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Abstract. In this paper we investigate which flag manifolds of the form

F (1, . . . , 1, 2, . . . , 2,m) have Z2-cup-length equal to its dimension. We ob-

tain a complete classification of such manifolds of the form F (1, . . . , 1, 2,m)
and F (1, . . . , 1, 2, 2,m). Additionally, we provide an infinite family of man-

ifolds F (1, . . . , 1, 2, . . . , 2,m) which give the negative answer to a question

from [J. Korbaš, J. Lörinc, The Z2-cohomology cup-length of real flag man-
ifolds, Fund. Math. 178 (2003) 143–158].

1. Introduction

Let q and n1, n2, . . . , nq be positive integers. A real flag of type (n1, n2, . . . , nq)
is a q-tuple (V1, V2, . . . , Vq) of mutually orthogonal subspaces of Rn, where
n = n1 + n2 + · · · + nq, and dimVi = ni, for i ∈ {1, 2, . . . , q}. The space of all
such flags is the real flag manifold F (n1, n2, . . . , nq), where the manifold struc-
ture comes from the natural identification F (n1, n2, . . . , nq) = O(n)/O(n1) ×
O(n2)×· · ·×O(nq). With this identification, F (n1, n2, . . . , nq) becomes a closed
manifold of dimension dimF (n1, n2, . . . , nq) =

∑
1≤i<j≤q ninj (in this paper di-

mension of a manifold M will be denoted by dimM). From this definition, it
is easy to see that for any permutation σ ∈ Sq, one has F (n1, n2, . . . , nq) ≈
F (nσ(1), nσ(2), . . . , nσ(q)). Consequently, it suffices to consider flag manifolds
F (n1, n2, . . . , nq) with n1 ≤ n2 ≤ · · · ≤ nq. Note that flag manifolds with q = 2
are in fact Grassmann manifolds. One other important and well-studied class
of flag manifolds are the complete flag manifolds – these are the flag manifolds
with n1 = n2 = . . . = nq = 1.
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Over the real flag manifold F (n1, n2, . . . , nq) there are q canonical vector
bundles – in this paper we will denote them by γ1, γ2, . . . , γq, where dim γi = ni,
for i ∈ {1, 2, . . . , q}.

For a commutative ring R, the R-cup-length of a path connected space X,
denoted by cupRX, is the supremum of all integers d such that there exist

classes a1, a2, . . . , ad ∈ H̃∗(X;R) with nonzero cup product. In this paper we
will only work with mod 2 cohomologies, so we will write “cup-length” for “Z2-
cup-length”, and cupX for cupZ2

X.
An important property of cupX is that it provides a lower bound for the

Lyusternik-Shnirelmann category of X (denoted by catX). Additionally, for a
manifold M one has

1 + dimM ≥ catM ≥ 1 + cupM.

It is clear that cupM ≤ dimM , and if cupM = dimM , then catM = dimM+1.
We adopt the notation from [5]:

a...k = a, a, . . . , a︸ ︷︷ ︸
k

.

For a general real flag manifold the cup-length is not known; it is not known
even for a general Grassmann manifold. In [2] and [7] the authors obtained cup-
length of Grassmann manifolds F (2, n), F (3, n) and F (4, n); in [3] and [4] some
bounds for the cup-length of oriented Grassmann manifolds are obtained; in [5]
and [6] the cup-length of some real flag manifolds of the form F (1...j , 2...d, n) is
obtained.

In [5] Korbaš and Lörinc investigated for which flag manifolds the cup-length
is maximal (i.e., equal to the dimension of the manifold). They established
that this holds for F (1...k,m) (k,m ≥ 1) and that a sufficient condition for
cupF (1...j , 2...d,m) = dimF (1...j , 2...d,m) (j, d ≥ 1, m ≥ 2) is the inequality
j ≥ 2t+d −m − 2d + 1, where t is the integer such that 2t ≤ m < 2t+1. They
also asked whether this condition is necessary as well ([5, p. 148]) and gave some
examples which indicate that this could be true.

In this paper we prove that the answer to the proposed question, although
positive for d = 1 (Proposition 2.3), is negative in general. Actually, for d ≥ 2, in
Theorem 2.4 we present a weaker condition which guaranties the maximality of
the cup-length for the manifolds F (1...j , 2...d,m), and establish that in the case
d = 2 this condition is also necessary (Corollary 2.4.1). Finally, in Proposition
2.5, we prove that the condition of Theorem 2.4, although necessary for d = 2,
is not necessary in general.

At the end of the paper, we show that cupF (1, 1, 1, 3, 4) = dimF (1, 1, 1, 3, 4),
which is an indication that the general problem of detecting all flag manifolds
F (n1, n2, . . . , nq) with maximal cup-length might be very difficult.
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The method that we are using for calculating the cup-length is the one pre-
sented in [5, p. 154].

2. Evaluation of cup-length

Let n ≥ 2 and observe the complete flag manifold F (1...n). Denote by
ei := w1(γi) the first Stiefel-Whitney class of the canonical line bundle γi over
F (1...n), 1 ≤ i ≤ n. For an n-tuple (a1, a2, . . . , an) of nonnegative integers, the
monomial ea11 ea22 · · · eann ∈ H∗(F (1...n);Z2) will be abbreviated to E(a1,a2,...,an).
The statement of the following lemma is well known (see [5, 7]).

