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Abstract

We determine the characteristic rank of the canonical oriented vector bundle over G̃3,n

for all n ≥ 3, and as a consequence, we obtain the affirmative answer to a conjecture of
Korbaš and Rusin. As an application of this result, we calculate the Z2-cup-length for
a new infinite family of manifolds G̃3,n. This result confirms the corresponding claim of
Fukaya’s conjecture.

1 Introduction

The characteristic rank of a real vector bundle α over a d-dimensional CW-complex X, de-
noted by charrank(α), is defined in [9] as the maximal integer q ∈ {0, 1, . . . , d} such that all
cohomology classes in Hj(X;Z2) for 0 ≤ j ≤ q are polynomials in Stiefel–Whitney classes
w1(α), w2(α), . . . of the bundle α.

There has been much work done recently in studying the characteristic rank of various
vector bundles (see [5, 6, 9]), and especially the canonical vector bundle γ̃k,n over Grassmann

manifold G̃k,n (k ≤ n) of oriented k-dimensional subspaces in Rn+k (see [4, 7, 8, 12]). The
majority of the obtained results pertains to the case k = 3. As the main result of this paper,
we determine the exact value of charrank(γ̃3,n) for all n ≥ 3. This is stated in the following
theorem, which is proven in Section 3. (In the rest of the paper we assume that n ≥ 3.)

Theorem 1.1 If t ≥ 3 is the unique integer such that 2t−1 ≤ n+ 3 < 2t, then

charrank(γ̃3,n) = min{3n− 2t + 7, 2t − 5}.

The technique of the proof combines the method of Korbaš and Rusin used in [7, 12] (for
obtaining the lower bound for charrank(γ̃3,n)) with Gröbner bases for ”unoriented” Grassmann
manifolds G3,n constructed in [11] (for obtaining the upper bound for charrank(γ̃3,n)).

An immediate corollary of Theorem 1.1 is the positive answer to Conjecture 3.3 from [7]
(see Remark 3.5).
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The Z2-cup-length of a path connected space X, denoted by cup(X), is defined as the
maximal r such that there exist classes x1, x2, . . . , xr ∈ H̃∗(X;Z2) with nontrivial cup prod-
uct (x1x2 · · ·xr 6= 0). In [2] Fukaya studied the Z2-cup-length of Grassmanians G̃3,n and
conjectured [2, Conjecture 1.2] that for n in approximately the first half of the interval
[2t−1 − 4, 2t − 4) (where t ≥ 4) this cup-length is equal to 2t−1 − 3. In that paper he
obtains Gröbner bases for certain ideals related to Grassmanians G̃3,2t−1−4 and uses them
to verify this conjecture for n = 2t−1 − 4. Later, in [4, 7] Korbaš and Rusin verified it for
n ∈ {2t−1 − 3, 2t−1 − 2, 2t−1 − 1, 2t−1} (t ≥ 5 in the case n = 2t−1). We prove that the
conjecture is true for all n in the first third of the interval [2t−1 − 4, 2t − 4). This result is
stated in the following theorem, the proof of which occupies Section 4 of the paper.

Theorem 1.2 Let t ≥ 3 be the unique integer such that 2t−1 − 4 ≤ n < 2t − 4. If n ≤
2t−1 − 4 + 2t−1

3 , then:

(a) cup(G̃3,n) = 2t−1 − 3;

(b) ht(w2(γ̃3,n)) = 2t−1 − 4.

In the theorem, ht(w2(γ̃3,n)) is, as usual, the height of the class w2(γ̃3,n), that is, the
maximal m such that w2(γ̃3,n)m 6= 0.

2 Cohomology of Grassmann manifolds

In this paper, all cohomology groups are assumed to have coefficients in Z2.
Let G3,n be the Grassmann manifold of unoriented three-dimensional subspaces in Rn+3.

By the Borel description [1], the cohomology algebra H∗(G3,n) is isomorphic to the quotient

Z2[w1, w2, w3]/J3,n,

where J3,n = (wn+1, wn+2, wn+3) is the ideal generated by dual classes. Hence, these dual
classes are polynomials in variables w1, w2 and w3, and they are obtained from the relation

(1 + w1 + w2 + w3)(1 + w1 + w2 + · · · ) = 1.

