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Abstract

The chromatic number of a triangle-free graph can be arbitrarily
large. In this paper we show that if all subdivisions of K2,3 are also
excluded as induced subgraphs, then the chromatic number becomes
bounded by 3. We give a structural characterization of this class of
graphs, from which we derive an O(nm) coloring algorithm, where n

denotes the number of vertice and m the number of edges of the input
graph.
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1 Introduction

Throughout the paper all graphs are finite and simple. We say that a graph
G contains a graph F , if F is isomorphic to an induced subgraph of G, and
it is F -free if it does not contain F . For a family of graphs F we say that
G is F-free if G is F -free for every F ∈ F .

It is a well known fact that triangle-free graphs can have arbitrarily
large chromatic number. The coloring problem remains difficult even when
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seemingly a lot of structure is imposed on a triangle-free graph. For ex-
ample determining whether a graph is 3-colorable remains NP-complete for
triangle-free graphs with maximum degree 4 [14].

A family of graphs G is χ-bounded with χ-binding function f if, for every
induced subgraph G′ of G ∈ G, χ(G′) ≤ f(ω(G′)) (where χ denotes the
chromatic number of a graph and ω the size of its larges clique). This concept
was introduced by Gyárfás [12] as a natural extension of perfect graphs,
that are a χ-bounded family of graphs with χ-binding function f(x) = x.
A natural question to ask is: what choices of forbidden induced subgraphs
guarantee that a family of graphs is χ-bounded? Much research has been
done in this area, for a survey see [15]. We note that most of that research
has been done on classes of graphs obtained by forbidding a finite number of
graphs. Since there are graphs with an arbitrarily large chromatic number
and girth [11], in order for a family of graphs defined by forbidding a finite
number of graphs (as induced subgraphs) to be χ-bounded, at least one of
these forbidden graphs needs to be acyclic. In this paper we consider a
class of graphs defined by excluding only acyclic graphs, namely the class
of .graphs that do not contain triangles nor subdivisions of K2,3 as induced
subgraphs. (A K2,3 is the complete bipartite graph with 2 nodes on one side
of bipartition and 3 nodes on the other side, and a subdivision of a graph is
obtained by subdividing its edges into paths of arbitrary length). We show
that the chromatic number for this class is bounded by 3, and we give an
O(nm) algorithm for coloring graphs in this class.

Subdivisions of K2,3 are in fact one of the configurations that appear in
a theorem of Truemper [17] that characterizes graphs whose edges can be
labeled so that all chordless cycles have prescribed parities. The character-
ization states that this can be done for a graph G if and only if it can be
done for all induced subgraphs of G that are of few specific types, depicted
in Figure 1, which we will call Truemper configurations. (In all figures a
solid line denotes an edge and a dashed line denotes a chordless path con-
taining one or more edges). In Section 1.1 we define these configurations
and explain their wider significance.

In Section 1.2 we state the key results of this paper about the class of
graphs defined by excluding triangles and subdivisions of K2,3 as induced
subgraphs, whose proofs are given in Section 2. In Section 1.3 we show how
it follows from the work of Kühn and Osthus [13] that the class of graphs
that do not contain subdivisions of K2,3 is χ-bounded. The method relies
on Ramsey numbers, and so the bound is quite large.
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3PC(., .) 3PC(∆, .) 3PC(∆,∆) wheel K4

Figure 1: Truemper configurations

1.1 Truemper configurations

A hole in a graph is an induced cycle of length at least 4. For A ⊆ V (G),
G[A] denotes the subgraph of G induced by A. A clique is a graph in which
every pair of nodes are adjacent. A clique on k nodes is denoted by Kk.
A K3 is also referred to as a triangle, and is denoted by ∆. A Ks,t is a
complete bipartite graph with s nodes on one side of the bipartition and t

nodes on the other.
The first three configurations in Figure 1 are referred to as 3-path con-

