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Abstract. We study the cohomology algebra of the Grassmann manifold G̃k,n of
oriented k-dimensional subspaces in Rn+k via the characteristic rank of the canonical
vector bundle γ̃k,n over G̃k,n (denoted by charrank(γ̃k,n)). Using Gröbner bases for the
ideals determining the cohomology algebras of the “unoriented” Grassmannians Gk,n we
prove that charrank(γ̃k,n) increases with k. In addition, we calculate the exact value
of charrank(γ̃4,n), and for k ≥ 5 we improve a general lower bound for charrank(γ̃k,n)

obtained by Korbaš. Some corollaries concerning the cup-length of G̃4,n are also given.

1. Introduction. LetGk,n be the Grassmann manifold of k-dimensional
subspaces in Rn+k. According to Borel’s description of the cohomology al-
gebra H∗(Gk,n;Z2), every cohomology class in H∗(Gk,n;Z2) is a polynomial
in the Stiefel–Whitney classes of the canonical vector bundle γk,n over Gk,n.
On the other hand, the mod 2 cohomology algebra of the Grassmann man-
ifold G̃k,n of oriented k-dimensional subspaces in Rn+k is more complicated
and much less understood. Besides the polynomials in the Stiefel–Whitney
classes of the canonical bundle γ̃k,n, it contains the so-called “anomalous”
classes—the ones that are not expressible by the Stiefel–Whitney classes
of γ̃k,n. There has been some significant interest lately in finding the min-

imal r such that an “anomalous” class occurs in Hr(G̃k,n;Z2) (see [4, 6,
9, 10]). This is actually the task of determining the characteristic rank
of γ̃k,n.

If α is a real vector bundle over a d-dimensional CW-complex X, then the
characteristic rank of α, denoted by charrank(α), is defined as the maximal
integer q ∈ {0, 1, . . . , d} such that every cohomology class in Hj(X;Z2) for

2010 Mathematics Subject Classification: Primary 57R20, 13P10; Secondary 55R25.
Key words and phrases: characteristic rank, Stiefel–Whitney class, Grassmann manifold,
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0 ≤ j ≤ q is expressible as a polynomial in the Stiefel–Whitney classes
wi(α), i ≥ 1.

In this paper we improve many existing results concerning charrank(γ̃k,n)
and offer some new (algebraic) methods for studying it. We prove that
charrank(γ̃k,n) ≤ charrank(γ̃k+1,n) for all positive integers k and n (The-
orem 3.1), and thus improve [6, Proposition 3.4(2)]. The key ingredient in
the proof is the observation that every relation in H∗(Gk+1,n;Z2) produces
a relation in H∗(Gk,n;Z2) in an interesting way (Theorem 2.11). This ob-
servation heavily relies on Gröbner bases (obtained in [8]) for the ideals
determining H∗(Gk,n;Z2) in Borel’s description (in Section 2.2 we give a
brief background on the theory of Gröbner bases, sufficient for the applica-
tions in this paper).

Up to now, the exact value of charrank(γ̃k,n), where n ≥ k, has been

known only in the cases k = 1, 2, 3. For k = 1 we have G̃1,n = Sn, and
charrank(γ̃1,n) = n − 1. When k = 2, from [6, Theorem 3.6] we know that
charrank(γ̃2,n) = n− 1 if n is even, and charrank(γ̃2,n) = n if n is odd. For
k = 3 we know that charrank(γ̃3,n) = min{3n − 2t + 7, 2t − 5}, where t is
the integer such that 2t−1 ≤ n + 3 < 2t. In full generality, this result is
proved in [9], but many partial results were obtained in [4, 6, 10]. It turns
out that the methods used in [9] for k = 3 work equally well in the case
k = 4, and in this paper we calculate the exact value of charrank(γ̃4,n)
for all n ≥ 4 (Theorem 6.6), improving [4, Theorem 2.1(2)], where several
results are obtained for some n “close” to a power of 2. As a consequence,
new upper bounds for the cup-length of G̃4,n appear. Along with some new
lower bounds, these are presented in Proposition 6.11.

For k ≥ 5, the best known lower bound for charrank(γ̃k,n) is n + 1 [4,
Theorem 2.1(3)]. In Section 4 we use the method of Korbaš and Rusin [6]
to improve this bound (Theorem 4.4). However, it is worth mentioning that
the monotonicity of charrank(γ̃k,n) (established in Theorem 3.1) implies that
another lower bound for charrank(γ̃k,n), k ≥ 5, is charrank(γ̃4,n) (determined
in Theorem 6.6), and this bound quite often exceeds the one obtained in
Theorem 4.4 (see Remark 4.5).

In Section 5 we show that the problem of finding charrank(γ̃k,n) can be
reduced to testing linear independence of certain polynomials closely related
to the elements of the Gröbner bases obtained in [8].

The characteristic rank of a smooth closed connected manifold is defined
as the characteristic rank of its tangent bundle. If n+k is even (and k ≥ 2),

then charrank(G̃k,n) = 1 [5, p. 73]. When n + k is odd, it is known that

the Stiefel–Whitney classes of the Grassmannian G̃k,n are expressible as
polynomials in the Stiefel–Whitney classes of γ̃k,n and vice versa [5, p. 72],

and so charrank(G̃k,n) = charrank(γ̃k,n) in this case. Therefore, for n + k
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odd, all our results about charrank(γ̃k,n) are valid for charrank(G̃k,n) as
well.

2. Some facts concerning the cohomology algebra H∗(Gk,n;Z2).
Throughout this paper all cohomology groups are assumed to have coeffi-
cients in Z2. The set of all nonnegative integers is denoted by N0.

2.1. Borel’s description. Let k and n be positive integers and Gk,n
the Grassmann manifold of (unoriented) k-dimensional linear subspaces
in Rn+k. By Borel’s [2] classical result,

H∗(Gk,n) ∼= Z2[w1, . . . , wk]/Jk,n,

where Jk,n is the ideal generated by certain polynomials wn+1, . . . , wn+k.
In this isomorphism, the classes of the variables w1, . . . , wk (on the right-
hand side) correspond to the Stiefel–Whitney classes of the canonical vector
bundle γk,n over Gk,n (on the left-hand side). (In what follows, by abuse of
notation, these Stiefel–Whitney classes will also be denoted by w1, . . . , wk.)
The explicit formula for the polynomials wr (r ≥ 0) is

(2.1) wr =
∑

a1+2a2+···+kak=r
[a1, a2, . . . , ak]w

a1
1 w

a2
2 · · ·w

ak
k ,

where [a1, a2, . . . , ak] :=
(
a1+a2+···+ak

a1

)(
a2+···+ak

a2

)
· · ·
(
ak−1+ak
ak−1

)
is the multi-

nomial coefficient (considered modulo 2).
To simplify notation, for α = (a1, . . . , ak) ∈ Nk0 we define

Wα
k := wa11 · · ·w

ak
k .

Also, if we write Wα
k , then it is understood that α ∈ Nk0.

For α = (a1, . . . , ak) ∈ Nk0, let

|α| = a1 + · · ·+ ak and ‖α‖ = a1 + 2a2 + · · ·+ kak.

Note that |α| is the degree, and ‖α‖ is the (cohomological) dimension of the
monomial Wα

k .
The following theorem is well known (see e.g. [3]).

Theorem 2.1. The set Dk,n = {Wα
k : |α| ≤ n} is a vector space basis

for H∗(Gk,n).

Following [6], we say that an element Wα
k of Dk,n is regular if |α| < n,

and singular if |α| = n.

2.2. Gröbner bases. Let F be a field and F[x1, . . . , xk] the polynomial
algebra over F in k variables. The set of all monomials in F[x1, . . . , xk] will
be denoted by M . Also, let � be a well ordering of M (a total ordering such
that every nonempty subset of M has a least element) with the property
that m1 � m2 implies mm1 � mm2 for all m,m1,m2 ∈M .
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For f =
∑r

i=1 αimi ∈ F[x1, . . . , xk], where mi ∈M are pairwise different
and αi ∈ F \ {0}, let M(f) := {mi : 1 ≤ i ≤ r}. We define the leading
monomial of f , denoted by LM(f), as maxM(f) with respect to �. The
leading coefficient of f , denoted by LC(f), is the coefficient of LM(f) in f ,
and the leading term of f is LT(f) := LC(f) · LM(f).

Definition 2.2. Let G ⊂ F[x1, . . . , xk] be a finite set of nonzero polyno-
mials and IG = (G) the ideal in F[x1, . . . , xk] generated by G. We say that G
is a Gröbner basis for IG (with respect to �) if for each f ∈ IG \ {0} there
exists g ∈ G such that LM(g) |LM(f).