In the above isomorphism the classes of the variables w1, w2 and w3 correspond to the Stiefel–
Whitney classes of the canonical vector bundle γ3,n over G3,n (which, by an abuse of notation,
we also denote by w1, w2 and w3).

The proof of the following theorem can be found in [3].

Theorem 2.1 The set D3,n = {wa
1w

b
2w

c
3 : a+b+c ≤ n} is a vector space basis for H∗(G3,n).

In [11] a Gröbner basis for the ideal J3,n is obtained. It consists of the polynomials g̃m,l,
indexed by the pairs of nonnegative integers (m, l) such that m+ l ≤ n+ 1. They are defined
by

g̃m,l :=
∑

a+2b+3c=n+1+m+2l

(
a+ b+ c−m− l

a

)(
b+ c− l

b

)
wa
1w

b
2w

c
3, (1)

where the sum is taken over all triples (a, b, c) of nonnegative integers such that a+2b+3c = n+
1+m+2l ([11, p. 80]; see also [10, p. 3]). It is clear that the monomial wn+1−m−l

1 wm
2 w

l
3 appears

2



in g̃m,l with coefficient 1, and it is a fact ([11, Proposition 5]; see also [10, Proposition 2.5])
that all other monomials of g̃m,l have degree (sum of the exponents) at most n. Since g̃m,l = 0
in H∗(G3,n), this means that (1) gives us the representation of the monomial wn+1−m−l

1 wm
2 w

l
3

in the additive basis D3,n:

wn+1−m−l
1 wm

2 w
l
3 =

∑
a+2b+3c=n+1+m+2l
(a,b,c) 6=(n+1−m−l,m,l)

(
a+ b+ c−m− l

a

)(
b+ c− l

b

)
wa
1w

b
2w

c
3. (2)

This is an equality in Hn+1+m+2l(G3,n), and in the rest of the paper, we say that an element

of Hj(G3,n) (or Hj(G̃3,n)) has dimension j.

The obvious map p : G̃3,n → G3,n (which forgets the orientation of a three-dimensional
subspace in Rn+3) is a two-sheeted covering map, and it is well known that the associated
Gysin exact sequence is of the form

· · · w1−→ Hj(G3,n)
p∗−→ Hj(G̃3,n) −→ Hj(G3,n)

w1−→ Hj+1(G3,n)
p∗−→ · · · , (3)

where Hj(G3,n)
w1−→ Hj+1(G3,n), j ≥ 0, is the homomorphism given with σ 7→ w1σ, σ ∈

Hj(G3,n).
The canonical bundle γ3,n over G3,n pulls back via p to the canonical bundle γ̃3,n over

G̃3,n, and therefore, wi(γ̃3,n) = p∗wi, i = 1, 2, 3. Since every cohomology class in H∗(G3,n) is a
polynomial in w1, w2 and w3, we have that charrank(γ̃3,n) ≥ q if and only if p∗ : Hj(G3,n)→
Hj(G̃3,n) is onto for all j ∈ {0, 1, . . . , q} (where 0 ≤ q ≤ 3n = dim G̃3,n). The following
equivalence is now straightforward from the exactness of sequence (3):

charrank(γ̃3,n) ≥ q ⇐⇒ Hj(G3,n)
w1−→ Hj+1(G3,n) is a monomorphism

for all j ∈ {0, 1, . . . , q}. (4)

Using this equivalence and Theorem 2.1, it is easy to see that

charrank(γ̃3,n) ≥ n− 1. (5)

3 Proof of Theorem 1.1

We divide the proof of our main result into two parts. In the first we show that
charrank(γ̃3,n) ≤ min{3n − 2t + 7, 2t − 5}, and in the second that charrank(γ̃3,n) ≥
min{3n− 2t + 7, 2t − 5}.

3.1 Upper bound

The following lemma is proved in [2, Proposition 3.2].

Lemma 3.1 Let t ≥ 3 be an integer. Then for all nonnegative integers b and c such that
2b+ 3c = 2t−1 − 3 the number

(
b+c
b

)
is divisible by 2.