Lemma 2.1. A top dimensional monomial E(a1,a2,...,an) (i.e., such that a1 +

a2 + · · ·+ an = dimF (1...n) =
(
n
2

)
) is nonzero in H(n

2)(F (1...n);Z2) ∼= Z2 if and
only if (a1, a2, . . . , an) is a permutation of the n-tuple (n− 1, n− 2, . . . , 1, 0).

Now, let n1, n2, . . . , nq (q ≥ 2) be positive integers, νi = n1 + n2 + · · · + ni,
0 ≤ i ≤ q (it is understood that ν0 = 0), and n = νq = n1 +n2 + · · ·+nq. For the
flag manifold F (n1, n2, . . . , nq) we have the map p : F (1...n)→ F (n1, n2, . . . , nq),
given by

p(S1, . . . , Sn1 , . . . , Sνq−1+1, . . . , Sn) = (S1 ⊕ · · · ⊕ Sn1 , . . . , Sνq−1+1 ⊕ · · · ⊕ Sn).

Our calculation of the cup-length will be based on the following observation from
[5, p. 154].

Lemma 2.2. If F = F (n1, n2, . . . , nq), u ∈ HdimF (F ;Z2) and

v = E(n1−1,n1−2,...,1,0,n2−1,n2−2,...,1,0,...,nq−1,nq−2,...,1,0) ∈ H∗(F (1...n);Z2),

then p∗(u) · v ∈ H(n
2)(F (1...n);Z2) and

u 6= 0 ⇐⇒ p∗(u) · v 6= 0.

In [5, p. 155] the authors also note the following fact. If wi,k is the k-th Stiefel-
Whitney class of the canonical bundle γi over F (n1, n2, . . . , nq), 1 ≤ k ≤ ni,
1 ≤ i ≤ q, then p∗(wi,k) is the k-th elementary symmetric polynomial in variables
eνi−1+1, eνi−1+2, . . . , eνi . For example,

p∗(wi,1) = eνi−1+1 + eνi−1+2 + · · ·+ eνi . (2.1)

Now we restrict our attention to the flag manifolds F (1...j , 2...d,m). The
following proposition gives a purely arithmetic condition on integers j, d,m which
guaranties that cupF (1...j , 2...d,m) = dimF (1...j , 2...d,m), and consequently,
catF (1...j , 2...d,m) = 1 + dimF (1...j , 2...d,m).

Proposition 2.1. Let F = F (1...j , 2...d,m), j ≥ 0, d ≥ 1, m ≥ 2. Suppose that
there exist pairwise different integers

λ1, λ2, . . . , λd, µ1, µ2, . . . , µd ∈ {m,m+ 1, . . . ,m+ j + 2d− 1}
which satisfy the following conditions:
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(i) if {α1, α2, . . . , αd, β1, β2, . . . , βd} = {λ1, λ2, . . . , λd, µ1, µ2, . . . , µd} and
αi + βi = λi + µi for all i ∈ {1, 2, . . . , d}, then {αi, βi} = {λi, µi} for
all i ∈ {1, 2, . . . , d} (in other words, there is a unique way for the set
{λ1, λ2, . . . , λd, µ1, µ2, . . . , µd} to be partitioned in d pairs such that the
sums of the pairs are exactly λi + µi, 1 ≤ i ≤ d);

(ii)
(
λ1+µ1

λ1

)(
λ2+µ2

λ2

)
· · ·
(
λd+µd

λd

)
≡ 1 (mod 2).

Proof. Let

{a1, a2, . . . , aj} = {m,m+1, . . . ,m+j+2d−1}\{λ1, λ2, . . . , λd, µ1, µ2, . . . , µd}.
Observe the monomial

u = wa11,1w
a2
2,1 · · ·w

aj
j,1w

λ1+µ1−1
j+1,1 wλ2+µ2−1

j+2,1 · · ·wλd+µd−1
j+d,1 ∈ H∗(F ;Z2).

The sum of the exponents in u is equal to

a1 + a2 + · · ·+ aj + λ1 + λ2 + · · ·+ λd + µ1 + µ2 + · · ·+ µd − d =

= m+ (m+ 1) + · · ·+ (m+ j + 2d− 1)− d

= m(j + 2d) +
(
j
2

)
+ 2jd+ 4

(
d
2

)
= dimF,

and so, it suffices to prove that u 6= 0. Since wi,1 ∈ H1(F ;Z2), 1 ≤ i ≤ j + d,
we also have that u ∈ HdimF (F ;Z2), and, according to Lemma 2.2, we need

to show that p∗(u) ·E(0...j ,1,0,1,0,...,1,0,m−1,m−2,...,2,1,0) 6= 0 in H(n
2)(F (1...n);Z2),

where n = m + j + 2d and p : F (1...n) → F is the previously defined map. If

z ∈ H(n
2)(F (1...n);Z2) ∼= Z2 is the generator, we set

p∗(u) · E(0...j ,1,0,1,0,...,1,0,m−1,m−2,...,2,1,0) = θ · z, θ ∈ {0, 1}.
We want to prove that θ = 1. Now, by (2.1) we know that

p∗(u) = ea11 ea22 · · · e
aj
j (ej+1 + ej+2)λ1+µ1−1 · · · (ej+2d−1 + ej+2d)

