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Abstract

In order to gain better understanding of the multiplication in the integral cohomology of the complex
Grassmann manifold Gk,n(C) (in the Borel’s picture) a minimal strong Gröbner basis for the ideal Ik,n
determining this cohomology is obtained. These results are applied to obtain recurrence relations among
Kostka numbers which completely determine these numbers. Corresponding results for real Grassmann
manifolds are also presented.
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1. Introduction

In this paper, we denote by N0 the set of nonnegative integers and by N the set of positive integers.
Let k, n ∈ N. The complex (resp. real) Grassmann manifold Gk,n(C) (resp. Gk,n(R)) is the set of all k-
dimensional subspaces of the vector space Cn+k (resp. Rn+k), with the manifold structure coming from the
natural identification Gk,n(C) = U(n + k)/U(n) × U(k) (resp. Gk,n(R) = O(n + k)/O(n) × O(k)). In this
paper we study the Z-cohomology (resp. Z2-cohomology) of Gk,n(C) (resp. Gk,n(R)).

There are several ways to describe H∗(Gk,n(C);Z) – the most notable are the ones using Schubert classes
and using Chern classes of the canonical vector bundle over Gk,n(C) (Borel’s description from [2]). Both of
these descriptions allow us to easily obtain an additive basis for H∗(Gk,n(C);Z). The first will be denoted by
Σk,n and the second by Bk,n (see Section 2). So, in order to understand further the multiplicative structure
of H∗(Gk,n(C);Z), it is of interest to obtain formulas that can be used to represent products of elements of
Σk,n (resp. Bk,n) in the basis Σk,n (resp. Bk,n). It is well-known that in Σk,n this can be done using Pieri’s
formula. One of the goal of this paper is to get a better understanding of H∗(Gk,n(C);Z), by studying it
through the additive basis Bk,n. The change from basis Σk,n to Bk,n is established by a Kostka matrix,
whose elements are hard to compute (see [11]). Therefore, in order to perform concrete calculations in Bk,n,
we cannot rely only on the calculation in the basis Σk,n, but we need to develop specific techniques for
calculating in Bk,n. In this paper, this is done by constructing (suitable) Gröbner bases for the ideals that,
by Borel’s description, determine H∗(Gk,n(C);Z).

By Borel’s description, the Z2-cohomology of Grassmannian Gk,n(R) is a polynomial algebra in Stiefel-
Whitney classes of the canonical vector bundle over Gk,n(R) modulo certain ideal. Although the description
of this ideal is simple enough, concrete calculations in the cohomology of real Grassmannians may be rather
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difficult to perform. In various applications it is important to determine if a certain cohomology class, given
in terms of Stiefel-Whitney classes, is zero or not — for example, in determining the span of Grassmannians,
in discussing immersions and embeddings in Euclidean spaces, in the determination of cup-length (which is
related to the Lusternik-Schnirelmann category), in some geometrical problems which may be reduced to
the question of the existence of a non-zero section of a bundle over a Grassmann manifold, etc. It is evident
from [6], [9] and [12], that having a Gröbner basis for the ideal that determines H∗(Gk,n(R);Z2), can be
very helpful for answering these kind of questions. In this paper, using the corresponding result for complex
Grassmannians, we obtain Gröbner bases for these ideals.

The paper is organized in the following way. In Section 2 we give a brief overview of the theory of
symmetric functions and the Z-cohomology of complex Grassmannian (that is relevant to our work), as well
as some definitions and basic propositions of the theory of Gröbner bases. In Section 3 we construct (minimal)
strong Gröbner bases for the ideals determining H∗(Gk,n(C);Z). This extends the results obtained in [13],
where Gröbner bases were obtained for k ≤ 3. As an immediate consequence of these results, in Section 4
we derive a multiplication formula for elements of the additive basis Bk,n of H∗(Gk,n(C);Z) (formula (19)),
which can be understood as the analogue of the Pieri’s formula. In Section 5 we use the results from Section
3, and obtain a recurrence formula that (uniquely) determines Kostka numbers. In [4] and [5] recurrence
formulas of similar flavour were obtained for inverse Kostka matrix. Finally, in Section 6, using the results
for the complex Grassmannians, we construct Gröbner bases for the ideals that, by Borel’s description,
determine the Z2-cohomology of real Grassmannians, thus completing the research done in [9] and [12].

2. Preliminaries

2.1. Symmetric functions and Z-cohomology of complex Grassmannians

A partition λ = (l1, l2, . . . , ls) is a non-increasing sequence of integers l1 ≥ l2 ≥ · · · ≥ ls ≥ 0. Furthermore,
l(λ) := max{t : lt 6= 0} is the length and |λ| := l1 + l2 + · · ·+ ls is the weight of the partition λ. For λ such
that l1 ≤ n and l(λ) ≤ k we will write λ ⊂ k×n, since its Young diagram is contained in the rectangle k×n
(see Figure 1). We will say that partitions (l1, l2, . . . , ls) and (l1, l2, . . . , ls, 0, . . . , 0︸ ︷︷ ︸

k

) are the same (for any k).

This allows us to introduce addition in the set of all partitions, as addition of the appropriate vectors.

Figure 1. Young diagram of partition λ = (4, 2, 1, 1, 1) (on the left) and partition λ∗ = (5, 2, 1, 1) (on the right).

In the set of all partitions we can introduce a partial order ≥ (called the dominance order) in the following
way: for partitions λ = (l1, . . . , ls) and µ = (m1, . . . ,ms) one has λ ≥ µ if |λ| = |µ| and

l1 + l2 + · · ·+ li ≥ m1 +m2 + · · ·+mi

for all i such that 1 ≤ i ≤ s.
For λ ⊂ k× n its conjugate partition λ∗ ⊂ n× k is the partition obtained from λ by diagonal symmetry.
For a partition λ and a vector µ with nonnegative integer components, the Kostka number Kλµ is defined

as the number of semistandard Young tableaux with shape λ and type µ (see [14, p. 311]). Apart from
obvious combinatorial interest in these numbers, they play a prominent role in other fields of mathematics:
representation theory, topology, geometry, etc. In this paper we will study these numbers through the theory
of symmetric functions and cohomology of Grassmannians.

Let Λk be the ring of symmetric functions in the variables x1, x2, . . . , xk. We recall some Z-bases of Λk
which are going to be important for us.
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For a k-tuple α = (a1, . . . , ak) of nonnegative integers, let aα = det(xaij )k×k. Schur’s function associated
to a partition λ of length at most k, denoted by sλ, is defined as aλ+δ/aδ, where δ = (k − 1, k − 2, . . . , 0).

For 1 ≤ m ≤ k, let em ∈ Λk (resp. hm ∈ Λk) denote the elementary (resp. complete) symmetric function
of degree m. The following identities hold: em = s(1m) and hm = s(m), where (1m) for every m ≤ k denotes
the partition consisting of m ones (see [8, p. 10]).

Additionally, for a partition λ = (l1, l2, . . . , ls) such that l1 ≤ k, let eλ = el1el2 · · · els (resp. hλ =
hl1hl2 · · ·hls). The following is well-known (see [8], [14]).

Proposition 1. Each of the following sets forms a Z-basis for Λk:

1) {sλ : λ is a partition such that l(λ) ≤ k};

2) {eλ : λ is a partition such that l1 ≤ k};

3) {hλ : λ is a partition such that l1 ≤ k}.