Proposition 3.2 If t ≥ 3 is the unique integer such that 2t−1 ≤ n+ 3 < 2t, then

charrank(γ̃3,n) ≤ min{3n− 2t + 7, 2t − 5}.
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proof — Suppose first that 3n− 2t + 7 ≤ 2t − 5, i.e., n < 2t−1 − 4 + 2t−1

3 . We need to show
that charrank(γ̃3,n) ≤ 3n− 2t + 7.

Let l = n − 2t−1 + 4. Note that 1 ≤ l ≤ n. Namely, since n + 3 ≥ 2t−1, it holds
l = n + 4 − 2t−1 ≥ 1; also, since t ≥ 3, we have that 2t−1 ≥ 4, so l = n + 4 − 2t−1 ≤ n.
Equation (2) for this l and m = 0 gives us that

wn+1−l
1 wl

3 =
∑

a+2b+3c=n+1+2l
(a,b,c) 6=(n+1−l,0,l)

(
a+ b+ c− l

a

)(
b+ c− l

b

)
wa
1w

b
2w

c
3. (6)

Note that if wa
1w

b
2w

c
3 is a monomial with nonzero coefficient in this sum (i.e., if the integer(

a+b+c−l
a

)(
b+c−l

b

)
is odd), then c ≥ l and a ≥ 1.

Indeed, if c < l, then since
(
b+c−l

b

)
6= 0, we have that b + c − l < 0, and now, since(

a+b+c−l
a

)
6= 0, it must be a+b+c− l < 0. But then n+1+2l = a+2b+3c ≤ 3(a+b+c) < 3l,

which leads to the contradiction l > n+ 1.
Assume now that a = 0. Since then 2b+ 3(c− l) = n+ 1 + 2l− 3l = n+ 1− l = 2t−1 − 3,

we can apply Lemma 3.1 to (nonnegative) integers b and c− l. Thus we obtain that
(
b+c−l

b

)
is even, which is a contradiction.

So, all monomials with nonzero coefficient in (6) are divisible by w1. Hence, in
Hn+1+2l(G3,n) we have the equality

w1

(
wn−l
1 wl

3 +
∑

a+2b+3c=n+1+2l
(a,b,c)6=(n+1−l,0,l)

(
a+ b+ c− l

a

)(
b+ c− l

b

)
wa−1
1 wb

2w
c
3

)
= 0.

Since the expression in the brackets is a nontrivial linear combination of elements of the set
D3,n, by Theorem 2.1 it is a nonzero element in the kernel of Hn+2l(G3,n)

w1−→ Hn+1+2l(G3,n).
By (4),

charrank(γ̃3,n) ≤ n+ 2l − 1 = 3n− 2t + 7.

Suppose now that 3n − 2t + 7 ≥ 2t − 5, i.e., n > 2t−1 − 4 + 2t−1

3 (> 2t−1 − 3). We now
want to prove that charrank(γ̃3,n) ≤ 2t − 5.

Let m = 2t − 4 − n. It is obvious that m ≥ 0 (since n ≤ 2t − 4), and we also have that
m ≤ n (since this is equivalent to n ≥ 2t−1 − 2). Therefore, 0 ≤ m ≤ n, and so, we can use
equation (2) for this m and l = 0:

wn+1−m
1 wm

2 =
∑

a+2b+3c=n+1+m
(a,b,c)6=(n+1−m,m,0)

(
a+ b+ c−m

a

)(
b+ c

b

)
wa
1w

b
2w

c
3.