λd+µd−1

=
∑

αi+βi=λi+µi−1
1≤i≤d

(
λ1+µ1−1

α1

)
· · ·
(
λd+µd−1

αd

)
E(a1,...,aj ,α1,β1,...,αd,βd,0

...m),

where the sum is taken over all 2d-tuples of integers (α1, β1, α2, β2, . . . , αd, βd)
such that αi + βi = λi + µi − 1 for all i ∈ {1, 2, . . . , d}. Therefore,

p∗(u) · E(0...j ,1,0,1,0,...,1,0,m−1,m−2,...,2,1,0) =

=
∑

αi+βi=λi+µi−1
1≤i≤d

(
λ1+µ1−1

α1

)
· · ·
(
λd+µd−1

αd

)
E(a1,...,aj ,α1+1,β1,...,αd+1,βd,m−1,...,1,0)

=
∑

αi+βi=λi+µi
1≤i≤d

(
λ1+µ1−1
α1−1

)
· · ·
(
λd+µd−1
αd−1

)
E(a1,...,aj ,α1,β1,...,αd,βd,m−1,...,1,0).
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By Lemma 2.1, the monomial E(a1,...,aj ,α1,β1,...,αd,βd,m−1,...,1,0) is nonzero (i.e.,
equal to z) for those (and only for those) 2d-tuples (α1, β1, α2, β2, . . . , αd, βd)
which satisfy {α1, α2, . . . , αd, β1, β2, . . . , βd} = {λ1, λ2, . . . , λd, µ1, µ2, . . . , µd}
(and, of course, αi + βi = λi + µi, 1 ≤ i ≤ d). Therefore, the condition (i)
implies that the nontrivial summands are exactly those with the property that
for each i ∈ {1, 2, . . . , d} either αi = λi or αi = µi. Since

(
λi+µi−1
µi−1

)
=
(
λi+µi−1

λi

)
,

we have that

θ ≡
∑

(i1,...,id)∈{0,1}d

(
λ1+µ1−1
λ1−i1

)
· · ·
(
λd+µd−1
λd−id

)
=
((
λ1+µ1−1

λ1

)
+
(
λ1+µ1−1
λ1−1

))
· · ·
((
λd+µd−1

λd

)
+
(
λd+µd−1
λd−1

))
=
(
λ1+µ1

λ1

)
· · ·
(
λd+µd

λd

)
(mod 2).

The condition (ii) now finishes the proof. �

Hence, the existence of the integers λi, µi, 1 ≤ i ≤ d, with the specified
properties is a sufficient condition for maximality of the cup-length. Let us now
show that in the cases d = 1 and d = 2 this condition is necessary as well.

Proposition 2.2. Let j ≥ 0 and m ≥ 2.

(a) cupF (1...j , 2,m) = dimF (1...j , 2,m) if and only if there exist integers

λ, µ ∈ {m,m+ 1, . . . ,m+ j + 1} such that
(
λ+µ
λ

)
≡ 1 (mod 2).

(b) cupF (1...j , 2, 2,m) = dimF (1...j , 2, 2,m) if and only if there exist pair-
wise different integers λ1, λ2, µ1, µ2 ∈ {m,m + 1, . . . ,m + j + 3} such

that λ1 + µ1 6= λ2 + µ2 and
(
λ1+µ1

λ1

)(
λ2+µ2

λ2

)
≡ 1 (mod 2).

Proof. The “if parts” of (a) and (b) follow directly from Proposition 2.1. For the
opposite implications we use the following observation (see [5, p. 155]): every
cohomology class u ∈ H∗(F (n1, n2, . . . , nq);Z2) can be expressed in terms of the
Stiefel-Whitney classes of the first q−1 canonical vector bundles γ1, γ2, . . . , γq−1.

(a) If cupF (1...j , 2,m) = dimF (1...j , 2,m), then there is a monomial u =
wa11,1w

a2
2,1 · · ·w

aj
j,1w

b
j+1,1 6= 0 in the top dimension of H∗(F (1...j , 2,m);Z2). Ac-

cording to Lemma 2.2, this means that p∗(u)·E(0...j ,1,0,m−1,m−2,...,1,0) 6= 0, where
p : F (1...m+j+2)→ F (1...j , 2,m) is the well-known map. On the other hand, by
(2.1)

p∗(u) · E(0...j ,1,0,m−1,...,1,0) = ea11 ea22 · · · e
aj
j (ej+1 + ej+2)b · E(0...j ,1,0,m−1,...,1,0)

=

b∑
k=0

(
b
k

)
E(a1,a2,...,aj ,k+1,b−k,m−1,...,1,0). (2.2)

Since this class is nonzero, by Lemma 2.1 we conclude that a1, a2, . . . , aj are
pairwise different integers form the set {m,m + 1, . . . ,m + j + 1}. Let λ, µ ∈
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{m,m+ 1, . . . ,m+ j + 1} be such that

{λ, µ} = {m,m+ 1, . . . ,m+ j + 1} \ {a1, a2, . . . , aj}.