The transition between these bases is achieved by Kostka numbers, i.e., for a partition µ one has (see
[14, Corollary 7.12.4] and [14, p. 335])

hµ =
∑
λ

Kλµsλ, eµ =
∑
λ

Kλµsλ∗ , (1)

where the sums are over all partitions λ, |λ| = |µ|, that satisfy l(λ) ≤ k for the first one, and l1 ≤ k for the
second. Since Kλλ = 1 and Kλµ 6= 0 only if λ ≥ µ (see [14, Proposition 7.10.5]), if we extend dominance
order to any linear order on the set of all partitions, the matrix (Kλµ) is lower triangular with ones on the
main diagonal.

Let n, k ∈ N, V := Cn+k and a complete flag

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ Vn+k = V.

For a partition λ ⊂ k × n, λ = (l1, l2, . . . , lk), observe the associated Schubert variety

Xλ = {W ∈ Gk,n : dim(W ∩ Vn+i−li) ≥ i, 1 ≤ i ≤ k}.

Denote by σλ the class of Xλ in the cohomology ring H∗(Gk,n(C);Z). Then Σk,n := {σλ : λ ⊂ k×n} forms
an additive basis of this ring (see [8]). Moreover, the multiplication in this ring is determined by the Pieri’s
formula

σλ · σ(m) =
∑
ν

σν ,

where the sum is over all partitions ν which can be obtained by adding m boxes to Young’s diagram of λ
with no two in the same column. This formula leads to a surjective morphism of rings

φk,n : Λk → H∗(Gk,n(C);Z),

given by sλ 7→ σλ for λ ⊂ k × n, and sλ 7→ 0 for λ 6⊂ k × n (see [8, Corollary 3.2.9]).
One other standard presentation of the cohomology ring of the Grassmannians is due to Borel. By this

description
H∗(Gk,n(C);Z) ∼= Z[c1, c2, . . . , ck]/Ik,n,

where c1, c2, . . . , ck are the Chern classes of the canonical complex vector bundle γk over Gk,n, and Ik,n =
(cn+1, cn+2, . . . , cn+k) is the ideal generated by dual classes. These dual classes satisfy

(1 + c1 + c2 + · · ·+ ck)(1 + c1 + c2 + · · · ) = 1,

which leads to

cm+k = −
k∑
i=1

cicm+k−i, for m ≥ 1, (2)
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and
cr =

∑
a1+2a2+···+kak=r

(−1)a1+a2+···+ak [a1, a2, . . . , ak]ca11 c
a2
2 · · · c

ak
k , r ≥ 1 (3)

where [a1, a2, . . . , ak] :=
(
a1+a2+···+ak

a1

)(
a2+···+ak

a2

)
· · ·
(
ak−1+ak
ak−1

)
is the multinomial coefficient.

It is well-known that identities

σ(1i) = (−1)ici, 1 ≤ i ≤ k, and σ(i) = ci, 1 ≤ i ≤ n,
hold in H∗(Gk,n(C);Z). From the first one, in view of (1) and the morphism φk,n, we obtain the formula

cm1
cm2
· · · cms = (−1)|µ|

∑
λ

Kλµσλ∗ , (4)

where µ = (m1,m2, . . . ,ms) is a partition such that m1 ≤ k, and the sum is over all partitions λ ⊂ n × k,
such that |λ| = |µ|. Particularly, if we restrict attention to partitions µ = (m1,m2, . . . ,ms) such that
µ ⊂ n × k (i.e., s ≤ n and m1 ≤ k), using (4), the fact that Σk,n is an additive basis for H∗(Gk,n(C);Z)
and the fact that the Kostka matrix (Kλµ) is lower triangular with ones on the main diagonal, we obtain
the following result.

Proposition 2. The set

Bk,n := {cm1
cm2
· · · cms : s ≤ n, 1 ≤ ms ≤ · · · ≤ m1 ≤ k} = {ca11 c

a2
2 · · · c

ak
k : a1 + a2 + · · ·+ ak ≤ n}

is an additive basis for H∗(Gk,n(C);Z).

Finally, we note that, when calculating Kostka number Kλµ, we may assume that µ is a partition. This is
a consequence of the well-known fact that Kλµ is invariant under permutations of coordinates of the vector
µ.

2.2. Gröbner bases
Let R be a principal ideal domain and R[x1, x2, . . . , xk] the polynomial algebra over R in k variables. A

monomial on variables x1, x2, . . . , xk is a product xa11 x
a2
2 · · ·x

ak
k ∈ R[x1, x2, . . . , xk], where a1, a2, . . . , ak ∈

N0. The set of all monomials in R[x1, x2, . . . , xk] will be denoted by M . A term in R[x1, x2, . . . , xk] is a
product αm, where α ∈ R and m ∈M .

Let � be a well ordering of M (a total ordering such that every nonempty subset of M has a least
element) with the property that m1 � m2 implies mm1 � mm2, for all m,m1,m2 ∈M .

For a polynomial f =
∑r
i=1 αimi ∈ R[x1, x2, . . . , xk], such that αi ∈ R \ {0}, and mi ∈ M are pairwise

different, let M(f) := {mi | 1 ≤ i ≤ r}. We define the leading monomial of f , denoted by LM(f), as
maxM(f) with respect to �. The leading coefficient of f , denoted by LC(f), is the coefficient of LM(f)
and the leading term of f is LT(f):=LC(f) · LM(f).

Strong Gröbner basis of an ideal I of R[x1, x2, . . . , xk] can be defined in many equivalent ways. In this
paper, we will define it as it was done in [1].

Definition 1. Let G ⊂ R[x1, x2, . . . , xk] be a finite set of non-zero polynomials and IG = (G) the ideal in
R[x1, x2, . . . , xk] generated by G. We say that G is a strong Gröbner basis for IG (with respect to �) if for
each f ∈ IG \{0} there exists g ∈ G such that LT(g) | LT(f), i.e., LT(f) = t ·LT(g), for some term t. Strong
Gröbner basis G is minimal if LT(g′) - LT(g′′), for all distinct g′, g′′ ∈ G.

Remark 1. If R is a field, then a strong Gröbner basis (from Definition 1) is simply called Gröbner basis.
Additionally, for a finite subset G of R[x1, x2, . . . , xk] \ {0} we say that it is a reduced Gröbner basis of
IG := (G) if:

(i) G is a Gröbner basis of IG;

(ii) LC(g) = 1 for all g ∈ G;

(iii) LT(g′) does not divide any monomial from M(g′′), for all distinct g′, g′′ ∈ G.

Reduced Gröbner bases are quite important in the theory of Gröbner bases over a field – they are optimal
in certain sense and they are unique for a fixed monomial ordering (see [1]).
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3. Gröbner bases for complex Grassmannians

Recall that for α, β ∈ Z the binomial coefficient
(
α
β

)
is defined by

(
α

β

)
:=


α(α− 1) · · · (α− β + 1)

β!
, β > 0

1, β = 0
0, β < 0

,

and therefore, the following lemma is straightforward.

Lemma 3. If
(
α
β

)
6= 0, then α ≥ β or α ≤ −1.

Recall also the well-known formula (which holds for all α, β ∈ Z)(
α

β

)
=

(
α− 1

β

)
+

(
α− 1

β − 1

)
. (5)

Let us now introduce some notations that we are going to use throughout this paper. Let m ∈ N and
f1 = (1, 0, . . . , 0), f2 = (0, 1, 0, . . . , 0), . . . , fm = (0, . . . , 0, 1) be the vectors of the standard basis for Zm
and we put f0 = (0, 0, . . . , 0) ∈ Zm. For an m-tuple λ of integers we define the following m-tuples obtained
from λ (for 0 ≤ i ≤ j ≤ m):

• λi = λ+ fi and λi = λ− fi;

• λi,j = λ+ fi + fj and λi,j = λ− fi − fj .

