Characteristic rank of canonical vector bundles over oriented Grassmann manifolds $\widetilde{G}_{3, n}$

Zoran Z. Petrović ${ }^{*} \quad$ Branislav I. Prvulović ${ }^{\dagger}$ Marko Radovanović ${ }^{\ddagger}$

January 2, 2017

Abstract

We determine the characteristic rank of the canonical oriented vector bundle over $\widetilde{G}_{3, n}$ for all $n \geq 3$, and as a consequence, we obtain the affirmative answer to a conjecture of Korbaš and Rusin. As an application of this result, we calculate the \mathbb{Z}_{2}-cup-length for a new infinite family of manifolds $\widetilde{G}_{3, n}$. This result confirms the corresponding claim of Fukaya's conjecture.

1 Introduction

The characteristic rank of a real vector bundle α over a d-dimensional CW-complex X, denoted by charrank (α), is defined in [9] as the maximal integer $q \in\{0,1, \ldots, d\}$ such that all cohomology classes in $H^{j}\left(X ; \mathbb{Z}_{2}\right)$ for $0 \leq j \leq q$ are polynomials in Stiefel-Whitney classes $w_{1}(\alpha), w_{2}(\alpha), \ldots$ of the bundle α.

There has been much work done recently in studying the characteristic rank of various vector bundles (see $[5,6,9]$), and especially the canonical vector bundle $\widetilde{\gamma}_{k, n}$ over Grassmann manifold $\widetilde{G}_{k, n}(k \leq n)$ of oriented k-dimensional subspaces in \mathbb{R}^{n+k} (see $[4,7,8,12]$). The majority of the obtained results pertains to the case $k=3$. As the main result of this paper, we determine the exact value of $\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right)$ for all $n \geq 3$. This is stated in the following theorem, which is proven in Section 3. (In the rest of the paper we assume that $n \geq 3$.)

Theorem 1.1 If $t \geq 3$ is the unique integer such that $2^{t-1} \leq n+3<2^{t}$, then

$$
\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right)=\min \left\{3 n-2^{t}+7,2^{t}-5\right\}
$$

The technique of the proof combines the method of Korbaš and Rusin used in [7, 12] (for obtaining the lower bound for charrank $\left(\widetilde{\gamma}_{3, n}\right)$) with Gröbner bases for "unoriented" Grassmann manifolds $G_{3, n}$ constructed in [11] (for obtaining the upper bound for charrank $\left(\widetilde{\gamma}_{3, n}\right)$).

An immediate corollary of Theorem 1.1 is the positive answer to Conjecture 3.3 from [7] (see Remark 3.5).

[^0]The \mathbb{Z}_{2}-cup-length of a path connected space X, denoted by $\operatorname{cup}(X)$, is defined as the maximal r such that there exist classes $x_{1}, x_{2}, \ldots, x_{r} \in \widetilde{H}^{*}\left(X ; \mathbb{Z}_{2}\right)$ with nontrivial cup product $\left(x_{1} x_{2} \cdots x_{r} \neq 0\right)$. In [2] Fukaya studied the \mathbb{Z}_{2}-cup-length of Grassmanians $\widetilde{G}_{3, n}$ and conjectured [2, Conjecture 1.2] that for n in approximately the first half of the interval $\left[2^{t-1}-4,2^{t}-4\right)\left(\right.$ where $t \geq 4$) this cup-length is equal to $2^{t-1}-3$. In that paper he obtains Gröbner bases for certain ideals related to Grassmanians $\widetilde{G}_{3,2^{t-1}-4}$ and uses them to verify this conjecture for $n=2^{t-1}-4$. Later, in [4, 7] Korbaš and Rusin verified it for $n \in\left\{2^{t-1}-3,2^{t-1}-2,2^{t-1}-1,2^{t-1}\right\}\left(t \geq 5\right.$ in the case $\left.n=2^{t-1}\right)$. We prove that the conjecture is true for all n in the first third of the interval $\left[2^{t-1}-4,2^{t}-4\right)$. This result is stated in the following theorem, the proof of which occupies Section 4 of the paper.

Theorem 1.2 Let $t \geq 3$ be the unique integer such that $2^{t-1}-4 \leq n<2^{t}-4$. If $n \leq$ $2^{t-1}-4+\frac{2^{t-1}}{3}$, then:
(a) $\operatorname{cup}\left(\widetilde{G}_{3, n}\right)=2^{t-1}-3$;
(b) $\operatorname{ht}\left(w_{2}\left(\widetilde{\gamma}_{3, n}\right)\right)=2^{t-1}-4$.

