ON THE GENUS OF THE INTERSECTION GRAPH OF IDEALS OF A COMMUTATIVE RING

ZORAN S. PUCANOVIĆ, MARKO RADOVANOVIĆ, AND ALEKSANDRA LJ. ERIĆ

Abstract

To each commutative ring R one can associate the graph $G(R)$, called the intersection graph of ideals, whose vertices are nontrivial ideals of R. In this paper we try to establish some connections between commutative ring theory and graph theory, by study of the genus of the intersection graph of ideals. We classify all graphs of genus two that are intersection graphs of ideals of some commutative rings and obtain some lower bounds for the genus of the intersection graph of ideals of a nonlocal commutative ring.

1. Introduction

In order to get a better understanding of a given algebraic structure A, one can associate to it a graph G and study an interplay of algebraic properties of A and combinatorial properties of G. In this paper we try to establish some connections between commutative ring theory and graph theory.

Throughout this paper all rings are commutative.
Let R be a ring with identity and $I^{*}(R)$ the set of its nontrivial ideals. Since the ideal structure reflects ring properties, several graphs that are based on the ideals were defined (see, e.g. $[2,9,12,24]$). In this paper we study the intersection graph of ideals $G(R)$, which is defined as follows:

$$
V(G(R)):=I^{*}(R), \quad E(G(R)):=\left\{\left\{I_{1}, I_{2}\right\}: I_{1} \cap I_{2} \neq 0\right\}
$$

where $V(G(R))$ (resp. $E(G(R))$) denotes the set of vertices (resp. edges) of the graph $G(R)$. This graph was introduced in [12], where Chakrabarty et al. studied planarity of intersection graphs of the ring \mathbb{Z}_{n}, and characterized those rings R for which the graph $G(R)$ is connected.

Intersection graphs of certain sets that are not necessarily ideals are studied in [14] and [15]. The graphs in [14] and [15] are related to the total graph of a commutative ring. For more details, we recommend reading $[1,3,4,5,8]$.

One of the most important topological properties of a graph is its genus. Finding the genus of a given graph is a very hard problem, it is in fact NP-complete (see [28]). The problem of finding the genus of a graph associated with a ring have been studied by many authors; see $[6,10,11,16,21,29,30,31]$, etc. In [18], the authors studied planar graphs which may occur as intersection graphs of some commutative rings. In [23] characterization of planar graphs that are intersection graphs of some

2010 Mathematics Subject Classification. 13A15, 05C10, 13H99, 05E40.
Key words and phrases. Intersection graph; Commutative rings; Graph embeddings.
rings was completed, and all toroidal graphs that are intersection graphs of some rings were classified.

The present work continues research in this area. In Section 3 we classify all genus two graphs that are intersection graphs of some rings. In Section 4 we give some lower bounds on the genus of the intersection graphs of nonlocal rings. In Section 5 we prove that for every $g \geq 1$, there are only finitely many nonisomorphic genus g graphs that are intersection graphs of some rings.

2. Preliminaries

For the algebraic part of this paper, notation and terminology is standard and one may find it in, e.g., [7], or in [20]. For the graph theoretical part, notation and terminology may be found in [17], for the classical graph theory, and [22], for the topological graph theory. We briefly recollect some basic notions and results from graph theory which we are going to use in this paper.

A graph G is an ordered pair (V, E), where $E \subseteq[V]^{2}$ and $[V]^{2}$ is the set of all 2-element subsets of V. Then $V(G):=V$ is the set of vertices of G and $E(G):=E$ is the set of edges of G. If G and G^{\prime} are graphs, then G^{\prime} is a subgraph of G if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. If G^{\prime} contains all edges $x y \in E$ for $x, y \in V^{\prime}$ (we denote the edge $\{x, y\}$ by $x y$), we say that G^{\prime} is an induced subgraph of G. We use the notation $G\left[V^{\prime}\right]$ to denote the induced subgraph spanned by V^{\prime}. If $F \subseteq[V]^{2}$, then $G-F:=(V, E \backslash F)$. Similarly, if $W \subseteq V$, then $G-W:=G[V \backslash W]$.

The degree of a vertex x, denoted by $\operatorname{deg}(x)$, is the number of vertices adjacent to x. If $E(G)=[V]^{2}$, then G is a complete graph. If $|V|=n$ we denote this graph by K^{n}. If the set $V(G)$ is a disjoint union of two nonempty sets A and B, such that two vertices are adjacent if and only if they belong to different sets, then the graph G is a complete bipartite graph. If $|A|=m$ and $|B|=n$, we denote this graph by $K_{m, n}$.

By a surface we mean a compact connected topological space such that each point has a neighborhood homeomorphic to an open disc in \mathbb{R}^{2}. We denote by \mathbb{S}_{n} the surface obtained from the sphere \mathbb{S}_{0} by adding n handles. It is known that every orientable surface is homeomorphic to precisely one of the surfaces $\mathbb{S}_{n}(n \geq 0)$. The number n is called the genus of the surface \mathbb{S}_{n}. The purpose of this paper is to study the question of embeddings of the intersection graphs in double torus \mathbb{S}_{2}. An embedding of a graph G into some topological space S is a homeomorphism between the geometric realization of G and a subspace of S. One may think of an embedding of a graph G into S as a drawing of G on S with no edge crossings. An embedding of G into S is cellular if each component of $S-G$ (i.e., each face) is homeomorphic to an open disc in \mathbb{R}^{2}. An embedding in which all faces have boundary consisting of exactly 3 edges is called a triangulation. Genus of a graph G is minimum n such that G can be embedded in \mathbb{S}_{n}, and embeddings of G in \mathbb{S}_{n} are called minimum genus embeddings. Note that every minimum genus embedding of G is cellular (Proposition 3.4.1. in [22]). This is one of the reasons why in the remaining of this paper when we say that a graph is embedded in a surface, we will assume that it is cellularly embedded. Note that graphs of genus 0 are planar graphs and graphs of genus 1 are toroidal graphs. One of the most remarkable theorems in topological graph theory, known as Euler's formula, states that if G is a finite connected graph with n vertices,
e edges, and of genus g, then

$$
n-e+f=2-2 g
$$

where f is the number of faces obtained when G is cellularly embedded in \mathbb{S}_{g}.
Euler's formula can be used in combination with some combinatorial identities and other inequalities to show the nonexistence of certain embeddings. Since G is a simple graph, every face has at least 3 boundary edges and every edge is a boundary of 2 faces; so, $2 e \geq 3 f$, with equality if and only if G is a triangulation of the surface. We will often use this feature.

Let us recall two well known results on the genera of complete and complete bipartite graphs. In both propositions $\lceil x\rceil$ denote the smallest integer greater than or equal to x.

Proposition 2.1. (Ringel [25]).

$$
\gamma\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil, m, n \geq 2
$$

Proposition 2.2. (Ringel and Youngs [26]).

$$
\gamma\left(K^{n}\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil, n \geq 3
$$

According to the previous proposition, $\gamma\left(K^{n}\right)=0$ for $n \leq 4, \gamma\left(K^{n}\right)=1$ for $5 \leq n \leq 7$, and $\gamma\left(K^{n}\right)=2$ iff $n=8$. So, embeddings of K^{8} on \mathbb{S}_{2} are minimum genus embedding, and therefore cellular. If H is a subgraph of G, then $\gamma(H) \leq \gamma(G)$. If $\gamma(G)>n$, we will say that G is a forbidden subgraph of \mathbb{S}_{n}. Since complete graphs are often subgraphs of the graph $G(R)$, their genus is relevant for this work. We will repeatedly use the fact that K^{9} is a forbidden subgraph of \mathbb{S}_{2}.

Let $\delta\left(\mathbb{S}_{n}\right)$ be the number of triangles in a minimal triangulation of \mathbb{S}_{n} (triangulation of \mathbb{S}_{n} is called minimal if the number of triangles is minimal). M. Jungerman and G. Ringel determined $\delta\left(\mathbb{S}_{n}\right)$ for each orientable surface \mathbb{S}_{n} [19]. We will use this result in the special case $n=2$.

Proposition 2.3 ([19]). Let $\delta\left(\mathbb{S}_{2}\right)$ be the number of triangles in a minimal triangulation of a double torus. Then

$$
\delta\left(\mathbb{S}_{2}\right)=24
$$

Length of a R-module M is the maximum n such that there exists submodules $N_{0}, N_{1}, \ldots, N_{n}$ of M such that $N_{0} \nsubseteq N_{1} \nsubseteq \cdots \nsubseteq N_{n}$. If this maximum does not exist we say that M has infinite length. We will denote the length of a module M by $l(M)$.

Proposition 2.4. If $G(R)$ has finite genus, then R is an Artinian ring. If we view R as a R-module, then $l(R) \leq 9$ if $\gamma(G(R))=2$.