For k ≥ 2, a k-tuple α = (a1, a2, . . . , ak) and a (k − 1)-tuple µ = (m2, . . . ,mk) of integers, let:

• |α| :=
k∑
j=1

aj , ‖α‖ :=

k∑
j=1

jaj , and |µ| :=
k∑
j=2

mj , ‖µ‖ :=

k∑
j=2

(j − 1)mj ;

• [α, µ]t :=

(∑k
j=t−1 aj −

∑k
j=tmj

at−1

)
, 2 ≤ t ≤ k;

• [α, µ] :=

k∏
t=2

[α, µ]t.

For example, [α, µ]2 =

(
|α| − |µ|
a1

)
. Also, [α,0] = [a1, a2, . . . , ak], where 0 = (0, . . . , 0︸ ︷︷ ︸

k−1

).

Remark 2. The case k = 1 will be allowed as well. Then µ must be ∅, |µ| = ‖µ‖ = 0, [α, µ] = 1 for any
α = (a1).

Remark 3. Note that the (k− 1)-tuple µ = (m2, . . . ,mk) is indexed by integers from 2 to k, not from 1 to
k − 1. The reason for this becomes clear in Proposition 5.

Henceforth, the integers k, n ∈ N are fixed. Observe the polynomial algebra Z[c1, c2, . . . , ck]. For a
k-tuple α = (a1, a2, . . . , ak) of nonnegative integers, the monomial ca11 c

a2
2 · · · c

ak
k will be abbreviated to Cα.

Let us now define certain polynomials in Z[c1, c2, . . . , ck] which will be important in our considerations.
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Definition 2. For a (k − 1)-tuple of nonnegative integers µ = (m2, . . . ,mk), let

gµ :=
∑

‖α‖=n+1+‖µ‖

(−1)n+1+|α|[α, µ] · Cα,

where the sum is taken over all k-tuples of nonnegative integers α = (a1, a2, . . . , ak) such that ‖α‖ =
n+ 1 + ‖µ‖.

Moreover, let
GC := {gµ : |µ| ≤ n+ 1}.

Note that, by (3), cn+1 = (−1)n+1g0 ∈ GC.
Our aim is to prove that GC is a strong Gröbner basis for the ideal Ik,n = (cn+1, cn+2, . . . , cn+k) which

determines the cohomology algebra H∗(Gk,n(C);Z). In order to do so, first we need to specify a monomial
ordering in Z[c1, c2, . . . , ck]. We shall use the grlex ordering 4 on the monomials in Z[c1, c2, . . . , ck] with
c1 > c2 > · · · > ck. It is defined as follows. For k-tuples α = (a1, a2, . . . , ak) and β = (b1, b2, . . . , bk),
Cα ≺ Cβ if and only if one of the following holds:

1) |α| < |β|;

2) |α| = |β| and as < bs, where s = min{i : ai 6= bi}.

As usual, Cα 4 Cβ means that either Cα ≺ Cβ or Cα = Cβ .

Lemma 4. If a k-tuple α = (a1, . . . , ak) and a (k − 1)-tuple µ = (m2, . . . ,mk) of nonnegative integers are

such that [α, µ] 6= 0, then |α| < |µ| or else
∑k
j=t aj ≥

∑k
j=tmj for all t such that 2 ≤ t ≤ k.

Proof. Let us assume that |α| ≥ |µ|. Using mathematical induction on t, we will prove that
∑k
j=t aj ≥∑k

j=tmj , for 2 ≤ t ≤ k. Since(
|α| − |µ|
a1

)
= [α, µ]2 6= 0 and |α| − |µ| ≥ 0,

by Lemma 3 we have that |α| − |µ| ≥ a1, and therefore
∑k
j=2 aj ≥

∑k
j=2mj .

Suppose now that
∑k
j=t aj ≥

∑k
j=tmj , for some t such that 2 ≤ t ≤ k − 1. Since [α, µ]t+1 6= 0 and∑k

j=t aj ≥
∑k
j=tmj ≥

∑k
j=t+1mj , again by Lemma 3 we conclude that

∑k
j=t aj −

∑k
j=t+1mj ≥ at. Hence,∑k

j=t+1 aj ≥
∑k
j=t+1mj . 2

Proposition 5. Let µ = (m2, . . . ,mk) be a (k− 1)-tuple of nonnegative integers such that |µ| ≤ n+ 1 (i.e.,
such that gµ ∈ GC). Then gµ 6= 0 and LT(gµ) = Cµ, where µ = (n + 1 − |µ|,m2, . . . ,mk). Moreover, if
Cα ∈M(gµ) \ {Cµ}, for some k-tuple α of nonnegative integers, then |α| < n+ 1.

Proof. If we put m1 = n+ 1− |µ|, then obviously [µ, µ]t =
(
mt−1

mt−1

)
= 1, for all t such that 2 ≤ t ≤ k, and

therefore [µ, µ] = 1. Furthermore,

‖µ‖ =

k∑
j=1

jmj = n+ 1− |µ|+
k∑
j=2

jmj = n+ 1 +

k∑
j=2

(j − 1)mj = n+ 1 + ‖µ‖.

Hence, Cµ ∈M(gµ) and the coefficient of Cµ in gµ is 1. So, gµ 6= 0.
Now take a k-tuple α = (a1, . . . , ak) of nonnegative integers such that ‖α‖ = n+ 1 + ‖µ‖ and [α, µ] 6= 0,

i.e., Cα ∈M(gµ). Since |µ| = n+ 1, in order to finish the proof of the proposition it suffices to show that if
|α| ≥ n+ 1 then α = µ.
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Since |µ| ≤ n+ 1 ≤ |α|, by Lemma 4 we have the following k − 1 inequalities:

ak ≥ mk,
ak−1 + ak ≥ mk−1 +mk,

...
a2 + · · ·+ ak ≥ m2 + · · ·+mk.

(6)

Summing up these inequalities we get

k∑
j=2

(j − 1)aj ≥
k∑
j=2

(j − 1)mj .

On the other hand, since |α| ≥ n+ 1 and ‖α‖ = n+ 1 + ‖µ‖,

k∑
j=2

(j − 1)aj =

k∑
j=1

(j − 1)aj = ‖α‖ − |α| ≤ ‖α‖ − (n+ 1) = ‖µ‖ =

k∑
j=2

(j − 1)mj ,

so all the inequalities in (6) are in fact equalities, and |α| = n + 1. Therefore, at = mt for 2 ≤ t ≤ k, and

a1 = |α| −
∑k
j=2 aj = n+ 1− |µ|, i.e., α = µ. 2

Prior to the formulation of the following lemma, we would like to emphasize that for a (k − 1)-tuple
µ = (m2, . . . ,mk), by our definition, µi = (m2, . . . ,mi+1 +1, . . . ,mk), 1 ≤ i ≤ k−1, and likewise for µi,j , µi
and µi,j . For example, the (k−1)-tuple µ2 is defined as (m2,m3+1, . . . ,mk), and not as (m2+1,m3, . . . ,mk).

Lemma 6. Let α = (a1, a2, . . . , ak) be a k-tuple and µ = (m2, . . . ,mk) a (k − 1)-tuple of integers.

a) For 1 ≤ i ≤ j ≤ k − 2 we have

[α, µi,j ] = −[αi, µ
j ] + [α, µi−1,j+1] + [αj+1, µ

i−1].

b) For 1 ≤ i ≤ k − 1 we have
[α, µi,k−1] = −[αi, µ

k−1] + [αk, µ
i−1].

