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Abstract. The mod 2 cohomology of the real flag manifolds is known to

be isomorphic to a polynomial algebra modulo a certain ideal. In this paper

reduced Gröbner bases for these ideals are obtained in the case of manifolds
F (1, . . . , 1, 2, . . . , 2, n). As an application of this result, the appropriate

Stiefel-Whitney classes are calculated and some new non-embedding and
non-immersion theorems for some manifolds of this type are obtained.

1. Introduction

For positive integers n1, . . . , nr, r ≥ 2, the real flag manifold F (n1, . . . , nr) is
the set of flags of type (n1, . . . , nr) (r–tuples (V1, . . . , Vr) of mutually orthogonal
subspaces in Rm, where m = n1 + . . . + nr and dim(Vi) = ni, i = 1, r) with
the manifold structure coming from the natural identification F (n1, . . . , nr) =
O(n1 + · · ·+ nr)/O(n1)× · · · × O(nr). This identification makes F (n1, . . . , nr)
into a closed manifold of dimension δ(F (n1, . . . , nr)) =

∑
1≤i<j≤r ninj . By

Borel’s description ([2]), the mod 2 cohomology algebra of F (n1, n2, . . . , nr)
is the polynomial algebra on the Stiefel-Whitney classes of canonical vector
bundles γ1, γ2, . . . , γr−1 over F (n1, n2, . . . , nr) modulo an ideal generated by the
dual classes. Although this description is simple enough, concrete calculations
in cohomology of flag manifolds may be rather difficult to perform. At the same
time, it is well known that a Gröbner basis can be very helpful when calculating
in quotient algebra. So, in order to get a better understanding of the cohomology
of flag manifolds it is natural to try to obtain a Gröbner basis for the ideal that,
by Borel’s description, determines this cohomology.

Gröbner bases proved useful for obtaining some topological properties of cer-
tain manifolds (see [4, 9, 10, 11, 12, 13, 14]). In [7], the authors used the software
Maple V Release 4 and obtained Gröbner bases for some flag manifolds of small
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dimensions. In [10] and [11] the authors obtained Gröbner bases for flag mani-
folds of type F (1, . . . , 1, n) and F (1, 2, n). In [14] the authors obtained Gröbner
bases for all Grassmann manifolds, that is flag manifolds of type F (k, n− k). In
this paper we continue research in this area.

As a main result of this paper we construct (reduced) Gröbner bases for the
ideals that determine the cohomology of F (1...j , 2...d, n), thus extending results
from [10, 11, 12] (we are using the notation from [5]: F (1...j , 2...d, n) stands
for the flag manifold F (1, . . . , 1︸ ︷︷ ︸

j

, 2, . . . , 2︸ ︷︷ ︸
d

, n)). As a consequence of this result

we obtain an additive basis for the cohomology algebra H∗(F (1...j , 2...d, n);Z2).
Finally, in Section 4 we calculate the appropriate Stiefel-Whitney classes and ob-
tain some new non-embedding and non-immersion theorems for some manifolds
of this type, thus extending results from [7] and [11].

2. Preliminaries

2.1. Gröbner bases. Let F be a field and F[x1, . . . , xk] be the polynomial al-
gebra in k variables. A monomial in the variables x1, . . . , xk is a power product
xa11 · · ·x

ak
k , where ai ≥ 0, for i = 1, k. The set of all monomials will be denoted

by M . A term in F[x1, . . . , xk] is a product of a coefficient α ∈ F and m ∈ M .
Note that in the case F = Z2 every term is a monomial or zero.

Let � be a fixed well-ordering on M with the property that m1 � m2 implies
m ·m1 � m ·m2 for all m,m1,m2 ∈M .

For f =
∑r
i=1 αimi ∈ F[x1, . . . , xk], where mi are pairwise different mono-

mials and αi ∈ F \ {0}, let M(f) = {mi | 1 ≤ i ≤ r}. We define the leading
monomial of f , denoted by LM(f), as maxM(f) (with respect to �). The lead-
ing coefficient of f , denoted by LC(f), is the coefficient of LM(f) and the leading
term of f is LT(f) =LC(f)·LM(f).

For f, g, p ∈ F[x1, . . . , xk], we say that f reduces to g modulo p (and write
f →p g) if there exists t ∈ M(f) such that LT(p) | t and g = f − α

LC (p)
· s · p,

where α ∈ F\{0} is the coefficient of t in f and s ∈M is such that t = s·LT(p).
We say that f reduces to g modulo P ⊆ F[x1, . . . , xk] (and write f →P g) if
there exists p ∈ P such that f →p g. Finally, the relation →∗P is defined as the
reflexive-transitive closure of →P in F[x1, . . . , xk].

Definition 2.1. Let G ⊆ F[x1, . . . , xk] \ {0} be a finite set of polynomials and
let I = (G) be the ideal in F[x1, . . . , xk] generated by the set G. We say that G
is a Gröbner basis for I if f →∗G 0 for all f ∈ I.

To prove that a set forms a Gröbner basis of a given ideal, we will use Buch-
berger’s criterion [3], for which we need the knowledge of S-polynomials. For
nonzero polynomials f, g ∈ F[x1, . . . , xk], the S-polynomial of f and g is defined
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as
S(f, g) := LC(g) · u

LT(f)
· f − LC(f) · u

LT(g)
· g,

where u =lcm(LT(f),LT(g)) is the least common multiple of LT(f) and LT(g).
Let G be an arbitrary subset of F[x1, . . . , xk] \ {0} and I = (G), the ideal

generated by G. If m ∈ M is a fixed monomial and if for f ∈ F[x1, . . . , xk]
we have f =

∑r
i=1 tigi, where ti are some terms and gi some (not necessarily

different) elements of G such that max1≤i≤rLM(tigi) � m, we say that
∑r
i=1 tigi

is an m-representation of f with respect to G.
In the following theorem ([1, Theorem, 5.35(x)]) we formulate Buchberger’s

criterion (equivalence of (i) and (ii)), as well as an important characterization
of Gröbner bases.

Theorem 2.1. Let G ⊆ F[x1, . . . , xk]\{0}, be a finite set of polynomials and let
I = (G) be the ideal in F[x1, . . . , xk] generated by the set G. Then the following
three conditions are equivalent.

(i) G is a Gröbner basis for I.
(ii) For all g1, g2 ∈ G, S(g1, g2) →∗G 0, or S(g1, g2) has a t-representation

with respect to G for some t ≺ lcm(LT(g1),LT(g2)).
(iii) The set of all cosets of all terms in F[x1, . . . , xk] that are not divisible

by any of the leading terms LT(g), for g ∈ G, forms an additive basis
for the quotient algebra F[x1, . . . , xk]/I.