Proof. If R is not Artinian, then there exists an infinite descending chain $I_{1} \supset I_{2} \supset$ $\cdots \supset I_{n} \supset \cdots$ of ideals in R. Hence, $G(R)$ contain K^{n} as a subgraph (for any n), a contradiction. Therefore, R is Artinian, and hence Noetherian. So, it has finite length as a R-module and that length has the stated upper bound.

So, we can concentrate on Artinian rings. By the structure theorem for Artinian rings [7, Theorem 8.7], an Artinian ring R is isomorphic to the product of local Artinian rings R_{i} with maximal ideals M_{i} :

$$
\begin{equation*}
R \cong R_{1} \times \cdots \times R_{n} \tag{2.1}
\end{equation*}
$$

In the following, we assume that the condition that a ring is Noetherian is included in the assumption that it is local. For a local ring R with unique maximal ideal M, the quotient M^{k} / M^{k+1} is a vector space over the field R / M for any nonnegative integer k. By Nakayama's lemma, the dimension of this vector space determines the minimal number of generators for M^{k}. The following proposition correspond to the fact that M / M^{2} has dimension n as a vector space over R / M. This proposition directly follows from [20, Theorem 158], so we omit the proof. We will use it often to check whether certain ideals are equal.

Proposition 2.5. If n is the minimal number of generators of M, where M is the maximal ideal in a local ring R, and if $\left\{x_{1}, \ldots, x_{n}\right\}$ is any generating set of M, then none of the elements x_{i} belongs to M^{2}.

We end this section with the following result obtained in [23].
Lemma 2.1 ([23]). Let R be a local ring with maximal ideal M which is minimally generated by two elements such that $M^{2} \neq 0$. If the field $F(=R / M)$ is infinite, then the graph $G(R)$ does not have a finite genus.

3. Rings with genus 2 intersection graphs of ideals

We begin this section by presenting graphs Γ^{\prime} and $\Gamma^{\prime \prime}$, embedded in a double torus (see Figures 3 and 4 at the end of this section), which are crucial for our discussion since all intersection graphs $G(R)$ of genus two are either Γ^{\prime} or subgraphs of $\Gamma^{\prime \prime}$.

Proposition 3.1. Let R be a commutative Artinian ring. If in the product (2.1) one has $n \geq 3$, then $\gamma(G(R))=2$ if and only if $G(R)$ is isomorphic to Γ^{\prime}.
Proof. Let R be a commutative ring such that $\gamma(G(R))=2$.
First, let us assume that $n \geq 4$. Then $G(R)$ contains a graph induced by $0 \times$ $0 \times 0 \times R_{4} \times \ldots \times R_{n}, R_{1} \times 0 \times 0 \times R_{4} \times \ldots \times R_{n}, 0 \times R_{2} \times 0 \times R_{4} \times \ldots \times R_{n}$, $0 \times 0 \times R_{3} \times R_{4} \times \ldots \times R_{n}, R_{1} \times R_{2} \times 0 \times R_{4} \times \ldots \times R_{n}, R_{1} \times 0 \times R_{3} \times R_{4} \times \ldots \times R_{n}$, $0 \times R_{2} \times R_{3} \times R_{4} \times \ldots \times R_{n}, R_{1} \times R_{2} \times R_{3} \times 0 \times \ldots \times R_{n}, R_{1} \times R_{2} \times 0 \times 0 \times \ldots \times R_{n}$, $R_{1} \times 0 \times R_{3} \times 0 \times \ldots \times R_{n}$. This graph has $v=10$ vertices, $e \geq 40$ edges, and genus $g \leq 2$. So, by Euler's formula $f=e-v+2-2 g$, i.e. $f \geq 28$, and therefore $0 \geq 3 f-2 e=f+2(f-e) \geq 4$, a contradiction.

So, $n=3$. If rings R_{i}, for $1 \leq i \leq 3$, are fields, then by [18] $G(R)$ is planar, a contradiction. So, at least one of $R_{i}, 1 \leq i \leq 3$, is not a field.

First, let us assume that R_{1} and R_{2} are local rings with maximal ideals $M_{1} \neq 0$, $M_{2} \neq 0$. Then ideals $I_{1}=M_{1} \times 0 \times 0, I_{2}=R_{1} \times 0 \times 0, I_{3}=M_{1} \times M_{2} \times 0$, $I_{4}=M_{1} \times R_{2} \times 0, I_{5}=M_{1} \times 0 \times R_{3}, I_{6}=R_{1} \times 0 \times R_{3}, I_{7}=M_{1} \times M_{2} \times R_{3}$, $I_{8}=M_{1} \times R_{2} \times R_{3}, I_{9}=R_{1} \times M_{2} \times R_{3}$ induce a K^{9} contained in $G(R)$, a contradiction.

So, w.l.o.g. we may assume that $M_{1} \neq 0$, and $M_{2}=M_{3}=0$. If $M_{1}^{2} \neq 0$ (by Nakayama's lemma $M_{1}^{2} \neq M_{1}$), similarly as in the previous case, we find that the
ideals $M_{1}^{2} \times 0 \times 0, M_{1}^{2} \times R_{2} \times 0, M_{1}^{2} \times R_{2} \times R_{3}, M_{1}^{2} \times 0 \times R_{3}, M_{1} \times 0 \times 0, M_{1} \times 0 \times R_{3}$, $M_{1} \times R_{2} \times 0, M_{1} \times R_{2} \times R_{3}, R_{1} \times 0 \times 0$ induce a K^{9} contained in $G(R)$, a contradiction.

So, $M_{1}^{2}=0$. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a minimal set of generators of M_{1}. If $n \geq 2$, then ideals $R_{1} \times 0 \times 0, R_{1} \times R_{2} \times 0, R_{1} \times 0 \times R_{3}, M_{1} \times 0 \times 0, M_{1} \times R_{2} \times 0, M_{1} \times 0 \times R_{3}$, $M_{1} \times R_{2} \times R_{3},\left\langle x_{1}\right\rangle \times 0 \times 0,\left\langle x_{1}\right\rangle \times R_{2} \times 0$ induce a K^{9} contained in $G(R)$, a contradiction. Therefore, M_{1} is a principal ideal, say $M_{1}=\langle x\rangle$, and $x^{2}=0$. The intersection graph $G(R)$ then contains ten vertices: $v_{1}=\langle x\rangle \times 0 \times 0, v_{2}=\langle x\rangle \times R_{2} \times 0, v_{3}=\langle x\rangle \times 0 \times R_{3}$, $v_{4}=\langle x\rangle \times R_{2} \times R_{3}, v_{5}=R_{1} \times 0 \times 0, v_{6}=R_{1} \times R_{2} \times 0, v_{7}=R_{1} \times 0 \times R_{3}, v_{8}=0 \times R_{2} \times 0$, $v_{9}=0 \times 0 \times R_{3}$ and $v_{10}=0 \times R_{2} \times R_{3}$. It is easy to see that $G(R)$ is isomorphic to Γ^{\prime} (isomorphism is given by $v_{i} \mapsto i$), which can be embedded in \mathbb{S}_{2} as shown on Figure 3.

Proposition 3.2. Suppose that $R \cong R_{1} \times R_{2}$ is a product of two local rings. Then $\gamma(G(R))=2$ if and only if one of the rings, say R_{2} is a field and $\left(R_{1}, M_{1}\right)$ is a local ring such that: $\left|R_{1} / M_{1}\right|=2, \operatorname{dim}\left(M_{1} / M_{1}^{2}\right)=2$, and $M_{1}^{2}=0$.
Proof. Let $R \cong R_{1} \times R_{2}$ be such that $\gamma(G(R))=2$. Then at least one of R_{1} and R_{2} is not a field, since otherwise $\gamma(G(R)=0$.

So, w.l.o.g. let us assume that R_{1} is not a field and let $\left\{x_{1}, x_{2} \ldots, x_{n}\right\}$ be a minimal set of generators of M_{1}. If $n \geq 3$, the ideals $\left\langle x_{1}\right\rangle \times 0,\left\langle x_{1}\right\rangle \times R_{2},\left\langle x_{1}, x_{2}\right\rangle \times 0$, $\left\langle x_{1}, x_{2}\right\rangle \times R_{2},\left\langle x_{1}, x_{3}\right\rangle \times 0,\left\langle x_{1}, x_{3}\right\rangle \times R_{2}, R_{1} \times 0,\left\langle x_{1}, x_{2}, x_{3}\right\rangle \times 0,\left\langle x_{1}, x_{2}, x_{3}\right\rangle \times R_{2}$ induce a K^{9} contained in $G(R)$, a contradiction. So, $n \leq 2$.

