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Abstract. Gröbner basis for small quantum cohomology of Grassmannian Gk,n is con-

structed and used to obtain new recurrence relations for Kostka numbers and inverse Kostka

numbers. Using these relations it is shown how to determine inverse Kostka numbers which
are related to mod-p Wu formula.

1. Introduction

In the algebra of symmetric functions the change from the basis given by Schur functions to
the basis given by elementary symmetric functions involves Kostka numbers. These numbers
are known to be hard to compute (see [16]). Alternatively, these numbers may be seen in
the cohomology of Grassmannians in the change from the basis given by Schubert classes
to the one given by products of Chern classes. Therefore, obtaining suitable formulas for
calculating in these bases produces relations between (inverse) Kostka numbers (see [17]). In
this paper we use this approach toward (inverse) Kostka numbers using quantum cohomology
of Grassmannians.

Schubert calculus for quantum cohomology of Grassmannians is presented in [2, 3]. It is
our goal to obtain corresponding formulas for calculations in the basis given by products of
Chern classes. This is done by constructing Gröbner basis for the ideal that determines this
cohomology as given by Siebert and Tian (see [20]).

The presentation of results in this paper is as follows. Sections 2 and 3 are dedicated mainly
to establish notation and recollect some necessary results about quantum cohomology. In
Section 4, we obtain desired Gröbner bases. As a first application, in Section 5, we show how
these bases can be used to determine all quantum Kostka numbers; in [3] this was done using
Schubert calculus. Combining these two results, we obtain new recurrence relations between
Kostka numbers, improving upon those from [17].

Final section is dedicated to inverse Kostka numbers. These numbers are even less tractable
then Kostka numbers, so it is useful to obtain recurrence relations determining them (see
[7, 8]). Using the similar approach as the one for Kostka numbers, we obtain such relations
which completely determine inverse Kostka numbers. On the other hand, some inverse Kostka
numbers appear in the formulas for expressing mod p Steenrod powers of Chern classes in terms
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of Schubert classes; this was one of main motivations for Duan to obtain recurrence formulas
in [7]. From his formula, he determined these numbers for p = 2 (which correspond to classical
Wu formulas [24]), but he had only been able to give some further recurrence formulas for
p = 3. One of the applications of our formulas is the complete determination of these numbers
for p = 3. Finally, it may be interesting to compare our formulas (and algorithm) for computing
inverse Kostka numbers related to mod p Steenrod powers and Lenart method (from [12]) for
determination of these powers.

2. Preliminaries

The Grassmann manifold Gk,n consists of all k-dimensional linear subspaces of Cn+k. Let
F : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fi ⊂ · · · ⊂ Fn+k = Cn+k be a complete flag. For a partition
λ ⊆ k × n (identified with its Young diagram), i.e., a k-tuple λ = (l1, l2, . . . , lk) such that
n ≥ l1 ≥ l2 ≥ . . . ≥ lk ≥ 0, observe the associated Schubert variety

Ωλ(F•) = {W ∈ Gk,n : dim(W ∩ Fn+i−li) ≥ i, 1 ≤ i ≤ k}.
Denote by Ωλ the class of Ωλ(F•) in the cohomology ringH∗(Gk,n;Z). The set {Ωλ : λ ⊆ k×n}
forms an additive basis of this ring, in which the multiplication is given by the Littlewood-
Richardson rule

Ωλ · Ωµ =
∑

ν⊆k×n

cνλµΩν ,

where cνλµ is the Littlewood-Richardson coefficient (see [13]).

For 1 ≤ i ≤ k, let Ci = Ω(1i), where (1i) denotes the partition consisting of i ones
(note that Ci is the i-th Chern class of the dual of the tautological vector bundle). Then
{Cm1

Cm2
· · ·Cmr

: 0 ≤ r ≤ n, 1 ≤ m1, . . . ,mr ≤ k} is another additive basis for H∗(Gk,n;Z)
(cf. [13]). Multiplication in this basis was studied in [17].

The (small) quantum cohomology ring QH∗(Gk,n) of Gk,n is a Z[q]-algebra isomorphic to
H∗(Gk,n;Z)⊗Z Z[q] as a Z[q]-module. Therefore, for Schubert classes σλ := Ωλ⊗ 1 and Chern
classes ci = Ci ⊗ 1, the following sets form additive bases of QH∗(Gk,n):

Σk,n := {σλ : λ ⊆ k × n}; (2.1)

Bk,n := {cm1
· · · cmr

: 0 ≤ r ≤ n, 1 ≤ m1, . . . ,mr ≤ k}. (2.2)

Multiplication in QH∗(Gk,n) is defined with

σλ · σµ =
∑
d≥0

∑
ν⊆k×n

qd〈Ωλ,Ωµ,Ων∨〉dσν , (2.3)

where, for ν = (n1, n2, . . . , nk), ν∨ = (n − nk, n − nk−1, . . . , n − n1) is the partition for the
dual Schubert class of Ων , and 〈Ωλ,Ωµ,Ων∨〉d is a three-point, genus-zero Gromov-Witten
invariant of Gk,n. It is a non-trivial fact that in this way an associative operation is defined
(see [18]). Of course, specializing to q = 0 leads to the (classical) Littlewood-Richardson rule,
i.e., cνλµ = 〈Ωλ,Ωµ,Ων∨〉0. Finally, let us note that there is a purely combinatorial description

of the numbers 〈Ωλ,Ωµ,Ων∨〉d (see [6]).
There are several algebraic descriptions of the ring QH∗(Gk,n) (see for example [2, 3, 5, 20,

23]). Let us first recall the description given in [2] and [3]. In these papers, inspired by the
classical case, the authors obtained rules for calculating in the additive basis Σk,n (which is a
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convenient choice of basis, having in mind the geometric implications given by (2.3)). In [2]
Bertram obtained the following quantum version of Pieri’s formula.

For a partition λ = (l1, . . . , ls), let |λ| := l1 + · · ·+ ls denote its weight, and l(λ) := max{t :
lt 6= 0} its length.