By the nontriviality of the sum (2.2) and Lemma 2.1, we also have that there
exists an integer k with the property {λ, µ} = {k + 1, b− k}, which means that
λ+ µ = k + 1 + b− k = b+ 1.

Now, according to Lemma 2.1 again, the nonzero summands in (2.2) are just
those for k = λ− 1 and k = µ− 1. Therefore, the coefficient(

b
λ−1

)
+
(
b

µ−1

)
=
(
λ+µ−1
λ−1

)
+
(
λ+µ−1
µ−1

)
=
(
λ+µ−1
λ−1

)
+
(
λ+µ−1

λ

)
=
(
λ+µ
λ

)
(considered modulo 2) is nonzero.

(b) The proof of this part is similar. If cupF (1...j , 2, 2,m) is maximal, then
there is a monomial u = wa11,1w

a2
2,1 · · ·w

aj
j,1w

b
j+1,1w

c
j+2,1 6= 0 in the top dimension

of H∗(F (1...j , 2, 2,m);Z2). Now we have that

0 6= p∗(u) · E(0...j ,1,0,1,0,m−1,m−2,...,1,0)

= ea11 ea22 · · · e
aj
j (ej+1 + ej+2)b(ej+3 + ej+4)c · E(0...j ,1,0,1,0,m−1,...,1,0)

=

b∑
k=0

c∑
l=0

(
b
k

)(
c
l

)
E(a1,a2,...,aj ,k+1,b−k,l+1,c−l,m−1,...,1,0). (2.3)

All summands for k = l are zero (by Lemma 2.1). If b was equal to c, then the
rest of the summands would cancel out in pairs (a pair of summands is obtained
by interchanging k and l), and the sum would be trivial. So we conclude that
b 6= c.

Reasoning as in the proof of part (a), we take λ1, λ2, µ1, µ2 to be the four
integers from the set {m,m + 1, . . . ,m + j + 3} \ {a1, a2, . . . , aj}. According
to (2.3) and Lemma 2.1, there exist nonnegative integers k and l such that
{λ1, µ1, λ2, µ2} = {k + 1, b − k, l + 1, c − l}, and therefore, we can take that
λ1 +µ1 = b+1 and λ2 +µ2 = c+1. Since b 6= c, we have that λ1 +µ1 6= λ2 +µ2,
and we are left to prove that

(
λ1+µ1

λ1

)(
λ2+µ2

λ2

)
≡ 1 (mod 2).

By Lemma 2.1, if E(a1,a2,...,aj ,k+1,b−k,l+1,c−l,m−1,...,1,0) 6= 0, then k+1 must be
one of the integers λ1, µ1, λ2, µ2, and likewise for b−k. However, k+1 ∈ {λ2, µ2}
implies that λ1 +µ1 = b+ 1 = (k+ 1) + (b−k) is equal to the sum of some other
two elements of the set {λ1, µ1, λ2, µ2}, and this is impossible since these are
four distinct integers and λ1 + µ1 6= λ2 + µ2. We conclude that k can take the
values λ1−1 and µ1−1 only, and similarly, l must be either λ2−1 or µ2−1. This
means that the coefficients of the nonzero summands in the (nontrivial) sum (2.3)

are precisely
(
λ1+µ1−1
λ1−1

)(
λ2+µ2−1
λ2−1

)
,
(
λ1+µ1−1
λ1−1

)(
λ2+µ2−1
µ2−1

)
,
(
λ1+µ1−1
µ1−1

)(
λ2+µ2−1
λ2−1

)
and(

λ1+µ1−1
µ1−1

)(
λ2+µ2−1
µ2−1

)
. It is now routine to check that the sum of this coefficients

is
(
λ1+µ1

λ1

)(
λ2+µ2

λ2

)
, which completes the proof of the proposition. �
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We now prove a technical lemma.

Lemma 2.3. Let λ and µ be positive integers with the binary expansions λ =∑
i≥0 ai2

i and µ =
∑
i≥0 bi2

i (ai, bi ∈ {0, 1}). Then the following equivalence
holds: (

λ+µ
λ

)
≡ 1 (mod 2) ⇐⇒ aibi = 0 for all i ≥ 0.

Proof. Let λ+µ =
∑
i≥0 ci2

i be the binary expansion of λ+µ. If aibi = 0 for all

i ≥ 0, then ai + bi ∈ {0, 1}, and so ci = ai + bi, for all i ≥ 0. Since ai + bi ≥ ai,
by Lucas formula we obtain that

(
λ+µ
λ

)
≡ 1 (mod 2).

For the opposite implication, assume that aibi = 1 for some i ≥ 0, and let
t = min{i | aibi = 1}. This means that at = bt = 1, ci = ai + bi for 0 ≤ i < t,

and ct = 0. Since ct < at, we conclude that
(
λ+µ
λ

)
≡ 0 (mod 2), again by Lucas

formula. �

In [5, Theorem 3.1.3] it was proved that j ≥ 2t+1 − m − 1 implies that
the cup-length of F (1...j , 2,m) is maximal (where t is the integer such that
2t ≤ m < 2t+1). In the following proposition we give an alternative proof of this
fact and we show that the opposite implication holds as well.