The crucial property of Gröbner bases is the following: if G is such a
basis, then every polynomial from the ideal IG reduces to zero modulo G.
For polynomials f, h ∈ F[x1, . . . , xk] we say that f reduces to h modulo G
if there exist n ≥ 1 and polynomials f1, . . . , fn ∈ F[x1, . . . , xk] such that
f1 = f , fn = h and for every i ∈ {1, . . . , n− 1} one has

fi+1 = fi −
LC(fi)

LC(gi)
·mi · gi

for some gi ∈ G and mi ∈ M such that mi · LM(gi) = LM(fi) (note that
LT(fi) cancels out on the right-hand side, and so LM(fi+1) ≺ LM(fi)).

2.3. Gröbner bases for Grassmannians. Let k, n ≥ 1 be fixed inte-
gers. We now present a Gröbner basis for the ideal Jk,n in Z2[w1, . . . , wk],
which was obtained in [8]. That is a Gröbner basis with respect to the grlex
ordering 4 on the monomials (for α = (a1, . . . , ak), β = (b1, . . . , bk) ∈ Nk0,

Wα
k ≺ W β

k if and only if either |α| < |β|, or |α| = |β| and as < bs, where
s = min{i | ai 6= bi}).

For α = (a1, . . . , ak) ∈ Nk0 and µ = (m2, . . . ,mk) ∈ Nk−10 we define an
integer [α, µ] as the following product of binomial coefficients:

[α, µ] :=
(
a1+a2+···+ak−m2−m3−···−mk

a1

)(
a2+···+ak−m3−···−mk

a2

)
· · ·
(
ak−1+ak−mk

ak−1

)
.

Remark 2.3. The (k−1)-tuple µ = (m2, . . . ,mk) is indexed by integers
from 2 to k (not from 1 to k − 1) for the reason which will become obvious
in Proposition 2.6. Nevertheless, we should remark in this regard that, by
definition, the value of ‖µ‖ is m2 + 2m3 + · · ·+ (k − 1)mk (and not 2m2 +
3m3 + · · ·+ kmk).

For k = 1 it is understood that µ = ∅, |µ| = ‖µ‖ = 0, and [α, µ] = 1 for
all α = a1 ∈ N0.

For µ ∈ Nk−10 , let gµ ∈ Z2[w1, . . . , wk] be defined as

(2.2) gµ :=
∑

‖α‖=n+1+‖µ‖

[α, µ]Wα
k ,
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where the sum is taken over all α ∈ Nk0 such that ‖α‖ = n + 1 + ‖µ‖ (and
the integers [α, µ] are considered modulo 2).

Example 2.4. For α = (a1, a2, a3, a4) ∈ N4
0 and µ = (1, 0, 2) ∈ N3

0

we have [α, µ] =
(
a1+a2+a3+a4−3

a1

)(
a2+a3+a4−2

a2

)(
a3+a4−2

a3

)
. So, for k = 4 and

n = 6,

g(1,0,2) =
∑

a1+2a2+3a3+4a4=14

[(a1, a2, a3, a4), (1, 0, 2)]wa11 w
a2
2 w

a3
3 w

a4
4

= w4
1w2w

2
4 + w3

1w3w
2
4 + w2

1w
2
2w

2
4 + w2

1w
3
4 + w3

2w
2
4 + w2

3w
2
4.

Now we can formulate a result about Gröbner bases.

Theorem 2.5 ([8, Theorem 14]). If Sk,n = {µ ∈ Nk−10 : |µ| ≤ n + 1},
then the set

Gk,n := {gµ : µ ∈ Sk,n}
is a Gröbner basis for the ideal Jk,n with respect to the grlex ordering 4.

We will make use of the following proposition from [8] as well (it is
actually the modulo 2 version of [8, Proposition 5]).

Proposition 2.6. If µ = (m2, . . . ,mk) ∈ Sk,n, then gµ 6= 0 and LT(gµ)

= Wµ
k , where µ = (n+1−|µ|,m2, . . . ,mk). Moreover, if Wα

k ∈M(gµ)\{Wµ
k }

for some α ∈ Nk0, then |α| ≤ n.

2.4. A relation in H∗(Gk,n) yields a relation in H∗(Gk−1,n). In this
subsection, for k ≥ 2 we construct a function

F : Z2[w1, . . . , wk−1, wk]→ Z2[w1, . . . , wk−1]

with the following properties:

• if p 6= 0, then F (p) 6= 0;
• if (for some positive integer n) p ∈ Jk,n, then F (p) ∈ Jk−1,n.

In other words, given any (nontrivial) relation p = 0 in H∗(Gk,n), we shall
have a (nontrivial) relation F (p) = 0 in H∗(Gk−1,n).

Let us first define a function f : Nk0 → Nk−10 by

f(a1, . . . , ak−2, ak−1, ak) := (a1, . . . , ak−2, ak−1 + ak).

Note that

(2.3) |f(α)| = |α| and ‖f(α)‖ = ‖α‖ − ak
for all α = (a1, . . . , ak) ∈ Nk0.

We use this function f to define F on the monomials in Z2[w1, . . . , wk]:

F (Wα
k ) := W

f(α)
k−1 ,

that is,
F (wa11 · · ·w

ak−2

k−2 w
ak−1

k−1 w
ak
k ) := wa11 · · ·w

ak−2

k−2 w
ak−1+ak
k−1 .



6 B. I. Prvulović and M. Radovanović

Now we extend F to Z2[w1, . . . , wk], but not linearly. Namely, we do de-
fine F (0) := 0, but for a given nonzero polynomial (sum of monomials)
we take into account only monomials with minimal exponent of the vari-
able wk, ignoring all others. The precise definition goes as follows. For
p ∈ Z2[w1, . . . , wk], p 6= 0, let Mp := {α ∈ Nk0 : Wα

k ∈ M(p)}. So, Mp

is a finite nonempty set and

p =
∑
α∈Mp

Wα
k .

If s(p) := min{ak : α ∈Mp}, then

F (p) :=
∑
α∈Mp

ak=s(p)

F (Wα
k ) =

∑
α∈Mp

ak=s(p)

W
f(α)
k−1 .

Example 2.7. For k = 4, let p = w3
1w

2
2w3w

2
4 + w1w2w3w

3
4 + w2

2w
2
3w

2
4

+ w2w
4
4 ∈ Z2[w1, w2, w3, w4]. Then s(p) = 2 and

F (p) = F (w3
1w

2
2w3w

2
4) + F (w2

2w
2
3w

2
4) = w3

1w
2
2w

3
3 + w2

2w
4
3 ∈ Z2[w1, w2, w3].

Now we list some basic properties of the function F . The first one is a
direct consequence of (2.3):

Proposition 2.8. If p is homogeneous of (cohomological)dimension d
(that is, ‖α‖ = d for all α ∈ Mp), then F (p) is homogeneous of dimension
d− s(p).

If p ∈ Z2[w1, . . . , wk] and α = (a1, . . . , ak), β = (b1, . . . , bk) ∈ Mp are
such that α 6= β and ak = bk = s(p), then ai 6= bi for some i ∈ {1, . . . , k−1},
and so f(α) 6= f(β). This means that

(2.4) p 6= 0 ⇒ F (p) 6= 0.

If p, q ∈ Z2[w1, . . . , wk] are nonzero, then s(p·q) = s(p)+s(q), and monomials
with minimal exponent of wk in p ·q are precisely the products of monomials
in p and monomials of q with minimal exponent of wk. Therefore,

(2.5) F (p · q) = F (p) · F (q).

(This equality is obvious if either p = 0 or q = 0, and so it holds for all
p, q ∈ Z2[w1, . . . , wk].)

On the other hand, it is evident that

(2.6) F (p+ q) =


F (p), s(p) < s(q),

F (q), s(p) > s(q),

F (p) + F (q), s(p) = s(q) = s(p+ q).

The only case that is not covered by (2.6) is s(p) = s(q) < s(p + q), that
is, when p and q have exactly the same monomials with minimal exponent
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of wk, and they cancel out in p + q. This case, however, will not appear in
our considerations.

Until the end of the section, let n be a fixed positive integer.

Lemma 2.9. If µ = (m2, . . . ,mk) ∈ Sk,n, then s(gµ) = mk.

Proof. By Proposition 2.6, µ = (n+ 1− |µ|,m2, . . . ,mk) ∈Mgµ , and so
s(gµ) ≤ mk.

Suppose that s(gµ) < mk, i.e., ak < mk for some α = (a1, . . . , ak)
∈Mgµ . Since then [α, µ] 6= 0, first we have

(
ak−1+ak−mk

ak−1

)
6= 0, which implies

ak−1 + ak − mk < 0 (this is because ak < mk, and, for a, b ∈ Z,
(
a
b

)
6= 0

implies that either a ≥ b or a < 0). Now, from this inequality and the facts
mk−1 ≥ 0 and

(
ak−2+ak−1+ak−mk−1−mk

ak−2

)
6= 0, we conclude that ak−2 + ak−1

+ ak − mk−1 − mk < 0. Continuing in the same manner, we obtain the
following k − 1 inequalities:

ak−1 + ak < mk,

ak−2 + ak−1 + ak < mk−1 +mk,...
a1 + a2 + · · ·+ ak < m2 +m3 + · · ·+mk.