Quantum Pieri’s formula. If λ ⊆ k × n, λ = (l1, l2, . . . , lk) and p ≤ n, then

σp · σλ =
∑

σµ + q
∑

σν

where the first sum is over all partitions µ = (m1, . . . ,mk) such that |µ| = |λ| + p and n ≥
m1 ≥ l1 ≥ m2 ≥ l2 ≥ . . . ≥ mk ≥ lk, and the second sum is over all partitions ν = (n1, . . . , nk)
such that |ν| = |λ|+ p− n− k and l1 − 1 ≥ n1 ≥ l2 − 1 ≥ . . . ≥ lk − 1 ≥ nk ≥ 0.

As in the classical case, this rule fully determines multiplication in the basis Σk,n. Neverthe-
less, in [3] Bertram, Ciocan-Fontanine and Fulton obtained a formula that may be understood
as an improvement of the Pieri’s formula. Here, we give it in its dual form (see also [5]). To
state this result we need some definitions.

For a partition λ (not necessary contained in k × n) let σλ = det(cl∗i−i+j), where λ∗ =
(l∗1, l

∗
2, . . .) denotes the conjugate partition of λ. Note that, by Giambelli’s formula, this defi-

nition is compatible with the previous (for λ ⊆ k × n). A (k + n)-rim hook of a partition λ is
a connected subset of k + n boxes in its Young diagram that does not contain a 2× 2 square.
A (k + n)-rim hook of λ is legal if its removal gives a valid Young diagram.

We can now present the rim hook algorithm.

Rim hook algorithm. Let λ = (l1, l2, . . . , ls) be a partition.

(a) If lk+1 > 0, or if l1 > n and λ contains no legal (k + n)-rim hook, then σλ = 0.
(b) If µ is the result of removing a legal (k + n)-rim hook from λ, then σλ = (−1)k−rqσµ,

where r is the number of rows that removed (k + n)-rim hook occupied.

Note that similar formulas appear in many different contexts (see [10, 11, 22]).
The rim-hook algorithm allows us to easily reduce calculations in the basis Σk,n to calcula-

tions in H∗(Gk,n;Z) (see [3, 5]). In particular, it gives us a formula that represents numbers
〈Ωλ,Ωµ,Ων∨〉d as a sum of Littlewood-Richardson coefficients multiplied by ±1.

Let us now turn our attention towards description of QH∗(Gk,n) by Siebert and Tian. In
[20] they proved that

QH∗(Gk,n;Z) ∼= Z[q][c1, . . . , ck]/(σn+1, . . . , σn+k−1, σn+k + (−1)kq), (2.4)

and that (polynomials) σi can be obtained in the following way. If we define that σi = 0 for
i < 0, and σ0 = 1, then for i > 1 one has

σi = −
k∑
j=1

(−1)jcjσi−j . (2.5)

Although this completely determines QH∗(Gk,n), it is not clear how to perform concrete
calculations in the cohomology. Since the classes of QH∗(Gk,n;Z) in this description are
naturally given in the basis Bk,n, we want to obtain a multiplication rule for the elements of
this basis. This will be done by constructing a suitable Gröbner basis for the ideal Ik,n :=
(σn+1, . . . , σn+k−1, σn+k + (−1)kq). Note that, in order to achieve this, we are not resorting to
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the results in [2] and [3], but only trying to “deform” Gröbner basis obtained in the classical
case (see [17]) in accordance to (2.4). Interestingly enough, comparing with the classical case,
multiplication rules for Bk,n that we obtain are “deformed” similarly as is quantum Pieri’s
formula in comparison with the classical one.

For a k-tuple λ = (l1, l2, . . . , lk) of nonnegative integers, let Cλ = cl11 c
l2
2 · · · c

lk
k .

As for the classical case, the transition between the basis Bk,n and Σk,n involves the Kostka
numbers Kλµ (see [13]). Since Cλ can be represented in the basis Σk,n for all k-tuples λ of
nonnegative integers, in [3] the authors introduced the notion of quantum Kostka numbers

Kk,n
λµ in the following way. For a partition µ = (m1, . . . ,mr), such that m1 ≤ k, let

cm1cm2 · · · cmr =
∑

Kk,n
λµ q

mσλ∗ (2.6)

where the sum is over all λ ⊆ n× k and m ≥ 0, such that |λ|+m(n+ k) = |µ|.

Remark 1. In [3] quantum Kostka numbers are denoted in a different way. To avoid confusion,

we note that in this paper Kk,n
λµ stands for Kλ

∅µ(n, k) from [3].

Remark 2. If r ≤ n formula (2.6) does not involve q, i.e., if l(µ) ≤ n one has

Kk,n
λµ =

{
Kλµ, |λ| = |µ|

0, otherwise
.

Using the rim hook algorithm, in [3] the authors obtained a formula that gives quantum
Kostka numbers in terms of Kostka numbers. To state this result we need some additional
notations. The width of a (k+n)-rim hook R, denoted by width(R), is the number of columns
it occupies. Furthermore, if µ ⊆ k × n is obtained from a partition λ = (l1, l2, . . .) that
satisfies l1 ≤ n, by successively removing (k + n)-rim hooks R1, R2, . . . , Rm, let ε(λ/µ) :=
(−1)

∑
(n−width(Ri)).

Now, for partitions λ ⊆ n× k and ν, such that |ν| = |λ|+m(k + n), one has

Kk,n
λν =

∑
ε(ρ/λ)Kρν , (2.7)

where the sum is over all parititions ρ = (r1, r2, . . .), such that r1 ≤ k, obtained from λ
by adding m times a (k + n)-rim hook. Additionally, this formula can be used to obtain a
combinatorial description of quantum Kostka numbers (see [3]).

3. Notation

In this paper we denote by N0 the set of nonnegative integers and by N the set of positive
integers.

Let m ∈ N and e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) be the standard
basis for Zm and e0 = (0, . . . , 0) ∈ Zm. For an m-tuple λ of nonnegative integers we define the
following m-tuples of integers obtained from λ (for 0 ≤ i ≤ m and 0 ≤ i ≤ j ≤ m):

• λi = λ+ ei and λi = λ− ei;
• λi,j = λ+ ei + ej and λi,j = λ− ei − ej .

