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ABSTRACT. In this paper we investigate which flag manifolds of the form
F(1,...,1,2,...,2,m) have Zs-cup-length equal to its dimension. We ob-

tain a complete classification of such manifolds of the form F(1,...,1,2,m)
and F(1,...,1,2,2,m). Additionally, we provide an infinite family of man-
ifolds F'(1,...,1,2,...,2,m) which give the negative answer to a question

from [J. Korbas, J. Lorinc, The Za-cohomology cup-length of real flag man-
ifolds, Fund. Math. 178 (2003) 143-158].

1. INTRODUCTION

Let g and nq,ng, ..., ng be positive integers. A real flag of type (n1,n2, ..., ng)
is a g-tuple (V1,Va,...,V,) of mutually orthogonal subspaces of R”, where
n=mny+ng+---+ng and dimV; = n,, for i € {1,2,...,¢q}. The space of all
such flags is the real flag manifold F(nq,ne,...,nq), where the manifold struc-
ture comes from the natural identification F(ni,na,...,ne) = O(n)/O(n1) x
O(ng2) x - -+ x O(ng). With this identification, F(ni,na,...,ny) becomes a closed
manifold of dimension dim F'(n1,m2,...,nq) =3, j<,Min; (in this paper di-
mension of a manifold M will be denoted by dim M). From this definition, it
is easy to see that for any permutation o € Sy, one has F(ni,ng,...,ng) =
F(ng(1), Mo (2)s - - - s No(q))- Consequently, it suffices to consider flag manifolds
F(ni,no,...,ng) with ny <ng <--. <n,. Note that flag manifolds with ¢ = 2
are in fact Grassmann manifolds. One other important and well-studied class
of flag manifolds are the complete flag manifolds — these are the flag manifolds
withny =ng=...=n,=1.
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Over the real flag manifold F(nq,ne,...,n,) there are ¢ canonical vector
bundles — in this paper we will denote them by 1,72, ...,7, where dim~y; = n;,
forie{1,2,...,q}.

For a commutative ring R, the R-cup-length of a path connected space X,
denoted by cupp X, is the supremum of all integers d such that there exist
classes aq,as,...,aq € H *(X; R) with nonzero cup product. In this paper we
will only work with mod 2 cohomologies, so we will write “cup-length” for “Zs-
cup-length”, and cup X for cup,, X.

An important property of cup X is that it provides a lower bound for the
Lyusternik-Shnirelmann category of X (denoted by cat X). Additionally, for a
manifold M one has

1+dimM >cat M > 1+ cup M.

It is clear that cup M < dim M, and if cup M = dim M, then cat M = dim M +1.
We adopt the notation from [5]:

For a general real flag manifold the cup-length is not known; it is not known
even for a general Grassmann manifold. In [2] and [7] the authors obtained cup-
length of Grassmann manifolds F(2,n), F'(3,n) and F(4,n); in [3] and [4] some
bounds for the cup-length of oriented Grassmann manifolds are obtained; in [5]
and [6] the cup-length of some real flag manifolds of the form F (17,24 n) is
obtained.

In [5] Korbas and Lorinc investigated for which flag manifolds the cup-length
is maximal (i.e., equal to the dimension of the manifold). They established
that this holds for F(1-* m) (k,m > 1) and that a sufficient condition for
cup F(1+7,24 m) = dim F(1-7,24,m) (j,d > 1, m > 2) is the inequality
j > 24 —m — 2d + 1, where t is the integer such that 2¢ < m < 21, They
also asked whether this condition is necessary as well ([5, p. 148]) and gave some
examples which indicate that this could be true.

In this paper we prove that the answer to the proposed question, although
positive for d = 1 (Proposition 2.3), is negative in general. Actually, for d > 2, in
Theorem 2.4 we present a weaker condition which guaranties the maximality of
the cup-length for the manifolds F (17,2 m), and establish that in the case
d = 2 this condition is also necessary (Corollary 2.4.1). Finally, in Proposition
2.5, we prove that the condition of Theorem 2.4, although necessary for d = 2,
is not necessary in general.

At the end of the paper, we show that cup F/(1,1,1,3,4) = dim F(1,1,1,3,4),
which is an indication that the general problem of detecting all flag manifolds
F(ni,n9,...,ng) with maximal cup-length might be very difficult.
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The method that we are using for calculating the cup-length is the one pre-
sented in [5, p. 154].