figurations (3PC’s). They are structures induced by three paths P1, P2 and
P3, in such a way that the nodes of Pi ∪ Pj , i 6= j, induce a hole. More
specifically, a 3PC(x, y) is a structure induced by three paths that connect
two nonadjacent nodes x and y; a 3PC(x1x2x3, y), where x1x2x3 is a tri-
angle, is a structure induced by three paths having endnodes x1, x2 and
x3 respectively and a common endnode y; a 3PC(x1x2x3, y1y2y3), where
x1x2x3 and y1y2y3 are two node-disjoint triangles, is a structure induced by
three paths P1, P2 and P3 such that, for i = 1, 2, 3, path Pi has endnodes
xi and yi. We say that a graph G contains a 3PC(., .) if it contains a
3PC(x, y) for some x, y ∈ V (G), a 3PC(∆, .) if it contains a 3PC(x1x2x3, y)
for some x1, x2, x3, y ∈ V (G), and it contains a 3PC(∆,∆) if it contains a
3PC(x1x2x3, y1y2y3) for some x1, x2, x3, y1, y2, y3 ∈ V (G). Note that the
condition that nodes of Pi ∪ Pj , i 6= j, must induce a hole, implies that all
paths of a 3PC(., .) have length greater than one, and at most one path of
a 3PC(∆, .) has length one.

Note that a 3PC(., .) is in fact a subdivision of K2,3. In literature
3PC(., .) is also referred to as theta [2], 3PC(∆, .) as pyramid [1], and
3PC(∆,∆) as prism [2].

3



A wheel (H,x) consist of a hole H and a node x called the center that
has at least three neighbors on the hole H. Finally, a K4 is a clique on four
vertices. We note that in [17] K4’s are also referred to as wheels, but in this
paper we choose to separate these two structures.

Theorem 1.1 (Truemper [17]) Let β be a {0, 1} vector whose entries are
in one-to-one correspondence with the chordless cycles of a graph G. Then
there exists a subset F of the edge set of G such that |F ∩ C| ≡ βC mod 2
for all chordless cycles C of G, if and only if every induced subgraph G′ of
G that is a Truemper configuration, there exists a subset F ′ of the edge set
of G′ such that |F ′ ∩ C| ≡ βC mod 2, for all chordless cycles C of G′.

Truemper’s original motivation for Theorem 1.1 was to obtain a co-NP
characterization of bipartite graphs that are signable to be balanced (i.e.
bipartite graphs whose node-node incidence matrices are balanceable ma-
trices, a class of matrices with important polyhedral properties). Config-
urations that Truemper identified in his theorem ended up playing a key
role in understanding the structure of several seemingly diverse classes of
objects, such as regular matroids, balanceable matrices and perfect graphs.
For example, 3PC(∆, .)’s and wheels that induce an odd number of trian-
gles (i.e. odd wheels) are excluded structures for perfect graphs (and more
generally, for odd-hole-free graphs), that are convenient to work with when
trying to characterize the class. Similarly, 3PC(., .)’s, 3PC(∆,∆)’s and
wheels whose center has an even number of neighbors on the hole (i.e. even
wheels) are excluded structures for even-hole-free graphs. All these classes of
graphs were characterized by decomposition theorems ([7, 10, 9, 4]), and in
all these decomposition theorems Truemper configurations (especially the
3-path configurations and wheels) were the key structures around which
the decompositions took place and from which the basic (undecomposable)
classes were built.

In a connected graph G, a subset S of nodes and edges is a cutset if its
removal disconnects G. A cutset S is a clique cutset if S induces a clique,
and it is a star cutset if S contains a node that is adjacent to all other nodes
of S. Star cutsets and their generalizations were necessary in the above
mentioned decomposition theorems. The problem with star cutsets (and
their generalizations) is that it is difficult to make use of them in decom-
position based algorithms, especially optimization algorithms. They were
used in constructing polynomial time recognition algorithm for even-hole-
free graphs [8, 10] and perfect graphs [1], and the proof of the famous Strong
Perfect Graph Conjecture [4]. In contrast to that, if clique cutsets are used

4



to decompose graphs in a class C down to some basic graphs that are simple
to handle in terms of coloring, for example, then one easily obtains a polyno-
mial time decomposition based coloring algorithm for class C. Triangulated
graphs (i.e. hole-free graphs) are an example of such a class. Here is another
example introduced in [5], that generalizes triangulated graphs.