Also, for k ≥ 2, a k-tuple α = (a1, . . . , ak) and a (k− 1)-tuple µ = (m2, . . . ,mk) of integers,
let:
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• |α| :=
k∑
j=1

aj , ‖α‖ :=

k∑
j=1

jaj , and |µ| :=
k∑
j=2

mj , ‖µ‖ :=

k∑
j=2

(j − 1)mj ;

• [α, µ]t :=

(∑k
j=t−1 aj −

∑k
j=tmj

at−1

)
, for 2 ≤ t ≤ k;

• [α, µ] :=

k∏
t=2

[α, µ]t.

For example, [α, µ]2 =

(
|α| − |µ|
a1

)
, and if 0 = (0, . . . , 0︸ ︷︷ ︸

k−1

), then [α,0] is the multinomial coeffi-

cient [a1, . . . , ak] :=
(
a1+a2+···+ak

a1

)(
a2+···+ak

a2

)
· · ·
(
ak−1+ak
ak−1

)
.

Remark 3. The case k = 1 will be allowed as well. Then µ = ∅, |µ| = ‖µ‖ = 0, and [α, µ] = 1
for any α = (a1).

Remark 4. Note that the (k − 1)-tuple µ = (m2, . . . ,mk) is indexed by integers from 2 to k,
not from 1 to k − 1. The reason for this becomes clear in Proposition 4.1.

The following result is obtained in [17].

Lemma 3.1. Let α = (a1, . . . , ak) be a k-tuple of nonnegative integers, and µ = (m2, . . . ,mk)
a (k − 1)-tuple of nonnegative integers. Then

[α, µi,j ] = −[αi, µ
j ] + [αj+1, µ

i−1] + [α, µi−1,j+1], for 1 ≤ i ≤ j ≤ k − 1,

where it is understood that [α, µi−1,j+1] = 0 for j = k − 1.

We proceed with some notation from the theory of Gröbner bases. Let R be a domain
and R[x1,= . . . , xk] the polynomial algebra over R in k variables. A monomial on variables
x1, . . . , xk is a product xa11 · · ·x

ak
k ∈ R[x1, x2, . . . , xk], where a1, . . . , ak ∈ N0. The set of all

monomials in R[x1, . . . , xk] will be denoted by M . A term in R[x1, . . . , xk] is a product αm,
where α ∈ R and m ∈M .

Let � be a well ordering of M (a total ordering such that every nonempty subset of M has
a least element) with the property that m1 � m2 implies mm1 � mm2, for all m,m1,m2 ∈M .

For a polynomial f =
∑r
i=1 αimi ∈ R[x1, x2, . . . , xk], such that αi ∈ R \ {0}, let M(f) :=

{mi | 1 ≤ i ≤ r}. We define leading monomial of f , denoted by LM(f), to be max M(f) with
respect to �. The leading coefficient of f , denoted by LC(f), is the coefficient of LM(f) and
the leading term of f is LT(f):=LC(f) · LM(f).

Strong Gröbner basis of an ideal I of R[x1, x2, . . . , xk] can be defined in many equivalent
ways. In this paper, we will define it as it was done in [1].

Definition 3.1. Let G ⊂ R[x1, x2, . . . , xk] be a finite set of non-zero polynomials and IG = 〈G〉
the ideal in R[x1, x2, . . . , xk] generated by G. We say that G is a strong Gröbner basis for IG
(with respect to �) if for each f ∈ IG \ {0} there exists g ∈ G such that LT(g) | LT(f),
i.e., LT(f) = t · LT(g), for some term t. We say that G is minimal strong Gröbner basis if
LT(g′) - LT(g′′), for all distinct g′, g′′ ∈ G.
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In the remainder of the paper, we use the grlex ordering 4 on the monomials in R[x1, . . . , xk]
with x1 > · · · > xk. It is defined by

xa11 xa22 · · ·x
ak
k ≺ x

b1
1 x

b2
2 · · ·x

bk
k if and only if one of the following holds:

1) a1 + a2 + · · ·+ ak < b1 + b2 + . . .+ bk or
2) a1 + a2 + · · ·+ ak = b1 + b2 + . . .+ bk and as < bs, where s = min{i | ai 6= bi}.

As usual, t1 � t2 if and only if t1 = t2 or t1 ≺ t2.

4. Gröbner basis for Ik,n

In this section integers k, n ∈ N are fixed.
Let us define certain polynomials in Z[q][c1, c2, . . . , ck] which will be important in our con-

siderations. For a (k − 1)-tuple µ = (m2, . . . ,mk) of nonnegative integers and m ≥ −k, let

g(m)
µ :=

∑
‖α‖=m+1+‖µ‖

(−1)m+1+|α|[α, µ] Cα,

where the sum is taken over all k-tuples of nonnegative integers α = (a1, a2, . . . , ak) such that
‖α‖ = m+ 1 + ‖µ‖.

Definition 4.1. For a (k − 1)-tuple µ = (m2, . . . ,mk) of nonnegative integers let

gµ := g(n)
µ + (−1)kqg(−k)

µ .

Moreover, let G := {gµ : |µ| ≤ n+ 1}.

In Proposition 5 of [17] leading terms of polynomials g
(n)
µ , for |µ| ≤ n+ 1, were determined.

Slightly modifying this proof, one can obtain the following result on the leading terms of
polynomials gµ.

Proposition 4.1. Let µ = (m2, . . . ,mk) be a (k − 1)-tuple of nonnegative integers such that
|µ| ≤ n+1 (i.e., gµ ∈ G). Then gµ 6= 0 and LT(gµ) = Cµ, where µ = (n+1−|µ|,m2, . . . ,mk).
Moreover, if Cα ∈M(gµ) \ {Cµ}, for a k–tuple α of nonnegative integers, then |α| < n+ 1.

