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Abstract

We determine the characteristic rank of the canonical oriented vector bundle over égm
for all n > 3, and as a consequence, we obtain the affirmative answer to a conjecture of
Korbas and Rusin. As an application of this result, we calculate the Zs-cup-length for
a new infinite family of manifolds G35 ,. This result confirms the corresponding claim of
Fukaya’s conjecture.

1 Introduction

The characteristic rank of a real vector bundle o over a d-dimensional CW-complex X, de-
noted by charrank(c), is defined in [9] as the maximal integer ¢ € {0,1,...,d} such that all
cohomology classes in H’(X;Zs) for 0 < j < q are polynomials in Stiefel-Whitney classes
w1 (o), wa(a), ... of the bundle .

There has been much work done recently in studying the characteristic rank of various
vector bundles (see [5, 6, 9]), and especially the canonical vector bundle 7y, over Grassmann
manifold ékn (k < n) of oriented k-dimensional subspaces in R"** (see [4, 7, 8, 12]). The
majority of the obtained results pertains to the case k = 3. As the main result of this paper,
we determine the exact value of charrank(¥s,,) for all n > 3. This is stated in the following
theorem, which is proven in Section 3. (In the rest of the paper we assume that n > 3.)

Theorem 1.1 Ift > 3 is the unique integer such that 281 <n +3 < 2!, then
charrank(¥3 ,) = min{3n — 2 + 7,2" — 5}.

The technique of the proof combines the method of Korbas and Rusin used in [7, 12] (for
obtaining the lower bound for charrank(7s ,,)) with Grobner bases for ”unoriented” Grassmann
manifolds G, constructed in [11] (for obtaining the upper bound for charrank(7s)).

An immediate corollary of Theorem 1.1 is the positive answer to Conjecture 3.3 from [7]
(see Remark 3.5).
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The Zs-cup-length of a path connected space X, denoted by cup(X), is defined as the
maximal 7 such that there exist classes x1, w2, ..., 2, € H*(X;Zz) with nontrivial cup prod-
uct (z1ze -z, # 0). In [2] Fukaya studied the Zg-cup-length of Grassmanians Gs, and
conjectured [2, Conjecture 1.2] that for n in approximately the first half of the interval
[2671 — 4,2! — 4) (where t > 4) this cup-length is equal to 2~' — 3. In that paper he
obtains Grobner bases for certain ideals related to Grassmanians G 9i-1_4 and uses them
to verify this conjecture for n = 2!=! — 4. Later, in [4, 7] Korbas and Rusin verified it for
n € {201 — 3271 — 22071 120711 (¢ > 5 in the case n = 2~!). We prove that the
conjecture is true for all n in the first third of the interval [2/~! — 4,2 — 4). This result is
stated in the following theorem, the proof of which occupies Section 4 of the paper.

Theorem 1.2 Let t > 3 be the unique integer such that 2=l 4 < n < 2t —4. If n <

201 44 20 then:

(a) Cup(égvn) =2t-1 3.
(b) ht(wa(F3.,)) = 2071 — 4.

In the theorem, ht(wz(73)) is, as usual, the height of the class wa(73,), that is, the
maximal m such that wy(y3,)™ # 0.

2 Cohomology of Grassmann manifolds

In this paper, all cohomology groups are assumed to have coefficients in Zs.
Let G3,, be the Grassmann manifold of unoriented three-dimensional subspaces in R™H3,
By the Borel description [1], the cohomology algebra H*(Gs3 ) is isomorphic to the quotient

Zowi, w2, ws]/J3 pn,

where J3,, = (Wn41, Wn+2, Wn+3) is the ideal generated by dual classes. Hence, these dual
classes are polynomials in variables w;, we and ws, and they are obtained from the relation

(1+w +wy+w3)(l+w +wa +---) =1.

In the above isomorphism the classes of the variables wq, wy and wg correspond to the Stiefel-
Whitney classes of the canonical vector bundle 3 ,, over G3,, (which, by an abuse of notation,
we also denote by wi, wy and ws).

The proof of the following theorem can be found in [3].

Theorem 2.1 The set D3, = {w%wgwg : a+b+c < n} is a vector space basis for H*(G3p,).