Since n + 1 + m = 2t − 3, by Lemma 3.1, for every summand with a = 0 in this sum,
the coefficient

(
b+c
b

)
is even, and so, such a summand vanishes. Therefore, all monomials

that appear in the sum are divisible by w1. Similarly as in the first part of the proof, in
Hn+1+m(G3,n) we now have the relation

w1

(
wn−m
1 wm

2 +
∑

a+2b+3c=n+1+m
(a,b,c)6=(n+1−m,m,0)

(
a+ b+ c−m

a

)(
b+ c

b

)
wa−1
1 wb

2w
c
3

)
= 0,

which, by Theorem 2.1, leads to a nontrivial element in the kernel of the homomorphism
Hn+m(G3,n)

w1−→ Hn+1+m(G3,n). By (4) this implies that charrank(γ̃3,n) ≤ n+m−1 = 2t−5.2
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3.2 Lower bound

Let us recall some notation from [4, 7, 8, 12]. For i ≥ 1, let gi ∈ Z2[w2, w3] ∼=
Z2[w1, w2, w3]/(w1) denote the reduction of the polynomial (dual class) wi modulo w1. The
corresponding polynomial in Stiefel–Whitney classes w2 and w3 in H i(G3,n) is again denoted
by the same symbol. The main result of this subsection is based on [7, Proposition 2.4]. We
are stating only a part of that proposition, and only for k = 3.

Proposition 3.3 For an integer x ≥ 0 observe the following set of polynomials in
Hn+1+x(G3,n):

Nx(G3,n) =
2⋃

i=0

{wb
2w

c
3gn+1+i : 2b+ 3c = x− i}.

If x ≤ n− 1 and the set Nx(G3,n) is linearly independent, then

Hn+x(G3,n)
w1−→ Hn+1+x(G3,n)

is a monomorphism.

In the polynomial algebra Z2[w2, w3], for all i ≥ 4 one has the following recurrence relation
(see [12, (2.3)])

gi = w2gi−2 + w3gi−3,

which can also be written in the matrix form (see [12, p. 55]): gi
gi−1
gi−2

 =

0 w2 w3

1 0 0
0 1 0

gi−1gi−2
gi−3

 .

This identity implies that for all integers r > 0 and i ≥ r + 3, one has gi
gi−1
gi−2

 =

0 w2 w3

1 0 0
0 1 0

r gi−r
gi−r−1
gi−r−2

 . (7)

In the remainder of this section we use the following notation:

A =

0 w2 w3

1 0 0
0 1 0

 and B =

0 w3 0
0 0 w3

1 0 w2

 .

Note that AB = w3I = BA, where I is the identity matrix, and hence ArBr = wr
3I, for all

r > 0.
We will also need the following facts, which hold in Z2[w2, w3]:

• gi = 0 if and only if i = 2t−1 − 3 for some t ≥ 3 ([4, Lemma 2.3(i)]);

• for all t ≥ 3, g2t−1−2 and g2t−1−1 are coprime ([12, Lemma 2.5]).

Proposition 3.4 If t ≥ 3 is the unique integer such that 2t−1 ≤ n+ 3 < 2t, then

charrank(γ̃3,n) ≥ min{3n− 2t + 7, 2t − 5}.
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proof — Let δ = min{3n− 2t + 7, 2t − 5}. By (5) and (4) it suffices to prove that

Hn+x(G3,n)
w1−→ Hn+1+x(G3,n)

is a monomorphism for all x ∈ {0, 1, . . . , δ − n}. Note that x ≤ δ − n implies x ≤ n − 1.
Indeed, if n = 2t−1 − 3, then x ≤ δ − n ≤ 3n − 2t + 7 − n = 1 < n − 1; and if n ≥ 2t−1 − 2,
then x ≤ δ − n ≤ 2t − 5− n ≤ n− 1. So, by Proposition 3.3, it is now enough to show that
Nx(G3,n) is linearly independent for all x ∈ {0, 1, . . . , δ − n}.

Let 0 ≤ x ≤ δ − n. If some linear combination of elements of the set Nx(G3,n) vanishes,
then in Hn+1+x(G3,n) one has the equality

qx−2gn+3 + qx−1gn+2 + qxgn+1 = 0, (8)

where qx−2, qx−1 and qx are some polynomials in Stiefel–Whitney classes w2 and w3, and the
dimension of qx−i, i = 0, 1, 2, is equal to x− i (of course, qx−i = 0 if x < i). In order to finish
the proof, as in [12, p. 55], we are left to prove that qx−2 = qx−1 = qx = 0, where qx−2, qx−1
and qx are interpreted as elements of the polynomial algebra Z2[w2, w3] (since that will mean
that all coefficients in the starting linear combination vanish).