Case 1. $n=2$.
If R_{2} is not a field ideals $0 \times R_{2}, R_{1} \times M_{2}, 0 \times M_{2},\left\langle x_{1}\right\rangle \times R_{2},\left\langle x_{1}\right\rangle \times M_{2},\left\langle x_{2}\right\rangle \times R_{2}$, $\left\langle x_{2}\right\rangle \times M_{2}, M_{1} \times M_{2}, M_{1} \times R_{2}$ induce a K^{9} contained in $G(R)$, a contradiction. Hence, R_{2} is a field. Suppose that $M_{1}^{2} \neq 0$. If $x_{1}^{2} \neq 0$, then the ideals $\left\langle x_{1}\right\rangle \times 0,\left\langle x_{1}\right\rangle \times R_{2}$, $R_{1} \times 0,\left\langle x_{1}^{2}\right\rangle \times 0,\left\langle x_{1}^{2}\right\rangle \times R_{2}, M_{1} \times 0, M_{1} \times R_{2},\left\langle x_{1}^{2}, x_{2}\right\rangle \times 0,\left\langle x_{1}^{2}, x_{2}\right\rangle \times R_{2}$ induce a K^{9} contained in $G(R)$, a contradiction. Similarly, if $x_{1} x_{2} \neq 0$, ideals $\left\langle x_{1}\right\rangle \times 0,\left\langle x_{1}\right\rangle \times R_{2}$, $R_{1} \times 0,\left\langle x_{2}\right\rangle \times 0,\left\langle x_{2}\right\rangle \times R_{2}, M_{1} \times 0, M_{1} \times R_{2},\left\langle x_{1} x_{2}\right\rangle \times 0,\left\langle x_{1} x_{2}\right\rangle \times R_{2}$ induce a K^{9}, a contradiction. Thus, $x_{1}^{2}=x_{2}^{2}=x_{1} x_{2}=0$, i.e., $M_{1}^{2}=0$. Such a ring has a simple structure of ideals. Besides M_{1}, all proper ideals of R_{1} are principal and of the form:

$$
\left\langle x_{1}\right\rangle,\left\langle x_{2}\right\rangle,\left\langle x_{1}+\alpha x_{2}\right\rangle, \text { where } \alpha \in U\left(R_{1}\right) .
$$

Furthermore, if $\alpha, \beta \in U\left(R_{1}\right)$, then $\left\langle x_{1}+\alpha x_{2}\right\rangle=\left\langle x_{1}+\beta x_{2}\right\rangle$ if and only if $\alpha-\beta \in M_{1}$ (for details see [23, Proposition 3]). These ideals are minimal, and have trivial intersections. We conclude that there are $\left|R_{1} / M_{1}\right|+1$ such ideals; so, $\left|I^{*}\left(R_{1}\right)\right|=$ $\left|R_{1} / M_{1}\right|+2$.

Let us first examine the minimal case, when $\left|R_{1} / M_{1}\right|=2$. Then $G(R)$ have 10 vertices, the ideals $v_{1}=\left\langle x_{2}\right\rangle \times 0, v_{2}=M_{1} \times 0, v_{3}=\left\langle x_{1}\right\rangle \times R_{2}, v_{4}=R_{1} \times$ $0, v_{5}=\left\langle x_{1}+x_{2}\right\rangle \times 0, v_{6}=M_{1} \times R_{2}, v_{7}=\left\langle x_{1}+x_{2}\right\rangle \times R_{2}, v_{8}=\left\langle x_{2}\right\rangle \times R_{2}$, $v_{9}=\left\langle x_{1}\right\rangle \times 0$, and $v_{10}=0 \times R_{2}$. It is easy to see that $G(R)$ is isomorphic to $\Gamma^{\prime \prime}\left[1,2,3,4,5,6,7,8, w_{5}, w_{6}\right]-\{13,17\}$, where the isomorphism is given by $v_{i} \mapsto i$, for $1 \leq i \leq 8, v_{9} \mapsto w_{6}$, and $v_{10} \mapsto w_{5}$. Therefore, as shown on Figure $4, G(R)$ can be embedded in \mathbb{S}_{2}.

If $\left|R_{1} / M_{1}\right|=3$, we have 12 distinct ideals in $I^{*}(R)$ (in addition to the ideals from the previous case, there are new ideals $v_{11}=\left\langle x_{1}+\alpha x_{2}\right\rangle \times 0$ and $v_{12}=\left\langle x_{1}+\alpha x_{2}\right\rangle \times R_{2}$, for some $\alpha \in U(R) \backslash\{1\})$. Let us assume that $\gamma(G(R))=2$, i.e., that $G(R)$ can be embedded on \mathbb{S}_{2}. Note that vertex set $S=\left\{v_{2}, v_{3}, v_{4}, v_{6}, v_{7}, v_{8}, v_{12}\right\}$ induces
a K^{7}, and that the only neighbors of vertices from $I^{*}(R) \backslash S$ are in $G[S]$. Let $H=G\left[S \cup\left\{v_{10}\right\}\right]$. This graph has $v^{\prime}=8$ vertices and $e^{\prime}=26$ edges. If this graph were embeddable in \mathbb{S}_{1}, then, by Euler's formula, the number of faces in that embedding is $f^{\prime}=18$. But $54=3 f^{\prime}>2 \cdot e^{\prime}=52$, a contradiction. So, embedding of H obtained from embedding of $G(R)$ in \mathbb{S}_{2} is minimum genus embedding, therefore cellular. By Euler's formula, the number of faces in this embedding of H is $f^{\prime}=16$. Note that for $v \in I^{*}(R) \backslash\left(S \cup\left\{v_{10}\right\}\right)$ all neighbors of v are some vertices of the face of H in which v is contained. Also, all vertices from $I^{*}(R) \backslash S$ are adjacent to v_{2}, v_{4} and v_{6}, so no two of them are contained in the same face of the embedding of H (two vertices inside of disc can not be adjacent to the same three points on the boundary of this disc such that these edges do not cross). So, there are at least 4 faces of H that are of size at least 4 , and therefore $52=2 \cdot e^{\prime} \geq\left(f^{\prime}-4\right) \cdot 3+4 \cdot 4=52$. Hence, embedding of H has exactly 4 faces of size 4 and 12 of size 3 . These 4 faces contain vertices v_{2}, v_{4} and v_{6}, so one of these vertices, w.l.o.g. v_{2}, is adjacent to the other two in at least two of these quadrilaterals. This implies that the only neighbors of $v_{2}($ in $H)$ are v_{4} and v_{6}, a contradiction.

If $\left|R_{1} / M_{1}\right|>3$, then in addition to the ideals from the previous two cases, there are at least two new ideals $\left\langle x_{1}+\beta x_{2}\right\rangle \times 0,\left\langle x_{1}+\beta x_{2}\right\rangle \times R_{2}$, where $\beta \in U(R) \backslash\{1, \alpha\}$. Note that a subgraph of $G(R)$ induced by these ideals has $v=14$ vertices and $e=52$ edges. Since the genus of this graph is $g \leq 2$, we have that $f \geq 36$, and therefore $3 f>2 e$, a contradiction.

Case 2. $n=1$.
We have that R_{1} is a local Artinian ring with the maximal ideal $M_{1}=\left\langle x_{1}\right\rangle, x_{1} \neq 0$. So, $I^{*}\left(R_{1}\right)=\left\{\left\langle x_{1}^{k}\right\rangle \mid 1 \leq k \leq r-1\right\}$ where r is the smallest number such that $x_{1}^{r}=0$. Depending on r and the ring R_{2}, we have several subcases.
2.1. $r=2$ and R_{2} is a field. Then $\left|I^{*}(R)\right|=4$, so $G(R)$ is planar, a contradiction.
2.2. $r=3$ or $r=4$ and R_{2} is a field. Then $G(R)$ is toroidal (see [23, Prop. 5]), a contradiction.
2.3. $r \geq 5$. In this case ideals $\left\langle x_{1}\right\rangle \times 0, R_{1} \times 0,\left\langle x_{1}^{2}\right\rangle \times 0,\left\langle x_{1}^{3}\right\rangle \times 0,\left\langle x_{1}^{4}\right\rangle \times 0$, $\left\langle x_{1}\right\rangle \times R_{2},\left\langle x_{1}^{2}\right\rangle \times R_{2},\left\langle x_{1}^{3}\right\rangle \times R_{2}$, and $\left\langle x_{1}^{4}\right\rangle \times R_{2}$ induce a K^{9} contained in $G(R)$, a contradiction.
2.4. R_{1} and R_{2} are local rings with maximal ideals $M_{1}=\left\langle x_{1}\right\rangle, M_{2}=\left\langle y_{1}\right\rangle$, such that $x_{1}^{2}=0, y_{1}^{2}=0$. Then the intersection graph $G(R)$ is toroidal (see [23, Prop. 5]), a contradiction.
2.5. R_{1} and R_{2} are local rings with maximal ideals $M_{1}=\left\langle x_{1}\right\rangle, M_{2}=\left\langle y_{1}\right\rangle$, such that $x_{1}^{2} \neq 0$ or $y_{1}^{2} \neq 0$. W.l.o.g. let us assume that $x_{1}^{2} \neq 0$. Then the graph induced by the vertices $\left\langle x_{1}\right\rangle \times\left\langle y_{1}\right\rangle,\left\langle x_{1}\right\rangle \times R_{2},\left\langle x_{1}^{2}\right\rangle \times R_{2},\left\langle x_{1}^{2}\right\rangle \times\left\langle y_{1}\right\rangle, R_{1} \times\left\langle y_{1}\right\rangle$, $\left\langle x_{1}\right\rangle \times 0,\left\langle x_{1}^{2}\right\rangle \times 0, R_{1} \times 0,0 \times\left\langle y_{1}\right\rangle$, and $0 \times R_{2}$ is a subgraph of $G(R)$. This graph has $v=10$ vertices, $e=39$ edges, and genus $g \leq 2$. So, by Euler's formula $f \geq 27$, and therefore $3 f>2 e$, a contradiction.