In the theorem, $\operatorname{ht}\left(w_{2}\left(\widetilde{\gamma}_{3, n}\right)\right)$ is, as usual, the height of the class $w_{2}\left(\widetilde{\gamma}_{3, n}\right)$, that is, the maximal m such that $w_{2}\left(\widetilde{\gamma}_{3, n}\right)^{m} \neq 0$.

2 Cohomology of Grassmann manifolds

In this paper, all cohomology groups are assumed to have coefficients in \mathbb{Z}_{2}.
Let $G_{3, n}$ be the Grassmann manifold of unoriented three-dimensional subspaces in \mathbb{R}^{n+3}. By the Borel description [1], the cohomology algebra $H^{*}\left(G_{3, n}\right)$ is isomorphic to the quotient

$$
\mathbb{Z}_{2}\left[w_{1}, w_{2}, w_{3}\right] / J_{3, n},
$$

where $J_{3, n}=\left(\bar{w}_{n+1}, \bar{w}_{n+2}, \bar{w}_{n+3}\right)$ is the ideal generated by dual classes. Hence, these dual classes are polynomials in variables w_{1}, w_{2} and w_{3}, and they are obtained from the relation

$$
\left(1+w_{1}+w_{2}+w_{3}\right)\left(1+\bar{w}_{1}+\bar{w}_{2}+\cdots\right)=1 .
$$

In the above isomorphism the classes of the variables w_{1}, w_{2} and w_{3} correspond to the StiefelWhitney classes of the canonical vector bundle $\gamma_{3, n}$ over $G_{3, n}$ (which, by an abuse of notation, we also denote by w_{1}, w_{2} and w_{3}).

The proof of the following theorem can be found in [3].
Theorem 2.1 The set $D_{3, n}=\left\{w_{1}^{a} w_{2}^{b} w_{3}^{c}: a+b+c \leq n\right\}$ is a vector space basis for $H^{*}\left(G_{3, n}\right)$.
In [11] a Gröbner basis for the ideal $J_{3, n}$ is obtained. It consists of the polynomials $\widetilde{g}_{m, l}$, indexed by the pairs of nonnegative integers (m, l) such that $m+l \leq n+1$. They are defined by

$$
\begin{equation*}
\tilde{g}_{m, l}:=\sum_{a+2 b+3 c=n+1+m+2 l}\binom{a+b+c-m-l}{a}\binom{b+c-l}{b} w_{1}^{a} w_{2}^{b} w_{3}^{c}, \tag{1}
\end{equation*}
$$

where the sum is taken over all triples (a, b, c) of nonnegative integers such that $a+2 b+3 c=n+$ $1+m+2 l\left(\left[11\right.\right.$, p. 80]; see also [10, p. 3]). It is clear that the monomial $w_{1}^{n+1-m-l} w_{2}^{m} w_{3}^{l}$ appears
in $\widetilde{g}_{m, l}$ with coefficient 1 , and it is a fact ([11, Proposition 5]; see also [10, Proposition 2.5]) that all other monomials of $\widetilde{g}_{m, l}$ have degree (sum of the exponents) at most n. Since $\widetilde{g}_{m, l}=0$ in $H^{*}\left(G_{3, n}\right)$, this means that (1) gives us the representation of the monomial $w_{1}^{n+1-m-l} w_{2}^{m} w_{3}^{l}$ in the additive basis $D_{3, n}$:

$$
\begin{equation*}
w_{1}^{n+1-m-l} w_{2}^{m} w_{3}^{l}=\sum_{\substack{a+2 b+3 c=n+1+m+2 l \\(a, b, c) \neq(n+1-m-l, m, l)}}\binom{a+b+c-m-l}{a}\binom{b+c-l}{b} w_{1}^{a} w_{2}^{b} w_{3}^{c} \tag{2}
\end{equation*}
$$

This is an equality in $H^{n+1+m+2 l}\left(G_{3, n}\right)$, and in the rest of the paper, we say that an element of $H^{j}\left(G_{3, n}\right)$ (or $H^{j}\left(\widetilde{G}_{3, n}\right)$) has dimension j.