Proposition 2.3. Let j ≥ 0, m ≥ 2 and let t ≥ 1 be such that 2t ≤ m < 2t+1.
Then cupF (1...j , 2,m) = dimF (1...j , 2,m) if and only if j ≥ 2t+1 −m− 1.

Proof. If j ≥ 2t+1−m− 1, then we have that m < 2t+1 ≤ m+ j+ 1. Therefore,
2t+1− 1, 2t+1 ∈ {m,m+ 1, . . . ,m+ j+ 1}. Since 2t+1− 1 = 1 + 2 + 22 + · · ·+ 2t,
by Proposition 2.2 (a) and Lemma 2.3 we conclude that cupF (1...j , 2,m) =
dimF (1...j , 2,m).

Conversely, if j < 2t+1−m−1, then we have that 2t ≤ m < m+j+1 < 2t+1.
This means that binary expansions of all integers from the set {m,m+1, . . . ,m+

j + 1} have the form
∑t−1
i=0 ai2

i + 2t. Lemma 2.3 then tells us that we cannot

find integers λ, µ ∈ {m,m + 1, . . . ,m + j + 1} such that
(
λ+µ
λ

)
≡ 1 (mod 2).

Proposition 2.2 (a) now finishes the proof. �

Note that for j = 0 Proposition 2.3 reduces to the well-known fact about
Grassmannians: cupF (2,m) = dimF (2,m) if and only if m = 2t+1−1 for some
t ≥ 1 ([1, Theorem 1·1]).

Now, for d ≥ 2 we extend the class (obtained in [5]) of flag manifolds
F (1...j , 2...d,m) with maximal cup-length, and thus give the negative answer
to the question of Korbaš and Lörinc.

Theorem 2.4. Let F = F (1...j , 2...d,m), j ≥ 0, d ≥ 1, m ≥ 2, and let t ≥ 1 be
such that 2t ≤ m < 2t+1.

(a) For d odd, say d = 2l − 1 (l ≥ 1), we have the following implications:
(a1) if 2t ≤ m ≤ 2t+1−3 and j ≥ 2t+l−m−2d+1, then cupF = dimF

and catF = 1 + dimF ;
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(a2) if 2t+1−2 ≤ m < 2t+1 and j ≥ 2t+l−m−2d+2, then cupF = dimF
and catF = 1 + dimF .

(b) For d even, say d = 2l (l ≥ 1), we have the following implications:
(b1) if 2t ≤ m ≤ 2t+1−3 and j ≥ 2t+l−m−2d+2, then cupF = dimF

and catF = 1 + dimF ;
(b2) if 2t+1 − 2 ≤ m < 2t+1 and j ≥ 2t+l+1 −m− 2d+ 1, then cupF =

dimF and catF = 1 + dimF .

Proof. In all cases, it suffices to find the integers λ1, µ1, λ2, µ2, . . . , λd, µd with
the properties specified in Proposition 2.1.

Since m ≤ 2t+1 − 1 and 2t+l ≤ m + j + 2d − 1 (in all four cases), for any
integer i such that 2 ≤ i ≤ l−1 the numbers 2t+i−3, 2t+i−2, 2t+i and 2t+i+ 1
are in the set {m,m+ 1, . . . ,m+ j+ 2d−1}. So, for 2 ≤ i ≤ l−1 we can define:

λ2i−1 := 2t+i − 3, µ2i−1 := 2t+i, λ2i := 2t+i − 2, µ2i := 2t+i + 1.

Hence, we now have the integers λ3, µ3, λ4, µ4, . . . , λ2l−2, µ2l−2. Note that λk <
µk, 3 ≤ k ≤ 2l − 2, and that the least of these integers is λ3 = 2t+2 − 3 and
the greatest is µ2l−2 = 2t+l−1 + 1. Using Lemma 2.3, it is routine to check that(
λk+µk

λk

)
≡ 1 (mod 2), 3 ≤ k ≤ 2l − 2.

Let us now fix an integer k ∈ {3, 4, . . . , 2l − 2} and show that if α, β ∈
A = {λ3, µ3, λ4, µ4, . . . , λ2l−2, µ2l−2} are two distinct integers such that α+β =
λk +µk, then {α, β} = {λk, µk}. Assume to the contrary that α and β are some
other integers from the set A, and that e.g., α < β. Observe first that the set
A contains only one integer between λk and µk. This means that we must have
α < λk < µk < β (since α+β = λk +µk). This is a contradiction if either k = 3
or k = 2l − 2, so let us assume that 3 < k < 2l − 2.

If k is odd, say k = 2i − 1 (3 ≤ i ≤ l − 1), then µk = 2t+i and β ∈
{2t+i+1, 2t+i+1−3, 2t+i+1−2, . . .}, and since 2t+i+1−3 = λk+µk = α+β > β
we conclude that β = 2t+i + 1. But λk = 2t+i− 3, and so α ≤ 2t+i−1 + 1, which
implies that

α+β ≤ 2t+i−1+1+2t+i+1 = 3·2t+i−1+2 < 4·2t+i−1−3 = 2t+i+1−3 = λk+µk

(since 2t+i−1 ≥ 2t+2 ≥ 23 > 5), contradicting the assumption α+ β = λk + µk.
If k is even, say k = 2i (2 ≤ i ≤ l−2), then µk = 2t+i+ 1 and β ≥ 2t+i+1−3.