It remains to consider the case of a local Artinian ring R with maximal ideal $M \neq 0$. Since M is finitely generated, we study this with respect to the minimal number of generators.

Proposition 3.3. Let (R, M) be a local Artinian commutative ring such that M is minimally generated by n elements. If $n \geq 3$, then $\gamma(G(R))>2$.

Proof. It is enough to consider the minimal case, i.e., $M=\langle x, y, z\rangle$. The ideals $I_{1}=\langle x+y+z\rangle, I_{2}=\langle x, y\rangle, I_{3}=\langle x, z\rangle, I_{4}=\langle y, z\rangle, I_{5}=\langle x, y, z\rangle, I_{6}=\langle x, y+z\rangle$, $I_{7}=\langle y, x+z\rangle, I_{8}=\langle z, x+y\rangle, I_{9}=\langle x\rangle$, and $I_{10}=\langle x+y\rangle$ are different. Let us prove that the ideal $I_{11}=\langle x+y, y+z\rangle$ is different from ideals $I_{k}, 1 \leq i \leq 10$. Suppose that this is not the case, and let $I_{11}=I_{k}$, for some $1 \leq k \leq 10$. By our assumption M is minimally generated by 3 elements, so $I_{11} \neq I_{5}$, and $I_{11} \neq I_{10}$, and we only need to examine the following cases:

1. $I_{11}=I_{1}$. Then $x+y+z \in I_{11}$. Hence $z=x+y+z-(x+y), x=$ $x+y+z-(y+z)$, are in I_{11}. Finally $x+y-x=y \in I_{11}$, and therefore $I_{11}=M$, a contradiction. Similarly, we can prove that $I_{11} \neq I_{9}$.
2. $I_{11}=I_{2}$. Then $x, y \in I_{11}$, and therefore $z=y+z-y \in I_{11}$, i.e., $I_{11}=M$, a contradiction. Similarly, we can prove that $I_{10} \notin\left\{I_{3}, I_{4}, I_{6}, I_{7}, I_{9}\right\}$.
Let us now examine the subgraph of $G(R)$ induced by the ideals $I_{k}, 1 \leq k \leq 11$. This subgraph has $v=11$ vertices and $e \geq 40$ edges. If $\gamma(G(R)) \leq 2$, then genus of this subgraph is $g \leq 2$, and hence $f \geq 27$. Therefore $3 f-2 e=f+2(f-e)=$ $f+2(2-2 g-v) \geq 1$, a contradiction.

We now concentrate on the case when M is minimally generated by two elements. First of all, if $M^{2}=0$, then $G(R)$ is planar (see [18], or [23, Proposition 3]); so we assume that $M^{2} \neq 0$. Furthermore, if $\gamma(G(R))$ is finite, then according to Lemma 2.1, field $F(=R / M)$ is finite. Hence, in the following we assume that F is a finite field and $M^{2} \neq 0$.

Proposition 3.4. If R is a local ring with maximal ideal M minimally generated with two generators and $\gamma(G(R))=2$, then M^{2} is a principal ideal.

Proof. Let us suppose that $M^{2}(\neq 0)$ is not principal. Then there exists some elements $u, v \in M^{2}$ such that $u \notin\langle v\rangle$ and $v \notin\langle u\rangle$. It is clear that the ideals $\langle u\rangle,\langle v\rangle,\langle u+v\rangle$, and M^{2} are different. Note that M / M^{2} is a union of one-dimensional subspaces. Since $\left|M / M^{2}\right|=|F|^{2}$, we conclude that there are at least $|F|+1$ one-dimensional subspaces of M / M^{2}.

Case 1. $|F| \geq 4$.
There are (at least) five ideals $I_{1}, I_{2}, I_{3}, I_{4}$, and I_{5} which contain $M^{2}(\neq 0)$. So, R has the following 10 ideals: $M, I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, M^{2},\langle u\rangle,\langle v\rangle,\langle u+v\rangle$. The first seven ideals all have degree 9 and the last three have degree (at least) 7. Therefore, the subgraph of $G(R)$ induced by these ideals has $e \geq 42$ edges, and hence $2 e-3 f=$ $36-e<0$, a contradiction.

Case 2. $|F|=3$.
There are (at least) four ideals I_{1}, I_{2}, I_{3}, and I_{4} which contain $M^{2}(\neq 0)$. So, R has the following nine ideals: $M, I_{1}, I_{2}, I_{3}, I_{4}, M^{2},\langle u\rangle,\langle v\rangle,\langle u+v\rangle$. The first six ideals all have degree 8 and the last three have degree (at least) 6 , and therefore the subgraph of $G(R)$ induced by these ideals has $e \geq 33$ edges. If $\gamma(G(R))=2$, then the genus of this subgraph is $g \leq 2$, and therefore $f \geq 22$. Now, $3 f-2 e \geq 0$, so $e=33, f=22$, and $g=2$. Therefore, this subgraph induces a triangulation of \mathbb{S}_{2} with 22 triangles. By Proposition 2.3 this is not possible.

Case 3. $|F|=2$ and $\operatorname{dim}\left(M^{2} / M^{3}\right)=3$.
Since M^{2} / M^{3} is a vector space over F, we have three linearly independent vectors u, v, and w in M^{2} / M^{3}. If V is a subspace spanned by these vectors, then $\operatorname{dim}(V /\langle u\rangle)=$ 2. Hence $V /\langle u\rangle$ is a union of 3 one-dimensional subspaces which contain $u \neq 0$. So, we have four two-dimensional subspaces, and therefore four different ideals J_{1}, J_{2}, J_{3}, and J_{4} such that $J_{k} \subset M^{2}$, and $J_{k} \cap J_{l} \neq 0$. Thus, the ideals $M, I_{1}, I_{2}, I_{3}, M^{2}$, J_{1}, J_{2}, J_{3}, and J_{4} induce a K^{9} contained in $G(R)$, a contradiction.

Case 4. $|F|=2, \operatorname{dim}\left(M^{2} / M^{3}\right)=2$ and $M^{3} \neq 0$.
Since $\operatorname{dim}\left(M^{2} / M^{3}\right)=2$, we have that M^{2} / M^{3} is a union of 3 one-dimensional subspaces, so we get three different ideals J_{1}, J_{2}, and J_{3} (contained in M^{2}) which contain M^{3}. On the other hand $\operatorname{dim}\left(M / M^{2}\right)=2$, so we have three different ideals I_{1}, I_{2}, and I_{3} which properly contain M^{2}. Hence, R has (at least) nine ideals M, $M^{2}, M^{3}, I_{1}, I_{2}, I_{3}, J_{1}, J_{2}$, and J_{3}. The first six ideals all have degree 8 (in this subgraph) and the last three have degree (at least) 6. Similarly as in the Case 2, this contradicts Proposition 2.3.