Summing up, we get ‖µ‖ > ‖α‖−ak = n+ 1 + ‖µ‖−ak (the equality is due
to the fact α ∈Mgµ), that is, ak > n+ 1. But this leads to

n+ 1 < ak < mk ≤ m2 + · · ·+mk = |µ| ≤ n+ 1.

This contradiction proves that s(gµ) = mk.

Note that if µ = (m2, . . . ,mk−2,mk−1,mk) ∈ Sk,n, then (2.3) implies
that f(µ) = (m2, . . . ,mk−2,mk−1 + mk) ∈ Sk−1,n, i.e., gf(µ) ∈ Gk−1,n (for
k = 2, it is understood that f(µ) = ∅, and the relation gf(µ) ∈ G1,n reduces

to g∅ = wn+1
1 ∈ G1,n).

Proposition 2.10. If µ ∈ Sk,n, then F (gµ) = gf(µ).

Proof. By Lemma 2.9, s(gµ) = mk, and so

F (gµ) =
∑

‖α‖=n+1+‖µ‖
ak=mk

[α, µ]W
f(α)
k−1 =

∑
‖α‖−ak=n+1+‖µ‖−mk

ak=mk

[f(α), f(µ)]W
f(α)
k−1

=
∑

‖f(α)‖=n+1+‖f(µ)‖
ak=mk

[f(α), f(µ)]W
f(α)
k−1 .

The second equality holds because the last factor in the product [α, µ] is(
ak−1+ak−mk

ak−1

)
=
(
ak−1
ak−1

)
= 1 (since ak = mk for every summand), and the

remaining factors are easily seen to give [f(α), f(µ)]. The third equality
comes from (2.3).



8 B. I. Prvulović and M. Radovanović

On the other hand,

gf(µ) =
∑

‖β‖=n+1+‖f(µ)‖

[β, f(µ)]W β
k−1,

where the sum is taken over all β = (b1, . . . , bk−1) ∈ Nk−10 such that ‖β‖ =
n+1+‖f(µ)‖. However, the last two sums are equal. Namely, in the first sum
(for F (gµ)) the summand corresponding to α = (a1, . . . , ak−2, ak−1,mk) is
equal to the one in the second sum (for gf(µ)) corresponding to β := f(α) =
(a1, . . . , ak−2, ak−1 +mk); and vice versa, for β = (b1, . . . , bk−2, bk−1) in the
second sum, we have (unique) α := (b1, . . . , bk−2, bk−1 − mk,mk) in the
first (the summands with bk−1 < mk vanish in the second sum, since then
bk−1 < mk ≤ mk−1 +mk = s(gf(µ)) by Lemma 2.9).

Now we come to the main result of this section.

Theorem 2.11. Let Jk,nCZ2[w1, . . . , wk] and Jk−1,nCZ2[w1, . . . , wk−1]
be the ideals determining H∗(Gk,n) and H∗(Gk−1,n) respectively. If F :
Z2[w1, . . . , wk]→ Z2[w1, . . . , wk−1] is the function constructed above, then

F (Jk,n) ⊆ Jk−1,n.

Proof. We know that F (0) = 0. Let p ∈ Jk,n \ {0}. We want to prove
that F (p) ∈ Jk−1,n.

Since Gk,n is a Gröbner basis for Jk,n (Theorem 2.5), the polynomial p
can be reduced to zero modulo Gk,n. Therefore, we have some polynomials
p1, . . . , pr ∈ Z2[w1, . . . , wk] (r ≥ 2) such that p1 = p, pr = 0 and

pi − pi+1 = W βi
k · gµi , 1 ≤ i ≤ r − 1,

for some gµi ∈ Gk,n and monomials W βi
k with W βi

k · LM(gµi) = LM(pi).
Summing up these equalities, we obtain

(2.7) p =

r−1∑
i=1

W βi
k · gµi .

Furthermore,

LM(W βi
k · gµi) = W βi

k · LM(gµi) = LM(pi) � LM(pi+1) = LM(W
βi+1

k · gµi+1)

(in the grlex ordering) for all i ∈ {1, . . . , r − 2}, which means that all poly-

nomials W βi
k · gµi , 1 ≤ i ≤ r − 1, have distinct leading monomials.

Let s := min{s(W βi
k · gµi) : 1 ≤ i ≤ r − 1}. By Lemma 2.9 and Propo-

sition 2.6, the minimal exponent of wk, s(W
βi
k · gµi) = s(W βi

k ) + s(gµi), is

reached by the leading monomial LM(W βi
k · gµi) = W βi

k · LM(gµi). Now,
all these leading monomials are different, and so they do not cancel out
in (2.7). Namely, if I := {i ∈ {1, . . . , r − 1} : s(W βi

k · gµi) = s}, then the
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maximal (with respect to 4) of all leading monomials LM(W βi
k · gµi) with

i ∈ I appears exactly once in (2.7). Therefore, s(p) = s.
Finally, by (2.5)–(2.7), and Proposition 2.10,

F (p) =
∑
i∈I

F (W βi
k ·gµi) =

∑
i∈I

F (W βi
k ) ·F (gµi) =

∑
i∈I

W
f(βi)
k−1 ·gf(µi) ∈ Jk−1,n,

since gf(µi) ∈ Gk−1,n ⊂ Jk−1,n for all i ∈ I.

3. Monotonicity of charrank(γ̃k,n). Let k and n be positive integers,

G̃k,n the Grassmann manifold of oriented k-dimensional linear subspaces

in Rn+k, and γ̃k,n the canonical vector bundle over G̃k,n. The standard
approach to studying charrank(γ̃k,n) uses the Gysin sequence of the two-

fold covering map p : G̃k,n → Gk,n (which forgets the orientation of a
k-dimensional subspace):

(3.1) · · · w1−→ Hj(Gk,n)
p∗−→ Hj(G̃k,n) −→ Hj(Gk,n)

w1−→ Hj+1(Gk,n)
p∗−→ · · ·

(Hj(Gk,n)
w1−→ Hj+1(Gk,n) is multiplication by w1 = w1(γk,n)). By the

Borel description every cohomology class in H∗(Gk,n) is a polynomial in
the Stiefel–Whitney classes of γk,n (i.e., charrank(γk,n) = dimGk,n = kn),
and since p∗(γk,n) = γ̃k,n, for every nonnegative integer q ≤ kn we have

charrank(γ̃k,n) ≥ q if and only if p∗ : Hj(Gk,n) → Hj(G̃k,n) is onto for all
j ∈ {0, 1, . . . , q}. Now, from the exactness of (3.1) we conclude that

(3.2) charrank(γ̃k,n) ≥ q ⇔ Hj(Gk,n)
w1−→Hj+1(Gk,n) is a monomorphism

for all j ∈ {0, 1, . . . , q}.
We now prove the main result of this section—that charrank(γ̃k,n) in-

creases with k.

Theorem 3.1. If k ≥ 2 and n ≥ 1, then

charrank(γ̃k−1,n) ≤ charrank(γ̃k,n).

Proof. Let l := charrank(γ̃k,n).

If l = dim G̃k,n = kn, then charrank(γ̃k−1,n) ≤ dim G̃k−1,n = (k−1)n < l,
and the conclusion holds.

If l < kn, then by (3.2) the kernel of H l+1(Gk,n)
w1−→ H l+2(Gk,n) is

nontrivial. According to Theorem 2.1, there is a nonzero polynomial

p = Wα1
k + · · ·+Wαr

k ∈ H
l+1(Gk,n)

such that |αi| ≤ n for all i ∈ {1, . . . , r}, and w1 · p = 0 in H l+2(Gk,n). By
definition of the function F (from the previous section), the property (2.5),
Theorem 2.11 and Proposition 2.8, we also have

w1 · F (p) = F (w1) · F (p) = F (w1 · p) = 0 in H l+2−s(p)(Gk−1,n).
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Now, according to (2.4), F (p) is a nonzero polynomial (considered as an
element of Z2[w1, . . . , wk−1]). However, Theorem 2.1 implies that it is also
nonzero in H l+1−s(p)(Gk−1,n), since, by (2.3) and the definition of F , all its
monomials have degrees at most n.

Therefore, H l+1−s(p)(Gk−1,n)
w1−→ H l+2−s(p)(Gk−1,n) is not a monomor-

phism. From (3.2) we conclude that

charrank(γ̃k−1,n) ≤ l − s(p) ≤ l,
and the proof is complete.

Remark 3.2. Actually, charrank(γ̃k,n) increases with n as well. This is
immediate from Theorem 3.1 and from charrank(γ̃k,n) = charrank(γ̃n,k),

which is easy to verify. Indeed, if h : G̃k,n → G̃n,k is the homeomorphism
which maps an oriented k-dimensional subspace V ⊂ Rn+k to its orthogonal
complement V ⊥, oriented in such a way that the induced orientation on the
direct sum V ⊕V ⊥ = Rn+k coincides with the standard orientation of Rn+k,
then h∗(γ̃n,k) ∼= γ̃⊥k,n, where γ̃⊥k,n is the (n-dimensional) orthogonal comple-

ment of the vector bundle γ̃k,n. Therefore, charrank(γ̃n,k) = charrank(γ̃⊥k,n).