2. EVALUATION OF CUP-LENGTH

Let n > 2 and observe the complete flag manifold F(1™). Denote by
e; := wi(7;) the first Stiefel-Whitney class of the canonical line bundle v; over
F(1-™), 1 <i < n. For an n-tuple (a1, as,...,a,) of nonnegative integers, the
monomial e'e3? - --edn € H*(F(1+"); Zy) will be abbreviated to E(@1:220n),
The statement of the following lemma is well known (see [5, 7]).

Lemma 2.1. A top dimensional monomial E(@1:02:-an) (i.e., such that a; +
az+ -+ +a, =dim F(1-") = (})) is nonzero in H«”(F(l"), Zs) = 7y if and
only if (a1,as,...,a,) is a permutation of the n-tuple (n —1,n—2,...,1,0).

Now, let n1,ng,...,nq4 (g > 2) be positive integers, v; = ny +ng + - -+ + ny,
0 < i < g (it is understood that vy = 0), and n = vy = ny +ng+---+ng. For the
flag manifold F'(n1,ng, ..., nq) we have the map p : F(1") = F(n1,ng,...,ng),
given by

p(Slv"'7Sn17"'aSVq—1+17"‘7S’n):(Sl®"'@5n1a"'vqu_1+l@"'@Sn)~

Our calculation of the cup-length will be based on the following observation from
[5, p. 154].

Lemma 2.2. If F = F(ni,n2,...,ng), u € HY™F(F;Z5) and

v = E(n1—1,n1—2,...,1,0,n2—1,n2—2,...,1,0,...,nq—1,nq—2,...,170) c H*(F(ln), Zg),

then p*(u) - v € q) (F(1+™);Z2) and
u#0 <= p"(u)-v#0.

In [5, p. 155] the authors also note the following fact. If w; j is the k-th Stiefel-
Whitney class of the canonical bundle v; over F(ni,ne,...,ny), 1 < k < n,,
1 <4 < g, then p*(w; 1) is the k-th elementary symmetric polynomial in variables
€u; 1+15€u; 1425 -, €y, For example,

p*(wiJ) =€y, 141t €y 42+ T ey, (21)

Now we restrict our attention to the flag manifolds F (17,24 m). The
following proposition gives a purely arithmetic condition on integers 7, d, m which
guaranties that cupF(l“‘j,Z“d,m) = dimF(l"‘j,Q“'d,m), and consequently,
cat F(1+7,24 m) = 1 +dim F(1-7,24 m).

Proposition 2.1. Let F = F(1+7,2+% m), j >0,d > 1, m > 2. Suppose that
there exist pairwise different integers

)\1;)‘27"'a)‘dauhu?,"'audE{mam+17"'am+j+2d_1}

which satisfy the following conditions:
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(1) Zf {0[1,062, e 7ad3517525 ... aﬂd} - {>\17)\2a s a)‘da,ula,u2a ... a,ud} and
a;+ B = X + g for all i € {1,2,...,d}, then {a;, B;} = { i, i} for
all i € {1,2,...,d} (in other words, there is a unique way for the set
{1, A2y ooy Agy 1, 2y« -+, g b to e partitioned in d pairs such that the
sums of the pairs are exactly A\; + i, 1 <1 <d);

.. A1+ Ao+ Aa+ —

(ii) ( 1)\1’“)( 2)\2“2) ( d/\d“d) =1 (mod 2).

Proof. Let
{a17a27"'7aj} = {m7m+1a"'7m+j+2d_1}\{A17>\2a"'7>\d7,u17,u2a"'7,u’d}'

Observe the monomial

_ a1 a2 aj  Aitur—1 Aotpuz—1 Ad+pa—1 * (.
U =Wy Wy + W WL et witaht € HY(F Zs).