Proof. Let 1 ≤ i ≤ j ≤ k − 1. It is immediate from the definition that for all t such that 2 ≤ t ≤ k

[α, µi,j ]t =

(
at−1 + at + · · ·+ ak −mt − · · · −mk − δt

at−1

)
,

where δt =

 2, t ≤ i+ 1
1, i+ 2 ≤ t ≤ j + 1
0, t > j + 1

. Also, if t 6= i+ 1, then

[αi, µ
j ]t =

(
at−1 + at + · · ·+ ak −mt − · · · −mk − δt

at−1

)
,

and so,
[α, µi,j ]t = [αi, µ

j ]t, for t 6= i+ 1. (7)

Likewise, using formula (5) we get

[α, µi,j ]i+1 + [αi, µ
j ]i+1 = [α, µj ]i+1, (8)

since the left-hand side is equal to(
ai + · · ·+ ak −mi+1 − · · · −mk − 2

ai

)
+

(
ai + · · ·+ ak −mi+1 − · · · −mk − 2

ai − 1

)
,
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and right-hand side to (
ai + · · ·+ ak −mi+1 − · · · −mk − 1

ai

)
.

a) In this case, similarly as for (7) and (8), one obtains the following equalities:

[αi, µ
j ]t = [α, µi−1,j+1]t, for t 6∈ {i+ 1, j + 2} (9)

[α, µi−1,j+1]t = [αj+1, µ
i−1]t, for t 6= j + 2 (10)

[α, µj ]i+1 = [α, µi−1,j+1]i+1 (11)

[αi, µ
j ]j+2 = [α, µi−1,j+1]j+2 + [αj+1, µ

i−1]j+2. (12)

So, using identities (7)–(12), we have

[α, µi,j ] =

k∏
t=2

[α, µi,j ]t = [α, µi,j ]i+1 ·
k∏
t=2
t 6=i+1

[αi, µ
j ]t

=
(
−[αi, µ

j ]i+1 + [α, µj ]i+1

)
·

k∏
t=2
t 6=i+1

[αi, µ
j ]t

= −
k∏
t=2

[αi, µ
j ]t + [α, µi−1,j+1]i+1 ·

k∏
t=2
t6=i+1

[αi, µ
j ]t

= −[αi, µ
j ] + [αi, µ

j ]j+2 ·
k∏
t=2
t6=j+2

[α, µi−1,j+1]t

= −[αi, µ
j ] +

(
[α, µi−1,j+1]j+2 + [αj+1, µ

i−1]j+2

)
·

k∏
t=2
t 6=j+2

[α, µi−1,j+1]t

= −[αi, µ
j ] + [α, µi−1,j+1] + [αj+1, µ

i−1].

b) In a similar manner as before, for 1 ≤ i ≤ k − 1, one can obtain two additional equalities:

[αi, µ
k−1]t = [αk, µ

i−1]t, for t 6= i+ 1, (13)

[α, µk−1]i+1 = [αk, µ
i−1]i+1. (14)

Now, using identities (7), (8), (13) and (14), we have

[α, µi,k−1] =

k∏
t=2

[α, µi,k−1]t = [α, µi,k−1]i+1 ·
k∏
t=2
t 6=i+1

[αi, µ
k−1]t

=
(
−[αi, µ

k−1]i+1 + [α, µk−1]i+1

)
·

k∏
t=2
t 6=i+1

[αi, µ
k−1]t

= −[αi, µ
k−1] + [αk, µ

i−1],

and we are done. 2

Note that we could unify parts a) and b) of the previous lemma by stating that

[α, µi,j ] = −[αi, µ
j ] + [αj+1, µ

i−1] + [α, µi−1,j+1], for 1 ≤ i ≤ j ≤ k − 1,

with the convention that [α, µi−1,j+1] = 0 if j = k − 1.
8



Proposition 7. Let µ = (m2, . . . ,mk) be a (k − 1)-tuple of nonnegative integers and 1 ≤ i ≤ j ≤ k − 1.
Then in the polynomial algebra Z[c1, c2, . . . , ck], we have the following identity

gµi,j = cigµj − cj+1gµi−1 + gµi−1,j+1 ,

where the polynomial gµi−1,j+1 is understood to be zero if j = k − 1.

Proof. By Lemma 6 we have

gµi,j =
∑

‖α‖=n+1+‖µi,j‖

(−1)n+1+|α|[α, µi,j ] · Cα

=
∑

‖α‖=n+1+‖µi,j‖

(−1)n+1+|α| (−[αi, µ
j ] + [αj+1, µ

i−1] + [α, µi−1,j+1]
)
· Cα

=
∑

‖α‖=n+1+‖µi,j‖

(−1)n+1+|αi|[αi, µ
j ] · Cα −

∑
‖α‖=n+1+‖µi,j‖

(−1)n+1+|αj+1|[αj+1, µ
i−1] · Cα

+ gµi−1,j+1 ,

since ‖µi,j‖ = ‖µ‖+ i+ j = ‖µ‖+ i− 1 + j + 1 = ‖µi−1,j+1‖ (for j ≤ k− 2). Observe also that the equality
‖α‖ = n+ 1 + ‖µi,j‖ is equivalent to ‖αi‖ = ‖α‖ − i = n+ 1 + ‖µi,j‖ − i = n+ 1 + ‖µj‖, and likewise it is
equivalent to ‖αj+1‖ = n+ 1 + ‖µi−1‖.

Now, consider the first sum in the upper expression. Since the sum is taken over the k-tuples α =
(a1, a2, . . . , ak) of nonnegative integers (such that ‖α‖ = n + 1 + ‖µi,j‖), the coordinates of αi are also
nonnegative with the exception that its i-th coordinate might be −1 (if ai = 0). But, in that case,

[αi, µ
j ]i+1 =

(
ai+1 + · · ·+ ak −mi+1 − · · · −mk − 2

−1

)
= 0,

and so [αi, µ
j ] = 0. Therefore, we may assume that ai ≥ 1, and consequently, that αi runs through the set

of k-tuples of nonnegative integers (such that ‖αi‖ = n+ 1 + ‖µj‖). Hence,∑
‖α‖=n+1+‖µi,j‖

(−1)n+1+|αi|[αi, µ
j ] · Cα = ci

∑
‖αi‖=n+1+‖µj‖

(−1)n+1+|αi|[αi, µ
j ] · Cαi = cigµj .

So, we are left to prove that the second sum in the upper expression for gµi,j is equal to cj+1gµi−1 . Let
α = (a1, a2, . . . , ak) be a k-tuple of nonnegative integers such that ‖α‖ = n + 1 + ‖µi,j‖, i.e., ‖αj+1‖ =
n+ 1 + ‖µi−1‖. It suffices to show that aj+1 = 0 implies [αj+1, µ

i−1] = 0, since then the proof follows as for
the first sum.

If j + 1 < k, then aj+1 = 0 implies [αj+1, µ
i−1]j+2 = 0, and therefore, [αj+1, µ

i−1] = 0.
For j = k − 1, let us assume to the contrary that ak = 0 and [αk, µ

i−1] 6= 0. First we shall prove that

at−1 + at + · · ·+ ak−1 ≤ mt + · · ·+mk + εt, for all t ∈ {2, 3, . . . , k}, (15)

where εt =

{
1, 2 ≤ t ≤ i
0, i+ 1 ≤ t ≤ k . The proof is by reverse induction on t. For the induction base we prove

(15) for t = k. Since
(
ak−1−1−mk

ak−1

)
= [αk, µ

i−1]k 6= 0 and ak−1 − 1 −mk < ak−1, by Lemma 3 we conclude

that ak−1 − 1 − mk ≤ −1, so ak−1 ≤ mk = mk + εk. For the inductive step, let 2 ≤ t ≤ k − 1, and
suppose that at + · · · + ak−1 ≤ mt+1 + · · · + mk + εt+1. Since obviously εt+1 ≤ εt, we actually have that
at + · · ·+ ak−1 ≤ mt+1 + · · ·+mk + εt. Since

[αk, µ
i−1]t =

(
at−1 + at + · · ·+ ak−1 − 1−mt −mt+1 − · · · −mk − εt

at−1

)
6= 0,

and at−1 + at + · · ·+ ak−1 − 1−mt −mt+1 − · · · −mk − εt ≤ at−1 − 1−mt < at−1, according to Lemma 3,
we have that at−1 + at + · · · + ak−1 − 1 −mt −mt+1 − · · · −mk − εt ≤ −1, i.e., at−1 + at + · · · + ak−1 ≤
mt +mt+1 + · · ·+mk + εt.