On the other hand, γ̃k,n⊕ γ̃⊥k,n is a trivial (n+k)-dimensional bundle, and so

for the total Stiefel–Whitney classes we have w(γ̃k,n) ·w(γ̃⊥k,n) = 1, implying
that all Stiefel–Whitney classes of one of these two bundles are expressible
as polynomials in the Stiefel–Whitney classes of the other. This means that
charrank(γ̃⊥k,n) = charrank(γ̃k,n).

4. A lower bound for charrank(γ̃k,n). Let us now fix positive integers k
and n such that k ≤ n. The main result of this section is based on the
following result from [6], a proposition which proved useful for obtaining
lower bounds for the characteristic rank of γ̃k,n in many cases (see [6, 9, 10]).

Let ρ : Z2[w1, . . . , wk]→ Z2[w1, . . . , wk]/(w1) ∼= Z2[w2, . . . , wk] be reduc-
tion modulo w1. For r ≥ 1, we thus have a polynomial ρ(wr)∈Z2[w2, . . . , wk]
(see (2.1)), and the corresponding polynomial in the Stiefel–Whitney classes
w2, . . . , wk in Hr(Gk,n) is again denoted by the same symbol.

Proposition 4.1 ([6]). For x ∈ N0, let Nx(Gk,n) ⊂ Hn+1+x(Gk,n) be
the set defined by

Nx(Gk,n) :=

k−1⋃
i=0

{wb22 w
b3
3 · · ·w

bk
k ρ(wn+1+i) : 2b2 + 3b3 + · · ·+ kbk = x− i}.

If x ≤ n− 1 and the set Nx(Gk,n) is linearly independent in Hn+1+x(Gk,n),
then

Hn+x(Gk,n)
w1−→ Hn+1+x(Gk,n)

is a monomorphism.
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We use this proposition to prove the following crucial lemma.

Lemma 4.2. If s ∈ {2, . . . , k} is an integer such that for every m ∈
{0, 1, . . . , k − 1} the polynomial wn+1+m ∈ Z2[w1, . . . , wk] contains a mono-
mial of the form wass w

as+1

s+1 · · ·w
ak
k , then

charrank(γ̃k,n) ≥ n+ s− 1.

Proof. By Theorem 2.1, Hj(Gk,n)
w1−→ Hj+1(Gk,n) is a monomorphism

for j ≤ n− 1, and therefore, by (3.2), it is enough to prove that

Hn+x(Gk,n)
w1−→ Hn+1+x(Gk,n)

is a monomorphism for all x ∈ {0, 1, . . . , s− 1}.
So, let 0 ≤ x ≤ s−1. Then x ≤ k−1 ≤ n−1. By Proposition 4.1 it is now

sufficient to show that Nx(Gk,n) is linearly independent in Hn+1+x(Gk,n).
Suppose that some linear combination of elements of Nx(Gk,n) vanishes.
Then in Hn+1+x(Gk,n) one has the equality

(4.1)

k−1∑
i=0

px−iρ(wn+1+i) = 0,

where px−i (0 ≤ i ≤ k − 1) are polynomials in the Stiefel–Whitney classes
w2, . . . , wk, and the dimension of px−i is x − i (hence, px−i = 0 for i > x).
Interpreting the polynomials px−i and ρ(wn+1+i) (0 ≤ i ≤ k−1) as elements
of Z2[w2, . . . , wk], it is easy to see that this equality holds in Z2[w2, . . . , wk] as

well. Indeed, this follows from Theorem 2.1, since for a monomial wb22 · · ·w
bk
k

on the left-hand side of the equality one has 2(b2 + b3 + · · · + bk) ≤ 2b2 +
3b3 + · · ·+ kbk = n+ x+ 1 ≤ 2n (since x ≤ n− 1).

If we show that px−i = 0 in Z2[w2, . . . , wk] for all i, then all coefficients
of these polynomials are zero, i.e., all coefficients in the starting linear com-
bination vanish, and the proof is complete.

Assume to the contrary that some of the polynomials px−i, 0 ≤ i ≤
k− 1, are nonzero in Z2[w2, . . . , wk]. Let m ∈ {0, 1, . . . , k− 1} be the largest
integer such that px−m 6= 0. But a monomial of the form wass w

as+1

s+1 · · ·w
ak
k

occurs in wn+1+m with nonzero coefficient, and since s ≥ 2, it occurs in
the reduction ρ(wn+1+m) as well. Therefore, wass · · ·w

ak
k divides a monomial

in px−mρ(wn+1+m) (since px−m 6= 0), and hence by (4.1) it must divide
a monomial in px−iρ(wn+1+i) for some i < m. However, the dimension
of px−i is x − i ≤ x ≤ s − 1 < s, and so wass · · ·w

ak
k divides a monomial

in ρ(wn+1+i); but this is impossible since the dimension of wass · · ·w
ak
k is

n+ 1 +m > n+ 1 + i.

Remark 4.3. Note that for s = 2 the condition of the lemma is simply
ρ(wn+1+m) 6= 0 for all m ∈ {0, 1, . . . , k − 1}. Since this condition is sat-
isfied if k ≥ 5 [4, Lemma 2.3(iii)], we have another proof of the fact that
charrank(γ̃k,n) ≥ n+ 1 when k ≥ 5 [4, Theorem 2.1(3)].
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For simplicity, we write a ≡2 b instead of a ≡ b (mod 2). The integer
part of a number α is denoted by bαc.

Theorem 4.4. Let k and n be positive integers.

(i) If n ≥ k ≥ 6, then

charrank(γ̃k,n) ≥ n+ bk/3c − 1.

(ii) If n ≥ 6 · bk/5c, then

charrank(γ̃k,n) ≥ n+ 2 · bk/5c − 1.

Proof. (i) Let s := bk/3c. Then 2 ≤ s ≤ k/3 < k. By Lemma 4.2,
it suffices to find a monomial of the form wass w

as+1

s+1 · · ·w
ak
k in wn+1+m for

every m ∈ {0, 1, . . . , k − 1}. For that purpose, we shall divide the integer
n+m− s by 2s (note that n+m− s > 0 since s < k ≤ n). Thus we obtain
the quotient q ≥ 0 and the remainder r ∈ {0, 1, . . . , 2s − 1} and we have
n+m− s = 2sq + r. If we add s+ 1 to both sides of this equality, then we
get the following representation of the integer n+ 1 +m:

n+ 1 +m = 2sq+ r+ s+ 1 = s · 2q+ (s+ r+ 1) · 1, q ≥ 0, 0 ≤ r ≤ 2s− 1.

Since 2 ≤ s < s + r + 1 ≤ 3s ≤ k, we have the monomial w2q
s ws+r+1 in

dimension n+ 1 +m. Moreover, by (2.1) this monomial appears in wn+1+m

because its coefficient in wn+1+m is a multinomial coefficient

[0, . . . , 0, 2q, 0, . . . , 0, 1, 0, . . . , 0] =
(
2q+1
2q

)(
1
1

)
≡2 1.

This proves (i).

(ii) The inequality charrank(γ̃k,n) ≥ n − 1 is well known (and easily
verified from (3.2) and Theorem 2.1). So, (ii) is true for k ≤ 4.

Now, suppose that k ≥ 5 and let t := bk/5c ≥ 1. As 2 ≤ 2t ≤ 2 ·k/5 < k,
we can apply Lemma 4.2 to s := 2t, and so, for 0 ≤ m ≤ k − 1, it remains
to prove that the polynomial wn+1+m contains a monomial of the form
wa2t2t w

a2t+1

2t+1 · · ·w
ak
k . In order to find such a monomial, we divide n+m by 2t,

obtaining the remainder r ∈ {0, 1, . . . , 2t− 1} and the quotient q, which we
write in the form q = 4l + 2d+ j with l ∈ N0 and d, j ∈ {0, 1}. So, we have
a representation

n+ 1 +m = 2t(4l + 2d+ j) + r + 1,

where l ≥ 0, 0 ≤ d ≤ 1, 0 ≤ j ≤ 1 and 0 ≤ r ≤ 2t− 1. We distinguish three
cases.

Case 1: j = 1. Then

n+ 1 +m = 2t(4l + 2d+ 1) + r + 1 = 2t · (4l + 2d) + (2t+ r + 1) · 1,
2 ≤ 2t < 2t + r + 1 ≤ 4t < 5t ≤ k, so the monomial w4l+2d

2t w2t+r+1 has
dimension n + 1 + m. Moreover, it appears in wn+1+m according to (2.1),
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since the corresponding multinomial coefficient is

[0, . . . , 0, 4l + 2d, 0, . . . , 0, 1, 0, . . . , 0] =
(
4l+2d+1
4l+2d

)(
1
1

)
≡2 1.