The following lemma ([1, Lemma 5.66]) will be very useful for the proof of our
main theorem. The greatest common divisor of polynomials f and g is denoted
by gcd(f, g).

Lemma 2.1. Let f, g ∈ F[x1, . . . , xk] be nonzero polynomials and P = {f, g}.
If gcd(LT(f),LT(g)) = 1, then S(f, g)→∗P 0.

2.2. The cohomology algebra H∗(F (1...j , 2...d, n);Z2). Throughout this pa-
per N0 = N ∪ {0}.

Let j, d ∈ N0, and n ≥ min{2, d+ 1}. By Borel’s description, the cohomology
algebra H∗(F (1...j , 2...d, n);Z2) is isomorphic to the quotient algebra

Z2[x1, . . . , xj , y1,1, y1,2, . . . , yd,1, yd,2]/Ij,d,n.

Here xi ∈ H1(F (1...j , 2...d, n);Z2), i = 1, j, are the Stiefel-Whitney classes of
the canonical line bundles over F (1...j , 2...d, n); yi,l ∈ H l(F (1...j , 2...d, n);Z2),

i = 1, d, l = 1, 2, are the Stiefel-Whitney classes of the canonical two-dimensional
vector bundles over F (1...j , 2...d, n); Ij,d,n / Z2[x1, . . . , xj , y1,1, y1,2, . . . , yd,1, yd,2]
is the ideal generated by the dual classes zn+1, zn+2,. . . , zn+j+2d. The following
identity holds for these dual classes

1 + z1 + z2 + · · · =
j∏
i=1

(1 + xi)
−1

d∏
i=1

(1 + yi,1 + yi,2)−1,
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from which we obtain

zs =
∑

l1+···+lj+r1+···+rd=s

x1,l1 · · ·xj,ljy1,r1 · · · yd,rd , (2.1)

where the sum is taken over all nonnegative integers l1, . . . , lj , r1, . . . , rd such
that l1 + · · ·+ lj + r1 + · · ·+ rd = s. Also, for l, r ∈ N0,

xi,l =xli, 1 ≤ i ≤ j,

yi,r =
∑

a+2b=r

(
a+ b

a

)
yai,1y

b
i,2, 1 ≤ i ≤ d,

where the sum is taken over all (a, b) ∈ N2
0 such that a+ 2b = r.

Remark 1. Note that for odd r every monomial of yi,r has yi,1 in a positive

degree. In addition, for even r, the term for b = r/2 in the previous sum is y
r/2
i,2 ,

and any other monomial of yi,r has yi,1 in positive degree.

Let hp(x1, . . . , xj) denote the complete homogeneous symmetric polynomial
of degree p in the variables x1,. . . ,xj (h−1(x1, . . . , xj) = 0). The identity (2.1)
can be written as

zs =
∑

l+r1+···+rd=s

hl(x1, . . . , xj)y1,r1 · · · yd,rd , (2.2)

where the sum is taken over all d-tuples (r1, . . . , rd) of nonnegative integers and
l ∈ N0, such that l + r1 + · · ·+ rd = s.

3. Gröbner basis for Ij,d,n

In this section we prove the main theorem of this paper which establishes a
Gröbner basis for the ideal Ij,d,n. We will keep the notations from the previous
section. All calculations are performed modulo 2.

Recall that for α, β ∈ Z the binomial coefficient
(
α
β

)
is defined by

(
α

β

)
:=


α(α−1)···(α−β+1)

β! , β > 0

1, β = 0
0, β < 0

,

and therefore, the following lemma is straightforward.

Lemma 3.1. If
(
α
β

)
6= 0, then α ≥ β or α ≤ −1.

Recall also the well-known formula (which holds for all α, β ∈ Z)(
α

β

)
=

(
α− 1

β

)
+

(
α− 1

β − 1

)
. (3.1)



GRÖBNER BASES FOR SOME FLAG MANIFOLDS AND APPLICATIONS 5

For 1 ≤ m ≤ d, −2 ≤ N ≤ n+ j + 2m− 2, and r ≥ 0, let

g(N)
m,r =

∑
a+2b=N+1+r

(
a+ b− r

a

)
yam,1y

b
m,2, (3.2)

where the sum is taken over all (a, b) ∈ N2
0, such that a+ 2b = N + 1 + r.

For a d-tuple R = (r1, . . . , rd) of nonnegative integers, let:

• R(m) =
∑d
i=m ri, for m = 1, d;

• Y Rm
= ym,rm . . . yd,rd .

Let 4 be the term ordering in Z2[x1, . . . , xj , y1,1, y1,2, . . . , yd,1, yd,2] defined in
the following way. For a term

t = xn1
1 . . . x

nj

j y
n1,1

1,1 y
n1,2

1,2 . . . y
nd,1

d,1 y
nd,2

d,2 ,

let D(t) = (n1, . . . , nj , nj+1, n1,1, . . . , nj+d, nd,1), where nj+r = nr,1 + nr,2, for

r = 1, d.
Then t 4 t′ if and only if one of the following holds:

• t = t′, or
• if s is the smallest integer such that the s-th coordinate ms of D(t) is

not equal to the s-th coordinate m′s of D(t′), then ms < m′s.

We are ready to define polynomials that form a Gröbner basis G = G1 ∪G2

for the ideal Ij,d,n with respect to the ordering 4.
Let G1 = {gm | 1 ≤ m ≤ j}, where

gm =
∑

l+R(1)=n+m

hl(xm, . . . , xj)Y
R1
,

and the sum is taken over all d-tuples R = (r1, . . . , rd) of nonnegative integers
and l ∈ N0, such that l +R(1) = n+m.

Let G2 = {gm,r | 1 ≤ m ≤ d, 0 ≤ r ≤ n+ j + 2m− 1}, where

gm,r =
∑

R(m)=n+j+2m−1

g(rm−1)
m,r Y

Rm+1
,

and the sum is taken over all d-tuples R = (r1, . . . , rd) such that rm ≥ −1,
ri ≥ 0, for i = m+ 1, d, and R(m) = n+ j + 2m− 1.

Note that for d = 0, G is the Gröbner basis obtained in [10]; for j = 0 and
d = 1, G is the Gröbner basis obtained in [12]; for j = 1, d = 1, G is the
Gröbner basis obtained in [11]. Having in mind these results, we construct a
new generating set for Ij,d,n, by successively removing members of the generating
set and replacing them with appropriate polynomials with smaller number of
variables.
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First, we prove that Ij,d,n is generated by G1∪{z′n+j+1, z
′
n+j+2, . . . , z

′
n+j+2d},

where

z′n+j+m =
∑

R(1)=n+j+m

Y
R1
, m = 1, 2d,

and the sum is taken over all d-tuples of nonnegative integers R = (r1, . . . , rd)
such that R(1) = n+ j +m.