In the following proposition we obtain a recurrence formula for the elements gµ. The proof
of this proposition is very similar to [17, Proposition 7], so we avoid some details.

Proposition 4.2. Let µ = (m2, . . . ,mk) be a (k − 1)–tuple of nonnegative integers and 1 ≤
i ≤ j ≤ k − 1. Then, in polynomial algebra Z[q][c1, c2, . . . , ck], the following identity holds

gµi,j = cigµj − cj+1gµi−1 + gµi−1,j+1 ,

where it is understood that gµi−1,j+1 is equal to zero for j = k − 1.

Proof. It is enough to prove the following: if µ = (m2, . . . ,mk) is a (k−1)–tuple of nonnegative
integers, 1 ≤ i ≤ j ≤ k − 1 and m ≥ −k, then the following identity holds

g
(m)
µi,j = cig

(m)
µj − cj+1g

(m)
µi−1 + g

(m)
µi−1,j+1 ,

where it is understood that g
(m)
µi−1,j+1 is equal to zero for j = k − 1.
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By Lemma 3.1, for m ≥ −k we have

g
(m)
µi,j =

∑
‖α‖=m+1+‖µi,j‖

(−1)m+1+|α|[α, µi,j ]Cα

=
∑

‖α‖=m+1+‖µi,j‖

(−1)m+1+|α| (−[αi, µ
j ] + [αj+1, µ

i−1] + [α, µi−1,j+1]
)
Cα

=
∑

‖α‖=m+1+‖µi,j‖

(−1)m+1+|αi|[αi, µ
j ]Cα −

∑
‖α‖=m+1+‖µi,j‖

(−1)n+1+|αj+1|[αj+1, µ
i−1]Cα

+
∑

‖α‖=m+1+‖µi,j‖

(−1)m+1+|α|[α, µi−1,j+1]Cα.

First, since ‖µi,j‖ = ‖µ‖ + i + j = ‖µ‖ + i − 1 + j + 1 = ‖µi−1,j+1‖ (for j ≤ k − 2),

the last sum is equal to g
(m)
µi−1,j+1 . Also, note that ‖α‖ = m + 1 + ‖µi,j‖ is equivalent to

‖αi‖ = ‖α‖− i = m+ 1 +‖µi,j‖− i = m+ 1 +‖µ‖+ j = m+ 1 +‖µj‖, and similarly equivalent
to ‖αj+1‖ = m+1+‖µi−1‖. So, to finish the proof it is enough to justify the change of variable
αi 7→ α in the first sum, and αj+1 7→ α in the second sum. For the first sum this can be done
in the same way as in the proof of Proposition 7 of [17].

For the second sum, it suffices to show that aj+1 = 0 implies [αj+1, µ
i−1] = 0, where

α = (a1, a2, . . . , ak). If j + 1 < k, then aj+1 = 0 implies [αj+1, µ
i−1]j+2 = 0, and therefore

[αj+1, µ
i−1] = 0. So, we are left with the case j = k − 1. Let us assume to the contrary that

ak = 0 and [αk, µ
i−1] 6= 0. In the proof of Proposition 7 of [17], it was proven that ak = 0 and

[αk, µ
i−1] 6= 0 implies ‖α‖ ≤ ‖µ‖+ i− 1. However,

‖µ‖+ i− 1 = ‖µi−1‖ = ‖αk‖ −m− 1 ≤ ‖αk‖+ k − 1 < ‖α‖,

which is clearly a contradiction. �

One of the consequences of this proposition is that for every (k − 1)-tuple of nonnegative
integers µ = (m2, . . . ,mk) one has gµ ∈ 〈G〉 (see [17, Corollary 8]).

Let us now return to the description (2.4). We define

σ̃m = σm + (−1)kqσm−n−k, for m ≥ 0, (4.1)

with the reminder that σj = 0 for j < 0, and σ0 = 1. Note that σ̃n+i = σn+i, for 1 ≤ i ≤ k−1,
and σ̃n+k = σn+k + (−1)kq. Therefore, σ̃n+i ∈ Ik,n, for 1 ≤ i ≤ k. In the following proposition
we prove that σ̃n+i ∈ Ik,n, for all i ≥ 1.

Proposition 4.3. For m ≥ k + n+ 1

σ̃m = −
k∑
i=1

(−1)iciσ̃m−i.



8 Z. Z. PETROVIĆ AND M. RADOVANOVIĆ

Proof. Using the formula (2.5) and the definition (4.1) we have

σ̃m = σm + (−1)kqσm−n−k = −
k∑
i=1

(−1)iciσm−i − (−1)kq

k∑
i=1

(−1)iciσm−n−k−i

= −
k∑
i=1

(−1)ici
(
σm−i + (−1)kqσm−i−n−k

)
= −

k∑
i=1

(−1)iciσ̃m−i,

which completes the proof. �

In the following lemma we give an identity which expresses polynomials g(i,0,...,0) in terms
of polynomials σ̃n+1+i.

Lemma 4.1. For s ≥ 0, let s denote the (k−1)-tuple (s, 0, . . . , 0). Then the following identity
holds

gs =

s∑
i=0

(
s

i

)
(−1)ics−i1 σ̃n+1+i.

Proof. By the definition of σ̃n+1+i, it is enough to prove that for m ≥ −k the following identity
holds

g(m)
s =

s∑
i=0

(
s

i

)
(−1)ics−i1 σm+1+i.

This identity can be proven by induction on s ≥ 0 similarly as in Lemma 9 of [17] – it is enough

to note that g
(m)
0 = σm+1 and g

(m)
s = c1g

(m)
s−1 − g

(m+1)
s−1 , holds for all m ≥ −k and s ≥ 1. �

As in [17], using Proposition 4.2, Lemma 4.1 and Lemma 4.3, instead of the corresponding
results, we obtain the main theorem of this section.

Theorem 4.4. The set G is a minimal strong Gröbner basis, with respect to the grlex ordering
4 defined by c1 > · · · > ck, for the ideal Ik,n in Z[q][c1, . . . , ck] .