9



Now, summing up inequalities (15), we get

‖α‖ ≤ ‖µ‖+

k∑
t=2

εt = ‖µ‖+ i− 1 = ‖µi−1‖ = ‖αk‖ − n− 1 = ‖α‖ − k − n− 1 < ‖α‖,

which is obviously a contradiction. 2

The set GC was defined as the set of polynomials gµ such that |µ| ≤ n + 1. As the first consequence of
Proposition 7, let us prove that for any (k − 1)-tuple µ of nonnegative integers, the polynomial gµ belongs
to the ideal generated by GC.

Corollary 8. If µ = (m2, . . . ,mk) is a (k − 1)-tuple of nonnegative integers, then gµ ∈ (GC).

Proof. Let us define a well ordering l on the set Nk−10 and prove the corollary by induction on l. For
(k − 1)-tuples of nonnegative integers µ = (m2, . . . ,mk) and ν = (n2, . . . , nk), we first compare |µ| and |ν|,
that is, m2 +m3 + · · ·+mk and n2 + n3 + · · ·+ nk, and if these are equal, then we compare m3 + · · ·+mk

and n3 + · · ·+ nk, and so on. More precisely, if |µ|i→ := mi + · · ·+mk, 2 ≤ i ≤ k, then

ν l µ if and only if |ν|s→ < |µ|s→, where s = min{i : |µ|i→ 6= |ν|i→}.

If |µ| ≤ n + 1, then gµ ∈ GC ⊂ (GC). Suppose now that |µ| > n + 1 and that gν ∈ (GC) for all ν such
that νlµ. Choose i and j such that 1 ≤ i ≤ j ≤ k−1 and such that all components of µi,j are nonnegative
(this is possible since |µ| > n+ 1). By Proposition 7,

gµ = gµi,ji,j
= cigµi − cj+1gµi−1

i,j
+ gµi−1,j+1

i,j
∈ (GC),

since obviously µi−1i,j l µi l µ, and (if j ≤ k − 2) µi−1,j+1
i,j l µ. 2

In the following lemma we establish a connection between polynomials gµ and polynomials (dual classes)
cr ∈ Z[c1, c2, . . . , ck] from the previous section.

Lemma 9. For m ≥ 0 and (k − 1)-tuple m = (m, 0, . . . , 0) we have that

gm = (−1)n+1
m∑
i=0

(
m

i

)
cm−i1 · cn+1+i.

Proof. The polynomials gµ were introduced in Definition 2 and they depend on the (previously fixed)
integer n. In this proof (and only in this proof) we allow n to vary through the set N, while the integer
k is still fixed (we are working in the polynomial algebra Z[c1, c2, . . . , ck]). Note that the polynomials cr,
r ≥ 1, are defined independently of n. We emphasize the dependence of gµ on n by using an appropriate
superscript, and we actually prove the following claim:

g(n)m = (−1)n+1
m∑
i=0

(
m

i

)
cm−i1 · cn+1+i, for all m ≥ 0 and all n ≥ 1.

The proof is by induction on m. We have already noticed that g
(n)
0 = (−1)n+1cn+1, and therefore, the claim

is true for m = 0 (and all n ≥ 1). So, let m ≥ 1 and assume that the claim is true for the integer m − 1
and all n ≥ 1. Let m = (m, 0, . . . , 0) and n ∈ N. Note that m1 = (m − 1, 0, . . . , 0) = m− 1. Since, for all
k-tuples α of integers, [α,m]2 = −[α1,m− 1]2 +[α,m− 1]2 by (5) and [α,m]t = [α1,m− 1]t = [α,m− 1]t

10



for 3 ≤ t ≤ k, we have that

g(n)m =
∑

‖α‖=n+1+m

(−1)n+1+|α|[α,m]Cα

=
∑

‖α‖=n+1+m

(−1)n+1+|α|

((
− [α1,m− 1]2 + [α,m− 1]2

) k∏
t=3

[α,m]t

)
Cα

= c1
∑

‖α1‖=n+1+m−1

(−1)n+1+|α1|[α1,m− 1]Cα1 −
∑

‖α‖=(n+1)+1+m−1

(−1)n+2+|α|[α,m− 1]Cα

= c1g
(n)
m−1 − g

(n+1)
m−1

= c1 · (−1)n+1
m−1∑
i=0

(
m− 1

i

)
cm−1−i1 · cn+1+i − (−1)n+2

m−1∑
i=0

(
m− 1

i

)
cm−1−i1 · cn+2+i

= (−1)n+1
m∑
i=0

(
m− 1

i

)
cm−i1 · cn+1+i + (−1)n+1

m∑
i=0

(
m− 1

i− 1

)
cm−i1 · cn+1+i

= (−1)n+1
m∑
i=0

(
m

i

)
cm−i1 · cn+1+i,

and the proof is completed. 2

Proposition 10. Ik,n = (GC).

Proof. Let us first prove that (GC) ⊆ Ik,n. Since the ideal Ik,n is generated by the polynomials cn+1, cn+2, . . . , cn+k,
note that, by the recurrence relation (2), not only these k polynomials, but all cr for r ≥ n + 1 belong to
Ik,n. Likewise, we shall prove that gµ ∈ Ik,n for all (k − 1)-tuples µ of nonnegative integers, and not only
for those with the property |µ| ≤ n+ 1 (i.e., gµ ∈ GC).

We define the relation <lexr on the set of all (k − 1)-tuples of nonnegative integers by

(n2, n3, . . . , nk) <lexr (m2,m3, . . . ,mk)⇐⇒ nt < mt, where t = max{i | ni 6= mi},

which is exactly the strict part of the lexicographical right ordering. This is a well ordering and our proof
is by induction on <lexr.

For the (k−1)-tuple m = (m, 0, . . . , 0), where m ≥ 0 is arbitrary integer, from Lemma 9 and our remark
at the beginning of this proof, we immediately get that gm ∈ Ik,n. So, let us now take a (k − 1)-tuple
µ = (m2,m3, . . . ,mk) such that the greatest integer s with the property ms+1 > 0 is at least 2. Hence,
2 ≤ s ≤ k − 1 and µ = (m2, . . . ,ms+1, 0, . . . , 0). Let us also assume that gν ∈ Ik,n for all ν such that
ν <lexr µ. We wish to prove that gµ ∈ Ik,n. By Proposition 7, applied to the (k − 1)-tuple µs, i = 1 and
j = s− 1,

gµ = gµ1,s−1
s

− c1gµs−1
s

+ csgµs .

Since µs <lexr µ
s−1
s <lexr µ

1,s−1
s <lexr µ, we conclude that gµ ∈ Ik,n.

For the opposite inclusion (Ik,n = (cn+1, . . . , cn+k) ⊆ (GC)), we know that cn+1 = (−1)n+1g0 ∈ (GC),

and note that, by Lemma 9, cn+1+m = (−1)n+1gm −
∑m−1
i=0

(
m
i

)
cm−i1 · cn+1+i, m ≥ 1. The statement now

follows by induction. 2

We are now ready to prove the main theorem of this section.