In order to do so, let us define

zn+m,i =
∑

l+R(1)=n+m

hl(xi, . . . , xj)Y
R1
, m = 1, j + 2d, i = 1, j,

where the sum is taken over all d-tuples R = (r1, . . . , rd) of nonnegative integers
and l ∈ N0, such that l +R(1) = n+m.

From (2.2) we have zn+m = zn+m,1, m = 1, j + 2d. Also, gm = zn+m,m,

m = 1, j + 2d.
Note that for l ≥ −1, 1 ≤ i ≤ j − 1,

hl+1(xi+1, . . . , xj) = hl+1(xi, xi+1, . . . , xj)− xihl(xi, xi+1, . . . , xj),

and therefore for m = 1, j + 2d− 1, i = 1, j − 1, since h−1(xi, . . . , xj) = 0,

zn+m+1,i+1 =
∑

l+R(1)=n+m+1

hl(xi+1, . . . , xj)Y
R1

=
∑

l+R(1)=n+m+1

(hl(xi, . . . , xj)− xihl−1(xi, . . . , xj))Y
R1

= zn+m+1,i + xi
∑

l−1+R(1)=n+m

hl−1(xi, . . . , xj)Y
R1

= zn+m+1,i + xizn+m,i. (3.3)

Also, for m = j, j + 2d− 1, we have

zn+m+1,j − xjzn+m,j =
∑

l+R(1)=n+m+1

xljY
R1 − xj

∑
l+R(1)=n+m

xljY
R1

=
∑

l+R(1)=n+m+1

xljY
R1 −

∑
l+R(1)=n+m+1

l≥1

xljY
R1

= z′n+m+1, (3.4)
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Using identities (3.3) and (3.4) for the terms in boxes, we have the following

Ij,d,n =
(
zn+1,1, zn+2,1, . . . , zn+j+2d−2,1, zn+j+2d−1,1 , zn+j+2d,1

)
=
(
zn+1,1, zn+2,1, . . . , zn+j+2d−2,1 , zn+j+2d−1,1 , zn+j+2d,2

)
. . .

=
(
g1, zn+2,2, . . . , zn+j+2d−2,2, zn+j+2d−1,2 , zn+j+2d,2

)
=
(
g1, zn+2,2, . . . , zn+j+2d−2,2 , zn+j+2d−1,2 , zn+j+2d,3

)
. . .

=
(
g1, . . . , gj−1, zn+j,j , . . . , zn+j+2d−2,j , zn+j+2d−1,j , zn+j+2d,j

)
=
(
g1, . . . , gj−1, zn+j,j , . . . , zn+j+2d−2,j , zn+j+2d−1,j , z

′
n+D

)
. . .

= (g1, . . . , gj , z
′
n+j+1, . . . , z

′
n+j+2d). (3.5)

To continue our proof we need the following lemma which can be easily ex-
tracted from [12]. Since it is not stated there in a form suitable for us, we include
its proof.

Lemma 3.2. Let 1 ≤ m ≤ d, −2 ≤ N ≤ n+ j + 2m− 1, r ≥ 0 and s ≥ 1. The
following identities hold:

a) LT(g
(N)
m,r) = yN+1−r

m,1 yrm,2, for r ≤ N + 1;

b) ym,r+2 = ym,1ym,r+1 + ym,2ym,r;

c) g
(N)
m,r+2 = ym,1g

(N)
m,r+1 + ym,2g

(N)
m,r ;

d) ysm,2g
(N)
m,r + ysm,1g

(N)
m,r+s =

s−1∑
i=0

yim,1y
s−1−i
m,2 g

(N)
m,r+2+i.

e) g
(N)
m,N+2 = 0, and g

(N)
m,r = g

(r−2)
m,N+2 for r ≥ N + 3.

Proof. a) By Lemma 3.1, if b < r and a + b ≥ r we have
(
a+b−r
a

)
= 0, and

therefore every nonzero term of

g(N)
m,r =

∑
a+2b=N+1+r

(
a+ b− r

a

)
yam,1y

b
m,2

satisfies b ≥ r or a+b < r. So, a+b ≤ max{N+1, r−1} = N+1, and therefore,

LT(g
(N)
m,r) = yN+1−r

m,1 yrm,2.
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b) We have (modulo 2)

ym,1ym,r+1+ym,2ym,r =

=
∑

a+2b=r+1

(
a+ b

a

)
ya+1
m,1 y

b
m,2 +

∑
a+2b=r

(
a+ b

a

)
yam,1y

b+1
m,2

=
∑

a+2b=r+2

(
a+ b− 1

a− 1

)
yam,1y

b
m,2 +

∑
a+2b=r+2

(
a+ b− 1

a

)
yam,1y

b
m,2

=
∑

a+2b=r+2

(
a+ b

a

)
yam,1y

b
m,2.

The change of variable a 7→ a−1 (resp. b 7→ b−1) does not affect the requirement
that a ≥ 0 (resp. b ≥ 0), since for a = 0 (resp. b = 0) the binomial coefficient(
a+b−1
a−1

)
(resp.

(
a+b−1
a

)
=
(
r+1
r+2

)
) is equal to 0. So, the last sum is equal to ym,r+2.

c) We have (modulo 2)

ym,1g
(N)
m,r+1 + ym,2g

(N)
m,r =

=
∑

a+2b=N+r+2

(
a+ b− r − 1

a

)
ya+1
m,1 y

b
m,2 +

∑
a+2b=N+r+1

(
a+ b− r

a

)
yam,1y

b+1
m,2

=
∑

a+2b=N+r+3

(
a+ b− r − 2

a− 1

)
yam,1y

b
m,2 +

∑
a+2b=N+r+3

(
a+ b− r − 1

a

)
yam,1y

b
m,2

=
∑

a+2b=N+r+3

(
a+ b− r − 2

a

)
yam,1y

b
m,2.