Case 2: j = 0, d = 1. First observe that in this case we must have l ≥ 1.
Indeed, l = 0 implies n+ 1 +m = 4t+ r+ 1 ≤ 6t, which is impossible since
n ≥ 6t (this is the assumption of part (ii) of the theorem). Now,

n+ 1 +m = 2t(4l + 2) + r + 1 = 2t · (4l − 4) + (2t+ r + 1) · 1 + 5t · 2,
and also 2 ≤ 2t < 2t + r + 1 ≤ 4t < 5t ≤ k, which means that we have
the monomial w4l−4

2t w2t+r+1w
2
5t in dimension n + 1 + m. This monomial is

in wn+1+m since the associated multinomial coefficient is

[0, . . . , 0, 4l − 4, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0] =
(
4l−1
4l−4

)(
3
1

)(
2
2

)
≡2 1.

Case 3: j = d = 0. Now we have

n+ 1 +m = 2t · 4l + r + 1 = 2t · (4l − 4) + (2t+ r + 1) · 1 + 3t · 2,
and the desired monomial is w4l−4

2t w2t+r+1w
2
3t (as in the previous case, we

have l ≥ 1). Namely, its dimension is obviously n+ 1 +m and its coefficient
in wn+1+m is:

• [0, . . . , 0, 4l − 4, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0] =
(
4l−1
4l−4

)(
3
1

)(
2
2

)
≡2 1 if r <

t− 1;
• [0, . . . , 0, 4l − 4, 0, . . . , 0, 3, 0, . . . , 0] =

(
4l−1
4l−4

)(
3
3

)
≡2 1 if r = t− 1;

• [0, . . . , 0, 4l − 4, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0] =
(
4l−1
4l−4

)(
3
2

)(
1
1

)
≡2 1 if r >

t− 1.

Remark 4.5. Part (i) of the theorem improves [4, Theorem 2.1(3)] for
all k ≥ 9 and n ≥ k. For 5 ≤ k ≤ 8 we have bk/5c = 1, and hence for all
n ≥ k, (k, n) 6= (5, 5), part (ii) gives charrank(γ̃k,n) ≥ n+ 1, which coincides
with the bound from [4, Theorem 2.1(3)].

However, according to Theorem 3.1, if k ≥ 5, then a lower bound for
charrank(γ̃k,n) is charrank(γ̃4,n), which we determine in Section 6. It turns
out that this lower bound is better in many cases (especially for small k).
For example, by Theorems 3.1 and 6.6,

charrank(γ̃5,5) ≥ charrank(γ̃4,5) = 7.

5. Application of Gk,n to obtain charrank(γ̃k,n). In this section we
show how the Gröbner basis Gk,n (of the ideal Jk,n in Z2[w1, . . . , wk]) can
be used to obtain charrank(γ̃k,n).

Let µ = (m2, . . . ,mk) ∈ Nk−10 with |µ| ≤ n. Then w1 |Wµ
k (see Proposi-

tion 2.6). Furthermore, Wµ
k = w1W

µ̃
k , where µ̃ = (n−|µ|,m2, . . . ,mk). Since

gµ ∈ Jk,n, in H∗(Gk,n) ∼= Z2[w1, . . . , wk]/Jk,n we have

(5.1) 0 = gµ = w1(W
µ̃
k + qµ) + ρ(gµ), i.e., w1W

µ̃
k = w1qµ + ρ(gµ),
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where qµ is a polynomial in w1, . . . , wk. Moreover, by Proposition 2.6, each
monomial of qµ is regular, and each monomial of ρ(gµ) is in Dk,n (see Theo-
rem 2.1 and the following sentence). Actually, w1qµ + ρ(gµ) is the represen-

tation of w1W
µ̃
k in the additive basis Dk,n.

Example 5.1. In Example 2.4 we calculated g(1,0,2) for k = 4 and n = 6.

By that calculation, in H14(G4,6) one has

w1 · w3
1w2w

2
4 = w4

1w2w
2
4 = w1(w

2
1w3w

2
4 + w1w

2
2w

2
4 + w1w

3
4︸ ︷︷ ︸

q(1,0,2)

) + w3
2w

2
4 + w2

3w
2
4︸ ︷︷ ︸

ρ(g(1,0,2))

.

Theorem 5.2. For x ∈ N0, let T xk,n = {µ ∈ Nk−10 : |µ| ≤ n, ‖µ‖ = x} ⊂
Sk,n and Gxk,n = {ρ(gµ) : µ ∈ T xk,n} ⊂ Hn+x+1(Gk,n). Then

Hn+x(Gk,n)
w1−→ Hn+x+1(Gk,n)

is a monomorphism if and only if the set Gxk,n is linearly independent in

Hn+x+1(Gk,n) and ρ(gµ1) 6= ρ(gµ2) for all distinct µ1, µ2 ∈ T xk,n.

Proof. Assume that
∑r

i=1 ρ(gµi) = 0 for some r ≥ 1 and some pairwise
different µ1, . . . , µr ∈ T xk,n. By (5.1),

0 =
r∑
i=1

(
w1(W

µ̃i
k + qµi) + ρ(gµi)

)
= w1

r∑
i=1

(W µ̃i
k + qµi) in Hn+x+1(Gk,n).

However, all monomials in qµi , 1 ≤ i ≤ r, are regular, andW µ̃i
k , 1 ≤ i ≤ r, are

pairwise different singular monomials. According to Theorem 2.1, this means

that
∑r

i=1(W
µ̃i
k +qµi) is a nontrivial element in the kernel of Hn+x(Gk,n)

w1−→
Hn+x+1(Gk,n), so this map is not a monomorphism.

Conversely, suppose that Hn+x(Gk,n)
w1−→ Hn+x+1(Gk,n) is not a mono-

morphism. Then there exists p ∈ Hn+x(Gk,n), p 6= 0, such that w1p = 0.
Consider the representation of p in the additive basis Dk,n. Since p 6= 0
and w1p = 0, by Theorem 2.1 this representation must contain singular
monomials. Observe also that every singular monomial Wα

k ∈ Hn+x(Gk,n)

is equal to W µ̃
k for a (unique) µ ∈ T xk,n (if α = (a1, . . . , ak), then µ =

(a2, . . . , ak)). This means that we have a representation

p =
r∑
i=1

W µ̃i
k +

s∑
j=1

W
βj
k ,

where r ≥ 1, µ1, . . . , µr ∈ T xk,n are pairwise different, and W
βj
k , 1 ≤ j ≤ s,

are regular. Now, using (5.1), we obtain

0 = w1p =

r∑
i=1

w1W
µ̃i
k +

s∑
j=1

w1W
βj
k =

r∑
i=1

(w1qµi + ρ(gµi)) +

s∑
j=1

w1W
βj
k .
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All monomials on the right-hand side are in Dk,n, so they must cancel out.
However, the polynomials ρ(gµi), 1 ≤ i ≤ r, do not contain the variable w1,
and thus

∑r
i=1 ρ(gµi) = 0. Since r ≥ 1 and µ1, . . . , µr ∈ T xk,n are pairwise

different, the proof is complete.

The following corollary is a straightforward consequence of Theorem 5.2
and (3.2).

Corollary 5.3. If µ ∈ Nk−10 is such that |µ| ≤ n and ρ(gµ) = 0, then

charrank(γ̃k,n) ≤ n+ ‖µ‖ − 1.

To end this section, let us briefly compare Theorem 5.2 and Proposi-
tion 4.1. It is evident that Theorem 5.2 has two big advantages: it can be ap-
plied to all x (whereas Proposition 4.1 can only be used when x ≤ n−1) and

it gives a condition that is both necessary and sufficient for Hn+x(Gk,n)
w1−→

Hn+x+1(Gk,n) to be a monomorphism (whereas Proposition 4.1 gives a suf-
ficient condition only). Nevertheless, when applied, Proposition 4.1 proved
to be much more useful for obtaining lower bounds for charrank(γ̃k,n) (see
[6, 9, 10], and also Sections 4 and 6.2 below). On the other hand, it seems that
Theorem 5.2 is better suited for obtaining upper bounds for charrank(γ̃k,n).
Indeed, to prove that charrank(γ̃k,n) ≤ n + x − 1, it is enough to find a
nonempty subset T of T xk,n such that

∑
µ∈T ρ(gµ) = 0. As a matter of fact,

the simplest application of this theorem (more precisely, Corollary 5.3) es-
sentially occurs in [9], where charrank(γ̃3,n) was determined, and it will
occur in Section 6.1 below in calculating charrank(γ̃4,n).

6. Characteristic rank of vector bundles over G̃4,n. In this section
we obtain the exact values of charrank(γ̃4,n) for all n ≥ 4.