The obvious map $p: \widetilde{G}_{3, n} \rightarrow G_{3, n}$ (which forgets the orientation of a three-dimensional subspace in \mathbb{R}^{n+3}) is a two-sheeted covering map, and it is well known that the associated Gysin exact sequence is of the form

$$
\begin{equation*}
\cdots \xrightarrow{w_{1}} H^{j}\left(G_{3, n}\right) \xrightarrow{p^{*}} H^{j}\left(\widetilde{G}_{3, n}\right) \rightarrow H^{j}\left(G_{3, n}\right) \xrightarrow{w_{1}} H^{j+1}\left(G_{3, n}\right) \xrightarrow{p^{*}} \cdots, \tag{3}
\end{equation*}
$$

where $H^{j}\left(G_{3, n}\right) \xrightarrow{w_{1}} H^{j+1}\left(G_{3, n}\right), j \geq 0$, is the homomorphism given with $\sigma \mapsto w_{1} \sigma, \sigma \in$ $H^{j}\left(G_{3, n}\right)$.

The canonical bundle $\gamma_{3, n}$ over $G_{3, n}$ pulls back via p to the canonical bundle $\widetilde{\gamma}_{3, n}$ over $\widetilde{G}_{3, n}$, and therefore, $w_{i}\left(\widetilde{\gamma}_{3, n}\right)=p^{*} w_{i}, i=1,2,3$. Since every cohomology class in $H^{*}\left(G_{3, n}\right)$ is a polynomial in w_{1}, w_{2} and w_{3}, we have that charrank $\left(\widetilde{\gamma}_{3, n}\right) \geq q$ if and only if $p^{*}: H^{j}\left(G_{3, n}\right) \rightarrow$ $H^{j}\left(\widetilde{G}_{3, n}\right)$ is onto for all $j \in\{0,1, \ldots, q\}$ (where $0 \leq q \leq 3 n=\operatorname{dim} \widetilde{G}_{3, n}$). The following equivalence is now straightforward from the exactness of sequence (3):

$$
\begin{align*}
\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right) \geq q \Longleftrightarrow & H^{j}\left(G_{3, n}\right) \xrightarrow{w_{1}} H^{j+1}\left(G_{3, n}\right) \text { is a monomorphism } \\
& \text { for all } j \in\{0,1, \ldots, q\} \tag{4}
\end{align*}
$$

Using this equivalence and Theorem 2.1, it is easy to see that

$$
\begin{equation*}
\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right) \geq n-1 \tag{5}
\end{equation*}
$$

3 Proof of Theorem 1.1

We divide the proof of our main result into two parts. In the first we show that $\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right) \leq \min \left\{3 n-2^{t}+7,2^{t}-5\right\}$, and in the second that charrank$\left(\widetilde{\gamma}_{3, n}\right) \geq$ $\min \left\{3 n-2^{t}+7,2^{t}-5\right\}$.

3.1 Upper bound

The following lemma is proved in [2, Proposition 3.2].
Lemma 3.1 Let $t \geq 3$ be an integer. Then for all nonnegative integers b and c such that $2 b+3 c=2^{t-1}-3$ the number $\binom{b+c}{b}$ is divisible by 2 .

Proposition 3.2 If $t \geq 3$ is the unique integer such that $2^{t-1} \leq n+3<2^{t}$, then

$$
\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right) \leq \min \left\{3 n-2^{t}+7,2^{t}-5\right\}
$$

Proof - Suppose first that $3 n-2^{t}+7 \leq 2^{t}-5$, i.e., $n<2^{t-1}-4+\frac{2^{t-1}}{3}$. We need to show that charrank $\left(\widetilde{\gamma}_{3, n}\right) \leq 3 n-2^{t}+7$.

Let $l=n-2^{t-1}+4$. Note that $1 \leq l \leq n$. Namely, since $n+3 \geq 2^{t-1}$, it holds $l=n+4-2^{t-1} \geq 1$; also, since $t \geq 3$, we have that $2^{t-1} \geq 4$, so $l=n+4-2^{t-1} \leq n$. Equation (2) for this l and $m=0$ gives us that

$$
\begin{equation*}
w_{1}^{n+1-l} w_{3}^{l}=\sum_{\substack{a+2 b+3 c=n+1+2 l \\(a, b, c) \neq(n+1-l, 0, l)}}\binom{a+b+c-l}{a}\binom{b+c-l}{b} w_{1}^{a} w_{2}^{b} w_{3}^{c} . \tag{6}
\end{equation*}
$$

Note that if $w_{1}^{a} w_{2}^{b} w_{3}^{c}$ is a monomial with nonzero coefficient in this sum (i.e., if the integer $\binom{a+b+c-l}{a}\binom{b+c-l}{b}$ is odd), then $c \geq l$ and $a \geq 1$.