In [11] a Grobner basis for the ideal J3 ,, is obtained. It consists of the polynomials gy, ,
indexed by the pairs of nonnegative integers (m,[) such that m 41 < n+ 1. They are defined

by
~ a+b+c—m—10U\[(b+c—-1\ , c
9m,l ‘= Z < a >< b >w1wgw37 (1)

a+2b+3c=n+1+m+2l

where the sum is taken over all triples (a, b, ¢) of nonnegative integers such that a+2b+3¢ = n+
1+m+2[ ([11, p. 80]; see also [10, p. 3]). It is clear that the monomial w’fH_m_lwg’lwé appears



in g, with coefficient 1, and it is a fact ([11, Proposition 5]; see also [10, Proposition 2.5])
that all other monomials of g,, ; have degree (sum of the exponents) at most n. Since gy, ; = 0

in H*(G'3,,), this means that (1) gives us the representation of the monomial w1 ="yl
in the additive basis D3 ,:
b —m—10\ (b —1
w1ty l 3 (a + b+ Z m > < +£ )w%wgwg‘ @)

a+2b+3c=n+1+m+21[
(a,b,c)#(n+1—m—1l,m,l)

This is an equality in H"*1*™+2/(G3 ), and in the rest of the paper, we say that an element
of H/(G3,,) (or H'(G3,,)) has dimension j.

The obvious map p : Gg, — G3, (which forgets the orientation of a three-dimensional
subspace in R"*3) is a two-sheeted covering map, and it is well known that the associated
Gysin exact sequence is of the form

- HI(Ga ) L HI(Gyn) = HY (Gan) 25 HIT(Gy0) 2 oo (3)

where H7(G3,) — HIT(Gs,), j > 0, is the homomorphism given with ¢ — w0, o €
H j(G3,n)'

The canonical bundle v3, over G3, pulls back via p to the canonical bundle v3,, over
égm, and therefore, w;(¥3,,) = p*w;, i = 1,2, 3. Since every cohomology class in H*(G3 ) is a
polynomial in wq, we and ws, we have that charrank(7s ,) > ¢ if and only if p* : H/(G3,) —
Hj(é37n) is onto for all j € {0,1,...,q} (where 0 < ¢ < 3n = dim égm). The following
equivalence is now straightforward from the exactness of sequence (3):

charrank(33,) > ¢ <= H/(G3,) ~% H'T(G3,,) is a monomorphism
for all j € {0,1,...,q}. (4)

Using this equivalence and Theorem 2.1, it is easy to see that

charrank(93,) > n — 1. (5)

3 Proof of Theorem 1.1

We divide the proof of our main result into two parts. In the first we show that
charrank(¥3,) < min{3n — 2' + 7,2 — 5}, and in the second that charrank(ys,) >
min{3n — 2! + 7,2 — 5}.

3.1 Upper bound
The following lemma is proved in [2, Proposition 3.2].

Lemma 3.1 Let t > 3 be an integer. Then for all nonnegative integers b and c¢ such that
2b + 3¢ = 271 — 3 the number (b?) is divisible by 2.

Proposition 3.2 Ift > 3 is the unique integer such that 21=1 < n + 3 < 2¢, then

charrank(33,,) < min{3n — 2" + 7,2 — 5}.



PROOF — Suppose first that 3n — 2t +7 < 2! —5 ie., n <2071 —4 + % We need to show
that charrank(ys,) < 3n — 2/ + 7.

Let | = n— 21 4+ 4. Note that 1 < [ < n. Namely, since n + 3 > 2’5*1, it holds
l=n+4-2"1>1; also, since t > 3, we have that 26°! > 4, sol = n+4 - 21 < n.
Equation (2) for this [ and m = 0 gives us that

1-1 1 a+b+c_l b+c—l b
wit ~wh = Z < " b wiwyws. (6)
a+2b+3c=n+1+21
(a,b,c);é(n—&—l—l,o,l)
Note that if w{wbw§ is a monomial with nonzero coefficient in this sum (i.e., if the integer
(“+b+c*l) (b+gfl) is odd), then ¢ > and a > 1.

a
Indeed, if ¢ < [, then since (b+g_l) # 0, we have that b + ¢ — I < 0, and now, since

(e+bFe=ly 2£ 0, it must be a+b+c—1 < 0. But then n+1+20 = a+2b+3c < 3(a+b+c) < 3,
which leads to the contradiction [ > n + 1.