A graph is universally signable if for all choices of a vector γ (that is
in one-to-one correspondence with the holes of a graph G), there exists a
subset F of the edge set of G such that |F ∩H| ≡ γH( mod 2), for all holes H

of G. From Theorem 1.1 it is easy to obtain the following characterization
of universally signable graphs in therms of forbidden induced subgraphs.

Theorem 1.2 [5] A graph is universally signable if and only if it is
(3PC(., .), 3PC(∆, .), 3PC(∆,∆), wheel)-free.

This characterization of universally signable graphs is then used to obtain
the following decomposition theorem, from which one can derive efficient
algorithms for finding the size of a largest clique, or independent set, or
coloring the class.

Theorem 1.3 [5] A connected (3PC(., .), 3PC(∆, .), 3PC(∆,∆), wheel)-
free graph is either a clique or a hole or has a clique cutset.

We are interested in generalizing this class further by considering the
class of (3PC(., .), 3PC(∆, .), 3PC(∆,∆))-free graphs. As a first step to
understanding their structure, in this paper we analyze (∆, 3PC(., .))-free
graphs.

1.2 (∆, 3PC(., .))-free graphs

In this paper we obtain the following characterizations of (∆, 3PC(., .))-free
graphs, that lead to a coloring algorithm for this class. Our results generalize
the work in [6] where the class of (∆, 3PC(., .), even wheel)-free graphs is
considered.

The complete bipartite graph K4,4 with a perfect matching removed is
called a cube. This graph is indeed the skeleton of a 3-dimensional cube.

Theorem 1.4 A connected (∆, 3PC(., .))-free graph that has a cube is ei-
ther equal to that cube or has a K1 or K2 cutset.

Analogous result is proved in [6] for (∆, 3PC(., .), even wheel)-free
graphs. From Theorem 1.4 it follows, by the discussion above, that if
we know how to color (∆, 3PC(., .), cube)-free graphs, then we can color
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the entire class of (∆, 3PC(., .))-free graphs. Next we concentrate on
(∆, 3PC(., .), cube)-free graphs.

For x ∈ V (G), N(x) is the set of all neighbors of x in G, and N [x] =
N(x) ∪ {x}. A cutset S is a full star cutset of G, if for some x ∈ V (G),
S = N [x].

Theorem 1.5 If a connected (∆, 3PC(., .), cube)-free graph contains a
wheel, then it has a full star cutset.

In [6] it is shown that if a (∆, 3PC(., .), even wheel, cube)-free graph
contains a wheel (H,x), then for any two distinct neighbors xi and xj of x on
H, {x, xi, xj} is a cutset. In the case of (∆, 3PC(., .), cube)-free graphs, this
is not true, since the wheels interact in more complex ways. To decompose
wheels we need to use stronger cutsets, as well as be careful about the order
in which the wheels are considered for decomposition.

The following decomposition theorem immediately follows from Theorem
1.4, Theorem 1.5 and Theorem 1.3.

Theorem 1.6 A connected (∆, 3PC(., .))-free graph is either a K1, a K2,
a hole or a cube, or it has a K1 or K2 cutset or a full star cutset.

This decomposition theorem does not help in coloring (∆, 3PC(., .))-free
graphs, since it is not clear how to use star cutsets in a decomposition based
coloring algorithm. Instead we use Theorem 1.6 to prove the existence of
a node of small degree, which is a characterization that can be used in a
coloring algorithm.

Theorem 1.7 If G is a (∆, 3PC(., .))-free graph, then G has a vertex of
degree at most 3.

We note that this result is best possible since a cube is an example of
a (∆, 3PC(., .))-free graph all of whose vertices have degree 3. It follows
from Theorem 1.7 that (∆, 3PC(., .))-free graphs G can be 4-colored in time
O(n2) by coloring greedily on a sequence of nodes x1, . . . , xn such that for
every i = 1, . . . , n, xi is of degree at most 3 in G[{x1, . . . , xi}]. We can do
better than that by considering cube-free graphs.

