Assume that λ2 6= 0; then λ = 0. Similarly to (5) the coefficient
of y41y

r−2
2 in ϕ(zm+2) is

(−1)r+2[4, r − 2]αm+2 + (−1)r+1[3, r − 2]β = (−1)r[0, r]

(
r

2

)
c2λr−22 .

After applying (7.5) and (7.6) we get(
r + 2

4

)
λr2 −

r + 1

2

(
r + 1

3

)
λr2 =

(
r + 1

3

)
cλr−12 +

(
r

2

)
c2λr−22 .

Then the previous identity leads to

λ22 +
4

r
cλ2 +

12

r(r + 1)
c2 = 0. (7.7)

Since

λ22 +
4

r
cλ2 +

4

r2
c2 ≥ 0 and

12

r(r + 1)
>

4

r2
,

we deduce that the left-hand side of (7.7) is positive, therefore we have a contradiction. This
proves that λ2 = 0, which implies αm+2 = β = 0.

(7) µ = (0...(i−1), 1, 0...(j−i)), σ = (1, r − 1). Since λ2 = 0, by calculating the coefficient of
xµyσ in ϕ(zm+2) it is easy to see that βi = 0 (using (7.3), (2.7) and (7.1)).
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[15] F. Rodŕıguez Villegas, J.F. Voloch, D. Zagier, Construction of plane curves with many
points, Acta Arithmetica 99 (1), 85–96 (2001).

22