Assume now that a = 0. Since then 2b+3(c—1) =n+1+2[-3l=n+1-1=2"1-3,
we can apply Lemma 3.1 to (nonnegative) integers b and ¢ — [. Thus we obtain that (b+gfl)
is even, which is a contradiction.

So, all monomials with nonzero coefficient in (6) are divisible by w;. Hence, in

Hn+1+2l(G37n) we have the equality

n—l 1 a+b+c_l b+C—l a—1_b ¢
=0.
w1 <w1 wg + Z < “ b W] WoWsg
a+2b4+3c=n+1421
(a,b,C);é(’ﬂJrlfl,O,l)
Since the expression in the brackets is a nontrivial linear combination of elements of the set
D3, by Theorem 2.1 it is a nonzero element in the kernel of H"+2(G3,,) % H™1421(G3 ).
By (4),
charrank(J3,,) <n+2l —1=3n—2"+7.

Suppose now that 3n — 2! +7 > 2 — 5, e, n > 271 — 4 4 220 (> 2071 — 3). We now
want to prove that charrank(7s,) < 2! — 5.

Let m = 2t — 4 — n. It is obvious that m > 0 (since n < 2! —4), and we also have that
m < n (since this is equivalent to n > 2!=1 — 2). Therefore, 0 < m < n, and so, we can use
equation (2) for this m and [ = 0:

_ a+b+c—m\ (b+c
w{”l Mwyt = Z ( " >< b >wi‘wgw§.
a+2b+3c=n+1+m
(a7b7c)7£(n+1_m7m70)
Since n +1 +m = 2" — 3, by Lemma 3.1, for every summand with @ = 0 in this sum,
the coefficient (berC) is even, and so, such a summand vanishes. Therefore, all monomials
that appear in the sum are divisible by w;. Similarly as in the first part of the proof, in

H"H™(G5,,) we now have the relation

. m a+b+c—m\[(b+c\ ,_ .
w1<w1 Wy + Z < a )( b )wl 1wgw3> =0,

a+2b+3c=n+1+m
(a,b,c)#(n+1—m,m,0)

which, by Theorem 2.1, leads to a nontrivial element in the kernel of the homomorphism
H" ™ (G3,,) —% H™+™(G3,,). By (4) this implies that charrank(¥3 ,) < nt+m—1 = 2¢—5.0



3.2 Lower bound

Let us recall some notation from [4, 7, 8, 12]. For i > 1, let g; € Zo|wo,ws] =
Zo[wy, wa, ws]/(wy) denote the reduction of the polynomial (dual class) w; modulo w;. The
corresponding polynomial in Stiefel-Whitney classes wy and w3 in H*(G3,,) is again denoted
by the same symbol. The main result of this subsection is based on [7, Proposition 2.4]. We
are stating only a part of that proposition, and only for k = 3.

Proposition 3.3 For an integer x > 0 observe the following set of polynomials in
Hn—i—l-‘,—x(GS n) .

)

2

N (G3p) = U{wgwggnHH 0 2b+4 3c=x —i}.
i=0

If x <n—1 and the set Ny(G3,) is linearly independent, then
H™(Gy,) = H'H2(G.0)

is a monomorphism.

In the polynomial algebra Zs[ws, ws], for all ¢ > 4 one has the following recurrence relation
(see [12, (2.3)])
gi = w2gi—2 + W34gi-3,

which can also be written in the matrix form (see [12, p. 55]):

gi 0 wo w3 gi—1
gi-1 | =11 0 O gi—2
9i—2 0 1 0 9i—3

This identity implies that for all integers » > 0 and ¢ > r + 3, one has

T

gi 0 we w3 Gi—r
gi—1| =111 0 O Gi—r—1 | - (7)
gi—2 0 1 0 Gi—r—2

In the remainder of this section we use the following notation:

0 w2 W3 0 ws 0
A=1|1 0 0 and B=|0 0 ws
0O 1 0 1 0 wo

Note that AB = w3l = BA, where [ is the identity matrix, and hence A" B" = w;I, for all
r > 0.
We will also need the following facts, which hold in Zs[ws, ws):

e g; =0 if and only if i = 2!~ — 3 for some ¢ > 3 ([4, Lemma 2.3(i)));
e for all t > 3, gyi—1_o and gy:—1_; are coprime ([12, Lemma 2.5]).
Proposition 3.4 Ift > 3 is the unique integer such that 20=1 < n +3 < 2, then

charrank(33,,) > min{3n — 2" + 7,2 — 5}.