6.1. Upper bound. We shall begin with an arithmetic lemma. As be-
fore, we abbreviate a ≡ b (mod m) to a ≡m b. Recall that for nonnegative
integers α and β one has(

α
β

)
≡2

(
ar
br

)(ar−1

br−1

)
· · ·
(
a1
b1

)(
a0
b0

)
,

where α =
∑r

i=0 ai2
i and β =

∑r
i=0 bi2

i, ai, bi ∈ {0, 1}, are the binary
expansions of these integers.

Lemma 6.1. Let t ≥ 2 be an integer. There are no nonnegative integers
α, β and γ such that 2α+ β + γ = 2t − 3 and

(
α
β

)(
β
γ

)
≡2 1.

Proof. Assume to the contrary that we have integers α, β and γ with
α, β, γ ≥ 0, 2α+ β + γ = 2t − 3 and

(
α
β

)(
β
γ

)
≡2 1.

Note first that β is odd. Indeed, if β were even, then γ would have to
be even too (since

(
β
γ

)
≡2 1), and that would imply that 2α+ β + γ is also

even, which is not the case (2α+ β + γ = 2t − 3).
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Now, from the fact
(
α
β

)
≡2 1 we conclude that α is odd as well.

Moreover, let us prove that α ≡4 β ≡4 3. Since α is odd, it follows that
2α ≡4 2. If β ≡4 1, then the relation 2α + β + γ = 2t − 3 ≡4 1 implies
γ ≡4 2, which is a contradiction because

(
β
γ

)
≡2 1. Therefore, β ≡4 3, and

since
(
α
β

)
≡2 1, we have α ≡4 3.

Now, consider the binary expansions of the integers α and β:

α =

r∑
i=0

ai2
i, β =

r∑
i=0

bi2
i, ai, bi ∈ {0, 1}.

We know that α ≡4 β ≡4 3, which means that a0 = a1 = b0 = b1 = 1.
Let m := min{i : ai = 0} and l := min{i : bi = 0}. Then

(
α
β

)
≡2 1 implies

m ≥ l ≥ 2, and we have

α = 1 + 2 + · · ·+ 2m−1 + 2m+1α̃ and β = 1 + 2 + · · ·+ 2l−1 + 2l+1β̃

for some nonnegative integers α̃ and β̃. Now

2α+ β = 2 + 4 + 8 + · · ·+ 2m + 2m+2α̃+ 1 + 2 + 4 + · · ·+ 2l−1 + 2l+1β̃

= 1 + 4 + 8 + · · ·+ 2l−1 + 2l+1δ

for some positive integer δ (it is understood that 1 + 4 + 8 + · · ·+ 2l−1 = 1
for l = 2). Since

2α+ β + γ = 2t − 3 = 1 + 4 + 8 + · · ·+ 2t−1,

we have γ = 2l+2l+1ε, for some integer ε ≥ 0. But this contradicts
(
β
γ

)
≡2 1

(since bl = 0).

Proposition 6.2. Let n ≥ 4 be an integer. If t ≥ 3 is the unique integer
such that 2t−1 < n+ 4 ≤ 2t, then

charrank(γ̃4,n) ≤ min{4n− 3 · 2t−1 + 11, 2t − 5}.

Proof. First, suppose that 2t − 5 ≤ 4n − 3 · 2t−1 + 11, that is, n + 4 ≥
2t−1 + 2t−3. In this case, we need to prove that charrank(γ̃4,n) ≤ 2t − 5.

Let m := 2t − n− 4. We have m ≥ 0 (since n+ 4 ≤ 2t). Also, for t ≥ 4,
m ≤ 2t− 2t−1− 2t−3 = 2t−1− 2t−3 ≤ 2t−1 + 2t−3− 4 ≤ n, while for t = 3 we
find that n must be equal to 4, and the inequality m ≤ n is obvious. This
means that the triple µ := (m, 0, 0) satisfies the condition |µ| = m ≤ n.
Moreover, by (2.2) we have

gµ =
∑

a+2b+3c+4d=n+1+m

(
a+b+c+d−m

a

)(
b+c+d
b

)(
c+d
c

)
wa1w

b
2w

c
3w

d
4 ,

where the sum is taken over all (a, b, c, d) ∈ N4
0 such that a+ 2b+ 3c+ 4d =

n + 1 + ‖µ‖ = n + 1 + m = 2t − 3. This means that the reduction of gµ
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modulo w1 is given by the formula

ρ(gµ) =
∑

2b+3c+4d=2t−3

(
b+c+d
b

)(
c+d
c

)
wb2w

c
3w

d
4 .

But ρ(gµ) = 0, since there is no (b, c, d) ∈ N3
0 such that 2b+ 3c+ 4d = 2t− 3

and
(
b+c+d
b

)(
c+d
c

)
=
(
b+c+d
c+d

)(
c+d
d

)
≡2 1. This follows from Lemma 6.1 if we

take α := b+ c+ d, β := c+ d and γ := d. Finally, by Corollary 5.3,

charrank(γ̃4,n) ≤ n+ ‖µ‖ − 1 = n+m− 1 = 2t − 5.

Assume now that 4n− 3 · 2t−1 + 11 ≤ 2t − 5 (i.e., n+ 4 ≤ 2t−1 + 2t−3),
and let us prove that charrank(γ̃4,n) ≤ 4n− 3 · 2t−1 + 11.

Define l := n+4−2t−1. Then 2t−1 < n+4 implies l > 0, while 2t−1−3 ≤
n ≤ 2t−1 + 2t−3 − 4 and t ≥ 3 imply l ≤ 2t−3 ≤ 2t−1 − 3 ≤ n. So, the triple
λ := (0, 0, l) satisfies |λ| = l ≤ n. As in the first part of the proof, we have

ρ(gλ) =
∑

2b+3c+4d=n+1+3l

(
b+c+d−l

b

)(
c+d−l
c

)
wb2w

c
3w

d
4 ,

where the sum is taken over all triples (b, c, d) ∈ N3
0 such that 2b+ 3c+ 4d =

n+ 1 + ‖λ‖ = n+ 1 + 3l.
Suppose that some coefficient

(
b+c+d−l

b

)(
c+d−l
c

)
is odd. Let us first prove

that d− l ≥ 0. The inequality d− l < 0 would imply that c+d− l < 0 (since
c + d − l < c and

(
c+d−l
c

)
6= 0), and for a similar reason (

(
b+c+d−l

b

)
6= 0)

we would have b + c + d − l < 0. But this would mean that n + 1 + 3l =
2b + 3c + 4d ≤ 4(b + c + d) < 4l, i.e., l > n + 1, which contradicts l ≤ n
established before.

Therefore, d− l ≥ 0. However, since(
b+c+d−l
c+d−l

)(
c+d−l
d−l

)
=
(
b+c+d−l

b

)(
c+d−l
c

)
≡2 1

and

2(b+c+d− l)+(c+d− l)+(d− l) = 2b+3c+4d−4l = n+1− l = 2t−1−3,

we have nonnegative integers α := b+ c+ d− l, β := c+ d− l and γ := d− l
such that 2α+β+γ = 2t−1−3 and

(
α
β

)(
β
γ

)
≡2 1, which do not exist according

to Lemma 6.1.
We conclude that all coefficients in the above sum are even, that is,

ρ(gλ) = 0. Corollary 5.3 now gives

charrank(γ̃4,n) ≤ n+ ‖λ‖ − 1 = n+ 3l − 1 = 4n− 3 · 2t−1 + 11,

and the proof is complete.

6.2. Lower bound. The polynomials wi, i ≥ 0 (see (2.1)), depend on k
(they are polynomials in Z2[w1, . . . , wk]), and likewise for their reductions
ρ(wi) ∈ Z2[w2, . . . , wk], i ≥ 0, modulo w1. In this subsection, for k = 4
the polynomials ρ(wi) ∈ Z2[w2, w3, w4] will be abbreviated to ρi, while for
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k = 3 the reductions ρ(wi) ∈ Z2[w2, w3] will be denoted by τi. Also, as usual,
Z2[w2, w3] will be considered as a subalgebra of Z2[w2, w3, w4].

In Z2[w2, w3, w4], for all i ≥ 4 the following recurrence relation holds
(see [4]):

(6.1) ρi = w2ρi−2 + w3ρi−3 + w4ρi−4.

In matrix form, 
ρi

ρi−1

ρi−2

ρi−3

 =


0 w2 w3 w4

1 0 0 0

0 1 0 0

0 0 1 0



ρi−1

ρi−2

ρi−3

ρi−4

 ,

and so, for all integers s > 0 and i ≥ s+ 3,

(6.2)


ρi

ρi−1

ρi−2

ρi−3

 =


0 w2 w3 w4

1 0 0 0

0 1 0 0

0 0 1 0


s

ρi−s

ρi−s−1

ρi−s−2

ρi−s−3

 .

In what follows we use the following notation:

A =


0 w2 w3 w4

1 0 0 0

0 1 0 0

0 0 1 0

 and B =


0 w4 0 0

0 0 w4 0

0 0 0 w4

1 0 w2 w3

 .