Theorem 1.8 If G is a (∆, 3PC(., .), cube)-free graph, then G has a vertex
of degree at most 2.

Analogous result is proved in [6] for (∆, 3PC(., .), even wheel)-free
graphs. By Theorem 1.8 we can color (∆, 3PC(., .), cube)-free graphs with
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at most 3 colors, by constructing a sequence of nodes x1, . . . , xn such that
for every i = 1, . . . , n, xi is of degree at most 2 in G[{x1, . . . , xi}] and color-
ing greedily on this sequence. Putting all the results together we obtain the
following theorem that will be proved in Section 2.

Theorem 1.9 If G is a (∆, 3PC(., .))-free graph, then χ(G) ≤ 3. Further-
more, there exists an O(nm) algorithm for coloring graphs in this class,
where n denotes the number of vertices and m the number of edges of the
input graph.

Observe that this bound on the chromatic number is tight. We note
that although the class of (∆, 3PC(., .))-free graphs can be recognized in
O(n11) time, since 3PC(., .)’s can be detected in that time by the algorithm
of Chudnovsky and Seymour [3], it is in fact not necessary to recognize the
class before applying the coloring algorithm. The algorithm given in the
proof of Theorem 1.9 is robust in the following sense: given any graph G,
the algorithm either verifies that G is not in our class, or it properly colors
the graph. This means that the algorithm will properly color all graphs in
our class, as well as some graphs that are not in our class. In case a proper
coloring is not returned, we are given a certificate that the input graph is
not in our class.

We close this section by observing that there are (∆, 3PC(., .))-free
graphs that are not planar, as shown in Figure 2.

Figure 2: A (∆, 3PC(., .))-free graph that has a K5-minor.
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1.3 χ-boundedness of 3PC(., .)-free graphs

We now show how it can be derived from the following theorem of Kühn and
Osthus that 3PC(., .))-free graphs are χ-bounded. This was pointed out to
us by Trotignon, and it was pointed out to him by Scott.

Theorem 1.10 (Kühn and Osthus [13]) For every graph H and every
s ∈ N there exists d = d(H, s) such that every graph G of average degree
at least d contains either a Ks,s as a subgraph or a subdivision of H as an
induced subgraph.

Corollary 1.11 3PC(., .)-free graphs are χ-bounded.

proof — Let G be a 3PC(., .)-free graph. Let s be the Ramsey number
R(ω(G) + 1, 3), and let c = d(K2,3, s) be the constant from Theorem 1.10
(with H = K2,3). We now show that G is c-colorable. Suppose not. Without
loss of generality we may assume that χ(G) > c and for every proper induced
subgraph H of G, χ(H) ≤ c.

We prove that the degree of every node of G is at least c. Suppose on
the contrary that deg(v) ≤ c − 1 for some v ∈ V (G). By the choice of
G, χ(G − v) ≤ c, and therefore χ(G) ≤ max{χ(G − v),deg(v) + 1} ≤ c, a
contradiction. So every node of G has degree at least C, and therefore G

has average degree at least c.
Since G is 3PC(., .)-free, it cannot contain a subdivision of K2,3 as an

induced subgraph, and so by Theorem 1.10 G contains a Ks,s as a subgraph.
By the choice of s, both sides of the bipartition of Ks,s contain a stable
set of size 3. In particular, G contains a K2,3 as an induced subgraph, a
contradiction. 2

We note that the bound one gets for the chromatic number in this corol-
lary, is rather large. It follows from the proof of Theorem 1.10 that it is at

least max{22225+1, 228R(ω(G)+1,3)
}.

2 Proofs

A path P is a sequence of distinct nodes p1, . . . , pk, k ≥ 1, such that pipi+1 is
an edge, for all 1 ≤ i < k. These are called the edges of the path P . Nodes
p1 and pk are the endnodes of the path. The nodes of V (P ) that are not
endnodes are called the intermediate nodes of P . Let pi and pl be two nodes
of P , such that l ≥ i. The path pi, pi+1, . . . , pl is called the pipl-subpath of
P . A cycle C is a sequence of nodes c1, . . . , ck, c1, k ≥ 3, such that the nodes
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c1, . . . , ck form a path and c1ck is an edge. The edges of the path c1, . . . , ck

together with edge c1ck are called the edges of cycle C. The length of a path
P (resp. cycle C) is the number of edges in P (resp. C).