Theorem 11. The set GC is a minimal strong Gröbner basis for the ideal Ik,n in Z[c1, . . . , ck] with respect
to grlex ordering 4.
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Proof. By Proposition 10, GC is a basis for Ik,n. By Proposition 5, 0 /∈ GC and it is obvious from the
definition that GC is finite. Suppose, to the contrary, that GC is not a strong Gröbner basis for Ik,n. Then
there is a polynomial f ∈ Ik,n\{0} such that LT(g) - LT(f) for all g ∈ GC. However, according to Proposition
5 again, the set {LT(g) : g ∈ GC} is exactly the set of all monomials in Z[c1, c2, . . . , ck] with the sum of the
exponents equal to n + 1, that is {LT(g) : g ∈ GC} = {Cλ : |λ| = n + 1}, which means that |α| ≤ n for all
Cα ∈M(f). This is not possible, since, by Proposition 2, the set Bk,n of all (cosets of) monomials Cα with
|α| ≤ n is an additive basis for the quotient algebra Z[c1, . . . , ck]/Ik,n = H∗(Gk,n(C);Z). So, GC is a strong
Gröbner basis for Ik,n.

By Proposition 5, distinct polynomials from GC have distinct leading terms. Since {LT(g) : g ∈ GC} =
{Cλ : |λ| = n + 1}, it is clear that no leading term in GC divides some other leading term in GC, i.e., the
strong Gröbner basis GC is minimal. 2

Propositions 5 and 7 enable us to explicitly determine the polynomials gµ ∈ GC for the (k − 1)-tuples
µ = (m2, . . . ,mk) such that mk is close to n. Namely, if gµ ∈ GC and Cα ∈M(gµ)\{Cµ} (where µ = (n+1−
|µ|,m2, . . . ,mk)), then |α| ≤ n by Proposition 5. Consequently, ‖α‖ =

∑k
j=1 jaj ≤ k

∑k
j=1 aj = k|α| ≤ kn.

On the other hand, ‖α‖ = n+ 1 + ‖µ‖, and so, we conclude that gµ = Cµ whenever ‖µ‖ > (k − 1)n− 1.
Let ν be the (k − 1)-tuple (0, . . . , 0, n). Since ‖νs‖ > ‖ν‖ = (k − 1)n (1 ≤ s ≤ k − 1), by the previous

remark we have that

gν = c1c
n
k and gνs = cs+1c

n
k , 1 ≤ s ≤ k − 1 (for k ≥ 2). (16)

If we apply Proposition 7 to the (k − 1)-tuple νk−1 = (0, . . . , 0, n − 1), i = 1 and j = k − 1, we obtain the
relation ckgνk−1

= c1gν − gν1 . Both summands on the right-hand side contain ck as a factor, so ck cancels
out and using (16) we get

gνk−1
= c21c

n−1
k − c2cn−1k (for k ≥ 2). (17)

Likewise, by applying Proposition 7 to νk−1, i = s+1 and j = k−1, one obtains that ckgνsk−1
= cs+1gν−gνs+1 ,

and so
gνsk−1

= c1cs+1c
n−1
k − cs+2c

n−1
k , 1 ≤ s ≤ k − 2 (for k ≥ 3). (18)

Identities (17) and (18) determine gµ ∈ GC when mk = n − 1 and |µ| ≤ n. For computing gµ ∈ GC when
mk = n − 1 and |µ| = n + 1 for a concrete integer k, one can use Proposition 7 and apply it first to νk−1,
i = 1 and all j such that 1 ≤ j ≤ k − 2, then to νk−1, i = 2 and all j such that 2 ≤ j ≤ k − 2 and so on.
After that, if n ≥ 2, the polynomials gµ ∈ GC for mk = n − 2 can be obtained in the same manner – by
suitable applications of Proposition 7. For example,

gνk−1,k−1
= c31c

n−2
k − 2c1c2c

n−2
k + c3c

n−2
k (for k ≥ 3),

gνsk−1,k−1
= c21cs+1c

n−2
k − c1cs+2c

n−2
k − c2cs+1c

n−2
k + cs+3c

n−2
k , 1 ≤ s ≤ k − 3 (for k ≥ 4).

4. Pieri-type formula for Bk,n

Let λ = (l1, l2, . . . , lk) be a k-tuple of nonnegative integers such that |λ| = n+1. Then, for λ := (l2, . . . , lk)
we have gλ ∈ GC, and so gλ = 0 in H∗(Gk,n(C);Z). Therefore

Cλ =
∑

‖α‖=n+1+‖λ‖
α6=λ

(−1)1+|α|−|λ|[α, λ] Cα (19)

in H∗(Gk,n(C);Z). By Proposition 5, this identity is in fact the presentation of Cλ in the additive basis Bk,n
(see Section 2). Also, note that these formulas completely determine the multiplication in H∗(Gk,n(C);Z).
Therefore, formula (19) can be understood as a Pieri-type formula for the elements of the basis Bk,n. More
precisely, for 1 ≤ i ≤ k and Cλ ∈ Bk,n, if |λ| < n, then ci · Cλ ∈ Bk,n, and if |λ| = n, then

ci · Cλ = Cλ
i

=
∑

‖α‖=n+1+‖λi‖
α6=λi

(−1)|α|−|λ|[α, λi] Cα (20)

12



For example, by the calculation at the end of the previous section, we have the following identities:

c1c
n
k = 0,

cs+1c
n
k = 0, 1 ≤ s ≤ k − 1 (k ≥ 2),

c21c
n−1
k = c2c

n−1
k (k ≥ 2),

c1cs+1c
n−1
k = cs+2c

n−1
k , 1 ≤ s ≤ k − 2 (k ≥ 3),

c31c
n−2
k = 2c1c2c

n−2
k − c3cn−2k (k ≥ 3, n ≥ 2),

c21cs+1c
n−2
k = c1cs+2c

n−2
k + c2cs+1c

n−2
k − cs+3c

n−2
k , 1 ≤ s ≤ k − 3 (k ≥ 4, n ≥ 2).

5. Recurrence formulas for Kostka numbers

For a k-tuple α = (a1, . . . , ak) of nonnegative integers, let α→ denote the partition which has exactly ai
components equal to i, for 1 ≤ i ≤ k (for example, if α = (3, 2, 0, 3), then α→ = (4, 4, 4, 2, 2, 1, 1, 1)). Note
that |α| = l(α→) and ‖α‖ = |α→|.

By the identity (4), in H∗(Gk,n(C);Z) we have

Cα = (−1)‖α‖
∑
|λ|=‖α‖
λ⊂n×k

Kλα→ σλ∗ ,

where the condition λ ⊂ n × k may be omitted, if we introduce the convention that σλ∗ = 0 if λ 6⊂ n × k.
Plugging these in the expression for gµ, where µ is a fixed (k − 1)-tuple of nonnegative integers, and using
the fact that gµ = 0 in H∗(Gk,n(C);Z), we obtain

0 =
∑

‖α‖=n+1+‖µ‖

(−1)n+1+|α|[α, µ]Cα

=
∑

‖α‖=n+1+‖µ‖

(−1)n+1+|α|+‖α‖[α, µ]
∑
|λ|=‖α‖

Kλα→ σλ∗

=
∑

‖α‖=n+1+‖µ‖

∑
|λ|=‖α‖

(−1)|α|+‖µ‖[α, µ]Kλα→ σλ∗

= (−1)‖µ‖
∑

|λ|=n+1+‖µ‖

 ∑
‖α‖=|λ|

(−1)|α|[α, µ]Kλα→

σλ∗

(in these sums α’s are k-tuples of nonnegative integers and λ’s are partitions). Therefore, in view of the
additive basis Σk,n, for every partition λ ⊂ n× k such that |λ| = n+ 1 + ‖µ‖ we have∑

‖α‖=|λ|

(−1)|α|[α, µ]Kλα→ = 0. (21)

For the proof of the main result of this section we will need some additional notations. For a given
k ∈ N, let ν = (n1, n2, . . .) be a partition such that n1 ≤ k. Define mi := |{j : nj = i}|, 1 ≤ i ≤ k.
Then µ := (m1,m2, . . . ,mk) is the unique k-tuple of nonnegative integers such that ν = µ→. Also, the
(k − 1)-tuple µ := (m2, . . . ,mk) satisfies

‖µ‖ = ‖µ‖ − |µ| = |µ→| − l(µ→) = |ν| − l(ν).