It is straightforward to verify that AB = w4I = BA, where I is the identity
matrix, and so AsBs = ws4I for all s > 0.

Note that if we define ρ−3 = ρ−2 = ρ−1 = 0, then the recurrence formula
(6.1) holds for all i ≥ 1 (it is easy to see that ρ0 = 1, ρ1 = 0, ρ2 = w2 and
ρ3 = w3). Furthermore, (6.1) leads to the following relation (see [4, (2.6)]):

(6.3) ρi = w2s

2 ρi−2·2s + w2s

3 ρi−3·2s + w2s

4 ρi−4·2s

where s ≥ 0 and i ≥ 4 · 2s − 3.

We will need the following lemma from [4, Lemma 2.3(ii)].

Lemma 6.3. If i ≥ 0, then ρi = 0 if and only if i = 2r − 3 for some
r ≥ 2.

Let us briefly compare the polynomials ρi ∈ Z2[w2, w3, w4] with the
polynomials τi ∈ Z2[w2, w3] ⊂ Z2[w2, w3, w4] for i ≥ 0. Similarly to (6.1),
we have the following recurrence formula:

τi = w2τi−2 + w3τi−3, i ≥ 3.
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Since ρ0 = τ0 = 1, ρ1 = τ1 = 0 and ρ2 = τ2 = w2, an easy induction shows
that τi is the reduction of ρi modulo w4.

We now prove some additional properties of the polynomials ρi.

Lemma 6.4. For r ≥ 1 we have:

(i) ρ2r−2 = τ2r−2;
(ii) ρ2r−1 = τ2r−1;
(iii) gcd(ρ2r−2, ρ2r−1) = 1 for r ≥ 2;

(iv) w2r−2

4 is a monomial of the polynomial ρ2r for r ≥ 2.

Proof. (i) It is enough to show that ρ2r−2 does not contain monomials
divisible by w4. We prove this by induction on r ≥ 1. For r = 1 and r = 2,
we have ρ0 = 1 and ρ2 = w2.

So, assume that r ≥ 3 and that ρ2r−2−2 and ρ2r−1−2 do not contain
monomials divisible by w4. We want to prove that ρ2r−2 does not contain
such monomials either. By (6.3) applied to i = 2r−2 and s = r−2, we have

ρ2r−2 = w2r−2

2 ρ2r−2−2·2r−2 + w2r−2

3 ρ2r−2−3·2r−2 + w2r−2

4 ρ2r−2−4·2r−2

= w2r−2

2 ρ2r−1−2 + w2r−2

3 ρ2r−2−2,

which completes the proof.
(ii) The proof is by induction on r ≥ 1. For r = 1 and r = 2, we have

ρ1 = 0 and ρ3 = w3. Furthermore, by (6.3) applied to i = 2r − 1 and
s = r − 2, we have

ρ2r−1 = w2r−2

2 ρ2r−1−2·2r−2 + w2r−2

3 ρ2r−1−3·2r−2 + w2r−2

4 ρ2r−1−4·2r−2

= w2r−2

2 ρ2r−1−1 + w2r−2

3 ρ2r−2−1,

and the conclusion follows as in part (i).
(iii) By [10, Lemma 2.5], for r ≥ 2 we have

gcd(τ2r−2, τ2r−1) = 1,

and hence the result follows from (i) and (ii).
(iv) By (6.3) applied to i = 2r and s = r − 2, we have

ρ2r = w2r−2

2 ρ2r−2·2r−2 + w2r−2

3 ρ2r−3·2r−2 + w2r−2

4 ρ2r−4·2r−2

= w2r−2

2 ρ2r−1 + w2r−2

3 ρ2r−2 + w2r−2

4 .

Since neither w2r−2

2 ρ2r−1 nor w2r−2

3 ρ2r−2 contains w2r−2

4 , the proof is com-
plete.

We are ready to prove the main result of this subsection.

Proposition 6.5. Let n ≥ 4 be an integer. If t ≥ 3 is the unique integer
such that 2t−1 < n+ 4 ≤ 2t, then

charrank(γ̃4,n) ≥ min{4n− 3 · 2t−1 + 11, 2t − 5}.
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Proof. Let δ = min{4n− 3 · 2t−1 + 11, 2t− 5}. By (3.2) we need to prove

that Hj(G4,n)
w1−→ Hj+1(G4,n) is a monomorphism if 0 ≤ j ≤ δ. This is

immediate from Theorem 2.1 for 0 ≤ j ≤ n − 1. So, it is enough to show
that

Hn+x(G4,n)
w1−→ Hn+1+x(G4,n)

is a monomorphism for all x ∈ {0, 1, . . . , δ − n}. This will be done by using
Proposition 4.1, since x ≤ δ − n implies x ≤ n− 1. Namely, if n ≥ 2t−1 − 2,
then x ≤ δ − n ≤ 2t − 5− n ≤ n− 1; and if n = 2t−1 − 3, then x ≤ δ − n ≤
4n− 3 · 2t−1 + 11− n = 2 < n− 1. So, it remains to prove that Nx(G4,n) is
linearly independent in Hn+1+x(G4,n) for all x ∈ {0, 1, . . . , δ − n}.

Let 0 ≤ x ≤ δ−n and suppose that some linear combination of elements
of Nx(G4,n) vanishes. Then, as in the proof of Lemma 4.2, in Hn+1+x(G4,n)
we have the relation

(6.4) qx−3ρn+4 + qx−2ρn+3 + qx−1ρn+2 + qxρn+1 = 0,

where qx−j ∈ Hx−j(G4,n), 0 ≤ j ≤ 3, are some polynomials in w2, w3

and w4. Arguing as in the proof of Lemma 4.2, it now suffices to show that
qx−3 = qx−2 = qx−1 = qx = 0, where qx−3, qx−2, qx−1 and qx are considered
as elements of the polynomial algebra Z2[w2, w3, w4].

So, from now on qx−j ∈ Z2[w2, w3, w4], 0 ≤ j ≤ 3. If wb2w
c
3w

d
4 is a

monomial of (cohomological) dimension n + 1 + x, then x ≤ n − 1 implies
2(b + c + d) ≤ 2b + 3c + 4d = n + 1 + x ≤ 2n, i.e., b + c + d ≤ n. From
Theorem 2.1 we now conclude that (6.4) holds in Z2[w2, w3, w4] as well.

Let s = n+ 4− 2t−1 (then s > 0) and

(6.5) (px+s−3 px+s−2 px+s−1 px+s) = (qx−3 qx−2 qx−1 qx)As.

Note that the dimension of px+s−j ∈ Z2[w2, w3, w4] is x + s − j, 0 ≤ j ≤
3. Multiplying (6.5) by the column (ρ2t−1 ρ2t−1−1 ρ2t−1−2 ρ2t−1−3)

T , and
using (6.2) (for i = n+ 4) and (6.4), we get

(6.6) px+s−3ρ2t−1 + px+s−2ρ2t−1−1 + px+s−1ρ2t−1−2 + px+sρ2t−1−3 = 0

in Z2[w2, w3, w4].

By Lemma 6.3 we have ρ2t−1−3 = 0. Next, we show that px+s−3 = 0. Sup-
pose that this is not the case. Then, by Lemma 6.4 (iv), px+s−3ρ2t−1 contains

a monomial divisible by w2t−3

4 , and hence, by (6.6), one of px+s−2ρ2t−1−1 and
px+s−1ρ2t−1−2 contains the same monomial. Since, by Lemma 6.4(i)&(ii),
neither ρ2t−1−1 nor ρ2t−1−2 contains a monomial divisible by w4, it follows

that either px+s−2 or px+s−1 contains a monomial divisible by w2t−3

4 . By com-
paring the dimensions of these polynomials, we conclude that 2t−1 ≤ x+s−1.
On the other hand, x+s−1 ≤ δ−n+n+3−2t−1 ≤ 2t−5+3−2t−1 = 2t−1−2,
which contradicts the previous inequality.
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So, (6.6) simplifies to px+s−2ρ2t−1−1 = px+s−1ρ2t−1−2. By Lemma 6.4(iii),
the polynomials ρ2t−1−2 and ρ2t−1−1 are coprime (they are also nonzero, by
Lemma 6.3), so it follows that ρ2t−1−2 divides px+s−2. If px+s−2 6= 0, then
by comparing the dimensions of ρ2t−1−2 and px+s−2, we have 2t−1 − 2 ≤
x+ s− 2 ≤ δ − n+ s− 2 ≤ 2t − 5− 2t−1 + 2 = 2t−1 − 3. This contradiction
proves that px+s−2 = 0, and since ρ2t−1−2 6= 0, from (6.6) we conclude that
px+s−1 = 0.