However, since α ≥ λ3 = 2t+2 − 3 ≥ 23 − 3 = 5, we obtain that

α+ β ≥ 5 + 2t+i+1 − 3 = 2t+i+1 + 2 > 2t+i+1 − 1 = λk + µk,

which is a contradiction.

Let us now define the remaining integers λ1, µ1, λ2, µ2, λ2l−1, µ2l−1, and, if
d is even, λ2l and µ2l, from the set {m,m + 1, . . . ,m + j + 2d − 1}. Actually,
when l = 1 (i.e., d ∈ {1, 2}) we only need to define λ1 and µ1 (if d = 1), that
is, λ1, µ1, λ2 and µ2 (if d = 2), and so, for l = 1 the “excess” in the following
definitions should be ignored. We now distinguish the four cases:
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(a1) λ1 := 2t+1−3, µ1 := 2t+1, λ2 := 2t+1−2, µ2 := 2t+1+1, λ2l−1 := 2t+l−3,
µ2l−1 = 2t+l (in this case m ≤ 2t+1 − 3 and 2t+l ≤ m+ j + 2d− 1);

(a2) λ1 := 2t+1−1, µ1 := 2t+1, λ2l−1 := 2t+l−3, µ2l−1 = 2t+l, λ2 := 2t+l−2,
µ2 := 2t+l + 1 (in this case m ≤ 2t+1− 1 and 2t+l + 1 ≤ m+ j+ 2d− 1);

(b1) λ1 := 2t+1−3, µ1 := 2t+1, λ2 := 2t+1−2, µ2 := 2t+1+1, λ2l−1 := 2t+l−3,
µ2l−1 = 2t+l, λ2l := 2t+l − 2, µ2l = 2t+l + 1 (in this case m ≤ 2t+1 − 3
and 2t+l + 1 ≤ m+ j + 2d− 1);

(b2) λ1 := 2t+1−1, µ1 := 2t+1, λ2l−1 := 2t+l−3, µ2l−1 = 2t+l, λ2l := 2t+l−2,
µ2l = 2t+l + 1, λ2 := 2t+l+1− 3, µ2 := 2t+l+1 (in this case m ≤ 2t+1− 1
and 2t+l+1 ≤ m+ j + 2d− 1).

Arguing as before, it is easy to verify that
(
λk+µk

λk

)
≡ 1 (mod 2) for all k ∈

{1, 2, . . . , d}, and that the separation of the set {λ1, λ2, . . . , λd, µ1, µ2, . . . , µd}
into the pairs {λk, µk}, 1 ≤ k ≤ d, is the only one such that the sums of the
pairs are exactly λk + µk, 1 ≤ k ≤ d. A minor difficulty occurs in the cases (a2)
and (b2) when t = 1 (i.e., m ∈ {2, 3}) and l ≥ 2. Then we have the following
situation: λ1 = 3, µ1 = 4, λ3 = 5, µ3 = 8, λ4 = 6, µ4 = 9, λ5 = 13 etc. The
difficulty is the fact that λ3 + µ3 = 13 = 4 + 9 = µ1 + µ4, but if we pair µ1 = 4
and µ4 = 9, then we cannot form a pair {α, β} from the remaining integers with
the property α+ β = λ1 + µ1 = 7.

Therefore, in all cases the integers λ1, µ1, λ2, µ2, . . . , λd, µd satisfy the condi-
tions (i) and (ii) of Proposition 2.1, and we conclude that cupF = dimF (and
consequently, catF = 1 + dimF ). �

Let us now show that the inequalities from the part (b) of this proposition,
that provide maximality of the cup-length, are the sharpest possible in the case
d = 2.

Corollary 2.4.1. Let j ≥ 0, m ≥ 2 and let t ≥ 1 be such that 2t ≤ m < 2t+1.

(1) For 2t ≤ m ≤ 2t+1 − 3 we have the equivalence: cupF (1...j , 2, 2,m) =
dimF (1...j , 2, 2,m) if and only if j ≥ 2t+1 −m− 2.

(2) For 2t+1− 2 ≤ m < 2t+1 we have the equivalence: cupF (1...j , 2, 2,m) =
dimF (1...j , 2, 2,m) if and only if j ≥ 2t+2 −m− 3.

Proof. The “if parts” have already been proved in Theorem 2.4 (b). We now
prove the “only if” parts.