Note that, if n := l(ν)− 1, then m1 = |µ| − |µ| = l(ν)− |µ| = n+ 1− |µ|, so µ = (n+ 1− |µ|,m2, . . . ,mk)
which, in view of Proposition 5, explains the notation µ for this k-tuple. We now define

ν← = ν(k)← := µ.
13



Theorem 12. Let λ = (l1, l2, . . .) and ν = (n1, n2, . . .) be partitions such that |λ| = |ν|. We have the
following relations:

(i) if λ = ν = ∅, then Kλν = 1;

(ii) if l(λ) < l(ν) and l1 ≥ n1, then

Kλν =
∑
‖α‖=|λ|
α→ 6=ν

(−1)1+l(ν)+|α|[α, ν←]Kλα→ ,

where ν← = ν(l1)← , and the sum is over l1-tuples α of nonnegative integers with the specified properties.

(iii) if l(λ) = l(ν) = s > 0, then Kλν = K(l1−1,...,ls−1) (n1−1,...,ns−1);

(iv) if l(λ) > l(ν) or l1 < n1, then Kλν = 0.

Proof. Note that, if l(λ) > l(ν) or l1 < n1, then λ � ν, and therefore Kλν = 0, which completes the proof
of (iv).

Let l(λ) = l(ν) = s > 0, and let us observe a semistandard Young tableau of shape λ and type ν. The
first column of this tableau contains s different numbers, and since l(ν) = s, it can be filled in a unique way.
Moreover, by removing the first column from this tableau, we obtain a Young tableau of size (l1−1, . . . , ls−1)
and type (n1 − 1, . . . , ns − 1), which completes the proof of (iii).

So, let l(λ) < l(ν) and l1 ≥ n1. Let k := l1 and n := l(ν) − 1. Then λ ⊂ n × k (since l1 = k and
l(λ) ≤ l(ν)− 1 = n) and |λ| = |ν| = l(ν) + ‖ν←‖ = n+ 1 + ‖ν←‖. Therefore, by identity (21), we have∑

‖α‖=|λ|

(−1)|α|[α, ν←]Kλα→ = 0. (22)

If µ = ν← = (m2, . . . ,mk), then for the k-tuple µ = (n + 1 − |µ|,m2, . . . ,mk) we have that µ→ = ν and
‖µ‖ = |µ→| = |ν| = |λ|. So,

(−1)|µ|[µ, ν←]Kλν

is a summand of the previous sum. Since |µ| = l(ν), and, by Proposition 5, [µ, ν←] = [µ, µ] = 1, the identity
in (ii) is obtained from (22). 2

Remark 4. In the equation in part (ii) of the theorem, if a coefficient [α, ν←] on the right-hand side is
nonzero, then α→ 6= ν, that is α 6= µ = ν←, and ‖α‖ = |λ| = n+ 1 + ‖ν←‖ (see the proof of the theorem).
By Proposition 5, we conclude that l(α→) = |α| < n+ 1 = l(ν).

Remark 5. Theorem 12 gives us a recurrence relation which can be used to calculate (all) Kostka numbers.
To prove this claim, let us define relation <s on the set of all partitions in the following way:

ν′ <s ν
′′ def⇐⇒ l(ν′) < l(ν′′) or else l(ν′) = l(ν′′) and |ν′| < |ν′′|.

Note that this relation is transitive, and that for any partition ν there does not exist infinite sequence
{ν(k)}k∈N of partitions that satisfies ν >s ν(1) >s · · · >s ν(k) >s · · · .

Now, in case (ii) of Theorem 12, Kλν is, by the previous remark, a linear combination of elements Kλν′

such that ν′ <s ν, and in case (iii) of Theorem 12 clearly (n1−1, . . . , ns−1) <s ν. Therefore, an element Kλν

is equal to zero or one, or can be expressed as a function of elements Kλ′ν′ with ν′ <s ν, which completes
the proof of our claim.
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6. Gröbner bases for real Grassmannians

Borel’s description of the mod 2 cohomology algebra of Gk,n(C) is obtained from the corresponding
description of the integral cohomology algebra by reducing modulo 2. Since the mod 2 reduction of the
Chern class ci ∈ H2i(Gk,n(C);Z) of the canonical (complex) bundle γk over Gk,n(C) is the Stiefel-Whitney
class w2i ∈ H2i(Gk,n(C);Z2) of the underlying real vector bundle, we have that the set {wa12 w

a2
4 · · ·w

ak
2k :

a1 + a2 + · · · + ak ≤ n} is an additive basis for H∗(Gk,n(C);Z2), and a Gröbner basis for the ideal in
Z2[w2, w4, . . . , w2k] which determines H∗(Gk,n(C);Z2) can be obtained in the same way as in Section 3 by
substituting w2i for ci.

Nonetheless, the description of the mod 2 cohomology algebra of real Grassmann manifold Gk,n(R) is
essentially the same as the one for Gk,n(C) – the only difference being in the fact that dimensions of the
generating Stiefel-Whitney classes are divided by 2. Therefore, the same conclusions, concerning additive
basis for H∗(Gk,n(R);Z2) and Gröbner basis for the corresponding ideal, hold in this case. Let us discuss
this briefly.

Let γk be the canonical vector bundle over Gk,n(R) and w1, w2, . . . , wk its Stiefel-Whitney classes. The
cohomology algebra H∗(Gk,n(R);Z2) is isomorphic to the polynomial algebra Z2[w1, w2, . . . , wk] modulo the
ideal Jk,n generated by the dual classes wn+1, wn+2, . . . , wn+k. The analog of the formula (3) is the following
explicit formula for these dual classes:

wr =
∑

a1+2a2+···+kak=r

[a1, a2, . . . , ak]wa11 w
a2
2 · · ·w

ak
k , r ≥ 1 (23)

(since we are now working with Z2 coefficients, we are ignoring the signs and multinomial coefficients are
considered mod 2).

For a k-tuple α = (a1, a2, . . . , ak) of nonnegative integers, let Wα := wa11 w
a2
2 · · ·w

ak
k . By the previous

discussion, first we have the following proposition.

Proposition 13. The set Dk,n = {Wα : |α| ≤ n} is a vector space basis for

H∗(Gk,n(R);Z2) ∼= Z2[w1, w2, . . . , wk]/Jk,n.

Definition 3. For a (k − 1)-tuple µ = (m2, . . . ,mk) of nonnegative integers let

g̃µ :=
∑

‖α‖=n+1+‖µ‖

[α, µ] Wα,

where the sum is taken over all k-tuples of nonnegative integers α = (a1, a2, . . . , ak) such that ‖α‖ =
n+ 1 + ‖µ‖.

Morover, let
GR := {g̃µ : |µ| ≤ n+ 1}.