Note that, similarly as in part b), the change of variable a 7→ a − 1 (resp.
b 7→ b− 1) does not affect the requirement that a ≥ 0 (resp. b ≥ 0). So, the last

sum is equal to g
(N)
m,r+2.

d) We proceed by induction on s. For s = 1, we need to prove that g
(N)
m,r+2 =

ym,2g
(N)
m,r +ym,1g

(N)
m,r+1, which follows from part c). For the induction step, using
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part c) we obtain

ysm,2g
(N)
m,r + ysm,1g

(N)
m,r+s

= ysm,2g
(N)
m,r + ym,2y

s−1
m,1g

(N)
m,r+s−1 + ym,2y

s−1
m,1g

(N)
m,r+s−1 + ysm,1g

(N)
m,r+s

= ym,2

(
ys−1
m,2g

(N)
m,r + ys−1

m,1g
(N)
m,r+s−1

)
+ ys−1

m,1

(
ym,2g

(N)
m,r+s−1 + ym,1g

(N)
m,r+s

)
= ym,2

s−2∑
i=0

yim,1y
s−2−i
m,2 g

(N)
m,r+2+i + ys−1

m,1g
(N)
m,r+s+1

=

s−1∑
i=0

yim,1y
s−1−i
m,2 g

(N)
m,r+2+i.

e) First, let r = N + 2. If a + 2b = N + 1 + r = 2N + 3, for a, b ≥ 0, then
2a + 2b ≥ 2N + 3, i.e., a + b ≥ N + 2. At the same time, 2b ≤ 2N + 3, i.e.,

b < N + 2. So, 0 ≤ a+ b− r < a, and therefore
(
a+b−r
a

)
= 0, i.e., g

(N)
m,N+2 = 0.

For the other identity, let r ≥ N + 3, and a, b ≥ 0 be such that a + 2b =
N + 1 + r. Then r − b− 1 = a+ b−N − 2 and(

a+ b− r
a

)
= (−1)a

(
r − b− 1

a

)
=

(
a+ b−N − 2

a

)
.

Therefore,

g(N)
m,r =

∑
a+2b=N+1+r

(
a+ b− r

a

)
yam,1y

b
m,2

=
∑

a+2b=N+1+r

(
a+ b−N − 2

a

)
yam,1y

b
m,2

= g
(r−2)
m,N+2,

which completes our proof. �

Let

z′′n+j+m =
∑

R(2)=n+j+m

Y
R2
, m = 1, 2d,

where the sum is taken over all d-tuples R = (r1, . . . , rd) of nonnegative integers,
such that R(2) = n+ j +m.

Note that if we define ym,−1 to be 0, then part b) of the previous lemma also
holds for r = −1. So, for a d-tuple of nonnegative integers R = (r1, r2, . . . , rd)
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we have

z′n+j+m+2 =
∑

R(1)=n+j+m+2

Y
R1

=
∑

R(1)=n+j+m+2
r1≥1

Y
R1

+
∑

R(2)=n+j+m+2

Y
R2

=
∑

R(1)=n+j+m+2
r1≥1

(
y1,1y1,r1−1 + y1,2y1,r1−2

)
Y
R2

+
∑

R(2)=n+j+m+2

Y
R2

=
∑

R(1)=n+j+m+1

y1,1Y
R1

+
∑

R(1)=n+j+m

y1,2Y
R1

+ z′′n+j+m+2

= y1,1z
′
n+j+m+1 + y1,2z

′
n+j+m + z′′n+j+m+2. (3.6)

Using the previous identities, as for (3.5) we obtain

Ij,d,n = (g1, . . . , gj , z
′
n+j+1, z

′
n+j+2, z

′
n+j+3, . . . , z

′
n+j+2d)

= (g1, . . . , gj , z
′
n+j+1, z

′
n+j+2, z

′′
n+j+3, . . . , z

′′
n+j+2d). (3.7)

Next, we prove the following lemma.

Lemma 3.3. (z′n+j+1, z
′
n+j+2) = (g1,0, g1,1, . . . , g1,n+j+1).

Proof. Note that g
(r1−1)
1,0 = y1,r1 , for r1 = −1, n+ j + 1, and therefore

g1,0 =
∑

R(1)=n+j+1

Y
R1

= z′n+j+1.

Since g
(−2)
1,1 = 1 and g

(−1)
1,1 = 0, we have

g1,1 =
∑

R(1)=n+j+1
r1≥−1

g
(r1−1)
1,1 Y

R2

=
∑

R(1)=n+j+1
r1≥−1

∑
a+2b=r1+1

(
a+ b− 1

a

)
ya1,1y

b
1,2Y

R2

=
∑

R(1)=n+j+1
r1≥1

∑
a+2b=r1−1

(
a+ b

a

)
ya1,1y

b+1
1,2 Y

R2
+

∑
R(2)=n+j+2

Y
R2

= y1,2

∑
R(1)=n+j+1

y1,r1−1Y
R2

+
∑

R(2)=n+j+2

Y
R2

= y1,2

∑
R(1)=n+j

Y
R1

+
∑

R(2)=n+j+2

Y
R2
,
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and therefore, by part b) of Lemma 3.2,

z′n+j+2 =
∑

R(1)=n+j+2

Y
R(1)

=
∑

R(1)=n+j+2
r1≥1

(y1,1y1,r1−1 + y1,2y1,r1−2)Y
R(2)

+
∑

R(2)=n+j+2

Y
R(2)

= y1,1z
′
n+j+1 + y1,2

∑
R(1)=n+j

Y
R(1)

+
∑

R(2)=n+j+2

Y
R(2)

= y1,1g1,0 + g1,1.

So, (z′n+j+1, z
′
n+j+2) ⊆ (g1,0, g1,1, . . . , g1,n+j+1).

To prove the other inclusion, first note that g1,0 = z′n+j+1 and g1,1 = z′n+j+2+
y1,1z

′
n+j+1 ∈ (z′n+j+1, z

′
n+j+2). Now, by simple induction on r and part c) of

Lemma 3.2, we have

g1,r+2 = y1,1g1,r+1 + y1,2g1,r ∈ (z′n+j+1, z
′
n+j+2), r = 0, n+ j − 1,

which completes our proof. �

By the previous lemma

Ij,d,n = (g1, . . . , gj , g1,0, . . . , g1,n+j+1, z
′′
n+j+3, . . . , z

′′
n+j+2d).

Note that the polynomials z′′n+j+i, i = 3, 2d, have the same form as polyno-

mials z′n+j+i, i = 1, 2d, and are in variables y2,1, y2,2, . . . , yd,1, yd,2. Therefore,
we can continue as before, and obtain the desired result, i.e.,

Ij,d,n = (G). (3.8)

To prove that G is a Gröbner basis for the ideal Ij,d,n, it is convenient to
extend the definition of gm,r to r = n+ j + 2m as follows

gm,n+j+2m =
∑

R(m)=n+j+2m−1

g
(rm−1)
m,n+j+2mY

Rm+1
, m = 1, d,

where the sum is taken over all d-tuples R = (r1, . . . , rd) such that rm ≥ −1,
ri ≥ 0, for i = m+ 1, d, and R(m) = n+ j + 2m− 1.