The sum of the exponents in u is equal to
ar+ax+-taj+AtAt+ o+ gt prtpe ot pug—d=
=m+m+1)+---+(m+j+2d-1)—d
=m(j +2d) + (3) + 2jd + 4(3)
= dim F,

and so, it suffices to prove that u # 0. Since w; 1 € HY(F;Z2), 1 <i < j +d,
we also have that v € HYW™¥(F;Z,), and, according to Lemma 2.2, we need

to show that p*(u) . E(O"'j,1,0,1,0,4..,1,0,771—1,m—2,...,2,1,0) 7& 0in H(;) (F(ln), Zz)7
where n = m + j + 2d and p : F(1+") — F is the previously defined map. If

»e H(G) (F(1+™);Z2) = Zs is the generator, we set
p*(u) . E(O--.j,1,0,170,..,,l,O,mfl,m72,...,2,l,0) —f. z, = {0’ 1}
We want to prove that § = 1. Now, by (2.1) we know that

_ aia a; A -1 Natpa—1
pr(u) = efteq? e’ (ejpn +ejpa) M T T (601 + €jpaa) T
_ E : (/\1+u1—1) o (Ad+ud—1)E(a17...,%‘7a1>51,~~7ad7ﬁd70”'m)
[e3] Qg 9
ai+Bi=Ni+pi—1
1<i<d
where the sum is taken over all 2d-tuples of integers (a1, 1, @2, B2, ..., ad, Ba)

such that a;; + 8; = \; + pu; — 1 for all ¢ € {1,2,...,d}. Therefore,

* 0+,1,0,1,0,...,1,0,m—1,m—2,...,2,1,0) __
p*(u) . B¢ ) —

_ 2 : ()\14’#171) L ()\dJr;Ldfl)E(al,...,aj,a1+1,[31,4..,o¢d+1,6d,m—l,..A,l,O)
a1 (e %)

ai+Bi=Xitpui—1
1<i<d

_ § (>\1+H1*1> . (AdJer*l)E(ah-uyaj,041751 ----- ad,Ba,m—1,...,1,0)
041—1 ad—l .

ai+Bi=Ai+mui
1<i<d
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By Lemma 2.1, the monomial E(@1:5:01,81,.@a,8a,m=1,...1.0) j5 nongero (i.e.,
equal to z) for those (and only for those) 2d-tuples (a1, (1, a9, B2, ..., 4, Bd)
Wthh SatiSfy {alv ag,..., advﬁla 527 e 7ﬁd} = {)\1) )‘2, ey Ad?ﬂl»ﬂ?) ey ,ufd}
(and, of course, a; + B; = A\ + i, 1 < i < d). Therefore, the condition (i)
implies that the nontrivial summands are exactly those with the property that
for each i € {1,2,...,d} either a; = \; or a; = ;. Since (’\i;ri’f;l) = (A”/\“;*l),
we have that
_ MApi—1 Nat+pa—1
D DI Ve o B G Vi
(i1,.--,1a)€{0,1}¢
_ ((Aatp—1 MAp—1 Nat+pa—1 Nat+pa—1
- (( ' ,\#11 )"’( 1,\1#:1 ))(( ‘ ,\Hdd )"‘( d,\;id1 ))
A+p A L
— ( 1}—\1-1/ 1) ( d)::/ d) (mod 2).

The condition (ii) now finishes the proof. O

Hence, the existence of the integers A;, p;, 1 < i < d, with the specified

properties is a sufficient condition for maximality of the cup-length. Let us now
show that in the cases d =1 and d = 2 this condition is necessary as well.

Proposition 2.2. Let j > 0 and m > 2.
(a) cup F(1+7,2,m) = dim F(1-7,2,m) if and only if there exist integers
M€ {mm+1,...,m+j+1} such that (*1*) =1 (mod 2).
(b) cup F(1+7,2,2,m) = dim F(1-7,2,2,m) if and only if there exist pair-
wise different integers Ay, Ao, p1,pp2 € {mym +1,...,m + j + 3} such

that A1 + p1 # A2 + pe and (’\1)':“1) ()‘2;\"2“2) =1 (mod 2).