Let λ = (l1, . . . , lk) be a k-tuple of nonnegative integers such that |λ| = n + 1. Then, for
µ = (l2, . . . , lk) we have gµ = 0 in QH∗(Gk,n;Z), and therefore

Cλ =
∑

‖α‖=n+1+‖µ‖
α 6=λ

(−1)n+|α|[α, µ]Cα + q
∑

‖α‖=−k+1+‖µ‖

(−1)|α|[α, µ]Cα. (4.2)

By Proposition 4.1, this identity is in fact the presentation of Cλ in the additive basis Bk,n
(see Section 1). Also, note that these formulas completely determine the multiplication in
QH∗(Gk,n). Therefore, (4.2) can be understood as a Pieri-type formula for the elements of the
additive basis Bk,n.

Example 1. In QH∗(G2,4) we have the following identities (which completely determine mul-
tiplication):

c51 = 4c31c2 − 3c1c
2
2 c41c2 = 3c21c

2
2 − c32 − q

c31c
2
2 = 2c1c

3
2 + qc1 c21c

3
2 = c42 + qc21 − qc2

c1c
4
2 = qc31 − 2qc1c2 c52 = qc41 − 3qc21c2 + qc22.
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5. Recurrence formulas for Kostka numbers

In this section we obtain a recurrence formulas for quantum Kostka numbers using results
from the previous section. Additionally, we use these formulas to obtain new recurrence for-
mulas for (classical) Kostka numbers.

If α = (a1, a2, . . .) and β = (b1, b2, . . .) are partitions, then we write α ≥ β if and only if
a1 + a2 + . . .+ ai ≥ b1 + b2 + . . .+ bi, for all i ∈ N. It is a well-known fact that Kαβ 6= 0 if and
only if α ≥ β.

For a k-tuple α = (a1, . . . , ak) of nonnegative integers, let α→ denote the partition which
has exactly ai components equal to i, for 1 ≤ i ≤ k (for example, if α = (3, 2, 0, 3), then
α→ = (4, 4, 4, 2, 2, 1, 1, 1)). Note that |α| = l(α→) and ‖α‖ = |α→|.

Using this notation, identity (2.6) can be written in the following way: if α is a k-tuple of
nonnegative integers, then

Cα =
∑
m≥0

|λ|=‖α‖−m(n+k)

qmKk,n
λα→

σλ∗ .

Plugging these in the expression for gµ, where µ is a fixed (k − 1)-tuple of nonnegative
integers, and using the fact that for every k-tuple of nonnegative integers β one has Cβ ·gµ = 0
(in QH∗(Gk,n)), we get

0 =
∑

‖α‖=n+1+‖µ‖

(−1)n+1+|α|[α, µ]Cα+β + q
∑

‖α‖=−k+1+‖µ‖

(−1)1+|α|[α, µ]Cα+β

=
∑
m≥0

‖α‖=n+1+‖µ‖

∑
|λ|=‖µ‖+‖β‖+n+1−m(n+k)

(−1)n+1+|α|[α, µ]qmKk,n
λ (α+β)→

σλ∗

+ q
∑
m≥0

‖α‖=−k+1+‖µ‖

∑
|λ|=‖µ‖+‖β‖−k+1−m(n+k)

(−1)1+|α|[α, µ]qmKk,n
λ (α+β)→

σλ∗

= (−1)n+1
∑

|λ|=‖µ‖+‖β‖+n+1

 ∑
‖α‖=n+1+‖µ‖

(−1)|α|[α, µ]Kk,n
λ (α+β)→

σλ∗

+ (−1)n+1
∑
m≥1

|λ|=‖µ‖+‖β‖+n+1−m(n+k)

qm

 ∑
‖α‖=n+1+‖µ‖

(−1)|α|[α, µ]Kk,n
λ (α+β)→

σλ∗

+ (−1)n+1
∑
m≥1

|λ|=‖µ‖+‖β‖+n+1−m(n+k)

qm

 ∑
‖α‖=−k+1+‖µ‖

(−1)n+|α|[α, µ]Kk,n
λ (α+β)→

σλ∗

(in these sums α’s denote k-tuple of nonnegative integers, and λ ⊆ n× k partitions).
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Therefore, in view of the additive basis Σk,n, for every partition λ such that l1 ≤ k, l(λ) ≤ n
and |λ| = ‖µ‖+ ‖β‖+ n+ 1−m(k + n), for some m ≥ 0, we have

m = 0 : 0 =
∑

‖α‖=n+1+‖µ‖

(−1)|α|[α, µ]Kk,n
λ (α+β)→

, (5.1)

m ≥ 1 : 0 =
∑

‖α‖=n+1+‖µ‖

(−1)|α|[α, µ]Kk,n
λ (α+β)→

(5.2)

+
∑

‖α‖=−k+1+‖µ‖

(−1)n+|α|[α, µ]Kk,n
λ (α+β)→

.

In what follows we will use these identities to obtain recurrence formulas for quantum Kostka
numbers, without resorting to the rim-hook algorithm.

Note that for m = 0 one has Kk,n
λµ = Kλµ, and therefore the identity (5.1) is nothing else

than the identity (21) from [17]. Additionally, by Remark 2, if l(µ) ≤ n, then Kk,n
λµ = 0 for any

λ such that |λ| 6= |µ|. Therefore, we may reduce the problem of computing quantum Kostka

numbers Kk,n
λµ to the case when |µ| 6= |λ| and l(µ) > n.