Given a path or a cycle Q in a graph G, any edge of G between nodes
of Q that is not an edge of Q is called a chord of Q. Q is chordless if no
edge of G is a chord of Q. As mentioned earlier a hole is a chordless cycle
of length at least 4.

Let A and B be two disjoint node sets such that no node of A is adjacent
to a node of B. A path P = p1, . . . , pk connects A and B if either k = 1 and
p1 has neighbors in both A and B, or k > 1 and one of the two endnodes
of P is adjacent to at least one node in A and the other is adjacent to at
least one node in B. The path P is a direct connection between A and B if
in G[V (P ) ∪ A ∪ B] no path connecting A and B is shorter than P . The
direct connection P is said to be from A to B if p1 is adjacent to a node of
A and pk is adjacent to a node of B.

Throughout the paper, for a wheel (H,x) we will denote the neighbors
of x in H with x1, . . . , xh assuming that they appear in this order when
traversing H clockwise. For i = 1, . . . , h, the subpath of H from xi to xi+1

(where index h + 1 is taken to be 1) that does not contain an interior node
adjacent to x is called a sector of (H,x) and is denoted by Si. We denote
by x′

i (respectively x′′
i ) the neighbor of xi in Si (respectively Si−1).

For a subgraph F of G, we say that a node u ∈ V (G) \ V (F ) is strongly
adjacent to F if u has at least two neighbors in F .

Proof of Theorem 1.4: Assume that G contains a cube M induced by the
nodes u1, . . . , u4, v1, . . . , v4 where ui is adjacent to vj whenever i 6= j and
no other edges exist. Also assume that G does not have a K1 or K2 cutset.

We first show that no node of G is strongly adjacent to M . Assume a
node w is strongly adjacent to M . W.l.o.g. w is adjacent to u1, and hence
since G is ∆-free, w is not adjacent to v2, v3 nor v4. If w is adjacent to
ui, then w.l.o.g i = 2, and hence the node set {u1, u2, v3, v4, w} induces a
3PC(u1, u2). Therefore, N(w)∩M = {u1, v1}. But then (M \{u4, v4})∪{w}
induces a 3PC(u1, v1). Therefore, no node of G is strongly adjacent to M .

Assume G 6= M and let C be a connected component of G \ M . Note
that, since no node is strongly adjacent to M , the nodes of C that have a
neighbor in M , have a unique neighbor in M . Since G has no K1 nor K2

cutset, nodes of C must have two nonadjacent neighbors in M . Therefore,
C contains a chordless path P = p1, . . . , pk, k ≥ 2, such that the neighbors
of p1 and pk in M are two nonadjacent nodes. Among all such paths in
C, let P be minimal. Therefore, at most one node of M is adjacent to an
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intermediate node of P , and if such a node exists, then it is adjacent to
both of the neighbors of p1 and pk in M . We now consider the following two
cases.

Case 1: No node of M is adjacent to a node pi, 2 ≤ i ≤ k − 1.
By symmetry we may assume that p1 is adjacent to u1 and that pk is
adjacent to either u2 or v1. If pk is adjacent to u2, then the node set
V (P )∪{u1, u2, v3, v4} induces a 3PC(u1, u2). Otherwise, pk is adjacent to v1,
and hence the node set V (P )∪ {u1, u2, u4, v1, v2, v4} induces a 3PC(u1, v1).

Case 2: One node of M is adjacent to an intermediate node of P .
W.l.o.g. we may assume that p1 is adjacent to u1, pk to u2, and v3 has a
neighbor in the interior of P . Note that the nodes of M \{u1, u2, v3} have no
neighbor in P , and hence the node set V (P )∪ {v1, v2, v4, u1, u2, u4} induces
a 3PC(u1, u2). 2

Lemma 2.1 Let G be a (∆, 3PC(., .), cube)-free graph. Let (H,x) be a wheel
of G such that out of all wheels of G, (H,x) has the fewest number of edges.
Then no node is strongly adjacent to (H,x).

proof — Assume that y is strongly adjacent to (H,x). We consider the
following cases.