Case 5. $|F|=2, \operatorname{dim}\left(M^{2} / M^{3}\right)=2$ and $M^{3}=0$.
In this case we need to examine the following possibilities.
5.1. $M^{2}=\left\langle x^{2}, y^{2}\right\rangle, x y=0$. Let us examine the subgraph induced by the ideals: $M, M^{2},\left\langle x, y^{2}\right\rangle,\left\langle x^{2}, y\right\rangle,\langle x+y\rangle,\langle x\rangle,\langle y\rangle,\left\langle x^{2}\right\rangle,\left\langle y^{2}\right\rangle$, and $\left\langle x^{2}+y^{2}\right\rangle$. The first five ideals all have degree 9 in this subgraph (note that $x y=0$, hence $x^{2}, y^{2} \in\langle x+y\rangle$), the last one has degree 5 , while the others have degree 6 . If $\gamma(G(R))=2$, then the genus of this subgraph is $g \leq 2$, and therefore $f \geq 25$. So $3 f-2 e \geq 1$, a contradiction.
$5.2 M^{2}=\left\langle x^{2}, y^{2}\right\rangle, x y \neq 0$. We have $x y=\alpha x^{2}+\beta y^{2}$, for some $\alpha, \beta \in R$. If $\alpha, \beta \in M$, since $M^{3}=0$, we have $x y=0$, a contradiction. If exactly one of α, β is invertible, w.l.o.g. $\alpha \in U(R)$, and $\beta \in M$, we have $x y=\alpha x^{2}$; so, $x(y-\alpha x)=0$. If we choose generators $u=x$ and $v=y-\alpha x$ for M, we get that $M^{2}=\left\langle u^{2}, v^{2}\right\rangle$ and $u v=0$. Thus, we have reduced this to the previous case. If $\alpha, \beta \in U(R)$, let us examine the subgraph induced by the ideals $M, M^{2},\left\langle x, y^{2}\right\rangle,\left\langle x^{2}, y\right\rangle,\langle x\rangle,\langle y\rangle,\langle x y\rangle,\left\langle x^{2}\right\rangle,\left\langle y^{2}\right\rangle$, and $\langle x+y\rangle$. Similarly, estimating degrees of these ideal (as in the previous cases), we have $e \geq 42$, and therefore $3 f-2 e \geq 6$, a contradiction.
5.3. $M^{2}=\left\langle x^{2}, x y\right\rangle, y^{2}=0$. Let us examine the subgraph induced by the ideals: $M, M^{2},\left\langle x^{2}, y\right\rangle,\langle x\rangle,\langle x+y\rangle,\langle y\rangle,\langle x y\rangle,\left\langle x^{2}+y\right\rangle$, and $\left\langle x^{2}+x y\right\rangle$. Note that the first 8 ideals induce a K^{8}, while the last ideal has degree 5 in this subgraph. If this subgraph were embeddable in a double torus, we would get a triangulation of \mathbb{S}_{2} with 22 triangles. This contradicts Proposition 2.3.
5.4. $M^{2}=\left\langle x^{2}, x y\right\rangle, y^{2} \neq 0$. We have $y^{2}=\alpha x^{2}+\beta x y$, for some $\alpha, \beta \in R$. If $\alpha, \beta \in M$, since $M^{3}=0$, then $y^{2}=0$, a contradiction. If $\beta \in U(R)$, then $M^{2}=\left\langle x^{2}, y^{2}\right\rangle$, which was treated in 5.2. If $\alpha \in U(R), \beta \in M$, we have $y^{2}=\alpha x^{2}$. Let us examine the subgraph of $G(R)$ induced by the ideals: M, $M^{2},\left\langle x^{2}, y\right\rangle,\langle x\rangle,\left\langle x^{2}+y\right\rangle,\langle y\rangle,\langle x y\rangle,\langle x+y\rangle$, and $\left\langle x^{2}+x y\right\rangle$. It is not difficult to check that these ideals are different. The first seven of them contain $x y \neq 0$, so they have nontrivial intersections. Also, note the following: $\langle x\rangle \cap\langle x+y\rangle \neq$ 0 , since $x^{2}+x y \neq 0$ (if not, then M^{2} is principal); $\left\langle x^{2}+x y\right\rangle \cap\langle y\rangle \neq 0$, since $0 \neq x^{2}+x y=\alpha^{-1} y^{2}+x y$; and finally, since $y\left(x^{2}+y\right)=y^{2}=\alpha x^{2}$, we get
$x^{2}+x y \in\left\langle x^{2}+y\right\rangle$. Therefore, $\left\langle x^{2}+y\right\rangle \cap\left\langle x^{2}+x y\right\rangle \neq 0$. So, the first six ideals have degree 8 (in this subgraph), the last two have degree 7, while $\langle x y\rangle$ has degree 6. If this subgraph were embeddable in \mathbb{S}_{2}, then $f=23$. But then $3 f=69>68=2 e$, a contradiction.

Proposition 3.5. Let (R, M) be a local ring such that maximal ideal M is minimally generated by two generators and $\gamma(G(R))=2$. Then $M^{3}=0$ and one can choose generators u, v for M in such a way that $M^{2}=\langle u v\rangle$, where $u^{2}=v^{2}=0$, or $M^{2}=\left\langle u^{2}\right\rangle$, where $u v=0$.
Proof. Let $M=\langle x, y\rangle$. As in [23, Proposition 8] one can prove that one of $x^{2}, x y, y^{2}$ is a generator for M^{2}.

Case 1. $M^{2}=\left\langle x^{2}\right\rangle$.
First we prove that there exists u and v, such that $M^{2}=\left\langle u^{2}\right\rangle$ and $u v=0$. If $x y=0$, we are done (take $u=x$). If not, $x y=a x^{2}$, for some $a \in R$. Then we can choose generators $u=x$ and $v=y-a x$. One has $M^{2}=\left\langle u^{2}\right\rangle$, and $v^{2}=r u^{2}$, for some $r \in R$. Since $u v=0$, we get $v^{3}=u v^{2}=u^{2} v=0$.

To finish the proof it is enough to prove that $u^{3}=0$. Assume that $u^{3} \neq 0$. It is not difficult to see that non-trivial ideals of R are: $v_{1}=\langle u\rangle, v_{2}=\left\langle u^{2}\right\rangle, v_{3}=\left\langle u^{3}\right\rangle$, $v_{4}=\langle u+v\rangle, v_{5}=\left\langle u^{2}+v\right\rangle, v_{6}=\langle u, v\rangle, v_{7}=\left\langle u^{2}, v\right\rangle, v_{8}=\left\langle u^{3}, v\right\rangle, v_{9}=\langle v\rangle$, and $v_{10}=\left\langle u^{3}+v\right\rangle$. For details why they are different, one can look up the proof in [23, Proposition 8]. Note that the first eight ideals contain $u^{3} \neq 0$ since $u v=0$, and that the last two ideals have degree 3 and are adjacent to v_{6}, v_{7} and v_{8}.

Claim. Graph G induced by $\left\{v_{i} \mid 1 \leq i \leq 10\right\}$ is not embeddable in \mathbb{S}_{2}.
Proof of the Claim. Let us assume that G can be embedded in \mathbb{S}_{2}. This embedding induce a cellular embedding of the graph H induced by $\left\{v_{i} \mid 1 \leq i \leq 8\right\}$, since every embedding of K^{8} in \mathbb{S}_{2} is cellular. Note that H has $e=28$ edges, and therefore, by Euler's theorem, $f=18$ faces. Let f_{i} be the number of faces in embedding of H of size i. Then $56=2 e=\sum_{i>3} i f_{i} \geq 3 f+f_{4}+2 f_{5}$, and therefore embedding of H has one pentagonal face and 17 triangular, or two quadrilateral faces and 16 triangular. Let us suppose that H has a pentagonal face. By adding a vertex v inside this face and edges between v and vertices on the boundary of this face (see Figure 1), we get a triangulation of \mathbb{S}_{2} with 22 triangle, which contradicts Proposition 2.3.

Figure 1.
So, embedding of H has 2 quadrilateral and 16 triangular faces. Let us assume that these two quadrilateral faces share an edge. Then, deleting that edge will produce an embedding in \mathbb{S}_{2} with 16 triangular faces and one face F of size at most six (size is maximal when quadrilateral faces have exactly two vertices in common). Now, similarly as in the previous part of the proof, adding a vertex v inside the face F
and edges between v and vertices on the boundary of F (see Figure 2), we get a triangulation of \mathbb{S}_{2} with at most 22 triangles, a contradiction. So, the 2 quadrilateral faces of H do not share an edge, and therefore have at most 2 vertices in common.

Figure 2.
Vertices v_{9} and v_{10} have 3 neighbors in common, so they are in different faces of the embedding of H. Since no two triangular faces have 3 vertices in common, by the previous remark, one of them w.l.o.g. v_{9} is in a triangular face $u_{1} u_{2} u_{3}$, and the other in a quadrilateral face $u_{1} u_{2} u_{3} u_{4}$. W.l.o.g. we may assume that $u_{1} u_{2}$ and $u_{2} u_{3}$ are edges of this quadrilateral. Then the only neighbors of u_{2} (in H) are u_{1} and u_{3}, a contradiction. This competes the proof of the Claim.

So, $M^{3}=0$ and we can choose generators for M as required.
Case 2. $M^{2}=\langle x y\rangle$.
This case follows from [23, Proposition 8].
Remark 1. In the previous proposition we proved that no \mathbb{S}_{2} embedding of K^{8} has a pentagonal face, nor two quadrilateral faces that share an edge. Note that this result was proven in [27] (Theorems 2 and 3), but we opted to include our proof, since it is much shorter.

Theorem 3.6. Let R be a local ring and $M=\langle x, y\rangle$, where $\{x, y\}$ is a minimal set of generators of M. Then, $\gamma(G(R))=2$ if and only if M^{2} is a principal ideal and $|R / M|=5$. The graph $G(R)$ is then isomorphic to one of the graphs K^{8}, or $\Gamma^{\prime \prime}\left[1,2,3,4,5,6,7,8, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right]-\left\{7 w_{5}, 3 w_{5}\right\}$.

Proof. According to the the previous results, we only need to consider two cases: $M^{2}=\left\langle x^{2}\right\rangle \neq 0$, where $x y=0$, and $M^{2}=\langle x y\rangle \neq 0$, where $x^{2}=y^{2}=0$.