So, we prove that the identity (5.2) can be used to obtain (all) quantum Kostka numbers

Kk,n
λ ν , such that |ν| 6= |λ| and l(ν) > n, from (classical) Kostka numbers. Let Kk,n

λ ν be a
quantum Kostka number that satisfies this condition. Then, there exists the unique k-tuple
γ of nonnegative integers, such that γ→ = ν. Note that γ satisfies |γ| > n, and therefore
there exist k-tuples τ and β of nonnegative integers, such that τ + β = γ and |τ | = n + 1.
Furthermore, if τ = (t1, t2, . . . , tk), let µ := (t2, . . . , tk). Let us observe the identity 5.2 for

these λ and µ. The summand for α = τ in the first sum is (−1)|τ |[τ, µ]Kk,n
λ,ν = (−1)n+1Kk,n

λ,ν ,
and therefore this identity can be rewritten as

Kk,n
λ ν =

∑
‖α‖=n+1+‖µ‖

α6=τ

(−1)n+|α|[α, µ]Kk,n
λ (α+β)→

+
∑

‖α‖=−k+1+‖µ‖

(−1)|α|[α, µ]Kk,n
λ (α+β)→

. (5.3)

Furthermore, as in Proposition 4.1, we conclude that for any α that appears in one of the sums
on the right-hand side of the previous identity one has |α| ≤ n. Therefore, by the identity

(5.3), Kk,n
λ ν is a linear combination of elements Kk,n

λ ν′ , such that l(ν′) < l(ν), which proves the
claim stated at the beginning of this paragraph.

Let us compare identities (2.7) and (5.3). Note that in the identity (2.7) for Kk,n
λ ν all

summands have the same ν, while in the identity (5.3) all summands have the same λ. This
“duality” (used for m = 1 and suitable k and n) will allow us to obtain new recurrence formulas
for Kostka numbers.

Let Kχη be Kostka number we want to calculate (χ and η are partitions such that |χ| = |η|).
Since Kχη = 0 if l(χ) > l(η), we may assume that l(χ) ≤ l(η). Let χ = (h1, h2, . . . , hs+1),
η = (e1, e2, . . . , el), k := h1 + 1 and n := l(η) − 1 (see Figure 1). Furthermore, let λ be the
partition obtained from χ by removing its first row, i.e., λ = (l1, l2, . . . , ls), where li := hi+1,
for 1 ≤ i ≤ s, and ν := (e1 + 1, e2 + 1, . . . , en+1 + 1) (l(η) = n+ 1). Then |λ| = |ν| − (n+ k),

l1 < k, and l(λ) ≤ n, so Kk,n
λ ν is well-defined and we can apply the formula (2.7). By this

formula Kk,n
λ ν is a sum of numbers ±Kτ ν , where τ = (t1, t2, . . .) is a partition obtained from
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λ by adding to it a (k + n)–rim hook. Note that if t1 < k, then l(τ) > n + 1 = l(ν), and so

Kτ ν = 0. Therefore, Kk,n
λ ν = Kρ ν , where ρ = (r1, r2, . . . , rn+1) is the unique partition that

satisfies r1 = k and is obtained from λ by adding a (k+n)-rim hook (alternatively, this equality
can be obtained using combinatorial description of quantum Kostka numbers). Additionally,

since l(ρ) = l(ν), from [17, Theorem 12(iii)] we have Kχη = Kk,n
λ ν .

Let us observe the identity (5.3) for Kk,n
λ ν . The first sum of this identity is a linear combi-

nation of the elements Kk,n
λ ν′ , where l(ν′) < l(ν) = n + 1 and |ν′| = |ν| > |λ|, which are, by

Remark 2, all equal to zero. Since all quantum Kosta numbers that appear in the second sum
are in fact (classical) Kostka numbers, and β = (0, . . . , 0), we have obtained the previously
announced identity

Kχη =
∑

‖α‖=‖µ‖−k+1

(−1)|α|[α, µ]Kλα→ . (5.4)

χ = (5, 4, 3, 1) λ = (4, 3, 1) ρ = (6, 5, 4, 2, 1, 1, 1)

η = (4, 4, 1, 1, 1, 1, 1) ν = (5, 5, 2, 2, 2, 2, 2) ν = (5, 5, 2, 2, 2, 2, 2)

Figure 1. Auxiliary partitions when calculating Kχ η , for χ = (5, 4, 3, 1) and η = (4, 4, 1, 1, 1, 1, 1).

So, let us introduce the following notation. For a partition χ, let χ be the partition obtained

from χ by removing its first row. For a partition η let η+
← denote the partition obtained from

η by the following sequence of operations. Add a column of height l(η) to η to obtain η′ (this
column is now the first column of η′). If θ = (t1, t2, . . . , tk) is the unique k-tuple of nonnegative
integers such that θ→ = η′, then η+

← := (t2, . . . , tk). Since all (nonzero) entries of η′ are greater
than 1, we have t1 = 0, and therefore |η+

←| = |θ| = l(η′) = l(η). Also, note that

‖η+
←‖ = ‖θ‖ − |θ| = |θ→| − l(θ→) = |η′| − l(η′) = |η| = |χ|.
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Theorem 5.1. For partitions χ = (h1, h2, . . .) and η such that |χ| = |η| and χ ≥ η, the
following identity holds

Kχη =
∑

‖α‖=|χ|−h1

(−1)|α|[α, η+
←]Kχα→ ,

where the sum is taken over all (h1 + 1)–tuples α of nonnegative integers that satisfies ‖α‖ =
|χ| − h1. �

We illustrate this result with the following two examples.

Example 2. Note that by [16, Theorem 1] computing Kχη is hard even if l(χ) = 2. Let us
apply identity (5.4) in this case, i.e., for χ = (h1, h2). Since each Kχα→ that appears in the

sum is equal to 1, we have

Kχη =
∑
‖α‖=h2

(−1)|α|[α, η+
←],

where the sum is taken over all (h1 + 1)–tuples α of nonnegative integers.

Example 3. Let χ = (a + 1, 1b), i.e., χ is a tableaux of hook shape. Since χ = (1b), we have

Kχα→ 6= 0 only if α→ = (1b), i.e., only if α = (b). Therefore

Kχη = (−1)b[(b), η+
←] = (−1)b

(
b− |η+

←|
b

)
= (−1)b

(
b− l(η)

b

)
=

(
l(η)− 1

b

)
.

Remark 5. The set Σ′k,n = {σλ : l(λ) ≤ k, l1 − lk ≤ n} is an additive basis (over Z) for

QH∗(Gk,n) (see [5, 10]). Additionally, the representation of elements Cµ in this basis is given
by numbers Kcyc

λ µ (Kcyc
λ µ is the number of cylindric tableaux of type λ and content µ), which

appear in many different contexts (see for example [9, 15]). Similarly as we did in this section,
one can also obtain recurrence formulas for these numbers.