Now, if we multiply (6.5) by the matrix Bs, we obtain

(6.7) (0 0 0 px+s)B
s = (ws4qx−3 ws4qx−2 ws4qx−1 ws4qx),

since AsBs = ws4I. For a matrix C over the ring Z2[w2, w3, w4], denote by
C its (entrywise) reduction modulo w4. So, B and Bs are matrices over the
ring Z2[w2, w3, w4]/(w4) ∼= Z2[w2, w3]. Since the reduction Z2[w2, w3, w4]→
Z2[w2, w3] is a ring homomorphism, we have Bs = B

s
, and now an easy

induction shows that

Bs =


0 0 0 0

0 0 0 0

0 0 0 0

ws−13 0 w2w
s−1
3 ws3

 .

The bottom-right entry of the matrix Bs is thus equal to ws3 +w4p̃ for some
p̃ ∈ Z2[w2, w3, w4]. From (6.7) it follows that ws4qx = px+s(w

s
3 + w4p̃), and

so ws4 | px+s. If px+s 6= 0, then, again by the dimension argument, we deduce
that 4s ≤ x+ s ≤ δ − n+ s ≤ 3n− 3 · 2t−1 + 11 + s = 3s− 1 + s = 4s− 1.
This contradiction leads to px+s = 0. Finally, (6.7) implies

qx−3 = qx−2 = qx−1 = qx = 0,

which was to be proved.

From Propositions 6.2 and 6.5 we obtain the exact value of charrank(γ̃4,n)
for all n ≥ 4.

Theorem 6.6. Let n ≥ 4 be an integer. If t ≥ 3 is the unique integer
such that 2t−1 < n+ 4 ≤ 2t, then

charrank(γ̃4,n) = min{4n− 3 · 2t−1 + 11, 2t − 5}.
Remark 6.7. This theorem improves [4, Theorem 2.1(2)].

Remark 6.8. It seems to be difficult to adapt the methods used in this
section to work for some k ≥ 5 (and all n ≥ k). There are several reasons
for this. First, it is proven in [4, Lemma 2.3(iii)] that ρi 6= 0 for all i ≥ 2
if k ≥ 5. This affects the proofs of both Propositions 6.2 and 6.5. Also, it
is not clear how to find consecutive indices i so that the polynomials ρi
have properties similar to the ones in Lemma 6.4. Finally, by [1], the best
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known upper bound for charrank(γ̃k,n) is kn/2 + 1 (at least when n + k is
odd). So, there are reasons to believe that for k ≥ 5, there is some n such
that charrank(γ̃k,n) > 2n− 1. On the other hand, the best lower bound for
charrank(γ̃k,n) that one can establish using Proposition 4.1 is 2n− 1.

6.3. Cup-length. The Z2-cup-length (or simply cup-length) of a path
connected space X, denoted by cup(X), is the maximal r such that there

exist classes x1, . . . , xr ∈ H̃∗(X) with nontrivial cup product (x1x2 · · ·xr
6= 0). Also, the height of a class x ∈ H̃∗(X), denoted by ht(x), is the

maximal r such that xr 6= 0 in H̃∗(X).

Naolekar and Thakur [7] showed how characteristic rank can be used to
obtain an upper bound for Z2-cup-length.

Theorem 6.9 ([7]). Let M be a smooth closed connected d-dimensional
manifold. Let α be a real vector bundle over M and let j ≤ charrank(α) be an
integer such that every monomial wi1(α) · · ·wis(α), 1 ≤ i1 ≤ · · · ≤ is ≤ j,
in dimension d vanishes. Then

cup(M) ≤ 1 +
d− j − 1

r
,

where r is the smallest positive integer such that Hr(M) 6= 0.

In the case M = G̃4,n, we have d = 4n and r = 2. It is also well known

that the nonzero class in H4n(G̃4,n) ∼= Z2 is not a polynomial in the Stiefel–
Whitney classes of the canonical bundle γ̃4,n (see e.g. [4, p. 1171]). Therefore,
for the bundle α := γ̃4,n we take j := charrank(γ̃4,n), and Theorem 6.9 gives

(6.8) cup(G̃4,n) ≤ 1 +
4n− charrank(γ̃4,n)− 1

2
.

To obtain a lower bound we use the following result of Stong.

Proposition 6.10 ([11]). If 2t−1+1 ≤ n+4 ≤ 2t−1+2, then in H∗(G4,n)

one has w2t−1
1 w2t−1−7

2 w3 6= 0. If n+4 = 2t−1+2r+1+j, where 1 ≤ r ≤ t−2

and 0 ≤ j ≤ 2r − 1, then in H∗(G4,n) one has w2t−1
1 w2t−1+2r+1−7

2 w3w
j
4 6= 0.

The first part of this proposition is formulated in [11] only for n + 4 =
2t−1 + 1 (not for n + 4 = 2t−1 + 2), but if i : G4,2t−1−3 ↪→ G4,2t−1−2 is the

standard embedding, then i∗(w2t−1
1 w2t−1−7

2 w3) = w2t−1
1 w2t−1−7

2 w3 6= 0 in

H∗(G4,2t−1−3), and so w2t−1
1 w2t−1−7

2 w3 6= 0 in H∗(G4,2t−1−2) as well.

From the Gysin sequence (3.1) it is evident that a class of the form

w2(γ̃k,n)a2 · · ·wk(γ̃k,n)ak = p∗(wa22 · · ·w
ak
k ) does not vanish (in H∗(G̃k,n)) if

and only if wa22 · · ·w
ak
k is not a multiple of w1 (in H∗(Gk,n)). Together with

Proposition 6.10 this will be the key observation leading to a lower bound
for cup(G̃4,n).
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Proposition 6.11. For an integer n ≥ 4, let t ≥ 3 be the unique integer
such that 2t−1 < n+ 4 ≤ 2t.

(i) If 2t−1 + 1 ≤ n+ 4 ≤ 2t−1 + 2, then

2t−1 − 5 ≤ cup(G̃4,n) ≤ 2t−1 + 2t−2 − 5.

Now, for 2t−1 + 3 ≤ n + 4 ≤ 2t, let r and j be the (unique) integers such
that n+ 4 = 2t−1 + 2r + 1 + j with 1 ≤ r ≤ t− 2, 0 ≤ j ≤ 2r − 1.

(ii) If 2t−1 + 3 ≤ n+ 4 ≤ 2t−1 + 2t−3 (i.e., 1 ≤ r ≤ t− 4), then

2t−1 + 2r+1 + j − 5 ≤ cup(G̃4,n) ≤ 2t−1 + 2t−2 − 5.

(iii) If 2t−1 + 2t−3 + 1 ≤ n+ 4 ≤ 2t (i.e., t− 3 ≤ r ≤ t− 2), then

2t−1 + 2r+1 + j − 5 ≤ cup(G̃4,n) ≤ 2t−1 + 2r+1 + 2j − 3.

Proof. If n + 4 ≤ 2t−1 + 2t−3, then charrank(γ̃4,n) = 4n − 3 · 2t−1 + 11,

and (6.8) gives cup(G̃4,n) ≤ 3 · 2t−2 − 5 = 2t−1 + 2t−2 − 5.
If n + 4 ≥ 2t−1 + 2t−3 + 1, then charrank(γ̃4,n) = 2t − 5. If r and j are

as in the statement, then (6.8) yields cup(G̃4,n) ≤ 2t−1 + 2r+1 + 2j − 3.
So, it remains to establish the stated lower bounds. For that purpose,

note that w2t
1 = 0 in H∗(G4,n), since ht(w1) = 2t − 1 by [11].

Let 2t−1+1 ≤ n+4 ≤ 2t−1+2. By Proposition 6.10, w2t−1
1 w2t−1−7

2 w3 6= 0,

and since w2t
1 = 0, we conclude that w2t−1−7

2 w3 is not divisible by w1. So,

w2(γ̃4,n)2
t−1−7w3(γ̃4,n) 6= 0

in H∗(G̃4,n), and hence, by the Poincaré duality, there exists a class σ such

that σ · w2(γ̃4,n)2
t−1−7w3(γ̃4,n) is nonzero in H4n(G̃4,n). This means that

cup(G̃4,n) ≥ 2t−1 − 5.
In the case 2t−1 + 3 ≤ n + 4 ≤ 2t (with r and j as above), again by

Proposition 6.10, we have w2t−1
1 w2t−1+2r+1−7

2 w3w
j
4 6= 0, and then the fact

that w2t
1 = 0 shows that w2t−1+2r+1−7

2 w3w
j
4 is not a multiple of w1. So,

w2(γ̃4,n)2
t−1+2r+1−7w3(γ̃4,n)w4(γ̃4,n)j 6= 0

in H∗(G̃4,n), and the Poincaré duality gives a class σ with the property

σ · w2(γ̃4,n)2
t−1+2r+1−7w3(γ̃4,n)w4(γ̃4,n)j 6= 0 in H4n(G̃4,n). Finally, we con-

clude that cup(G̃4,n) ≥ 2t−1 + 2r+1 + j − 5.

Remark 6.12. Proposition 6.11 improves [4, Theorem 3.1(2)].
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of Grassmannians via Gröbner bases, J. Algebra 438 (2015), 60–84.
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