Note that by part e) of Lemma 3.2

LT(gm,n+j+2m) = max
−2≤N≤n+j+2m−2

{
LT
(
g

(N)
m,n+j+2mym+1,n+j+2m−N−2

)}
= max
−2≤N≤n+j+2m−2

{
LT
(
g

(n+j+2m−2)
m,N+2 ym+1,n+j+2m−N−2

)}
= max
−2≤N≤n+j+2m−2

{
yn+j+2m−N−3
m,1 yNm,2ym+1,n+j+2m−N−2

}
= yn+j+2m−1

m,1 yn+j+2m
m+1,1 .
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Moreover, the following holds.

Lemma 3.4. For 1 ≤ m ≤ d,∑
r+s=n+j+2m

gm,r
∑

R(m+1)=s

Y
Rm+1

= 0,

where the double sum is taken over all pairs of nonnegative integers (r, s), and all
d-tuples of nonnegative integers R = (r1, r2, . . . , rd), such that r+s = n+j+2m
and R(m+ 1) = s.

Proof. Let A denote the double sum in the lemma. By the definition gm,r =∑
R′(m)=n+j+2m−1

g
(r′m−1)
m,r Y

R′
m+1 . Plugging this in A we obtain

A =
∑

r+s=n+j+2m

∑
R′(m)=n+j+2m−1

g
(r′m−1)
m,r Y

R′
m+1

∑
R(m+1)=s

Y
Rm+1

=
∑

0≤r,r′≤n+j+2m

g(r′−2)
m,r

∑
R(m+1)=n+j+2m−r

∑
R′(m+1)=n+j+2m−r′

Y
Rm+1

Y
R′

m+1 .

By part e) of Lemma 3.2 g
(r′−2)
m,r = g

(r−2)
m,r′ and g

(r−2)
m,r = 0, and so A = 0. �

From the previous lemma

gm,n+j+2m =
∑

r+s=n+j+2m
s≥1

gm,r
∑

R(m+1)=s

Y
Rm+1

. (3.9)

Note that each gm,r that appears on the right hand side of (3.9) is in G2.
We are ready to prove the main theorem of the paper.

Theorem 3.1. The set G is the reduced Gröbner basis for the ideal Ij,d,n with
respect to the ordering 4.

Proof. To prove that G is a Gröbner basis it is enough to prove that G satisfies
part (ii) of Theorem 2.1. Let g′, g′′ ∈ G, g′ 6= g′′.

Note that for 1 ≤ m ≤ j, LT(gm) = xn+m
m . By part a) of Lemma 3.2, for

1 ≤ m ≤ d and 0 ≤ r ≤ n+ j + 2m− 1,

LT(gm,r) = LT(g(n+j+2(m−1))
m,r ) = yn+j+2m−1−r

m,1 yrm,2.

So, if g′ ∈ G1, g′′ ∈ G2, or g′, g′′ ∈ G1, or g′ = gm′,r′ , g
′′ = gm′′,r′′ , m

′ 6= m′′, by
Lemma 2.1 we have S(g′, g′′)→∗G 0.

So, we may assume that g′ = gm,r′ and g′′ = gm,r′′ , for some 1 ≤ m ≤ d and
0 ≤ r′ < r′′ ≤ n+ j + 2m− 1. Then

lcm(LT(gm,r′),LT(gm,r′′)) = yn+j+2m−1−r′
m,1 yr

′′

m,2,
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and therefore

S(gm,r′ , gm,r′′) = yr
′′−r′
m,2 gm,r′ + yr

′′−r′
m,1 gm,r′′

=
∑

R(m)=n+j+2m−1

(
yr

′′−r′
m,2 g

(rm−1)
m,r′ + yr

′′−r′
m,1 g

(rm−1)
m,r′′

)
Y
Rm+1

Let δ = r′′ − r′ − 1. By part d) of Lemma 3.2 we have

S(gm,r′ , gm,r′′) =
∑

R(m)=n+j+2m−1

δ∑
i=0

yim,1y
δ−i
m,2g

(rm−1)
m,r′+2+iY

Rm+1

=

δ∑
i=0

yim,1y
δ−i
m,2

∑
R(m)=n+j+2m−1

g
(rm−1)
m,r′+2+iY

Rm+1

=

δ∑
i=0

yim,1y
δ−i
m,2gm,r′+2+i. (3.10)

Note that if r′ + 2 + i ≤ n+ j + 2m− 1 then

LT(yim,1y
δ−i
m,2gm,r′+2+i) = yn+j+2m−3−r′

m,1 yr
′′+1
m,2 ≺ yn+j+2m−1−r′

m,1 yr
′′

m,2.

So, if r′′ < n + j + 2m − 1, then (3.10) is the representation of S(gm,r′ , gm,r′′)
that satisfies part (ii) of Theorem 2.1. Let r′′ = n + j + 2m − 1. By (3.9) and
(3.10),

S(gm,r′ , gm,r′′) =

δ−1∑
i=0

yim,1y
δ−i
m,2gm,r′+2+i

+ yδm,1
∑

r+s=n+j+2m
s≥1

gm,r
∑

R(m+1)=s

Y
R(m+1)

. (3.11)

Note that for every h ∈ Z2[ym+1,1, ym+1,2, . . . , yd,1, yd,2] and 0 ≤ r ≤ n + j +
2m− 1, we have

LT
(
yδm,1gm,rh

)
= yδ+n+j+2m−1−r

m,1 yrm,2LT(h) ≺ yn+j+2m−1−r′
m,1 yn+j+2m−1

m,2 .

So, (3.11) is the representation of S(gm,r′ , gm,r′′) that satisfies part (ii) of The-
orem 2.1.

To prove that G is a reduced Gröbner basis, let us assume to the contrary
that LT(g′) divides a term of g′′, for some g′, g′′ ∈ G, g′ 6= g′′. If g′ = gm′ , for
some 1 ≤ m′ ≤ j, then, from the definition of G, we have g′′ = gm′′ , for some
1 ≤ m′′ < m′. But the degree of gm′′ is less than the degree of LT(gm′), which
is a contradiction. The case g′ = gm,r is dealt with similarly. �
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Remark 2. Using the results from [14], in a similar way as in this paper, one
can obtain Gröbner bases for flag manifolds of type F (1...j , 2...d, k, n), for k ∈ N.
Since this will need more complicated notations, we decided not to include this
proof.