Case 1: y is adjacent to x.
Since G is ∆-free, x and y do not have a common neighbor in H. If y has
a unique neighbor y′ in H, say in sector Si, then V (Si) ∪ {x, y} induces
a 3PC(x, y′). If y has exactly two neighbors in H, say y ′ and y′′, then
since G is ∆-free, y′y′′ is not an edge, and hence V (H) ∪ {y} induces a
3PC(y′, y′′). Therefore (H, y) is also a wheel. Let S be a sector of (H, y)
that contains a neighbor of x. If S contains exactly one neighbor of x, say xi,
then V (S) ∪ {x, y} induces a 3PC(y, xi). Otherwise, V (S) ∪ {x, y} induces
a wheel with center x that contradicts our choice of (H,x).

Case 2: y is not adjacent to x.
As in Case 1, y cannot have exactly two neighbors in H, and hence (H, y)
is a wheel. Let S be a sector of (H, y) that contains a neighbor of x. If
S contains exactly two neighbors of x, say xi and xi+1, then V (S) ∪ {x, y}
induces a 3PC(xi, xi+1). If S contains at least three neighbors of x, then
V (S) ∪ {x, y} induces a wheel with center x that contradicts our choice of
(H,x). Therefore, each sector of (H, y) contains at most one neighbor of
x. If x and y have three common neighbors in H, say xi, xj and xk, then
{x, y, xi, xj, xk} induces a 3PC(x, y). Therefore some sector S of (H, y)
contains exactly one neighbor of x, say xi, and xi is in the interior of S.
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Let y1 and y2 be the endnodes of S. For j = 1, 2, let y ′
j be the neighbor of

yj in H \ S. Since G is ∆-free, y cannot be adjacent to y ′
1 nor y′2, and in

particular, y has a neighbor in V (H)\ (V (S)∪{y ′
1, y

′
2}). If x has a neighbor

in V (H) \ (V (S) ∪ {y′
1, y

′
2}), then G[(V (H) \ (V (S) ∪ {y′

1, y
′
2})) ∪ {x, y}]

contains a chordless path P from x to y, and hence V (S) ∪ V (P ) induces a
3PC(xi, y). Therefore N(x) ∩ V (H) = {xi, y

′
1, y

′
2}. If xiy1 is not an edge,

then V (S) ∪ {x, y, y′
1} induces a 3PC(xi, y1). So xiy1 is an edge, and by

symmetry so is xiy2. Let y′ be the neighbor of y in H \ S that is closest to
y′2. If y′1y

′ is not an edge, then the subpath of H \ S from y ′ to y′2 together
with the node set {x, y, xi, y1, y

′
1} induces a 3PC(x, y1). So y′1y

′ is an edge.
Since V (H) ∪ {x, y} cannot induce a cube, y ′y′2 is not an edge. But then
{x, y, xi, y2, y

′
2, y

′
1, y

′} induces a 3PC(x, y2). 2

A chordless path P = p1, . . . , pk of G\ (H ∪{x}) is an ear of (H,x) if for
some i ∈ {1, . . . , h}, no node of P is adjacent to x, N(p1) ∩ V (H) = {x′′

i },
N(pk) ∩ V (H) = {x′

i}, and no intermediate node of P has a neighbor in
H \ {xi}. In this case we say that P is an xi-ear.

Lemma 2.2 Let G be a (∆, 3PC(., .), cube)-free graph. Let (H,x) be a wheel
of G such that out of all wheels of G, (H,x) has the fewest number of edges.
Then there are nodes xi and xj, i 6= j, such that there is no xi-ear and no
xj-ear.

proof — Assume not and w.l.o.g. let Pi be an xi-ear, for i = 2, . . . , h.
Let G′ be the subgraph of G induced by ∪h

i=3
V (Pi) ∪ (V (H) \ (V (S1) ∪

{x3, . . . , xh}))∪{x1, x2}. Clearly G′ is connected. Let P be a chordless path
from x1 to x2 in G′. By definition of ears, no node of (V (S1)\{x1, x2})∪{x}
has a neighbor in P , and hence V (P )∪V (S1)∪{x} induces a 3PC(x1, x2).2