Proof. The “if parts” of (a) and (b) follow directly from Proposition 2.1. For the
opposite implications we use the following observation (see [5, p. 155]): every
cohomology class u € H*(F(ny,ng,...,nq); Z2) can be expressed in terms of the
Stiefel-Whitney classes of the first g—1 canonical vector bundles v1,7v2, ..., vg—1-

(a) If cup F(17,2,m) = dim F(1-7,2,m), then there is a monomial u =
wihws? - wijwd,, ) # 0 in the top dimension of H*(F(17,2,m);Zs). Ac-
cording to Lemma 2.2, this means that p* (u)- B 1.0m=1m=2,..1.0) -£ () where
p: F(1-mTi+2) — F(1-9,2,m) is the well-known map. On the other hand, by
(2.1)

* 079,1,0,m—1,...,1,0) __ _ai a2 aj b 07,1,0,m—1,...,1,0
p*(u) - B¢ )= efres e’ (€541 + €jt2) B )

b
_ Z (Z)E(al,az,.“,aj,k+1,b—k,m—1,...,1,0). (22)
k=0
Since this class is nonzero, by Lemma 2.1 we conclude that aq,as,...,a; are

pairwise different integers form the set {m,m+1,..., m+j+1}. Let \,u €
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{m,m+1,...,m+ j+ 1} be such that
Mpt={mm+1,.... m+j+1}\{ar,a0,...,a;}.

By the nontriviality of the sum (2.2) and Lemma 2.1, we also have that there
exists an integer k with the property {\, u} = {k +1,b — k}, which means that
Ad+p=k+14+b—-k=0+1.

Now, according to Lemma 2.1 again, the nonzero summands in (2.2) are just
those for k = A — 1 and k = p — 1. Therefore, the coefficient

() + Gl) = O + (OO = () + 757 = ()
(considered modulo 2) is nonzero.

(b) The proof of this part is similar. If cup F(1-+/,2,2,m) is maximal, then
there is a mqnomial u = wiwy? - w%w2+1,1w5+271 # 0 in the top dimension
of H*(F(1+7,2,2,m);Zs). Now we have that

0 # p*(u) .E(O“‘j,1,071,O,m—1,m—2,...,170)

= eMed2. .. e;J' (ej11 + €j+2)b(€j+3 eja)t E(()---J',1,0,1,0,m71,..~,1,0)
b ¢
=Y > () (G) Bl ankt bk Lertm oL o 10), (2.3)
k=0 1=0

All summands for k = [ are zero (by Lemma 2.1). If b was equal to ¢, then the
rest of the summands would cancel out in pairs (a pair of summands is obtained
by interchanging k& and [), and the sum would be trivial. So we conclude that
b # c.

Reasoning as in the proof of part (a), we take A1, Ag, 1, o to be the four
integers from the set {m,m +1,...,m + j + 3} \ {a1,a2,...,a;}. According
to (2.3) and Lemma 2.1, there exist nonnegative integers k and [ such that
{1, 1, Aoy 2} = {k+ 1,b— k,l + 1,¢ — I}, and therefore, we can take that
A1 +p1 =b+1and Ay +ps = ¢+ 1. Since b # ¢, we have that Ay + 1 # Ag + o,

and we are left to prove that (’\1;’1“1) (’\2)'\"2“2) =1 (mod 2).

By Lemma 2.1, if E(01,02,a5,k+1,b=k,l4+1c=l;m=1,...1,0) £ () then k41 must be
one of the integers Ay, i1, Aa, pt2, and likewise for b— k. However, k+1 € {\a, ua}
implies that Ay +p1 =b+1 = (k+1)+ (b—k) is equal to the sum of some other
two elements of the set {\1, 11, A2, o}, and this is impossible since these are
four distinct integers and A\; + p1 # Ag + po. We conclude that k can take the
values A\; —1 and w1 —1 only, and similarly, [ must be either Ao —1 or po—1. This

means that the coefficients of the nonzero summands in the (nontrivial) sum (2.3)

are precisely (Mh) (M) (Mt (R sty (bt (el ang

(’\ﬁ’“*l) (’\2“‘2*1). It is now routine to check that the sum of this coefficients

p1—1 p2—1
is (’\1;'1’“) (’\2;2“2), which completes the proof of the proposition. O
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We now prove a technical lemma.

Lemma 2.3. Let A\ and p be positive integers with the binary expansions \ =
Yis0@i2 and po= "0 b2" (a;,b; € {0,1}). Then the following equivalence
holds: -

(M) =1 (mod 2) — a;b; =0 for all i > 0.

Proof. Let A+ =>",5¢ ¢;2" be the binary expansion of A+ u. If a;b; = 0 for all
i >0, then a; + b; € {(I 1}, and so ¢; = a; + by, for all ¢ > 0. Since a; + b; > a;,
by Lucas formula we obtain that (’\J)f“) =1 (mod 2).