Indeed, if $c<l$, then since $\binom{b+c-l}{b} \neq 0$, we have that $b+c-l<0$, and now, since $\binom{a+b+c-l}{a} \neq 0$, it must be $a+b+c-l<0$. But then $n+1+2 l=a+2 b+3 c \leq 3(a+b+c)<3 l$, which leads to the contradiction $l>n+1$.

Assume now that $a=0$. Since then $2 b+3(c-l)=n+1+2 l-3 l=n+1-l=2^{t-1}-3$, we can apply Lemma 3.1 to (nonnegative) integers b and $c-l$. Thus we obtain that $\binom{b+c-l}{b}$ is even, which is a contradiction.

So, all monomials with nonzero coefficient in (6) are divisible by w_{1}. Hence, in $H^{n+1+2 l}\left(G_{3, n}\right)$ we have the equality

$$
w_{1}\left(w_{1}^{n-l} w_{3}^{l}+\sum_{\substack{a+2 b+3 c=n+1+2 l \\(a, b, c) \neq(n+1-l, 0, l)}}\binom{a+b+c-l}{a}\binom{b+c-l}{b} w_{1}^{a-1} w_{2}^{b} w_{3}^{c}\right)=0 .
$$

Since the expression in the brackets is a nontrivial linear combination of elements of the set $D_{3, n}$, by Theorem 2.1 it is a nonzero element in the kernel of $H^{n+2 l}\left(G_{3, n}\right) \xrightarrow{w_{1}} H^{n+1+2 l}\left(G_{3, n}\right)$. By (4),

$$
\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right) \leq n+2 l-1=3 n-2^{t}+7 .
$$

Suppose now that $3 n-2^{t}+7 \geq 2^{t}-5$, i.e., $n>2^{t-1}-4+\frac{2^{t-1}}{3}\left(>2^{t-1}-3\right)$. We now want to prove that charrank $\left(\widetilde{\gamma}_{3, n}\right) \leq 2^{t}-5$.

Let $m=2^{t}-4-n$. It is obvious that $m \geq 0$ (since $n \leq 2^{t}-4$), and we also have that $m \leq n$ (since this is equivalent to $n \geq 2^{t-1}-2$). Therefore, $0 \leq m \leq n$, and so, we can use equation (2) for this m and $l=0$:

$$
w_{1}^{n+1-m} w_{2}^{m}=\sum_{\substack{a+2 b+3 c=n+1+m \\(a, b, c) \neq(n+1-m, m, 0)}}\binom{a+b+c-m}{a}\binom{b+c}{b} w_{1}^{a} w_{2}^{b} w_{3}^{c} .
$$

Since $n+1+m=2^{t}-3$, by Lemma 3.1, for every summand with $a=0$ in this sum, the coefficient $\binom{b+c}{b}$ is even, and so, such a summand vanishes. Therefore, all monomials that appear in the sum are divisible by w_{1}. Similarly as in the first part of the proof, in $H^{n+1+m}\left(G_{3, n}\right)$ we now have the relation

$$
w_{1}\left(w_{1}^{n-m} w_{2}^{m}+\sum_{\substack{a+2 b+3 c=n+1+m \\(a, b, c) \neq(n+1-m, m, 0)}}\binom{a+b+c-m}{a}\binom{b+c}{b} w_{1}^{a-1} w_{2}^{b} w_{3}^{c}\right)=0
$$

which, by Theorem 2.1, leads to a nontrivial element in the kernel of the homomorphism $H^{n+m}\left(G_{3, n}\right) \xrightarrow{w_{1}} H^{n+1+m}\left(G_{3, n}\right)$. By (4) this implies that charrank $\left(\widetilde{\gamma}_{3, n}\right) \leq n+m-1=2^{t}-5$.

3.2 Lower bound

Let us recall some notation from $[4,7,8,12]$. For $i \geq 1$, let $g_{i} \in \mathbb{Z}_{2}\left[w_{2}, w_{3}\right] \cong$ $\mathbb{Z}_{2}\left[w_{1}, w_{2}, w_{3}\right] /\left(w_{1}\right)$ denote the reduction of the polynomial (dual class) \bar{w}_{i} modulo w_{1}. The corresponding polynomial in Stiefel-Whitney classes w_{2} and w_{3} in $H^{i}\left(G_{3, n}\right)$ is again denoted by the same symbol. The main result of this subsection is based on [7, Proposition 2.4]. We are stating only a part of that proposition, and only for $k=3$.