Theorem 2.3 Let G be a (∆, 3PC(., .), cube)-free graph. Let (H,x) be a
wheel of G such that out of all wheels of G, (H,x) has the fewest number
of edges. Then for some i, j ∈ {1, . . . , h}, i 6= j, S = N [x] \ ({x1, . . . , xh} \
{xi, xj}) is a star cutset separating the interior nodes of the two xixj-
subpaths of H.

proof — By Lemma 2.1 no node is strongly adjacent to (H,x). By Lemma
2.2 there are some 1 ≤ i < j ≤ h such that there is no xi-ear and no xj-ear.
Let S′ (resp. S′′) be the xixj-subpath of H that contains Si (resp. Si−1). We
will show that S = N [x]\ ({x1, . . . , xh}\{xi, xj}) is a star cutset separating
S′ \ {xi, xj} from S′′ \ {xi, xj}. Assume not and let P = p1, . . . , pk be a
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direct connection from S ′ \{xi, xj} to S′′ \{xi, xj} in G\S. Let s′ (resp. s′′)
be the neighbor of p1 (resp. pk) in S′ \ {xi, xj} (resp. S ′′ \ {xi, xj}). Note
that the only nodes of (H,x) that may have a neighbor in P \ {p1, pk} are
xi and xj.

A node of {xi, xj} must have a neighbor in P \ {p1, pk}, since otherwise
V (H) ∪ V (P ) induces a 3PC(s′, s′′). If both xi and xj have a neighbor in
P \ {p1, pk}, then there is a subpath P ′ of P \ {p1, pk} such that xi, P

′, xj

is a chordless path, and hence V (H) ∪ V (P ′) induces a 3PC(xi, xj). So
w.l.o.g. we may assume that xi has a neighbor in P \ {p1, pk}, and xj does
not. If both xis

′ and xis
′′ are edges, then P is an xi-ear, contradicting

our assumption. So w.l.o.g. xis
′ is not an edge. Let pl be the node of

P \ {p1, pk} with smallest index adjacent to xi. Then V (H) ∪ {p1, . . . , pl}
induces a 3PC(xi, s

′). 2

Proof of Theorem 1.5: Follows from Theorem 2.3 and the assumption of
being ∆-free. 2

Theorem 2.4 If G is a (∆, 3PC(., .), cube)-free graph, then for every x ∈
V (G), either V (G) = N [x] or G contains a vertex y ∈ V (G) \ N [x] whose
degree is at most 2.

proof — Assume not and let G be a counterexample with fewest number
of nodes. Observe that since G is ∆-free, if C is a connected component of G

that is a star, i.e. V (C) = N [x] for some x ∈ V (G), then either |V (C)| = 1
(and hence x is of degree 0) or every node of N(x) has degree 1. So by
minimality of G, it follows that G is connected. Also G is not a star. We
say that a node y is a mate of node x, if y is not adjacent to x and is of
degree at most 2. Since the theorem obviously holds when G has at most
two nodes or is a hole, by Theorem 1.6, since G is cube-free, it follows that
G has a K1 or K2 cutset, or a full star cutset.

First suppose that G has a K1 cutset, say {u}. Let C1, . . . , Ck be the
connected components of G \ {u}, and for i = 1, . . . , k, let Gi = G[V (Ci) ∪
{u}]. Since V (G) 6= N [u], w.l.o.g. V (G1) 6= NG1 [u]. By minimality of G

it follows that some c1 ∈ V (G1) \ N [u] has degree at most 2 in G1 (and
hence in G as well). So for every x ∈ V (G) \ V (C1), c1 is a mate of x. If
|V (C2)| = 1 then the node of C2 is of degree 1 in G, and otherwise by the
same argument C2 contains a node of degree at most 2. So C2 contains a
node c2 of degree at most 2 in G. But then c2 is a mate of every node of
C1, a contradiction. Therefore G cannot have a K1 cutset.