PROOF — Let § = min{3n — 2! 4+ 7,2 — 5}. By (5) and (4) it suffices to prove that
H""*(G3) == H™ 2 (G0)

is a monomorphism for all z € {0,1,...,0 — n}. Note that z < § — n implies x < n — 1.
Indeed, if n =21 -3, thenas <6 —-n<3n—-24+7—n=1<n-—1;and if n > 2071 — 2,
then x < 6 —n <2 —5—n <n —1. So, by Proposition 3.3, it is now enough to show that
N3 (Gsp) is linearly independent for all z € {0,1,...,0 —n}.

Let 0 < 2z < § —n. If some linear combination of elements of the set N, (G3,,) vanishes,
then in H"*1+%(G3,,) one has the equality

Gz—29n+3 + Qz—19n+2 + @zGn+1 = 0, (8)

where ¢,_s, ¢.—1 and ¢, are some polynomials in Stiefel-Whitney classes wo and w3, and the
dimension of q,_;, i = 0, 1,2, is equal to x — i (of course, g,—; = 0 if z < 7). In order to finish
the proof, as in [12, p.55], we are left to prove that ¢;—2 = ¢z—1 = ¢» = 0, where ¢z_2, gz—1
and ¢, are interpreted as elements of the polynomial algebra Zo[ws, ws] (since that will mean
that all coefficients in the starting linear combination vanish).

So, from now on, ¢z—2,Gz—1,qs € Z2[wa,ws]. Note that (8) holds in Zg|wsy,ws] as well.
This is due to Theorem 2.1, since for a monomial ww§ of the left-hand side in (8) one has
2b+c) <2b+3c=n+1+4+2 < 2n (sincex <n—1).

Let s=n+3—-2"1 (le,n=2"1~-3+5s)and

(pz—i-s—l Pz+s px+s+1):(Qw—2 qz—1 q;r) AS+1- (9)

Note that s > 0 and that the (cohomological) dimensions of polynomials
Dats—1sDaotss Patstl € ZLo[wa,ws] are z + s — 1,2 + s,x + s + 1 respectively. Multiplying
equality (9) with the column (gy—1_1 got-1_9  gor-1_3)T, by (7) (for r = s+1 and i = n+3)
and (8), we obtain that

Dats—192t-1_1 + Prtsgat-1_9 + Prtst1got—1_3 =0 (10)

in Zs[wa,ws). Since goi-1_3 = 0 and the polynomials gyoi—1_5 and goe—1_; are coprime (and
nonzero), we conclude that got—1_o | prts—1. If pr+s—1 # 0, then by comparing dimensions of
Got-1_9 and pyrs 1, we have 2071 —2 <24+ 5 -1 <2071 -2 — s 45— 1 =271 — 3 (since
r<i-n<2t-5-n=2—5- (271 -3+ 5) =271 —2 — ). This contradiction proves
that py4+s—1 = 0, and then from (10) it follows that p, s = 0 also (since ggt-1_o # 0).

Now, if we multiply identity (9) with the matrix B*T!, we obtain that

(0 0 potst1) B = (wiTgen witlge1r witle), (11)

since A*T1Bs*t = w5, For a matrix C over the ring Zs[ws, ws], let the matrix C be
defined as the reduction of C' modulo w3 (that is, each entry of C is the reduction of the
corresponding entry of C' modulo ws). Then, it is easy to check that

0 0 0
B = 0o 0 o0
wy ™t 0 wh

for all r > 1. The reduction Zs[ws, w3] — Za[ws, ws]/(w3) = Za[ws] is a ring homomorphism,
and so, B = B', r > 1. This means that the low-right entry of the matrix B*t! is equal to