Proposition 3.3 For an integer $x \geq 0$ observe the following set of polynomials in $H^{n+1+x}\left(G_{3, n}\right)$:

$$
N_{x}\left(G_{3, n}\right)=\bigcup_{i=0}^{2}\left\{w_{2}^{b} w_{3}^{c} g_{n+1+i}: 2 b+3 c=x-i\right\} .
$$

If $x \leq n-1$ and the set $N_{x}\left(G_{3, n}\right)$ is linearly independent, then

$$
H^{n+x}\left(G_{3, n}\right) \xrightarrow{w_{1}} H^{n+1+x}\left(G_{3, n}\right)
$$

is a monomorphism.
In the polynomial algebra $\mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$, for all $i \geq 4$ one has the following recurrence relation (see [12, (2.3)])

$$
g_{i}=w_{2} g_{i-2}+w_{3} g_{i-3},
$$

which can also be written in the matrix form (see [12, p. 55]):

$$
\left(\begin{array}{c}
g_{i} \\
g_{i-1} \\
g_{i-2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & w_{2} & w_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
g_{i-1} \\
g_{i-2} \\
g_{i-3}
\end{array}\right) .
$$

This identity implies that for all integers $r>0$ and $i \geq r+3$, one has

$$
\left(\begin{array}{c}
g_{i} \tag{7}\\
g_{i-1} \\
g_{i-2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & w_{2} & w_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{r}\left(\begin{array}{c}
g_{i-r} \\
g_{i-r-1} \\
g_{i-r-2}
\end{array}\right) .
$$

In the remainder of this section we use the following notation:

$$
A=\left(\begin{array}{ccc}
0 & w_{2} & w_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
0 & w_{3} & 0 \\
0 & 0 & w_{3} \\
1 & 0 & w_{2}
\end{array}\right) .
$$

Note that $A B=w_{3} I=B A$, where I is the identity matrix, and hence $A^{r} B^{r}=w_{3}^{r} I$, for all $r>0$.

We will also need the following facts, which hold in $\mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$:

- $g_{i}=0$ if and only if $i=2^{t-1}-3$ for some $t \geq 3$ ([4, Lemma 2.3(i)]);
- for all $t \geq 3, g_{2^{t-1}-2}$ and $g_{2^{t-1}-1}$ are coprime ([12, Lemma 2.5]).

Proposition 3.4 If $t \geq 3$ is the unique integer such that $2^{t-1} \leq n+3<2^{t}$, then

$$
\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right) \geq \min \left\{3 n-2^{t}+7,2^{t}-5\right\}
$$

PROOF - Let $\delta=\min \left\{3 n-2^{t}+7,2^{t}-5\right\}$. By (5) and (4) it suffices to prove that

$$
H^{n+x}\left(G_{3, n}\right) \xrightarrow{w_{1}} H^{n+1+x}\left(G_{3, n}\right)
$$

is a monomorphism for all $x \in\{0,1, \ldots, \delta-n\}$. Note that $x \leq \delta-n$ implies $x \leq n-1$. Indeed, if $n=2^{t-1}-3$, then $x \leq \delta-n \leq 3 n-2^{t}+7-n=1<n-1$; and if $n \geq 2^{t-1}-2$, then $x \leq \delta-n \leq 2^{t}-5-n \leq n-1$. So, by Proposition 3.3, it is now enough to show that $N_{x}\left(G_{3, n}\right)$ is linearly independent for all $x \in\{0,1, \ldots, \delta-n\}$.

Let $0 \leq x \leq \delta-n$. If some linear combination of elements of the set $N_{x}\left(G_{3, n}\right)$ vanishes, then in $H^{n+1+x}\left(G_{3, n}\right)$ one has the equality

$$
\begin{equation*}
q_{x-2} g_{n+3}+q_{x-1} g_{n+2}+q_{x} g_{n+1}=0 \tag{8}
\end{equation*}
$$

where q_{x-2}, q_{x-1} and q_{x} are some polynomials in Stiefel-Whitney classes w_{2} and w_{3}, and the dimension of $q_{x-i}, i=0,1,2$, is equal to $x-i$ (of course, $q_{x-i}=0$ if $x<i$). In order to finish the proof, as in $[12, \mathrm{p} .55]$, we are left to prove that $q_{x-2}=q_{x-1}=q_{x}=0$, where q_{x-2}, q_{x-1} and q_{x} are interpreted as elements of the polynomial algebra $\mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$ (since that will mean that all coefficients in the starting linear combination vanish).

So, from now on, $q_{x-2}, q_{x-1}, q_{x} \in \mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$. Note that (8) holds in $\mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$ as well. This is due to Theorem 2.1, since for a monomial $w_{2}^{b} w_{3}^{c}$ of the left-hand side in (8) one has $2(b+c) \leq 2 b+3 c=n+1+x \leq 2 n($ since $x \leq n-1)$.