For the opposite implication, assume that a;b; = 1 for some ¢ > 0, and let
t = min{i | a;b; = 1}. This means that a; = b, =1, ¢; = a; + b; for 0 < < ¢,
and ¢; = 0. Since ¢; < ay, we conclude that (/\:’\'“) =0 (mod 2), again by Lucas
formula. O

In [5, Theorem 3.1.3] it was proved that j > 2*! —m — 1 implies that
the cup-length of F(1+7,2,m) is maximal (where ¢ is the integer such that
2t <m < 28+, In the following proposition we give an alternative proof of this
fact and we show that the opposite implication holds as well.

Proposition 2.3. Let j >0, m > 2 and let t > 1 be such that 28 < m < 2t+1,
Then cup F(1+7,2,m) = dim F (17,2, m) if and only if j > 271 —m — 1.

Proof. If j > 2!T1 —m — 1, then we have that m < 2*! < m+ j+ 1. Therefore,
2tHL 12 e dm,om+1,...,m+j+1}. Since 21 — 1 =1+4+2+4+22 ... 42,
by Proposition 2.2 (a) and Lemma 2.3 we conclude that cup F(17,2,m) =
dim F(1+7,2,m).

Conversely, if j < 2041 —m —1, then we have that 2 <m < m+j+1 < 2¢+1,
This means that binary expansions of all integers from the set {m,m+1,...,m+
§ + 1} have the form >/—) a;2 + 2. Lemma 2.3 then tells us that we cannot
find integers A\,u € {m,m +1,...,m + j + 1} such that (AJ;“) = 1 (mod 2).
Proposition 2.2 (a) now finishes the proof. O

Note that for 7 = 0 Proposition 2.3 reduces to the well-known fact about
Grassmannians: cup F(2,m) = dim F (2, m) if and only if m = 27! —1 for some
t > 1 ([1, Theorem 1-1]).

Now, for d > 2 we extend the class (obtained in [5]) of flag manifolds
F(1+7,2+4 m) with maximal cup-length, and thus give the negative answer
to the question of Korbas and Lorinc.

Theorem 2.4. Let F = F(l"'j,2"'d,m), 7>0,d>1, m>2, and lett > 1 be
such that 2t < m < 20+,
(a) Ford odd, sayd=2l—1 (I > 1), we have the following implications:
(al) if 2t <m <21 -3 and j > 2" —m —2d+1, then cup F = dim F
and cat F =1+ dim F;
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(a2) if 21 -2 <m < 21 and j > 2T —m—2d+2, then cup F = dim F
and cat F =14 dim F'.
(b) For d even, say d =2l (I > 1), we have the following implications:
(b1) if 2t <m <21 -3 and j > 2 —m —2d+2, then cup F = dim F
and cat F =1+ dim F;
(b2) df 28t —2 <m < 2+ and j > 21H L —m —2d + 1, then cup F =
dim F' and cat F =1+ dim F'.

Proof. In all cases, it suffices to find the integers A1, 1, Ao, pio, . . ., Ag, g with
the properties specified in Proposition 2.1.

Since m < 201 — 1 and 2! < m + j +2d — 1 (in all four cases), for any
integer ¢ such that 2 < i < [— 1 the numbers 2!+? — 3, 2t+¢ 2 2¢+% and 2t+% 1
are in the set {m,m+1,...,m+j+2d—1}. So, for 2 <i <1—1 we can define:

Agicg =20 =3, pugi_y =270 Aoy = 28T =2 pugy =20 4 1L

Hence, we now have the integers A3, us, A\q, fta, - - ., Aoj—o, tho;—2. Note that Ax <
tie, 3 < k < 2l — 2, and that the least of these integers is A3 = 2/*? — 3 and
the greatest is po;_o = 27!~ + 1. Using Lemma 2.3, it is routine to check that
(M) =1 (mod 2), 3 < k< 20— 2.

Let us now fix an integer k € {3,4,...,2l — 2} and show that if «,5 €
A = {X3, i3, Mg, fhay - - -y Aoj—2, fai—2 } are two distinct integers such that a+ 8 =
Ak + pk, then {a, B} = {Ag, i }- Assume to the contrary that « and 8 are some
other integers from the set A, and that e.g., « < 8. Observe first that the set
A contains only one integer between A\; and py. This means that we must have
a < Ap < pr < B (since a+ 8 = A\, + pg). This is a contradiction if either k = 3
or k =2l — 2, so let us assume that 3 < k < 2] — 2.