So, from now on, qx−2, qx−1, qx ∈ Z2[w2, w3]. Note that (8) holds in Z2[w2, w3] as well.
This is due to Theorem 2.1, since for a monomial wb

2w
c
3 of the left-hand side in (8) one has

2(b+ c) ≤ 2b+ 3c = n+ 1 + x ≤ 2n (since x ≤ n− 1).
Let s = n+ 3− 2t−1 (i.e., n = 2t−1 − 3 + s) and(

px+s−1 px+s px+s+1

)
=
(
qx−2 qx−1 qx

)
As+1. (9)

Note that s ≥ 0 and that the (cohomological) dimensions of polynomials
px+s−1, px+s, px+s+1 ∈ Z2[w2, w3] are x + s − 1, x + s, x + s + 1 respectively. Multiplying
equality (9) with the column (g2t−1−1 g2t−1−2 g2t−1−3)

T , by (7) (for r = s+1 and i = n+3)
and (8), we obtain that

px+s−1g2t−1−1 + px+sg2t−1−2 + px+s+1g2t−1−3 = 0 (10)

in Z2[w2, w3]. Since g2t−1−3 = 0 and the polynomials g2t−1−2 and g2t−1−1 are coprime (and
nonzero), we conclude that g2t−1−2 | px+s−1. If px+s−1 6= 0, then by comparing dimensions of
g2t−1−2 and px+s−1, we have 2t−1 − 2 ≤ x + s − 1 ≤ 2t−1 − 2 − s + s − 1 = 2t−1 − 3 (since
x ≤ δ − n ≤ 2t − 5 − n = 2t − 5 − (2t−1 − 3 + s) = 2t−1 − 2 − s). This contradiction proves
that px+s−1 = 0, and then from (10) it follows that px+s = 0 also (since g2t−1−2 6= 0).

Now, if we multiply identity (9) with the matrix Bs+1, we obtain that(
0 0 px+s+1

)
Bs+1 =

(
ws+1
3 qx−2 ws+1

3 qx−1 ws+1
3 qx

)
, (11)

since As+1Bs+1 = ws+1
3 I. For a matrix C over the ring Z2[w2, w3], let the matrix C be

defined as the reduction of C modulo w3 (that is, each entry of C is the reduction of the
corresponding entry of C modulo w3). Then, it is easy to check that

B
r

=

 0 0 0
0 0 0

wr−1
2 0 wr

2


for all r ≥ 1. The reduction Z2[w2, w3]→ Z2[w2, w3]/(w3) ∼= Z2[w2] is a ring homomorphism,
and so, Br = B

r
, r ≥ 1. This means that the low-right entry of the matrix Bs+1 is equal to
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ws+1
2 + w3p̃ for some p̃ ∈ Z2[w2, w3]. By (11), it follows that ws+1

3 qx = px+s+1(w
s+1
2 + w3p̃),

and so, ws+1
3 | px+s+1. If px+s+1 6= 0, then by comparing dimensions of ws+1

3 and px+s+1, we
obtain that 3(s+ 1) ≤ x+ s+ 1 ≤ 2s+ 1 + s+ 1 = 3s+ 2 (since x ≤ δ−n ≤ 3n− 2t + 7−n =
2n − 2t + 7 = 2t − 6 + 2s − 2t + 7 = 2s + 1). This contradiction implies that px+s+1 = 0.
Finally, by (11) we have that

qx−2 = qx−1 = qx = 0,

and the proof is completed. 2

Remark 3.5 In [7] Korbaš and Rusin proved that if 1 ≤ s ≤ 6 and 2t−1+b s−12 c+1 ≤ n+3 ≤
2t− s−3, then charrank(γ̃3,n) ≥ n+ s+ 1. They also conjectured [7, Conjecture 3.3] that this
is true for all s ≥ 1. Proposition 3.4 (Theorem 1.1) confirms this conjecture. Indeed, since
b s−12 c ≥

s−2
2 , we have that 2(n + 3) ≥ 2t + 2 · b s−12 c + 2 ≥ 2t + 2 · s−22 + 2 = 2t + s, which

implies 3n − 2t + 7 ≥ n + s + 1. Also, n + 3 ≤ 2t − s − 3 implies 2t − 5 ≥ n + s + 1, and
therefore, we have that

charrank(γ̃3,n) ≥ min{3n− 2t + 7, 2t − 5} ≥ n+ s+ 1.