Let $s=n+3-2^{t-1}$ (i.e., $n=2^{t-1}-3+s$) and

$$
\left(\begin{array}{lll}
p_{x+s-1} & p_{x+s} & p_{x+s+1}
\end{array}\right)=\left(\begin{array}{lll}
q_{x-2} & q_{x-1} & q_{x} \tag{9}
\end{array}\right) A^{s+1} .
$$

Note that $s \geq 0$ and that the (cohomological) dimensions of polynomials $p_{x+s-1}, p_{x+s}, p_{x+s+1} \in \mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$ are $x+s-1, x+s, x+s+1$ respectively. Multiplying equality (9) with the column $\left(\begin{array}{lll}g_{2^{t-1}-1} & g_{2^{t-1}-2} & g_{2^{t-1}-3}\end{array}\right)^{T}$, by (7) (for $r=s+1$ and $\left.i=n+3\right)$ and (8), we obtain that

$$
\begin{equation*}
p_{x+s-1} g_{2^{t-1}-1}+p_{x+s} g_{2^{t-1}-2}+p_{x+s+1} g_{2^{t-1}-3}=0 \tag{10}
\end{equation*}
$$

in $\mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$. Since $g_{2^{t-1}-3}=0$ and the polynomials $g_{2^{t-1}-2}$ and $g_{2^{t-1}-1}$ are coprime (and nonzero), we conclude that $g_{2^{t-1}-2} \mid p_{x+s-1}$. If $p_{x+s-1} \neq 0$, then by comparing dimensions of $g_{2^{t-1}-2}$ and p_{x+s-1}, we have $2^{t-1}-2 \leq x+s-1 \leq 2^{t-1}-2-s+s-1=2^{t-1}-3$ (since $\left.x \leq \delta-n \leq 2^{t}-5-n=2^{t}-5-\left(2^{t-1}-3+s\right)=2^{t-1}-2-s\right)$. This contradiction proves that $p_{x+s-1}=0$, and then from (10) it follows that $p_{x+s}=0$ also (since $g_{2^{t-1}-2} \neq 0$).

Now, if we multiply identity (9) with the matrix B^{s+1}, we obtain that

$$
\left(\begin{array}{lll}
0 & 0 & p_{x+s+1} \tag{11}
\end{array}\right) B^{s+1}=\left(w_{3}^{s+1} q_{x-2} \quad w_{3}^{s+1} q_{x-1} \quad w_{3}^{s+1} q_{x}\right)
$$

since $A^{s+1} B^{s+1}=w_{3}^{s+1} I$. For a matrix C over the ring $\mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$, let the matrix \bar{C} be defined as the reduction of C modulo w_{3} (that is, each entry of \bar{C} is the reduction of the corresponding entry of C modulo w_{3}). Then, it is easy to check that

$$
\bar{B}^{r}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
w_{2}^{r-1} & 0 & w_{2}^{r}
\end{array}\right)
$$

for all $r \geq 1$. The reduction $\mathbb{Z}_{2}\left[w_{2}, w_{3}\right] \rightarrow \mathbb{Z}_{2}\left[w_{2}, w_{3}\right] /\left(w_{3}\right) \cong \mathbb{Z}_{2}\left[w_{2}\right]$ is a ring homomorphism, and so, $\overline{B^{r}}=\bar{B}^{r}, r \geq 1$. This means that the low-right entry of the matrix B^{s+1} is equal to
$w_{2}^{s+1}+w_{3} \widetilde{p}$ for some $\widetilde{p} \in \mathbb{Z}_{2}\left[w_{2}, w_{3}\right]$. By (11), it follows that $w_{3}^{s+1} q_{x}=p_{x+s+1}\left(w_{2}^{s+1}+w_{3} \widetilde{p}\right)$, and so, $w_{3}^{s+1} \mid p_{x+s+1}$. If $p_{x+s+1} \neq 0$, then by comparing dimensions of w_{3}^{s+1} and p_{x+s+1}, we obtain that $3(s+1) \leq x+s+1 \leq 2 s+1+s+1=3 s+2$ (since $x \leq \delta-n \leq 3 n-2^{t}+7-n=$ $2 n-2^{t}+7=2^{t}-6+2 s-2^{t}+7=2 s+1$). This contradiction implies that $p_{x+s+1}=0$. Finally, by (11) we have that

$$
q_{x-2}=q_{x-1}=q_{x}=0
$$

and the proof is completed.