Remark 3. Using the method of this paper, it should be difficult to obtain
a result for a general flag manifold. The main problem should be obtaining
the result similar to Lemma 3.4. Note that this was very complicated even for
F (3, n) (see [13, Proposition 2.8])

For a polynomial p ∈ Z2[x1, . . . , xj , y1,1, y2,1, . . . , yd,1, yd,2], we will denote
the class of p in H∗(F (1...j , 2...d, n);Z2) by the same letter. By Theorem 2.1
(implication (i)⇒(iii)) we have the following corollary.

Corollary 3.1.1. The set{
j∏
i=1

xaii

d∏
i=1

y
b′i
i,1y

b′′i
i,2 : ai ≤ n+ i− 1, i = 1, j, b′i + b′′i ≤ n+ j + 2i− 2, i = 1, d

}
is a vector space basis for H∗(F (1...j , 2...d, n);Z2).

Additive basis obtained in the previous corollary will be denoted by Bj,d,n.
Note that the Gröbner basis detected in Theorem 3.1 gives us more. By the
definition of the reduction, if p →f q, then LT(q) 4 LT(p), and therefore we
have the following corollary.

Corollary 3.1.2. For f ∈ Z2[x1, . . . , xj , y1,1, y1,2, . . . , yd,1, yd,2] there is a poly-
nomial p, such that f = p in H∗(F (1...j , 2...d, n);Z2), LT(p) 4 LT(f), and all
monomials of p are in Bj,d,n.

The previous corollary can be restated as follows. If a polynomial p does not
contain variables x1, x2, . . . , xi, and f is a sum of elements of Bj,d,n such that
f = p in H∗(F (1...j , 2...d, n);Z2), then f does not contain variables x1, x2, . . . , xi.
Similarly, if a polynomial q does not contain variables x1, . . . , xj ,y1,1,y1,2,. . . ,yi,1,
yi,2, and g is a sum of elements of Bj,d,n such that in H∗(F (1...j , 2...d, n);Z2)
one has g = q, then g does not contain variables x1, . . . , xj , y1,1, y1,2, . . . , yi,1, yi,2.
Therefore, we have the following corollary.

Corollary 3.1.3. (1) Let 1 ≤ i ≤ j, 0 ≤ a1 < a2 < · · · < ak ≤ n + i − 1, and
p1, p2, . . . , pk polynomials such that LT(pl) ≺ xi, for l = 1, k. Then

k∑
l=1

xali pl = 0

in H∗(F (1...j , 2...d, n);Z2) if and only if pl = 0 in H∗(F (1...j , 2...d, n);Z2), for
all 1 ≤ l ≤ k.
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(2) Let 1 ≤ i ≤ d, (b1, c1), . . . , (bk, ck) distinct pairs of nonnegative integers
such that bl + cl ≤ n+ j + 2l− 2, for 1 ≤ l ≤ k, and p1, . . . , pk polynomials such
that LT(pl) ≺ yi,2, for l = 1, k. Then

k∑
l=1

ybli,1y
cl
i,2pl = 0

in H∗(F (1...j , 2...d, n);Z2) if and only if pl = 0 in H∗(F (1...j , 2...d, n);Z2), for
all 1 ≤ l ≤ k.

By Corollary 3.1.1, if p ∈ Bj,d,n does not contain variables x1, x2, . . . , xi, then

the maximum degree of p is
∑j
l=i+1(n+ l − 1) +

∑d
l=1(n+ j + 2i− 2), and the

maximum dimension of p is
∑j
l=i+1(n+ l−1)+

∑d
l=1(2n+2j+4i−4). Similarly,

if q ∈ Bj,d,n does not contain variables x1, . . . , xj , y1,1, y1,2, . . . , yi,1, yi,2, then the

maximum degree of q is
∑d
l=i+1(n+j+2i−2), and the maximum dimension of q

is
∑d
l=i+1(2n+2j+4i−4). Therefore, by Corollary 3.1.2 we have the following.

Corollary 3.1.4. Let al ≥ 0, l = 1, j, and bl, cl ≥ 0, l = 1, d. If

(1)

j∑
l=i+1

al +

d∑
l=1

(bl + 2cl) >

j∑
l=i+1

(n + l − 1) +

d∑
l=1

(2n + 2j + 4l − 4), for

some 0 ≤ i ≤ j, or

(2)

d∑
l=i+1

(bl + 2cl) >

d∑
l=i+1

(2n+ 2j + 4l − 4), for some 0 ≤ i ≤ d,

then in H∗(F (1...j , 2...d, n);Z2)

j∏
l=1

xall

d∏
l=1

ybll,1y
cl
l,2 = 0.

Let 1 ≤ m ≤ d, M = n+ j + 2m− 2, Gj,m,n = {gm,0, gm,1, . . . , gm,M+1}, and

G′j,m,n = {g(M)
m,0 , g

(M)
m,1 , . . . , g

(M)
m,M+1}. By [12], G′m,j,n is a Gröbner basis for the

ideal (G′j,m,n), and

Z2[ym,1, ym,2]/(G′j,m,n) ∼= H∗(F (2,M);Z2). (3.12)

Via this isomorphism the classes ym,1 and ym,2 correspond to the Stiefel-Whitney
classes w1 and w2 of the canonical bundle γ2 over the Grassmannian F (2,M).
Also, if p and q are polynomials in variables ym,1 and ym,2 such that

p −→∗G′
j,m,n

q,

replacing every g
(M)
m,i that appears in this reduction with gm,i, we obtain

p −→∗Gj,m,n
q + r,
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where r is a polynomial in variables ym,1, ym,2, . . . , yd,1, yd,2, such that each
monomial of r has at least one of the variables ym+1,1, ym+1,2, . . . , yd,1, yd,2 in
positive degree. This observation, together with (3.12), gives us the following
result.

Corollary 3.1.5. Let 1 ≤ m ≤ d and M = n + j + 2m − 2. If p, q ∈
Z2[ym,1, ym,2] are such that p = q in H∗(F (2,M);Z2), then p = q + r in
H∗(F (1...j , 2...d, n);Z2), where r is a polynomial in variables ym,1, ym,2, . . . ,yd,1,
yd,2, such that each monomial of r has at least one of the variables ym+1,1, ym+1,2,
. . . ,yd,1, yd,2 in positive degree.

Using this result in the case m = d, we conclude that the heights of the classes
yd,1 and yd,2, and therefore, by symmetry, of the classes yi,1, yi,2, for i = 1, d, are
equal to the heights of classes w1 and w2, which are well-known ([16]). Thus, we
obtained a special case of the corresponding result by Korbaš and Lörinc (see
[5, p. 147]).