If kis odd, say k = 2i —1 (3 < i <1 —1), then pp = 27 and 8 €
{ot+i g1, 2ttt 3 ottt 9 1 and since 21MH -3 = N+ = a+ B8 > 3
we conclude that 8 = 2!*% +1. But A\, = 2!* — 3, and so o < 2!*~! + 1, which
implies that

a+pB < 2Tt tip ] =320l 0 < .ottt 3 —otitl 3 — )\ 4,
(since 2171 > 2042 > 93 > 5) contradicting the assumption o+ 8 = A + [l
If k is even, say k = 2i (2 <1i <1—2), then pug = 2/t" +1 and g > 24+ 3.
However, since o > A3 = 2tt2 -3 >23 3 = 5, we obtain that
a4+ >54 20 3 =gttt g 5 ot il 1 — N+,
which is a contradiction.

Let us now define the remaining integers A1, u1, Ao, fto, Aoj—1, fto;—1, and, if
d is even, Ay and pg, from the set {m,m +1,...,m+ j + 2d — 1}. Actually,
when | = 1 (i.e., d € {1,2}) we only need to define \; and py (if d = 1), that
is, A1, 1, A2 and po (if d = 2), and so, for [ = 1 the “excess” in the following
definitions should be ignored. We now distinguish the four cases:
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(al) Ay = 20713 g o= 201 Ny 1= 20012 gy 1= 201 ] Ny = 203,
por—1 = 2! (in this case m < 2!71 — 3 and 21H < m +j +2d — 1);
(a2) Ap:=20T1 1, py o= 20T Ny g = 203 gy g = 20 Ny = 28 2,
o := 21T+ 1 (in this case m < 207! — 1 and 2H +1 < m+j +2d —1);
(b1) Ay = 20F1 -3, iy i= 207 Ny = 2812 gy = 241 Ny = 283,
por—1 = 28 Aoy i= 20 — 2 oy = 28+ 11 (in this case m < 21Tt — 3
and 2 41 <m+j+2d — 1);
(b2) Ap = 2801, g o= 2070 gy i= 203 gy g = 20D Ny 1= 20F 2
poy = 28F 41, N = 28HHL 3y i= 20FIFL (in this case m < 207! — 1
and 2T <m 4+ j +2d - 1).
Arguing as before, it is easy to verify that (’\’*‘;k“k) = 1 (mod 2) for all k €
{1,2,...,d}, and that the separation of the set {A1, Ao, ..., Aq, i1, f2y ..., pha}
into the pairs {Ag, ux}, 1 < k < d, is the only one such that the sums of the
pairs are exactly A\r + px, 1 < k < d. A minor difficulty occurs in the cases (a2)
and (b2) when ¢ = 1 (i.e., m € {2,3}) and [ > 2. Then we have the following
situation: Ay =3, u1 =4, A3 =5, us =8, \y =6, ug = 9, \s = 13 etc. The
difficulty is the fact that A3 + pu3 = 13 =44+ 9 = 1 + g4, but if we pair pg =4
and py = 9, then we cannot form a pair {«, 8} from the remaining integers with
the property a4+ 5 =X1 + 1 = 7.
Therefore, in all cases the integers A1, i1, Ao, fio, . . ., Ag, g satisfy the condi-
tions (i) and (ii) of Proposition 2.1, and we conclude that cup F' = dim F' (and
consequently, cat ' = 1 + dim F). O

Let us now show that the inequalities from the part (b) of this proposition,
that provide maximality of the cup-length, are the sharpest possible in the case
d=2.

Corollary 2.4.1. Let 7 >0, m > 2 and let t > 1 be such that 2t < m < 2t+1,

(1) For 2t < m < 2! — 3 we have the equivalence: cup F(1-7,2,2,m) =
dim F(1+9,2,2,m) if and only if j > 271 —m — 2.

(2) For 2!tt —2 < m < 2'T! we have the equivalence: cup F(17,2,2,m) =
dim F(1-+9,2,2,m) if and only if j > 2'72 —m — 3.

Proof. The “if parts” have already been proved in Theorem 2.4 (b). We now
prove the “only if” parts.