Case 1.1. $\quad M^{2}=\left\langle x^{2}\right\rangle, x y=0, y^{2}=0$.
First, we will describe the structure of principal ideals in such a ring. Let $I=$ $\langle a x+b y\rangle$, for some $a, b \in R$ be a principal ideal. If $a, b \in M$, since $x y=y^{2}=0$, we have that $I=\left\langle x^{2}\right\rangle$ or $I=0$. If $a, b \in U(R)$, we get $I=\langle x+\alpha y\rangle$, where $\alpha \in U(R)$. If $a \in U(R)$ and $b \in M$, then obviously $I=\langle x\rangle$. So let us assume that $a \in M$ and $b \in U(R)$. Then we have that $I=\left\langle y+\beta x^{2}\right\rangle$, for some $\beta \in R$ (in particular, $I=\langle y\rangle$, if $\beta \in M)$. So, all the principal ideals are as follows:

$$
\langle x\rangle,\langle y\rangle,\left\langle x^{2}\right\rangle,\langle x+\alpha y\rangle,\left\langle y+\beta x^{2}\right\rangle, \text { for some } \alpha, \beta \in U(R) .
$$

Let us show that $\left\langle y+\beta x^{2}\right\rangle=\left\langle y+\gamma x^{2}\right\rangle$ if and only if $\beta-\gamma \in M$.
Suppose that $\left\langle y+\beta x^{2}\right\rangle=\left\langle y+\gamma x^{2}\right\rangle$. Then $y+\beta x^{2}=r\left(y+\gamma x^{2}\right)$, for some $r \in R$; so, $(1-r) y=(r \gamma-\beta) x^{2}$. Now $1-r \in M$ (if not, $\langle y\rangle \in\langle x\rangle$, a contradiction), and therefore $(1-r) y=0$. Since $x^{2} \neq 0$, we get that $r \gamma-\beta \in M$. Hence, $(1-r) \gamma+r \gamma-\beta=\gamma-\beta \in M$. On the other hand, if $\beta-\gamma \in M$, then obviously
$y+\beta x^{2}=y+(\beta-\gamma) x^{2}+\gamma x^{2}=y+\gamma x^{2}$ (note that actually $y+\beta x^{2}=y+\gamma x^{2}$ if and only if $\beta-\gamma \in M)$. Similarly it can be shown that $\langle x+\alpha y\rangle=\langle x+\delta y\rangle$ if and only if $\alpha-\delta \in M$.

Let $I=\langle a x+b y, c x+d y\rangle$ be an ideal which is not principal. If $a, b, c, d \in U(R)$, then clearly $I=\langle x, y\rangle=M$. If $b, d \in M$, then I is principal, so at least one of them is invertible. Suppose that $b \in M$ and $d \in U(R)$, i.e., $I=\langle a x, y+r x\rangle$, for some $r \in R$. If $a \in U(R)$, we have that $I=M$; if not, then I is principal if $r \in U(R)$, or $I=\left\langle x^{2}, y\right\rangle$, if $r \in M$. If $b, d \in U(R)$, then $I=\left\langle a b^{-1} x+y, c d^{-1} x+y\right\rangle=\left\langle a b^{-1} x+y,\left(a b^{-1}-c d^{-1}\right) x\right\rangle$, which was considered in the previous part of the proof.

So, all the non-zero ideals in R are:

$$
\langle x\rangle,\left\langle x^{2}\right\rangle,\langle x+\alpha y\rangle,\left\langle x^{2}, y\right\rangle,\langle x, y\rangle,\langle y\rangle,\left\langle y+\beta x^{2}\right\rangle(\alpha, \beta \in U(R)) .
$$

The last two ideals have non-trivial intersection with $\langle x, y\rangle$ and $\left\langle x^{2}, y\right\rangle$, while the other ideals contain $x^{2} \neq 0$ and there are $3+|R / M|$ of them. If $|R / M| \geq 6$, then $G(R)$ contains a K^{9}, and therefore $\gamma(G(R))>2$. If $|R / M| \leq 4$, then $G(R)$ is toroidal ([23, Theorem 1]). Finally, if $|R / M|=5$, then $G(R)$ is isomorphic to $\Gamma^{\prime \prime}\left[1,2,3,4,5,6,7,8, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right]-\left\{7 w_{5}, 3 w_{5}\right\}$, so we can embed it in \mathbb{S}_{2}, as shown on Figure 4.

Case 1.2. $M^{2}=\left\langle x^{2}\right\rangle, x y=0, y^{2}=a x^{2}$, for some $a \in U(R)$.
Using similar analysis, one gets that all the non-zero ideals in R are:

$$
\langle x, y\rangle,\langle x\rangle,\langle y\rangle,\left\langle x^{2}\right\rangle,\langle x+\alpha y\rangle(\alpha \in U(R))
$$

Also, as before, $\langle x+\alpha y\rangle=\langle x+\beta y\rangle$ if and only if $\alpha-\beta \in M$. All these ideals contain $x^{2} \neq 0$, and there are $3+|R / M|$ of them. Therefore, $G(R)$ is a complete graph on $3+|R / M|$ vertices. It follows from Proposition 2.2 that $\gamma(G(R))=2$ if and only if $|R / M|=5$.

Case 2. $\quad M^{2}=\langle x y\rangle, x^{2}=y^{2}=0$.
This case does not differ from the previous one (see [23, Theorem 1]). One gets that all the non-zero ideals in R are:

$$
\langle x, y\rangle,\langle x\rangle,\langle y\rangle,\langle x y\rangle,\langle x+\alpha y\rangle(\alpha \in U(R)) .
$$

All these ideals contain $x y(\neq 0)$ and there are $3+|R / M|$ of them. So, the conclusion is the same as in the previous case $(\gamma(G) R)=2$ if and only if $G(R)$ is isomorphic to $\left.\Gamma^{\prime \prime}[1,2,3,4,5,6,7,8]\right)$.

Proposition 3.7. Let R be a local ring with the maximal ideal $M=\langle x\rangle$. Then, $\gamma(G(R))=2$ if and only if $G(R)$ is isomorphic to K^{8}.

Proof. This ring is a principal ideal ring and all of its ideals are of the form $\left\langle x^{k}\right\rangle$, for $k \geq 1$. Hence, $\gamma(G(R))=2$ if and only if $x^{9}=0$ and $x^{8} \neq 0$, i.e., $G(R)$ is isomorphic to K^{8}.

We can summarize the previously obtained results in the form of the following theorem.

Theorem 3.8. Let R be a commutative ring with identity. Then, $\gamma(G(R))=2$ if and only if $G(R)$ is isomorphic to one of the following graphs:

$$
K^{8}, \quad \Gamma^{\prime}, \quad \Gamma^{\prime \prime}\left[1, \ldots, 8, w_{5}, w_{6}\right]-\{13,17\}, \quad \Gamma^{\prime \prime}\left[1, \ldots, 8, w_{1}, \ldots, w_{5}\right]-\left\{7 w_{5}, 3 w_{5}\right\}
$$

Figure 3. Graph Γ^{\prime}.

Figure 4. Graph $\Gamma^{\prime \prime}$.

4. LOWER BOUNDS FOR THE GENUS OF THE INTERSECTION GRAPHS OF NONLOCAL RINGS

In this section we obtain some lower bounds for the genus of the intersection graphs of nonlocal rings, which shows that intersection graphs of nonlocal rings have quite large genera. This gives us enough evidence to believe that the main difficulty towards fully understanding the genus of intersection graphs of rings is to understand the genus of intersection graphs of local rings. Interestingly enough, when dealing with the zero-divisor graph of a ring, it is easier to find the genus if the ring is local, then when it is nonlocal (see [11]).

Throughout this section let R be a commutative Artinian ring and R_{i} local Artinian rings such that $R \cong R_{1} \times \cdots \times R_{k}$, where $k \geq 2$.