6. Recurrence formulas for inverse Kostka numbers

In this section we obtain recurrence formulas for inverse Kostka numbers. As an application
of these formulas, we obtain formula for the Steenrod mod 3 operation in terms of Schubert
classes. We keep the notation from the previous section.

From the definition of inverse Kostka numbers, for a partition µ, such that l(µ∗) ≤ k, in
QH∗(Gk,n) the following holds

σµ∗ =
∑
‖α‖=|µ|

K−1
α→ µC

α.

As in the previous section, we will use this formula for suitable µ∗ and combine it with rim
hook algorithm and formula (4.2).

For a partition χ = (h1, h2, . . .), let χ← denote the unique h1-tuple such that (χ←)→ = χ.
Note that l(χ) = |χ←|.

Let ν∗ = (n∗1, n
∗
2, . . .) be a partition such that l(ν∗) ≤ k − 1 and n∗1 = n. Additionally, let

µ∗ = (m∗1,m
∗
2, . . .) be the partition obtained from ν∗ by adding (k+n)-rim hook and such that

l(µ∗) = k. Note that m∗1 = n+ 1. By the rim hook algorithm we have

σµ∗ = qσν∗ ,
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and therefore ∑
‖α‖=|µ|

K−1
α→ µC

α = q
∑
‖β‖=|ν|

K−1
β→ νC

β .

Note that l(µ) = n + 1 and l(ν) = n, and therefore all nonzero summands in the first sum
satisfy l(α→) = |α| ≤ n + 1, and l(β→) = |β| ≤ n in the second sum. So, all summands in
the previous identity, except the ones with |α| = n+ 1, are in the basis Bk,n. Therefore, after
expanding monomials Cα with |α| = n+1 using formula (4.2), i.e., in basis Bk,n, and collecting
monomials that contain q, we obtain

q
∑

|α|=n+1

K−1
α→ µ

∑
‖β‖=−k+1+‖α‖

(−1)|β|[β, α]Cβ = q
∑
‖β‖=|ν|

K−1
β→ νC

β .

Finally, looking at the basis Bk,n, we have

K−1
β→ ν = (−1)|β|

∑
|α|=n+1

‖α‖=‖β‖+k−1

[β, α]K−1
α→ µ. (6.1)

If in this identity we denote β→ = (̃b1, b̃2, . . .), then b̃1 ≤ k. So, if b̃1 = k, then identity (6.1)
can be written in the following way (that does not depend on k and n).

Theorem 6.1. Let χ = (h1, h2, . . .) and ν = (n1, n2, . . .) be partitions such that |χ| = |ν| and
χ ≥ ν. If µ = (m1,m2, . . .) is the partition obtained from ν by adding (l(ν) +h1)-rim hook and
such that m1 = h1, then the following identity holds

K−1
χ ν = (−1)l(χ)

∑
α

[χ←, α]K−1
α→ µ,

where the sum is taken over all h1-tuples α of nonnegative integers such that |α| = l(ν) + 1
and ‖α‖ = |χ|+ h1 − 1.

First, we will show that Theorem 6.1 can be used to obtain all inverse Kostka numbers. For
this we will need the following result (named Cancellation principle in [7]), which easily follows
from the definition of inverse Kostka numbers.

Proposition 6.2. For partitions λ = (l1, l2, . . . , ln) and µ = (m1,m2, . . . ,mn) one has:

(1) if li = mi, for 1 ≤ i ≤ k, then

K−1
λµ = K−1

(lk+1,lk+2,...,ln) (mk+1,mk+2,...,mn);

(2) if λ 6≥ µ, then K−1
λµ = 0.

By this proposition, it is enough to provide an algorithm for calculating K−1
χ ν , for partitions

χ = (h1, h2, . . .) and ν = (n1, n2, . . .) such that h1 > n1 and l(χ) ≤ l(ν). So, let us consider
the identity from Theorem 6.1 for partitions χ and ν that satisfy these conditions. We will
show that this identity implies a representation of K−1

χ ν as a linear combination of numbers

K−1
χ′ ν′ , where χ′ = (h′1, h

′
2, . . .) and ν′ = (n′1, n

′
2, . . .) are partitions such that l(ν′) < l(ν), or

l(ν′) = l(ν) and h1 − n1 > h′1 − n′1 ≥ 1, which obviously gives a desired algorithm.
Let us consider K−1

α→ µ from the right hand side of the identity from Theorem 6.1. If α→ =
(ã1, ã2, . . .), then we have that h1 ≥ ã1 ≥ m1, i.e., ã1 = h1, and l(α→) = l(µ) = l(ν) + 1.
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So, if i := max{j : ãj = mj}, then for α′ = (ãi+1, ãi+2, . . .) and µ′ = (mi+1,mi+2, . . .) by
Cancellation principle we have

K−1
α→ µ = K−1

α′ µ′ .

So, it is enough to consider summands that satisfy i = 1. Then, one has m2 = n1 + 1, i.e.,
1 ≤ ã2 −m2 ≤ ã1 − (n1 + 1) < h1 − n1, which completes our proof.

6.1. Application to mod p Steenrod operation. For positive integers a1 > a2 > . . . > am
and n1, n2, . . . , nm, let (an1

1 , an2
2 , . . . , anm

m ) denote the partition

(a1, . . . , a1︸ ︷︷ ︸
n1

, a2, . . . , a2︸ ︷︷ ︸
n2

, . . . , am, . . . , am︸ ︷︷ ︸
nm

).