So, we know that GR is a minimal (strong) Gröbner basis for the ideal Jk,n in Z2[w1, . . . , wk] with respect
to the grlex ordering on monomials with w1 > w2 > · · · > wk. Furthermore, this Gröbner basis is not just
minimal, it is reduced. Since LC(g̃µ) = 1 for all g̃µ ∈ GR, to prove this claim it is enough to prove that
for a given g̃µ ∈ GR, LT(g̃µ) = Wµ does not divide any monomial from M(g̃ν), for any g̃ν ∈ GR \ {g̃µ}.
This is evident from Proposition 5 (that is, its mod 2 variant). Namely, we know that Wµ - W ν (GR is
minimal) and if Wα is some other monomial in g̃ν , then |α| < n+ 1, so Wα cannot be divisible by Wµ since
|µ| = n+ 1.

We summarize this discussion in the following main theorem of this section.

Theorem 14. The set GR is the reduced Gröbner basis for the ideal Jk,n in Z2[w1, w2, . . . , wk] with respect
to the grlex ordering on monomials with w1 > w2 > · · · > wk.
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As in Section 4, we can completely determine the multiplication in H∗(Gk,n(R);Z2) by a Pieri-type
formula for the elements of the additive basis Dk,n. If λ = (l1, l2, . . . , lk) is a k-tuple of nonnegative integers
such that |λ| = n+ 1, then

Wλ =
∑

‖α‖=n+1+‖λ‖
α6=λ

[α, λ] Wα, (24)

where λ = (l2, . . . , lk). So, the product of wi (1 ≤ i ≤ k) with Wλ ∈ Dk,n, written as the linear combination
of the basis elements from Dk,n, is as follows: if |λ| < n, then wi ·Wλ ∈ Dk,n, and if |λ| = n, then

wi ·Wλ = Wλi =
∑

‖α‖=n+1+‖λi‖
α6=λi

[α, λi] Wα. (25)

7. Application to immersions

In this section we consider the (real) Grassmannians G5,n = G5,n(R), where n is divisible by 8. As
before, wi ∈ Hi(G5,n;Z2), 1 ≤ i ≤ 5, is the i-th Stiefel-Whitney class of the canonical bundle γ5 over G5,n.

Lemma 15. Let n ≡ 0 (mod 8) and let ν be the stable normal bundle over Grassmann manifold G5,n. Then
for the Stiefel-Whitney classes of this bundle, the following equalities hold: w2(ν) = w2

1 +w2 and wi(ν) = 0
when i > 5n− 4.

Proof. Let r > 3 be the integer such that 2r < n + 5 6 2r+1. Note that this implies n > 2r since n ≡ 0
(mod 8). In [7, p. 365] Hiller and Stong proved that

w(ν) = w(γ5 ⊗ γ5) · (1 + w1 + w2 + w3 + w4 + w5)2
r+1−n−5, (26)

and that the top nonzero class in this expression is in dimension 20 + 5(2r+1 − n − 5). Since n > 2r, we
have that 20 + 5(2r+1 − n − 5) 6 20 + 5(2r − 5) = 5 · 2r − 5 6 5n − 5. This proves the second equality in
the statement of the lemma.

For the first one, we need the fact w1(γ5 ⊗ γ5) = w2(γ5 ⊗ γ5) = 0, which is not hard to check by the
method described in [10, Problem 7-C]. Using this fact and (26), one obtains that

w2(ν) =

(
2r+1 − n− 5

2

)
w2

1 + (2r+1 − n− 5)w2 = w2
1 + w2,

since 2r+1 − n− 5 ≡ 3 (mod 8). 2

Theorem 16. If n ≡ 0 (mod 8), then G5,n immerses into R10n−3.

Proof. Since dimG5,n = 5n, in order to prove that there is an immersion of G5,n into R10n−3, it suffices to
show that the classifying map fν : G5,n → BO of the stable normal bundle ν over G5,n lifts up to BO(5n−3)
.

G5,n BO
fν //

BO(5n− 3)

BO

p

��
G5,n

BO(5n− 3)
<<z

z
z

z
z

z

We shall lift the map fν by the standard procedure. We use the appropriate modified Postnikov tower
for the fibration p : BO(5n− 3)→ BO (presented in the following diagram) and we need to lift the map fν
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up to level 3 of the tower. The table given below contains the relations that produce the k-invariants of the
tower.

G5,n BO
fν // BO K(Z2, 5n− 2)×K(Z2, 5n)

w5n−2×w5n //

E1

BO
��

E1 K(Z2, 5n− 1)×K(Z2, 5n)
k11×k

1
2 //

E2

E1

��

E2 K(Z2, 5n)
k21 //

BO(5n− 3)

E2

��

G5,n

E177ooooooo
G5,n

E2??�
�

�
�

�
�

�
�

�
�

G5,n

BO(5n− 3)
DD
































k11 : (Sq2 + w2)w5n−2 = 0

k12 : (Sq2 + w2
1 + w2)Sq1w5n−2 + Sq1w5n = 0

k21 : (Sq2 + w2)k11 + Sq1k12 = 0

According to Lemma 15, w5n−2(ν) = w5n(ν) = 0, so, we can lift fν up to E1. Observe now the relations
in the table for k12 and k21. The fact

Sq1(w4w
n−1
5 ) = (w1w4 + w5)wn−15 + w4(n− 1)w1w

n−1
5 = nw1w4w

n−1
5 + wn5 = wn5 6= 0

in H5n(G5,n;Z2) ∼= Z2 (Proposition 13) ensures that chosen liftings can always be perturbed so that the
obstructions coming from these two k-invariants vanish. In order to overcome the obstruction induced by
k11, we study the map

(
Sq2 + w2(ν)

)
: H5n−3(G5,n;Z2) → H5n−1(G5,n;Z2). Since H5n−1(G5,n;Z2) ∼= Z2,

it suffices to prove that this map is nontrivial. By formulas of Wu and Cartan, Lemma 15 and the fact that
the polynomials from (??) are trivial in H∗(G5,n;Z2) (since they belong to Gröbner basis GR ⊂ J5,n) we
have (

Sq2 + w2(ν)
)

(w2w
n−1
5 ) = (Sq2 + w2

1 + w2)(w2w
n−1
5 )

= w2
2w

n−1
5 + (w1w2 + w3)(n− 1)w1w

n−1
5

+w2

(
(n− 1)w2w

n−1
5 +

(
n− 1

2

)
w2

1w
n−1
5

)
+ w2

1w2w
n−1
5 + w2

2w
n−1
5

= w2
1w2w

n−1
5 + w1w3w

n−1
5 + w2

2w
n−1
5

= w2g̃(0,0,0,n−1) + g̃(0,1,0,n−1) + w4w
n−1
5

= w4w
n−1
5 ,

and this class is nonzero by Proposition 13. 2

By the famous result of Cohen ([3]), Grassmannian G5,n can be immersed into R10n−α(5n), where α(5n)
denotes the number of ones in the binary expansion of 5n. This means that Theorem 16 improves this
result whenever α(5n) = 2 (and n ≡ 0 (mod 8)). Such a case occurs when n is a power of two, and it is
known that then G5,n cannot be immersed into R10n−6 ([7, p. 365]). So, if n ≥ 8 is a power of two, then for
imm(G5,n) = min{d | G5,n immerses into Rd} the following inequalities hold

10n− 5 6 imm(G5,n) 6 10n− 3.

Actually, a sufficient and necessary condition for α(5n) = 2 and n ≡ 0 (mod 8) is that n is of the form
2r +

∑s
i=0(2r+2+4i + 2r+3+4i), r > 3, s > −1 (where the case s = −1 corresponds to the case n = 2r).
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[13] B. I. Prvulović, Gröbner bases for complex Grassmann manifold, Publ. Inst. Math. 90 (104), (2011), 23-46.
[14] R.P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge Studies in Advanced Mathematics 62, Cambridge Uni-

versity Press 1999.

18