Proposition 4.1. If R_{i} is not a field, for $1 \leq i \leq k$, then

$$
\gamma(G(R)) \geq \min \left\{\frac{\alpha}{8} \cdot N^{\frac{2 k-2}{k}} \cdot\left(N^{1 / k}-\alpha\right)-\frac{N}{2}+1, \beta \cdot N^{2}-\frac{N}{2}+1\right\}
$$

where $N=|V(G(R))|, \alpha=2 k\left(\frac{1}{3}\right)^{\frac{k-1}{k}}$ and $\beta=\frac{3^{k}-2^{k}-1}{4 \cdot\left(2 \cdot 3^{k}-2^{k+1}-1\right)^{2}}$.
Proof. Let $n_{i}=\left|I^{*}\left(R_{i}\right)\right|, 1 \leq i \leq k$. Then $N=\prod_{i=1}^{k}\left(n_{i}+2\right)-2$. Let A be the set of nontrivial ideals of R in which i-th coordinate is not in $\left\{0, R_{i}\right\}$, for $1 \leq i \leq k$, and B
the set of nontrivial ideals of R in which for at least one $i, 1 \leq i \leq k, i$-th coordinate is R_{i}. Then every vertex of A is adjacent to every vertex of B, and therefore $G(R)$ contains $K_{|A|,|B|}$ as a subgraph. By Proposition 2.2,

$$
\begin{equation*}
\gamma(G(R)) \geq \frac{(|A|-2)(|B|-2)}{4} \tag{4.1}
\end{equation*}
$$

Note that $|A|=n_{1} \cdots n_{k}$ and $|B|=\left(n_{1}+2\right) \cdots\left(n_{k}+2\right)-\left(n_{1}+1\right) \cdots\left(n_{k}+1\right)-1$. Let $\sigma_{j}=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq k} n_{i_{1}} \cdots n_{i_{j}}$ be the j-th symmetric sum of $n_{1}, n_{2}, \ldots, n_{k}$. Then $|A|=\sigma_{k}$,

$$
\begin{aligned}
|B| & =(2-1) \sigma_{k-1}+\left(2^{2}-1\right) \sigma_{k-2}+\ldots+\left(2^{k-1}-1\right) \sigma_{1}+2^{k}-2 \\
N & =\sigma_{k}+2 \sigma_{k-1}+\ldots+2^{k-1} \sigma_{1}+2^{k}-2
\end{aligned}
$$

Since $2\left(2^{i}-1\right) \geq 2^{i}$, for $i \in \mathbb{N}$, we have $|A|+2|B| \geq N$, and obviously $|A|+|B|<N$.
Case 1. $|A| \geq|B|$.
Since $|B|>\sigma_{k-1}$, by inequality of arithmetic and geometric mean we have $|B|>$ $k|A|^{\frac{k-1}{k}}$. Therefore, $N \leq|A|+2|B| \leq 3|A|<3\left(\frac{|B|}{k}\right)^{\frac{k}{k-1}}$, i.e. $|B|>k\left(\frac{N}{3}\right)^{\frac{k-1}{k}}$. Now,

$$
|A| \cdot|B| \geq 2|B| \cdot\left(\frac{N}{2}-|B|\right)>2 k\left(\frac{N}{3}\right)^{\frac{k-1}{k}}\left(\frac{N}{2}-k\left(\frac{N}{3}\right)^{\frac{k-1}{k}}\right)
$$

and $|A|+|B|<N$, so by (4.1)

$$
\gamma(G(R))>\frac{k}{2}\left(\frac{N}{3}\right)^{\frac{k-1}{k}}\left(\frac{N}{2}-k\left(\frac{N}{3}\right)^{\frac{k-1}{k}}\right)-\frac{N}{2}+1
$$

Case 2. $|B| \geq|A|$.
Since $\sigma_{i} \leq\binom{ k}{i} \sigma_{k}$, we have

$$
\begin{aligned}
|B| & \leq|A| \sum_{i=1}^{k-1}\binom{k}{i}\left(2^{k-i}-1\right)+2^{k}-2 \\
& \leq|A| \sum_{i=1}^{k-1}\binom{k}{i}\left(2^{k-i}-1\right)+\left(2^{k}-2\right)|A| \\
& =\left(3^{k}-2^{k}-1\right) \cdot|A|,
\end{aligned}
$$

and therefore $N \leq|A|+2|B| \leq\left(2 \cdot 3^{k}-2^{k+1}-1\right) \cdot|A|$, i.e., $|A|>\frac{N}{2 \cdot 3^{k}-2^{k+1}-1}$. Now,

$$
|A| \cdot|B| \geq|A| \cdot \frac{N-|A|}{2} \geq \frac{3^{k}-2^{k}-1}{\left(2 \cdot 3^{k}-2^{k+1}-1\right)^{2}} \cdot N^{2}
$$

so by (4.1)

$$
\gamma(G(R)) \geq \frac{3^{k}-2^{k}-1}{4 \cdot\left(2 \cdot 3^{k}-2^{k+1}-1\right)^{2}} \cdot N^{2}-\frac{N}{2}+1
$$

In the following proposition we prove that if at least one of $G\left(R_{i}\right), 1 \leq i \leq k$, contains a "big" clique, then $G(R)$ also contains a "big" clique, and therefore by Proposition 2.2 has a "large" genus. For a graph G, we denote by $\omega(G)$ the size of the largest clique contained in G.

Proposition 4.2. For $1 \leq i \leq k$, let $\alpha_{i}=\omega\left(G\left(R_{i}\right)\right) /\left|V\left(G\left(R_{i}\right)\right)\right|$ if R_{i} is not a field, and $\alpha_{i}=3 / 2$ if R_{i} is a field. Then

$$
\omega(G(R)) \geq \max \left\{\alpha_{i} \mid 1 \leq i \leq k\right\} \cdot \frac{N}{3}
$$

where $N=|V(G(R))|$.
Proof. W.l.o.g. $\alpha_{k}=\max \left\{\alpha_{i} \mid 1 \leq i \leq k\right\}$. Let $n_{i}=\left|V\left(G\left(R_{i}\right)\right)\right|$. Then $N=$ $\prod_{i=1}^{k}\left(n_{i}+2\right)-2$.

Case 1. R_{k} is not a field.
Let \mathcal{I}_{k} be a set of vertices of $G\left(R_{k}\right)$ that induce a clique of size $\omega\left(G\left(R_{k}\right)\right)$. Then the set

$$
\left\{I_{1} \times \cdots \times I_{k} \mid, I_{i} \in I^{*}\left(R_{i}\right) \cup\left\{0, R_{i}\right\}, 1 \leq i \leq k-1, I_{k} \in \mathcal{I}_{k}\right\}
$$

induces a clique of size $\omega\left(G\left(R_{k}\right)\right) \prod_{i=1}^{k-1}\left(n_{i}+2\right)=\alpha_{k} n_{k} \prod_{i=1}^{k-1}\left(n_{i}+2\right)$. Since $3 n_{k} \geq$ $n_{k}+2$ we have

$$
\omega(G(R)) \geq \frac{\alpha_{k}}{3} \prod_{i=1}^{k}\left(n_{i}+2\right)>\alpha_{k} \cdot \frac{N}{3}
$$

Case 2. R_{k} is a field.
The set

$$
\left\{I_{1} \times \cdots \times I_{k-1} \times R_{k} \mid I_{i} \in I^{*}\left(R_{i}\right) \cup\left\{0, R_{i}\right\}, 1 \leq i \leq k-1\right\} \backslash\left\{R_{1} \times \cdots \times R_{k}\right\}
$$

induces a clique of size $\prod_{i=1}^{k-1}\left(n_{i}+2\right)-1=N / 2=\alpha_{k} \cdot N$.
Combining previous two proposition we obtain the main theorem of this section.
Theorem 4.3. Genus of the intersection graph of a nonlocal ring R is at least

$$
\min \left\{\frac{\alpha}{8} \cdot N^{\frac{2 k-2}{k}} \cdot\left(N^{1 / k}-\alpha\right)-\frac{N}{2}+1, \beta \cdot N^{2}-\frac{N}{2}+1, \frac{(N-6)(N-8)}{48}\right\}
$$

where $N=|V(G(R))|, \alpha=2 k\left(\frac{1}{3}\right)^{\frac{k-1}{k}}$ and $\beta=\frac{3^{k}-2^{k}-1}{4 \cdot\left(2 \cdot 3^{k}-2^{k+1}-1\right)^{2}}$.
Proof. If R_{i}, for every $1 \leq i \leq k$, is not a field, the proof follows from Proposition 4.1. So, let us assume that at least one of $R_{i}, 1 \leq i \leq k$, is a field. Then $\max \left\{\alpha_{i} \mid 1 \leq i \leq\right.$ $k\}=3 / 2$, so, by Proposition $4.2, G(R)$ contains a clique of size $N / 2$, and therefore, by Proposition 2.2

$$
\gamma(G(R)) \geq \frac{(N / 2-3)(N / 2-4)}{12}=\frac{(N-6)(N-8)}{48}
$$

5. Concluding remarks

The present work suggests that finding the genus of the intersection graph of a ring is in general a very difficult problem. Notice that even for embeddings of intersection graphs in \mathbb{S}_{2} the list of forbidden subgraphs contains graphs that are neither complete nor complete bipartite. When classifying intersection graphs of genus 2, we needed to establish the nonexistence of certain embeddings that are consistent with Euler's formula. Some of these results were obtained by study of face-size distribution of graph embeddings, which is in general very difficult. As indicated, for example by graph Γ^{\prime}, obtaining an embedding of the intersection graph is not always a straightforward task. Therefore, for arbitrary g, creating the full list of nonisomorphic genus g graphs that are intersection graphs of some rings is (probably) unrealistic. The following theorem tells us that for $g>0$ this list is at least finite. Similar results were proven for zero-divisor graphs (see [31]), and total graphs (see [21]).