Remark 3.5 In [7] Korbaš and Rusin proved that if $1 \leq s \leq 6$ and $2^{t-1}+\left\lfloor\frac{s-1}{2}\right\rfloor+1 \leq n+3 \leq$ $2^{t}-s-3$, then charrank $\left(\widetilde{\gamma}_{3, n}\right) \geq n+s+1$. They also conjectured [7, Conjecture 3.3] that this is true for all $s \geq 1$. Proposition 3.4 (Theorem 1.1) confirms this conjecture. Indeed, since $\left\lfloor\frac{s-1}{2}\right\rfloor \geq \frac{s-2}{2}$, we have that $2(n+3) \geq 2^{t}+2 \cdot\left\lfloor\frac{s-1}{2}\right\rfloor+2 \geq 2^{t}+2 \cdot \frac{s-2}{2}+2=2^{t}+s$, which implies $3 n-2^{t}+7 \geq n+s+1$. Also, $n+3 \leq 2^{t}-s-3$ implies $2^{t}-5 \geq n+s+1$, and therefore, we have that

$$
\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right) \geq \min \left\{3 n-2^{t}+7,2^{t}-5\right\} \geq n+s+1
$$

Remark 3.6 The characteristic rank of a smooth connected manifold was introduced in [5], and it is actually the characteristic rank of the tangent bundle over the manifold. If n is even, then it is a known fact that all Stiefel-Whitney classes of (the tangent bundle over the) Grassmannian $\widetilde{G}_{3, n}$ are polynomials in Stiefel-Whitney classes of the canonical bundle $\widetilde{\gamma}_{3, n}$, and vice versa (see [5, p.72]). Therefore, by Theorem 1.1, for even n and $t \geq 3$ such that $2^{t-1} \leq n+3<2^{t}$ we have that

$$
\operatorname{charrank}\left(\widetilde{G}_{3, n}\right)=\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right)=\min \left\{3 n-2^{t}+7,2^{t}-5\right\}
$$

4 Proof of Theorem 1.2

The following theorem of Naolekar and Thakur gives an upper bound for the \mathbb{Z}_{2}-cup-length in terms of characteristic rank.

Theorem 4.1 ([9]) Let M be a connected closed smooth d-dimensional manifold. Let α be a real vector bundle over M and let $j \leq \operatorname{charrank}(\alpha)$ be an integer such that every monomial $w_{i_{1}}(\alpha) \cdots w_{i_{s}}(\alpha), 1 \leq i_{1} \leq \cdots \leq i_{s} \leq j$, in dimension d vanishes. Then

$$
\operatorname{cup}(M) \leq 1+\frac{d-j-1}{r}
$$

where r is the smallest positive integer such that $H^{r}(M) \neq 0$.
In the case $M=\widetilde{G}_{3, n}$, we have that $d=3 n$ and $r=2$. It is also a well known (and easily seen) fact that the nonzero class in $H^{3 n}\left(\widetilde{G}_{3, n}\right) \cong \mathbb{Z}_{2}$ is not a polynomial in Stiefel-Whitney classes of the canonical bundle $\widetilde{\gamma}_{3, n}$ (this can be seen, for instance, from the Gysin sequence (3): obviously, the map $H^{3 n}\left(G_{3, n}\right) \xrightarrow{w_{1}} H^{3 n+1}\left(G_{3, n}\right)=0$ is not a monomorphism, and so, $p^{*}: H^{3 n}\left(G_{3, n}\right) \rightarrow H^{3 n}\left(\widetilde{G}_{3 n}\right)$ is not onto). Therefore, for the bundle $\alpha:=\widetilde{\gamma}_{3, n}$ we can take $j:=\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right)$, and then Theorem 4.1 gives us the inequality

$$
\begin{equation*}
\operatorname{cup}\left(\widetilde{G}_{3, n}\right) \leq 1+\frac{3 n-\operatorname{charrank}\left(\widetilde{\gamma}_{3, n}\right)-1}{2} \tag{12}
\end{equation*}
$$

The equality $\operatorname{cup}\left(\widetilde{G}_{3,2^{t-1}-4}\right)=2^{t-1}-3, t \geq 4$, was proved in [2] and, independently, in [5]. If $2^{t-1}-3 \leq n \leq 2^{t-1}-4+\frac{2^{t-1}}{3}$ (for some $t \geq 4$), then by multiplying the second inequality with 3 we obtain that $3 n-2^{t}+7 \leq 2^{t}-5$. Hence, by Theorem 1.1, charrank $\left(\widetilde{\gamma}_{3, n}\right)=3 n-2^{t}+7$, and from (12) it follows that

$$
\operatorname{cup}\left(\widetilde{G}_{3, n}\right) \leq 1+\frac{3 n-\left(3 n-2^{t}+7\right)-1}{2}=2^{t-1}-3 .
$$

The opposite inequality $\operatorname{cup}\left(\widetilde{G}_{3, n}\right) \geq 2^{t-1}-3$ holds by [7, (13)]. So, we have proved part (a) of Theorem 1.2.