For i ≥ 0, let Sqi : Hk(−;Z2) // Hk+i(−;Z2) be the Steenrod squares and, for p ≥ 3,
Pi : Hk(−;Zp) // Hk+2i(p−1)(−;Zp) be the Steenrod power operations. Using the fact that

H∗(BU(n);Zp) ∼= (Zp[x1, . . . , xn])
Sn where Chern classes correspond to elementary symmetric

functions under this isomorphism, and properties of power operations (see [21]), one arrives at
the formula (see [4])

Pick+i = m(pi,1k),

where m(pi,1k) is the monomial symmetric function. For more information concerning research

devoted to obtain explicit formulas expressing Pick+i in terms of Chern classes, the reader
may consult [12, 19] and the references therein.

Since these functions are related to Schur functions via Kostka numbers, we have the fol-
lowing equality:

Picm =
∑

|µ|=m+(p−1)i

K−1
(pi,1m−i),µsµ. (6.2)

Corresponding formula in the cohomology of BO(n) holds for application of Steenrod squares
to Stiefel-Whitney classes. By formula (6.2), to express Steenrod power operations in terms
of Schubert classes it is enough to determine numbers K−1

(pb,1a), µ
, for a, b ∈ N0 and partition µ

that satisfy |µ| = a+ pb.
In what follows we calculate these numbers for p = 2 and p = 3. Note that, by Cancelation

principle, if µ = (m1,m2, . . .) satisfies m1 > p, then K−1
(pb,1a), µ

= 0, so we only need to consider

the case m1 ≤ p.
Case p = 2. In this case we want to find K−1

(2b,1a), (2d,1c)
, where a, b, c, d ∈ N0 are such that

a+ 2b = c+ 2d.
Let χ = (2b, 1a) and ν = (2d, 1c). By Cancellation principle, if d > b, then K−1

χ ν = 0, and if
d ≤ b we have

K−1
χ ν = K−1

(2b−d,1a), (1c)
.

Now, by Theorem 6.1, we have

K−1
(2b−d,1a), (1c)

= (−1)a+b−d
∑
α

[(a, b− d), α]K−1
α→ (2c+1),

where the sum is over all pairs α of nonnegative integers such that |α| = c+ 1 and ‖α‖ = c+ 1.
Obviously, the only α that satisfies these conditions is α = (0, c + 1). Since c = 2(b − d) + a,
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we have

[(a, b− d), α] =

(
a+ b− d− c− 1

a

)
=

(
d− b− 1

a

)
= (−1)a

(
a+ b− d

a

)
,

and therefore the following result (cf. [7, 8]).

Proposition 6.3. For nonnegative integers a, b, c, d such that a+ 2b = c+ 2d, one has

K−1
(2b,1a), (2d,1c)

=

{
0, if d > b

(−1)b−d
(
a+b−d
a

)
, otherwise

.

As mentioned in [7], this result easily implies Wu formula (see [24]).

Case p = 3. In this case we want to find K−1
(3b,1a) (3e,2d,1c)

, where a, b, c, d, e ∈ N0 are such that

a+ 3b = c+ 2d+ 3e.
Let χ = (3b, 1a) and ν = (3e, 2d, 1c). Again, by Cancellation principle, if e > b, then

K−1
χ ν = 0, and if b ≤ e we have

K−1
χ ν = K−1

(3t,1a), (2d,1c)
,

where t = b− e.
Let us first consider the case c = 0. By Theorem 6.1, we have

K−1
(3t,1a), (2d)

= (−1)a+t
∑
α

[(a, 0, t), α]K−1
α→ (3d+1)

, (6.3)

where the sum is over triples α of nonnegative integers such that |α| = d + 1 and ‖α‖ =
3t + a + 2 = 2d + 2. Obviously, the only α that satisfies these conditions is α = (0, 0, d + 1),
and therefore

K−1
(3t,1a), (2d)

= (−1)a+t[(a, 0, t), (0, d+ 1)] = (−1)a+t

(
a+ t− d− 1

a

)
.

Note that this formula gives a closed form expression for polynomials hb(t) considered in
Corollary 6 and Example 2 of [7].

Finally, we consider the general case, i.e., c ≥ 0. By Theorem 6.1 we have

K−1
(3t,1a), (2d,1c)

= (−1)a+t
∑

u+v+w=c+d+1
v+2w=c+2d+2

[(a, 0, t), (v, w)]K−1
(3w,2v,1u), (3d+1,2c)

,
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where u, v, w ≥ 0. Note that by Cancellation principle, all nonzero summands in the last sum
satisfy w ≥ d+ 1. So, by identity (6.3) and since a+ t = c+ 2d− 2t, we have

K−1
(3t,1a), (2d,1c)

= (−1)a+t

d+1+bc/2c∑
w=d+1

[(a, 0, t), (c+ 2d+ 2− 2w,w)]K−1
(3w−d−1,2c+2d+2−2w,1w−d−1), (2c)

= (−1)a+t+c

d+1+bc/2c∑
w=d+1

(
w − 2t− 2

a

)(
−1

w − d− 1

)(
d− w

c+ 2(d+ 1− w)

)

= (−1)a+t+c

bc/2c∑
s=0

(−1)s
(
s+ d− 2t− 1

a

)(
−s− 1

c− 2s

)
.

Proposition 6.4. For nonnegative integers a, b, c, d, e that satisfy a + 3b = c + 2d + 3e, one
has:

(1) if b < e, then K−1
(3b,1a), (3e,2d,1c)

= 0;

(2) if b ≥ e, then

K−1
(3b,1a), (3e,2d,1c)

= (−1)a+b+e

bc/2c∑
s=0

(−1)s
(
s+ d+ 2e− 2b− 1

a

)(
c− s
c− 2s

)
.

This proposition yields formula for the Steenrod mod 3 operation in the basis given by
Schubert classes, i.e., Schur functions. Since a Schubert class can be represented in terms of
Chern classes by Giambelli formula (see [13]), i.e.,

σ(3e,2d,1c) = det

 cc+d+e cc+d+e+1 cc+d+e+2

cd+e−1 cd+e cd+e+1

ce−2 ce−1 ce

 ,

this proposition also yield mod 3 variant of Wu formula.
Applying the algorithm explained after Theorem 6.1, in a similar way as above one can

obtain formula for the Steenrod mod p operation, for any specified prime number p (cf. [12]).
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