Remark 3.6 The characteristic rank of a smooth connected manifold was introduced in [5],
and it is actually the characteristic rank of the tangent bundle over the manifold. If n is
even, then it is a known fact that all Stiefel–Whitney classes of (the tangent bundle over the)
Grassmannian G̃3,n are polynomials in Stiefel–Whitney classes of the canonical bundle γ̃3,n,
and vice versa (see [5, p. 72]). Therefore, by Theorem 1.1, for even n and t ≥ 3 such that
2t−1 ≤ n+ 3 < 2t we have that

charrank(G̃3,n) = charrank(γ̃3,n) = min{3n− 2t + 7, 2t − 5}.

4 Proof of Theorem 1.2

The following theorem of Naolekar and Thakur gives an upper bound for the Z2-cup-length
in terms of characteristic rank.

Theorem 4.1 ([9]) Let M be a connected closed smooth d-dimensional manifold. Let α be
a real vector bundle over M and let j ≤ charrank(α) be an integer such that every monomial
wi1(α) · · ·wis(α), 1 ≤ i1 ≤ · · · ≤ is ≤ j, in dimension d vanishes. Then

cup(M) ≤ 1 +
d− j − 1

r
,

where r is the smallest positive integer such that Hr(M) 6= 0.

In the case M = G̃3,n, we have that d = 3n and r = 2. It is also a well known (and easily

seen) fact that the nonzero class in H3n(G̃3,n) ∼= Z2 is not a polynomial in Stiefel–Whitney
classes of the canonical bundle γ̃3,n (this can be seen, for instance, from the Gysin sequence

(3): obviously, the map H3n(G3,n)
w1−→ H3n+1(G3,n) = 0 is not a monomorphism, and so,

p∗ : H3n(G3,n) → H3n(G̃3n) is not onto). Therefore, for the bundle α := γ̃3,n we can take
j := charrank(γ̃3,n), and then Theorem 4.1 gives us the inequality

cup(G̃3,n) ≤ 1 +
3n− charrank(γ̃3,n)− 1

2
. (12)
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The equality cup(G̃3,2t−1−4) = 2t−1−3, t ≥ 4, was proved in [2] and, independently, in [5].

If 2t−1−3 ≤ n ≤ 2t−1−4+ 2t−1

3 (for some t ≥ 4), then by multiplying the second inequality
with 3 we obtain that 3n−2t+7 ≤ 2t−5. Hence, by Theorem 1.1, charrank(γ̃3,n) = 3n−2t+7,
and from (12) it follows that

cup(G̃3,n) ≤ 1 +
3n− (3n− 2t + 7)− 1

2
= 2t−1 − 3.

The opposite inequality cup(G̃3,n) ≥ 2t−1 − 3 holds by [7, (13)]. So, we have proved part (a)
of Theorem 1.2.

For part (b), let 2t−1 − 4 ≤ n ≤ 2t−1 − 4 + 2t−1

3 (for some t ≥ 4). We know that

w2(γ̃3,2t−1−4)
2t−1−4 6= 0 (by [2, Corollary 4.12]), and for n ≥ 2t−1−3, the fact w2(γ̃3,n)2

t−1−4 6=
0 was proved in [7, p. 83].

Suppose that the class w2(γ̃3,n)2
t−1−3 is nonzero. Then, by the Poincaré duality there

exists a class σ ∈ H3n−2t+6(G̃3,n) such that σ · w2(γ̃3,n)2
t−1−3 6= 0, and, since 2t − 6 ≤

2n + 2 < 3n, we have that cup(G̃3,n) ≥ 2t−1 − 2, which contradicts part (a) of the theorem.

Therefore, w2(γ̃3,n)2
t−1−3 = 0.

We conclude that ht(w2(γ̃3,n)) = 2t−1 − 4, which finishes the proof of Theorem 1.2.
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