(1) If 28 < m < 2! — 3, let us assume that j < 21 —m — 2. This means
that 2 <m and m+ j +2 < 2t+1 — 1, and therefore, arguing as in the proof of
Proposition 2.3, we cannot find the integers A1, 1 € {m,m+1,...,m+j+2}
with the property ()‘1;1‘“) = 1 (mod 2). Consequently, we cannot find four
distinct integers A1, i1, Ao, po in the set {m,m+1,...,m+j+2 m+j+3} such
that ()‘1;\2’“) ()‘2;\;“2) =1 (mod 2). By Proposition 2.2 (b), cup F(1-7,2,2,m) is
not maximal.
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(2) If 201 —2 <m < 20+ et us assume that j < 2872 —m —3. Suppose that
A1, 1, A2, i € {mym +1,...,m + j + 3} are four distinct integers such that
(/\1;“1)(/\22“2) =1 (mod 2) (w.l.o.g. we may assume that A\ < u1, Ao < o
and A\; < Az). Note that all of the integers m +2,m +3,...,m + j + 3 are in
the interval [2¢+1 2142 — 1] and so, for the same reason as before, m have to
be equal to 2¢*t! — 2, and it must be A\; = 2t71 — 2 and Ay = 2!t — 1. Since
Ao = 21T -1 = 142422 +...42¢ by Lemma 2.3, the only integer y in the interval
(20T m + 5+ 3] C [20F1 2842 — 1] which satisfies ()‘2)\?‘) =1 (mod 2) is 2+ so
po = 201, Then we have that pq € [2071 + 1,m + j + 3] C [20F1 + 11,2072 — 1],
and since \; = 21 —2=2422 ... 4 2t and (M;‘“) =1 (mod 2), it must be
p1 =21 +1 (by Lemma 2.3 again). Finally, we conclude that

Mo =20 -2 20 1 =282 =2t g ot = o 4y,
and Proposition 2.2 (b) finishes the proof. O

Having in mind the previous corollary, one might expect that the inequalities
from Theorem 2.4 are the sharpest possible in general (i.e., for every d > 2).
Unfortunately, this is not the case — in the following proposition we prove that
these inequalities can be considerably improved for “almost all” d > 3.

Proposition 2.5. Let F = F(1+7,2+4 m), §>0,d >3, m>2, and lett > 1
be such that 2t < m < 2t+1,

(a) If j > 21%3d% —m — 2d, then cup F = dim F and cat F = 1+ dim F.

(b) If m > 2d? and j > 2!*3 —m — 2d, then cup F = dim F' and cat F =

1+ dim F.
Proof. (a) Let s be the unique integer such that 2!75 < m + j + 2d < 2t+s+1,
and [ = |[45=2|. For i € {1,2,...,d}, we define
N o= 2052 g pp =2t 4.9l

Let us prove that these numbers satisfy conditions of Proposition 2.1. Since
d > 3, we have m + j + 2d > 2!+3d% > 2!46 and therefore s > 6. Additionally,

t+s—3 t+s—2

2tFs+l S 4 j4+2d > 204342, and so d < 275 < 25 < 20 < 25, Hence,
m<2Tl < X\ < do << NG <y < o < e < g < 2851 < mA4-j+2d—1.
Note that for 1 < i < j < d one has

NN =20 g g <ottt pog < ot ol o ) 4y,
and (since d - 2! < 220 < 2t+s-2)
it =2 (i45) 28 > 20 1320 > 2t T2 g ot gl ol = gt g

Therefore, if the set A = {A1, Ao, ..., Ag, 41, o, - - ., g} 18 partitioned into pairs,
the only pair that can have sum equal to Ay + pq is {Aq, 1} (for 1 <i<j<d
one has A\; +A; < A1+ p1 < py+pj;5 for (4,7) # (1,1) one has A + 5 > A1+ ).
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Similarly, the only pair from A\ {A1, 1} with sum equal to As + pg is { e, p2},
the only pair from A\ {A1, 1, A2, uo} with sum equal to A\s+ ps is {As, us}, ete.
We conclude that the set A satisfies part (i) of Proposition 2.1.