(1) If 2t ≤ m ≤ 2t+1 − 3, let us assume that j < 2t+1 −m − 2. This means
that 2t ≤ m and m+ j + 2 ≤ 2t+1 − 1, and therefore, arguing as in the proof of
Proposition 2.3, we cannot find the integers λ1, µ1 ∈ {m,m+ 1, . . . ,m+ j + 2}
with the property

(
λ1+µ1

λ1

)
≡ 1 (mod 2). Consequently, we cannot find four

distinct integers λ1, µ1, λ2, µ2 in the set {m,m+1, . . . ,m+j+2,m+j+3} such

that
(
λ1+µ1

λ1

)(
λ2+µ2

λ2

)
≡ 1 (mod 2). By Proposition 2.2 (b), cupF (1...j , 2, 2,m) is

not maximal.
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(2) If 2t+1−2 ≤ m < 2t+1, let us assume that j < 2t+2−m−3. Suppose that
λ1, µ1, λ2, µ2 ∈ {m,m + 1, . . . ,m + j + 3} are four distinct integers such that(
λ1+µ1

λ1

)(
λ2+µ2

λ2

)
≡ 1 (mod 2) (w.l.o.g. we may assume that λ1 < µ1, λ2 < µ2

and λ1 < λ2). Note that all of the integers m + 2,m + 3, . . . ,m + j + 3 are in
the interval [2t+1, 2t+2 − 1], and so, for the same reason as before, m have to
be equal to 2t+1 − 2, and it must be λ1 = 2t+1 − 2 and λ2 = 2t+1 − 1. Since
λ2 = 2t+1−1 = 1+2+22+· · ·+2t, by Lemma 2.3, the only integer µ in the interval
[2t+1,m+ j+ 3] ⊆ [2t+1, 2t+2− 1] which satisfies

(
λ2+µ
λ2

)
≡ 1 (mod 2) is 2t+1, so

µ2 = 2t+1. Then we have that µ1 ∈ [2t+1 + 1,m+ j + 3] ⊆ [2t+1 + 1, 2t+2 − 1],

and since λ1 = 2t+1− 2 = 2 + 22 + · · ·+ 2t and
(
λ1+µ1

λ1

)
≡ 1 (mod 2), it must be

µ1 = 2t+1 + 1 (by Lemma 2.3 again). Finally, we conclude that

λ1 + µ1 = 2t+1 − 2 + 2t+1 + 1 = 2t+2 − 1 = 2t+1 − 1 + 2t+1 = λ2 + µ2,

and Proposition 2.2 (b) finishes the proof. �

Having in mind the previous corollary, one might expect that the inequalities
from Theorem 2.4 are the sharpest possible in general (i.e., for every d ≥ 2).
Unfortunately, this is not the case – in the following proposition we prove that
these inequalities can be considerably improved for “almost all” d ≥ 3.

Proposition 2.5. Let F = F (1...j , 2...d,m), j ≥ 0, d ≥ 3, m ≥ 2, and let t ≥ 1
be such that 2t ≤ m < 2t+1.

(a) If j ≥ 2t+3d2 −m− 2d, then cupF = dimF and catF = 1 + dimF .
(b) If m ≥ 2d2 and j ≥ 2t+3 −m − 2d, then cupF = dimF and catF =

1 + dimF .

Proof. (a) Let s be the unique integer such that 2t+s ≤ m + j + 2d < 2t+s+1,
and l = b t+s−2

2 c. For i ∈ {1, 2, . . . , d}, we define

λi = 2t+s−2 + i, µi = 2t+s−1 + i · 2l.
Let us prove that these numbers satisfy conditions of Proposition 2.1. Since
d ≥ 3, we have m+ j + 2d ≥ 2t+3d2 > 2t+6, and therefore s ≥ 6. Additionally,

2t+s+1 > m+ j + 2d ≥ 2t+3d2, and so d < 2
s−2
2 ≤ 2

t+s−3
2 ≤ 2l ≤ 2

t+s−2
2 . Hence,

m < 2t+1 < λ1 < λ2 < · · · < λd < µ1 < µ2 < · · · < µd ≤ 2t+s−1 ≤ m+j+2d−1.

Note that for 1 ≤ i < j ≤ d one has

λi + λj = 2t+s−1 + i+ j < 2t+s−1 + 2d < 2t+s−1 + 2l+1 < λ1 + µ1,

and (since d · 2l < 22l ≤ 2t+s−2)

µi+µj = 2t+s+(i+ j) ·2l ≥ 2t+s+3 ·2l > 2t+s−2 +d+2t+s−1 +d ·2l = λd+µd.

Therefore, if the set A = {λ1, λ2, . . . , λd, µ1, µ2, . . . , µd} is partitioned into pairs,
the only pair that can have sum equal to λ1 + µ1 is {λ1, µ1} (for 1 ≤ i < j ≤ d
one has λi+λj < λ1 +µ1 < µi+µj ; for (i, j) 6= (1, 1) one has λi+µj > λ1 +µ1).
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Similarly, the only pair from A \ {λ1, µ1} with sum equal to λ2 + µ2 is {λ2, µ2},
the only pair from A\{λ1, µ1, λ2, µ2} with sum equal to λ3 +µ3 is {λ3, µ3}, etc.
We conclude that the set A satisfies part (i) of Proposition 2.1.

To prove that A satisfies part (ii) of Proposition 2.1, first note that for i ∈
{1, 2, . . . , d} the following inequalities hold

2t+s−2 < λi = 2t+s−2 + i < 2t+s−2 + 2l,

and

2t+s−1 + 2t+s−2 > 2t+s−1 + d · 2l ≥ µi = 2t+s−1 + i · 2l = 2l(2t+s−l−1 + i).