+ wsp for some p € Zywa,ws]. By (11), it follows that w§+1qm = pm+s+1(w§+1 + wsp),

and so, w§+1 | Dots+1. If Doyst1 # 0, then by comparing dimensions of w§+l and Py4st1, We
obtain that 3(s+1) <2 +s+1<2s+1+s+1=3s5+2 (sincex <J—n<3n—-21+7—n=
2n — 2t +7 =2 —6+2s — 2! + 7 = 25+ 1). This contradiction implies that pyisi1 = 0.
Finally, by (11) we have that

s+1
Wy

Ge—2 = qe—1 =gz = 0,
and the proof is completed. O

Remark 3.5 In [7] Korbas and Rusin proved that if 1 < s <6 and 271+ 551 | +1 <n+3 <
2! — s — 3, then charrank(ys,,) > n+s+1. They also conjectured [7, Conjecture 3.3] that this
is true for all s > 1. Proposition 3.4 (Theorem 1.1) confirms this conjecture. Indeed, since
|551] > 52, we have that 2(n+3) > 20+ 2. [551| +2 > 20 + 2. 552 4 2 = 2" 4 5 which
implies 3n — 28 +7>n+s+1. Also, n+3 <2t —s5—3 implies 28 =5 >n+s+1, and
therefore, we have that

charrank(¥3 ,) > min{3n — 2" +7,2" — 5} >n +s+ 1.

Remark 3.6 The characteristic rank of a smooth connected manifold was introduced in [5],
and it is actually the characteristic rank of the tangent bundle over the manifold. If n is
even, then it is a known fact that all Stiefel-Whitney classes of (the tangent bundle over the)
Grassmannian G3, are polynomials in Stiefel-Whitney classes of the canonical bundle 3,
and vice versa (see [5, p.72]). Therefore, by Theorem 1.1, for even n and t > 3 such that
2t=1 < + 3 < 2t we have that

charrank(égm) = charrank(¥3 ,) = min{3n — 2" +7,2" — 5}.

4 Proof of Theorem 1.2

The following theorem of Naolekar and Thakur gives an upper bound for the Zs-cup-length
in terms of characteristic rank.

Theorem 4.1 ([9]) Let M be a connected closed smooth d-dimensional manifold. Let o be
a real vector bundle over M and let j < charrank(«) be an integer such that every monomial
wi, (a) - wi, (), 1 < iy < -+ <ig <7, in dimension d vanishes. Then

d—17—1
cup(M) <1+ 1=~
'S

where 1 is the smallest positive integer such that H" (M) # 0.

In the case M = égm, we have that d = 3n and r = 2. It is also a well known (and easily
seen) fact that the nonzero class in H?"(Gs,,) & Zy is not a polynomial in Stiefel-Whitney
classes of the canonical bundle 73, (this can be seen, for instance, from the Gysin sequence
(3): obviously, the map H>*(G3,,) RSN H3""Y(G5,,) = 0 is not a monomorphism, and so,
p*: H¥(Gs,) — H3"(Glay) is not onto). Therefore, for the bundle o := v3,n We can take
j = charrank(73 ), and then Theorem 4.1 gives us the inequality

3n — charrank(y3,) — 1
5 .

Cup(é&n) <1+ (12)



The equality cup(57’3’2t71_4) =271 3 t > 4, was proved in [2] and, independently, in [5].

21 -3 <n< 2144 % (for some ¢ > 4), then by multiplying the second inequality
with 3 we obtain that 3n—2'+7 < 2—5. Hence, by Theorem 1.1, charrank(¥s ) = 3n—2'+7,
and from (12) it follows that

3n—(Bn—204+7)—1

=9ot=1 _3.
2

cup(égm) <1+

The opposite inequality cup(égm) > 2t=1 — 3 holds by [7, (13)]. So, we have proved part (a)
of Theorem 1.2.

For part (b), let 2071 —4 < n < 2071 — 4 4 ? (for some t > 4). We know that
w2(§3,2t_1_4)2t71_4 # 0 (by [2, Corollary 4.12]), and for n > 2!~ —3, the fact wo(F3.,)2 4 #
0 was proved in [7, p. 83].

Suppose that the class w2(§37n)2 is nonzero. Then, by the Poincaré duality there
exists a class o € H3”*2t+6(63,n) such that o - wg(%,n)?_lfg’ # 0, and, since 2! — 6 <

2n + 2 < 3n, we have that cup(égm) > 2t=1 — 2 which contradicts part (a) of the theorem.
273 .

t—1_3g

Therefore, w2(73 1)
We conclude that ht(wa(F3,,)) = 2!~! — 4, which finishes the proof of Theorem 1.2.
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