For part (b), let $2^{t-1}-4 \leq n \leq 2^{t-1}-4+\frac{2^{t-1}}{3}$ (for some $t \geq 4$). We know that $w_{2}\left(\widetilde{\gamma}_{3,2^{t-1}-4}\right)^{2^{t-1}-4} \neq 0$ (by [2, Corollary 4.12]), and for $n \geq 2^{t-1}-3$, the fact $w_{2}\left(\widetilde{\gamma}_{3, n}\right)^{2^{t-1}-4} \neq$ 0 was proved in [7, p. 83].

Suppose that the class $w_{2}\left(\widetilde{\gamma}_{3, n}\right)^{2^{t-1}-3}$ is nonzero. Then, by the Poincare duality there exists a class $\sigma \in H^{3 n-2^{t}+6}\left(\widetilde{G}_{3, n}\right)$ such that $\sigma \cdot w_{2}\left(\widetilde{\gamma}_{3, n}\right)^{2^{t-1}-3} \neq 0$, and, since $2^{t}-6 \leq$ $2 n+2<3 n$, we have that $\operatorname{cup}\left(\widetilde{G}_{3, n}\right) \geq 2^{t-1}-2$, which contradicts part (a) of the theorem. Therefore, $w_{2}\left(\widetilde{\gamma}_{3, n}\right)^{2^{t-1}-3}=0$.

We conclude that $\operatorname{ht}\left(w_{2}\left(\widetilde{\gamma}_{3, n}\right)\right)=2^{t-1}-4$, which finishes the proof of Theorem 1.2.

References

[1] A. Borel, La cohomologie mod 2 de certains espaces homogenes, Comm. Math. Helv. 27 (1953) 165-197.
[2] T. Fukaya, Gröbner bases of oriented Grassmann manifolds, Homol. Homotopy Appl. 10:2 (2008) 195-209.
[3] J. Jaworowski, An additive basis for the cohomology of real Grassmannians, Lecture Notes in Math. 1474, Springer-Verlag, Berlin (1991) 231-234.
[4] J. Korbaš, The characteristic rank and cup-length in oriented Grassmann manifolds, Osaka J. Math. 52 (2015), 1163-1172.
[5] J. Korbaš, The cup-length of the oriented Grassmannians vs a new bound for zerocobordant manifolds, Bull. Belg. Math. Soc. Simon Stevin, 17 (2010), 69-81.
[6] J. Korbaš, A. Naolekar and S. Thakur, Characteristic rank of vector bundles over Stiefel manifolds, Arch. Math. 99 (2012), 577-581.
[7] J. Korbaš and T. Rusin, On the cohomology of oriented Grassmann manifolds, Homol. Homotopy Appl. 18:2 (2016), 71-84.
[8] J. Korbaš and T. Rusin, A note on the \mathbb{Z}_{2}-cohomology algebra of oriented Grassmann manifolds, Rend. Circ. Mat. Palermo, II. Ser 65 (2016), 507-517.
[9] A. C. Naolekar and A. S. Thakur, Note on the characteristic rank of vector bundles, Math. Slovaca 64 (2014), 1525-1540.
[10] Z. Z. Petrović and B. I. Prvulović, Groebner bases and some immersion theorems for Grassmann manifolds $G_{3, n}$, arXiv:1306.4814
[11] Z. Z. Petrović, B. I. Prvulović and M. Radovanović, Multiplication in the cohomology of Grassmannians via Gröbner bases, J. Algebra 438 (2015) 60-84.
[12] T. Rusin, A note on the characteristic rank of oriented Grassmann manifolds, Topology Appl. 216 (2017) 48-58.

[^0]: *University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia. Partially supported by Ministry of Education, Science and Technological Development of Republic of Serbia Project \#174032.
 ${ }^{\dagger}$ University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia. Partially supported by Ministry of Education, Science and Technological Development of Republic of Serbia Project \#174034.
 ${ }^{\ddagger}$ University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia. Partially supported by Ministry of Education, Science and Technological Development of Republic of Serbia Project \#174008.