Corollary 3.1.6. Let d ≥ 1, n ≥ 2, and let yi,1, yi,2 ∈ H∗(F (1...j , 2...d, n);Z2),

i = 1, d, be the Stiefel-Whitney classes of the canonical two-dimensional vector
bundle over F (1...j , 2...d, n). Then ht(yi,2) = n+ j + 2d− 1, for i = 1, d, and if
s ≥ 3 is the integer such that 2s−1 < n+ j + 2d ≤ 2s, then ht(yi,1) = 2s − 2.

Let us calculate a few elements of the Gröbner basis G. For m = 1, d, let
n + j + 2m − 2 = M . First, from the definition (3.2) one can obtain (see [12,

p. 118], or proof of Lemma 3.2), g
(M)
m,M+1 = yM+1

m,2 , g
(M−1)
m,M = yMm,2, g

(M−1)
m,M−1 =

ym,1y
M−1
m,2 , g

(M)
m,M = ym,1y

M
m,2, g

(M−2)
m,M−1 = yM−1

m,2 , g
(M)
m,M−1 = y2

m,1y
M−1
m,2 + yMm,2.

Now, from part e) of Lemma 3.2 we have

gm,M+1 = g
(M)
m,M+1 + g

(M−1)
m,M+1σ

(m+1)
1 + g

(M−2)
m,M+1σ

(m+1)
2 + g

(M−3)
m,M+1σ

(m+1)
3 + p,

= yM+1
m,2 + 0 + g

(M−1)
m,M σ

(m+1)
2 + g

(M−1)
m,M−1σ

(m+1)
3 + p

= yM+1
m,2 + yMm,2σ

(m+1)
2 + ym,1y

M−1
m,2 σ

(m+1)
3 + p, (3.13)

gm,M = g
(M)
m,M + g

(M−1)
m,M σ

(m+1)
1 + g

(M−2)
m,M σ

(m+1)
2 + g

(M−3)
m,M σ

(m+1)
3 + q

= ym,1y
M
m,2 + yMm,2σ

(m+1)
1 + 0 + g

(M−2)
m,M−1σ

(m+1)
3 + q

= ym,1y
M
m,2 + yMm,2σ

(m+1)
1 + yM−1

m,2 σ
(m+1)
3 + q (3.14)

gm,M−1 = g
(M)
m,M−1 + g

(M−1)
m,M−1σ

(m+1)
1 + g

(M−2)
m,M−1σ

(m+1)
2 + g

(M−3)
m,M−1σ

(m+1)
3 + r

= y2
m,1y

M−1
m,2 + yMm,2 + ym,1y

M−1
m,2 σ

(m+1)
1 + yM−1

m,2 σ
(m+1)
2 + r, (3.15)

where
σ

(m+1)
k =

∑
rm+1+···+rd=k

ym+1,rm+1
. . . yd,rd , k = 1, 4,
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and p, q, r are polynomials in variables yi,1, yi,2, i = m, d, such that the total
dimension of ym,1 and ym,2 in each monomial of these polynomials is at most
2M − 2.

As the conclusion, let us illustrate the use of Gröbner bases by the following
examples.

Example 1. Let us consider the flag manifold F (1...j , n). By Corollary 3.1.1 the
monomial

xn1x
n+1
2 . . . xn+j−1

j

is nonzero in H∗(F (1...j , n);Z2). Note that its degree is nj+
(
j
2

)
, which is equal

to the dimension of the manifold F (1...j , n).

Example 2. Let F (1...j , 2...d, n) be the real flag manifold with d ≥ 2. By Corol-

lary 3.1.1, in H∗(F (1...j , 2...d, n);Z2) we have yn+j+2d−4
d−1,2 yn+j+2d−2

d,2 6= 0 , and by

symmetry yn+j+2d−4
d,2 yn+j+2d−2

d−1,2 6= 0. Moreover, by Corollary 3.1.3,

yn+j+2d−4
d−1,2 yn+j+2d−2

d,2 = yn+j+2d−4
d,2 yn+j+2d−2

d−1,2 .

On the other hand, we will show that the monomial yn+j+2d−3
d−1,2 yn+j+2d−3

d,2 , which

is in the same dimension as the previous two, is zero. By formula (3.13)

0 = gd−1,n+j+2d−3 = yn+j+2d−3
d−1,2 + yn+j+2d−4

d−1,2 (y2
d,1 + yd,2) + p̃,

where p̃ is a polynomial in yd−1,1, yd−1,2, yd,1, yd,2, such that the total dimension
of yd−1,1 and yd−1,2 in each monomial of p̃ is at most 2n+ 2j + 4d− 9. Also, by
formula (3.15)

0 = gd,n+j+2d−3 = y2
d,1y

n+j+2d−3
d,2 + yn+j+2d−2

d,2 ,

and therefore

yn+j+2d−3
d−1,2 yn+j+2d−3

d,2

=
(
yn+j+2d−4
d−1,2 (y2

d,1 + yd,2) + p̃
)
yn+j+2d−3
d,2

= yn+j+2d−4
d−1,2 y2

d,1y
n+j+2d−3
d,2 + yn+j+2d−4

d−1,2 yn+j+2d−2
d,2 + p̃yn+j+2d−3

d,2

= p̃yn+j+2d−3
d,2 = 0,

where the last equality follows from Corollary 3.1.3.
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4. Non-embeddings and non-immersions of some flag manifolds of
type F (1...j , 2...d, n)

In this section we use results from the previous section to obtain some non-
embeddings and non-immersions of flag manifolds. Let

em(F (1...j , 2...d, n)) = min{m |F (1...j , 2...d, n) embeds into Rm}

imm(F (1...j , 2...d, n)) = min{m |F (1...j , 2...d, n) immerses into Rm}.

It is well known (see [8, p. 120 and 49]) that if wt(ν) is nontrivial, where ν is
the stable normal bundle of F (1...j , 2...d, n), then

em(F (1...j , 2...d, n)) ≥ δ(F (1...j , 2...d, n)) + t+ 1

= jn+ 2dn+ 2jd+

(
j

2

)
+ 4

(
d

2

)
+ t+ 1 (4.1)

imm(F (1...j , 2...d, n)) ≥ δ(F (1...j , 2...d, n)) + t

= jn+ 2dn+ 2jd+

(
j

2

)
+ 4

(
d

2

)
+ t. (4.2)

These inequalities will be used to obtain lower bounds for em(F (1...j , 2...d, n))
and imm(F (1...j , 2...d, n), for some j, d, n.