To prove that A satisfies part (ii) of Proposition 2.1, first note that for i €
{1,2,...,d} the following inequalities hold

TR N =2 <2t 4

and

2t+s—1 + 2t+s—2 > 2t+s—1 + d . 2! Z i = 2t+s—l + i- 2[ _ 2[(2t+s—l—l + 7,)
Therefore, in the binary representation, the number A; can have nonzero digits
only in positions 0 to /—1 and in position t+s—2 (if A; = >~ .5 a;j2’, a; € {0,1},
then the digit ay, is in position k), while the number p; can have nonzero digits

only in positions [ to t + s — 3 and in position t + s — 1. Hence, by Lemma 2.3,
we have (A;”‘) =1 (mod 2), and the proof is completed.

(b) Let I = |21 ]. Fori € {1,2,...,d}, we define
N =20 44, i =272 4.2l
Note that 2d% < m < 2tt1 < 2241 e d < 2!. Hence,
m< 2t <N < X< < Ag <y <pg <o < g <2031 < mAj42d-1.
Additionally, for 1 <7 < j < d one has
N+ =202 i < 22 4 od < 2872 ol < N 4y,
and (since d - 2! < 22 < 2t+1)
iy =258 4 (i) -2 > 2 1320 5 2 gy 92 g9l = A+ g

As in part (a) of this proposition, these inequalities imply that the set A =
{1, A2y ooy Ady i1, o, - - -, g} satisfies part (i) of Proposition 2.1.

To prove that A also satisfies part (ii) of Proposition 2.1, note that the fol-
lowing inequalities also hold

2 <\ =2t i< 2t 4 2
and
9t+2 | gt+l 5 ot+2 | g ol > = 9t+2 4y ol = 9l(9t+2=1 4 ).

The proof is now completed as in part (a) of this proposition. Il

In [1] Berstein examined which Grassmann manifolds F(k,n) have maxi-
mal cup-length and proved that all such manifolds are F(1,n) for n > 1, and
F(2,2t71 —1) for t > 1.

The result of Korbas and Lorinc that cup F(1-%,m) = dim F(1-*¥,m) for all

k > 1 and Proposition 2.3 give a generalization of the Berstein’s result to the
manifolds of the form F (1%, m) and F(1-7,2,m). Also, we know that there are
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manifolds of the form F(1-7, 2% m) with maximal cup-length, but it seems that
classifying all manifolds of this form with maximal cup-length is very difficult
(see Theorem 2.4 and Proposition 2.5). On the other hand, we know that there
are no Grassmannians F'(k,n) with maximal cup-length if £, n > 3 (by Berstein’s
result), so one might expect that cup F(ny,ne,...,ny) = dim F(nq,ne,...,ng)
only if n; > 3 for at most one i € {1,2,...,q} (that is, only if F(nq,ne,...,n4)
is of the form F(1-7,24 m)). However, the following example shows that this
is not true.

Ezample 1. The dimension of the flag manifold F(1,1,1,3,4) is 36. We shall
prove that the class u = w§ jwj yw§ jw;’ € H*(F(1,1,1,3,4); Zy) is nonzero,
and so we will have that

cup F(1,1,1,3,4) =dim F(1,1, 1, 3,4).
We consider the class p*(u) - EB(0:0:0:2.1.03.2,1.0) ¢ 45([(110); Zy) (see Lemma
2.2). By (2.1) we know that
() - EOOO2L03.200) _ 60T 810 4 oo | 015200 cBe2eq
_ Z (15) (£) BOT8:+2k—141,15-k3.2,1,0)

k
0<I<k<15

It is clear that (llf) =1 (mod 2) for all k € {0,1,...,15}, and since the class
E6.7:8,142,k=1+1,15-k,3,2,1,0) js nontrivial only for 15 — k € {4,5,9} (by Lemma
2.1), i.e., k € {6,10,11}, we have that

6
2,1 2,1 6 7,8,14+2,7—1 2,1
P (u)- E@O021032.10) = 37 (6) pO.78,14+27-1:9,32,1.0) 1
=0

10 11
10\ 1(6,7,8,142,11—1,5,3,2,1,0) 11\ 1(6,7,8,14+2,12—1,4,3,2,1,0)
+> (DE +> (VE
1=0 1=0

It is now routine to check that there is exactly one nontrivial summand in the
first sum (it is the one for [ = 2), one in the second (also for ! = 2), and one in
the third (for I = 3). So p*(u) - E(0:0:0:21.0.3.21,0) - (0 which implies that u # 0.
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