Theorem 5.1. For every $g>0$, there are only finitely many nonisomorphic graphs of genus g that are intersection graphs of some rings.

Proof. It is enough to prove that there are only finitely many non planar graphs of genus at most g that are intersection graphs of some rings.

Let R be a commutative Artinian ring such that $\gamma(G(R)) \leq g$. Then $R \cong R_{1} \times$ $\cdots \times R_{k}$, where $R_{i}, 1 \leq i \leq k$, are local Artinian rings. By Proposition 2.2 there is t (depending only on g) such that $G(R)$ does not contain a clique of size t.

Case 1. R is local $(k=1)$.
Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a minimal set of generators of the maximal ideal M of R. Then ideals $\left\langle x_{1}\right\rangle,\left\langle x_{1}, x_{2}\right\rangle, \ldots,\left\langle x_{1}, \ldots, x_{n}\right\rangle$ induce a clique of size n, and therefore $n \leq t-1$. Let l be the smallest number such that $M^{l}=0$. Then, by Nakayama's lemma ideals $M, M^{2}, \ldots, M^{l-1}$ are all different and induce a clique of size $l-1$, so $l-1 \leq t-1$. By Lemma 2.1 $F=R / M$ is finite. Let $|F|=r$. By the previous remark, there are only finitely many intersection graphs of some rings with $n=1$. So, we may assume that $n \geq 2$.

We will prove that r is bounded by a constant depending only on t. First, let us assume that $M^{2} \neq 0$. Vector space M / M^{2} is the union of one-dimensional subspaces, and since $\left|M / M^{2}\right|=|F|^{n}$, there are $|F|^{n-1}+1 \geq r+1$ of them. For each of these subspaces there is an ideal of R that contains M^{2}. Therefore $G(R)$ contains a complete graph on at least $r+1$ vertices, so $r \leq t-2$. So, let us assume that $M^{2}=0$. Then, by [18], $n \geq 3$, since otherwise $G(R)$ is planar. Let $\alpha_{i} \in R$ be some representatives of the elements of R / M, for $1 \leq i \leq r$. Ideals $I_{i}=\left\langle x_{1}, x_{2}+\alpha_{i} x_{3}\right\rangle$, $1 \leq i \leq r$, have non trivial intersection. Let us prove that they are all different. If this were not the case, then $I_{i}=I_{j}$, for some $i \neq j$. So, $x_{2}+\alpha_{i} x_{3} \in\left\langle x_{1}, x_{2}+\alpha_{j} x_{3}\right\rangle$, and therefore $\left(\alpha_{i}-\alpha_{j}\right) x_{3} \in I_{j}$. Since $\alpha_{i}-\alpha_{j} \in U(R), x_{3} \in I_{j}$, and therefore $\left\langle x_{1}, x_{2}, x_{3}\right\rangle \subseteq I_{j}$, a contradiction. Hence, the ideals $I_{i}, 1 \leq i \leq r$ induce a clique of size r, so $r \leq t-1$. Note that the elements of R are linear combinations (over F) of elements $x_{1}^{s_{1}} \cdots x_{n}^{s_{n}}$, where $s_{1}+\cdots+s_{n} \leq l \leq t-1$. These elements uniquely determines R, so $|V(G(R))|$ is bounded (by a function only depending on g) and therefore there are only finitely many intersection graphs of local rings that are nonplanar and have genus at most g.

Case 2. $k \geq 2$.

Notice that the graph $G\left(R_{1} \times \cdots \times R_{k}\right)$ is fully determined by graphs $G\left(R_{i}\right), 1 \leq i \leq k$. Also, $R_{1} \times 0 \times \cdots \times 0, R_{1} \times R_{2} \times 0 \times \cdots \times 0, \ldots, R_{1} \times \cdots \times R_{k-1} \times 0$ induce a clique of size $k-2$, and therefore $k-2 \leq t-1$. So, it is enough to prove that there are only finitely many graphs $G\left(R_{i}\right)$, for every $1 \leq i \leq k$. To prove this let us examine the subgraph of $G(R)$ induced by

$$
\left\{R_{1} \times \cdots \times R_{i-1} \times I_{i} \times R_{i+1} \times \cdots \times R_{k} \mid I_{i} \in I^{*}\left(R_{i}\right)\right\}
$$

This subgraph is complete, and has $\left|V\left(G\left(R_{i}\right)\right)\right|$ vertices. Therefore $G\left(R_{i}\right)$ has at most $t-1$ vertices, for each $1 \leq i \leq k$, which completes our proof.

Note that there are infinitely many planar graphs that are intersection graphs of some rings (see [18, 23]).

Acknowledgements

The authors would like to thank Zoran Petrović for many valuable suggestions that improved this paper. The second author is partially supported by Ministry of Education, Science and Technological Development of Republic of Serbia, Project \#174008.

References

[1] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213, 2224-2228 (2009)
[2] S. Akbari, R. Nikadish, M.J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl. 12(4), DOI: 10.1142/S0219498812502003
[3] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320, 2706-2719 (2008)
[4] D.F. Anderson, A. Badawi, The total graph of a commutative ring without the zero element, J. Algebra Appl. (2012) DOI: 10.1142/S0219498812500740
[5] D.F. Anderson, A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. (2013) DOI: 10.1142/S021949881250212X
[6] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 434-447 (1999)
[7] M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Adison-Wesley Publishing Company, Reading, MA. (1969)
[8] Z. Barati, K. Khashyarmanesh, F. Mohammadi, K. Nafar, On the associated graphs to a commutative ring, J. Algebra Appl. (2012) DOI: 10.1142/S021949881105610
[9] M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings, I. J. Algebra Appl. 10(4), 727-739 (2011)
[10] R. Belshoff, J. Chapman, Planar zero-divisor graph, J. Algebra 316(1), 471-480 (2007)
[11] N. Bloomfield, C. Wickham, Local rings with genus two zero divisor graph, Comm. Algebra 38, 2965-2980 (2010)
[12] I. Chakrabarty, S. Ghosh, T.K. Mukherjee, M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309(17), 5381-5392 (2009)
[13] H.-J. Chiang-Hsieh, P.-F. Lee, H.-J. Wang, The embedding of line graph associted to the zero-divisor graphs of commutative rings, Isr. J. Math. 180(1), 193-220 (2010)
[14] T.T. Chelvam, T. Asir, The intersection graph of gamma sets in the total graph I, J. Algebra Appl. (2013) DOI: 10.1142/S0219498812501988
[15] T.T. Chelvam, T. Asir, The intersection graph of gamma sets in the total graph II, J. Algebra Appl. (2013) DOI: 10.1142/S021949881250199X
[16] T.T. Chelvam, T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra. 41(1), 142-153 (2013)
[17] R. Diestel, Graph Theory, Third Edition, Graduate Texts in Mathematics 173, Springer-Verlag Berlin Heidelberg, (2005)
[18] S.H. Jafari, N.J. Rad, Planarity of intersection graphs of ideals of rings, Int. El. J. Algebra. 8, 161-166 (2010)
[19] M. Jungerman, G. Ringel, Minimal triangulations on orientable surfaces, Acta Math. 145(1-2), 121-154 (1980)
[20] I. Kaplansky, Commutative rings, Revised Edition, University of Chicago Press, Chicago, (1974)
[21] H.R. Maimani, C. Wickham, S. Yassemi, Rings whose total graphs have genus at most one, Rocky Mountain J. Math. (to appear)
[22] B. Mohar, C. Thomassen, Graphs on surfaces, Baltimore, MD: Johns Hopkins, (2001)
[23] Z. Pucanović, Z. Petrović, Toroidality of intersection graphs of ideals of commutative rings, Graphs and Combinatorics DOI:10.1007/s00373-013-1292-1
[24] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31, 4425-4443 (2003)
[25] G. Ringel, Das Geschlecht des vollstndiger Paaren Graphen, Abh. Math. Sem. Univ. Hamburg 28, 139-150, (1965)
[26] G. Ringel, J.W.T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sei. USA 60, 438-445 (1968)
[27] A. Riskin, Genus 2 crossing number of K9, Discrete Math. 145, 211-227 (1995)
[28] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10(4), 568-576 (1989)
[29] H. Wang, Zero-divisor graphs of genus one, J. Algebra 304(2), 666-678 (2006)
[30] C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra 36(2), 1-21 (2008)
[31] C. Wickham, Rings whose zero-divisor graphs have positive genus, J. Algebra 321(2), 377-383 (2009)

* University of Belgrade

Faculty of Civil Engineering,
Bulevar Kralja Aleksandra 73,
Belgrade
Serbia
E-mail address: pucanovic@grf.bg.ac.rs

* University of Belgrade

Faculty of Mathematics
Studentski trg 16
Belgrade
SERBIA
E-mail address: markor@matf.bg.ac.rs

* University of Belgrade

Faculty of Civil Engineering,
Bulevar Kralja Aleksandra 73,
Belgrade
SERBIA
E-mail address: eric@grf.bg.ac.rs