Let γi, i = 1, j, γ′i, i = 1, d, and γ′′, be the canonical vector bundles over

F (1...j , 2...d, n) (dim(γi) = 1, i = 1, j, dim(γ′i) = 2, i = 1, d, dim(γ′′) = n). By
Lam’s formula ([6]), for the tangent bundle τ over F (1...j , 2...d, n), we have

τ ∼=
⊕

1≤l<k≤j

(γl ⊗ γk)⊕
⊕

1≤l<k≤d

(γ′l ⊗ γ′k)⊕
⊕

1≤l≤j
1≤k≤d

(γl ⊗ γ′k)

⊕
⊕

1≤l≤j

(γl ⊗ γ′′)⊕
⊕

1≤l≤d

(γ′l ⊗ γ′′).

Adding
⊕

1≤l≤k≤j

(γl ⊗ γk) ⊕
⊕

1≤l≤k≤d

(γ′l ⊗ γ′k) ⊕
⊕

1≤l≤j
1≤k≤d

(γl ⊗ γ′k) to both sides of

the previous isomorphism, and using the fact that
⊕

1≤l≤j

γl ⊕
⊕

1≤l≤d

γ′l ⊕ γ′′ is a

trivial (n+ j + 2d)-dimensional bundle, we obtain

τ⊕
⊕

1≤l≤k≤j

(γl ⊗ γk)⊕
⊕

1≤l≤k≤d

(γ′l ⊗ γ′k)⊕
⊕

1≤l≤j
1≤k≤d

(γl ⊗ γ′k)

∼=
⊕

1≤l≤j

(n+ j + 2d)γl ⊕
⊕

1≤l≤d

(n+ j + 2d)γ′l,
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and therefore

w(τ) ·
∏

1≤l<k≤j

w(γl ⊗ γk)
∏

1≤l≤j
1≤k≤d

w(γl ⊗ γ′k)
∏

1≤l≤k≤d

w(γ′l ⊗ γ′k)

=

j∏
l=1

(1 + xi)
n+j+2d

d∏
l=1

(1 + yl,1 + yl,2)n+j+2d. (4.3)

Using the method described in [8, Problem 7-C] we obtain

w(γl ⊗ γk) =1 + xl + xk, 1 ≤ l ≤ k ≤ j (4.4)

w(γl ⊗ γ′k) =1 + yk,1 + x2
l + xlyk,1 + yk,2, 1 ≤ l ≤ j, 1 ≤ k ≤ d (4.5)

w(γ′l ⊗ γ′k) =1 + y2
l,1 + y2

k,1 + yl,1yk,1 + y2
l,1yk,2 + y2

k,1yl,2 + y2
l,2 + y2

k,2

+ yl,1yk,1(yl,1 + yk,1) + yl,1yk,1(yl,2 + yk,2), 1 ≤ l ≤ k ≤ d. (4.6)

We are ready to prove the main theorem of this section.

Theorem 4.1. If 2s−1 < n < n+ j + 2d ≤ 2s, then wt(ν) 6= 0 for

t = (j + 2d)(2s − n− j)− 2d2 +

(
j

2

)
.

Proof. By formula (4.3), we have

w(ν) =
∏

1≤l<k≤j

w(γl ⊗ γk)
∏

1≤l≤j
1≤k≤d

w(γl ⊗ γ′k)
∏

1≤l≤k≤d

w(γ′l ⊗ γ′k)

×
j∏
l=1

(1 + xl)
−n−j−2d

d∏
l=1

(1 + yl,1 + yl,2)−n−j−2d.

Since, (1 + xl)
2s

= 1 + x2s

l , and the height of xl is n + j + 2d − 1 (see [5,

p. 147]), we have x2s

l = 0, i.e., (1 + xl)
2s

= 1. Similarly, by Corollary 3.1.6,

(1 + yl,1 + yl,2)2s

= 1, and therefore

w(ν) =
∏

1≤l<k≤j

w(γl ⊗ γk)
∏

1≤l≤j
1≤k≤d

w(γl ⊗ γ′k)
∏

1≤l≤k≤d

w(γ′l ⊗ γ′k)

×
j∏
l=1

(1 + xl)
2s−n−j−2d

d∏
l=1

(1 + yl,1 + yl,2)2s−n−j−2d. (4.7)
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Using formulas (4.4)–(4.6), we conclude that the top class in (4.7) is in dimension
t and

wt(ν) =

j∏
l=1

x2s−n−j−2d
l

d∏
l=1

y2s−n−j−2d
l,2

∏
1≤l<k≤j

(xl + xk)
∏

1≤i≤j
1≤k≤d

(x2
l + xlyk,1 + yk,2)

×
d∏
l=1

y2
l,1

∏
1≤l<k≤d

(yl,1yk,1(yl,2 + yk,2) + y2
l,1yk,2 + y2

k,1yl,2 + y2
l,2 + y2

k,2).

(4.8)

To prove that wt(ν) 6= 0, let us examine one monomial m of wt(ν). The degree of
xl in m is at most (2s−n−j−2d)+(j−1)+2d = 2s−n−1, for 1 ≤ l ≤ j. The sum
of degrees of yl,1 and yl,2 in m is at most (2s−n−j−2d)+j+2+2(d−1) = 2s−n,
for 1 ≤ l ≤ j. Since 2s − n − 1 ≤ n, by Corollary 3.1.1, after multiplication in
(4.8) wt(ν) is represented as a sum of elements of Bj,d,n. In this sum

j∏
l=1

x2s−n−l
l

d∏
l=1

y2
l,1y

2s−n−j−2l
l,2

appears only once, so wt(ν) 6= 0 (this term is obtained by always choosing xl
from xl + xk, x2

l from x2
l + xlyk,1 + yk,2, and y2

l,2 from yl,1yk,1(yl,2 + yk,2) +

y2
l,1yk,2 + y2

k,1yl,2 + y2
l,2 + y2

k,2 in (4.8)). �

By the previous theorem and inequalities (4.1)-(4.2), we have the following
corollary.

Corollary 4.1.1. If 2s−1 < n < n+ j + 2d ≤ 2s, then

em(F (1...j , 2...d, n)) ≥ (j + 2d)(2s − 1) + 1;

imm(F (1...j , 2...d, n)) ≥ (j + 2d)(2s − 1).

Note that this result extends Theorem 1.1.(a) from [11] and, in part, Corollary
1.1. and Corollary 1.2. from [15].
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[4] FUKAYA, T.: Gröbner bases of oriented Grassmann manifolds, Homology Homotopy
Appl. 10:2 (2008) 195–209.
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