Therefore, in the binary representation, the number λi can have nonzero digits
only in positions 0 to l−1 and in position t+s−2 (if λi =

∑
j≥0 aj2

j , aj ∈ {0, 1},
then the digit ak is in position k), while the number µi can have nonzero digits
only in positions l to t+ s− 3 and in position t+ s− 1. Hence, by Lemma 2.3,
we have

(
λi+µi

λi

)
≡ 1 (mod 2), and the proof is completed.

(b) Let l = b t+1
2 c. For i ∈ {1, 2, . . . , d}, we define

λi = 2t+1 + i, µi = 2t+2 + i · 2l.
Note that 2d2 ≤ m < 2t+1 ≤ 22l+1, i.e., d < 2l. Hence,

m < 2t+1 < λ1 < λ2 < · · · < λd < µ1 < µ2 < · · · < µd ≤ 2t+3−1 ≤ m+j+2d−1.

Additionally, for 1 ≤ i < j ≤ d one has

λi + λj = 2t+2 + i+ j < 2t+2 + 2d < 2t+2 + 2l+1 < λ1 + µ1,

and (since d · 2l < 22l ≤ 2t+1)

µi + µj = 2t+3 + (i+ j) · 2l ≥ 2t+3 + 3 · 2l > 2t+1 + d+ 2t+2 + d · 2l = λd + µd.

As in part (a) of this proposition, these inequalities imply that the set A =
{λ1, λ2, . . . , λd, µ1, µ2, . . . , µd} satisfies part (i) of Proposition 2.1.

To prove that A also satisfies part (ii) of Proposition 2.1, note that the fol-
lowing inequalities also hold

2t+1 < λi = 2t+1 + i < 2t+1 + 2l,

and

2t+2 + 2t+1 > 2t+2 + d · 2l ≥ µi = 2t+2 + i · 2l = 2l(2t+2−l + i).

The proof is now completed as in part (a) of this proposition. �

In [1] Berstein examined which Grassmann manifolds F (k, n) have maxi-
mal cup-length and proved that all such manifolds are F (1, n) for n ≥ 1, and
F (2, 2t+1 − 1) for t ≥ 1.

The result of Korbaš and Lörinc that cupF (1...k,m) = dimF (1...k,m) for all
k ≥ 1 and Proposition 2.3 give a generalization of the Berstein’s result to the
manifolds of the form F (1...k,m) and F (1...j , 2,m). Also, we know that there are
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manifolds of the form F (1...j , 2...d,m) with maximal cup-length, but it seems that
classifying all manifolds of this form with maximal cup-length is very difficult
(see Theorem 2.4 and Proposition 2.5). On the other hand, we know that there
are no Grassmannians F (k, n) with maximal cup-length if k, n ≥ 3 (by Berstein’s
result), so one might expect that cupF (n1, n2, . . . , nq) = dimF (n1, n2, . . . , nq)
only if ni ≥ 3 for at most one i ∈ {1, 2, . . . , q} (that is, only if F (n1, n2, . . . , nq)
is of the form F (1...j , 2...d,m)). However, the following example shows that this
is not true.

Example 1. The dimension of the flag manifold F (1, 1, 1, 3, 4) is 36. We shall
prove that the class u = w6

1,1w
7
2,1w

8
3,1w

15
4,1 ∈ H36(F (1, 1, 1, 3, 4);Z2) is nonzero,

and so we will have that

cupF (1, 1, 1, 3, 4) = dimF (1, 1, 1, 3, 4).

We consider the class p∗(u) ·E(0,0,0,2,1,0,3,2,1,0) ∈ H45(F (1...10);Z2) (see Lemma
2.2). By (2.1) we know that

p∗(u) · E(0,0,0,2,1,0,3,2,1,0) = e6
1e

7
2e

8
3(e4 + e5 + e6)15e2

4e5e
3
7e

2
8e9

=
∑

0≤l≤k≤15

(
15
k

)(
k
l

)
E(6,7,8,l+2,k−l+1,15−k,3,2,1,0)

It is clear that
(

15
k

)
≡ 1 (mod 2) for all k ∈ {0, 1, . . . , 15}, and since the class

E(6,7,8,l+2,k−l+1,15−k,3,2,1,0) is nontrivial only for 15 − k ∈ {4, 5, 9} (by Lemma
2.1), i.e., k ∈ {6, 10, 11}, we have that

p∗(u)·E(0,0,0,2,1,0,3,2,1,0) =

6∑
l=0

(
6
l

)
E(6,7,8,l+2,7−l,9,3,2,1,0)+

+

10∑
l=0

(
10
l

)
E(6,7,8,l+2,11−l,5,3,2,1,0) +

11∑
l=0

(
11
l

)
E(6,7,8,l+2,12−l,4,3,2,1,0)

It is now routine to check that there is exactly one nontrivial summand in the
first sum (it is the one for l = 2), one in the second (also for l = 2), and one in
the third (for l = 3). So p∗(u) ·E(0,0,0,2,1,0,3,2,1,0) 6= 0, which implies that u 6= 0.
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