Next assume that {u, v} is a K2 cutset of G. Let C1, . . . , Ck be the
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connected components of G\{u, v}, and for i = 1, . . . , k, let Gi = G[V (Ci)∪
{u, v}]. Since neither {u} nor {v} can be a K1 cutset, for i = 1, . . . , k, both
u and v have a neighbor in Ci. So since G is ∆-free V (G1) 6= NG1 [u], and
hence by minimality of G, u has a mate c1 in G1. Since c1 ∈ V (C1), node c1

is of degree at most 2 in G as well, and hence it is a mate in G of all nodes
of V (G) \ (V (C1) ∪ {v}). By analogous argument v has a mate c2 in G2,
that is a mate in G of all nodes of V (C1) ∪ {v}, a contradiction. Therefore
G cannot have a K2 cutset.

So G has a full star cutset S = N [x]. Let C1, . . . , Ck be the connected
components of G \ S, and for i = 1, . . . , k, let Gi be the subgraph of G

induced by V (Ci) ∪ {x} and all the nodes of N(x) that have a neighbor in
Ci. By minimality of G, for i = 1, . . . , k, x has a mate ci in Gi, and since
ci ∈ V (Ci), it is a mate of x in G as well. Then c1 is a mate in G of all
nodes of V (G)\ (V (C1)∪N(x)), and c2 is a mate in G of all nodes of V (C1).
Hence all nodes of G except possibly the nodes of N(x) have a mate in G.
Since G is a counterexample, some x′ ∈ N(x) does not have a mate in G,
and hence x′ is adjacent to ci for every i = 1, . . . , k. Since {x, x′} cannot
be a cutset of G separating C1 from the rest of G, G1 cannot be a star,
and hence by minimality of G, x′ has a mate x′′ in G1. Node x′′ 6∈ V (C1),
since otherwise it would be a mate of x′ in G as well. So x′′ ∈ N(x), and
since x′′ ∈ V (G1), it follows that x′′ has a neighbor in C1. Since x′′ is not
a mate of x′ in G, w.l.o.g. x′′ has a neighbor in C2. For i = 1, 2, let Pi be
a chordless path from x′ to x′′ in G[V (Ci) ∪ {x′, x′′}] (since both x′ and x′′

have a neighbor in Ci, and Ci is connected, such a path exists). But then
V (P1) ∪ V (P2) ∪ {x} induces a 3PC(x′, x′′), a contradiction. 2

Proof of Theorem 1.8: Follows from Theorem 2.4 and the assumption of
being ∆-free. 2

Proof of Theorem 1.7: The proof is obtained in analogous way to the proof of
Theorem 2.4. One just needs to replace all “degree at most 2” with “degree
at most 3” and observe that if G is a cube then for every x ∈ V (G) there
exists a node y ∈ V (G) that is not adjacent to x and is of degree at most 3.
2

Proof of Theorem 1.9: Let G be a (∆, 3PC(., .))-free graph. Since graphs
whose chromatic number is at most two can be recognized and properly
colored in linear time, it suffices to show how to 3-color G. Clearly we may
also assume that G is connected.

Let S be a clique cutset of a graph G, and let C1, C2, S be a vertex
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partition so that no node of C1 is adjacent to a node of C2. We define the
blocks of decomposition by clique cutset S to be graphs Gi = G[V (Ci) ∪ S],
for i = 1, 2. The first step of our algorithm constructs a decomposition tree T

using clique cutsets as follows. The root of T is the input graph G, for every
internal node G′ of T , the children of G′ are the blocks of decomposition of
G′ with respect to some clique cutset such that at least one of the children
has no clique cutset, and all the leaves of T are graphs that have no clique
cutset. Such a decomposition tree can be constructed in O(nm) time and it
has at most n − 1 leaves [16].

The second step of our algorithm 3-colors the leaves of T as follows. Let
L be a leaf of T . By Theorem 1.4, L is either a cube or is cube-free. If L

is a cube, then it is bipartite and hence can be 2-colored. Otherwise, by
Theorem 1.8, there is an ordering x1, . . . , xl of vertices of L such that for
every i = 1, . . . , l, xi is of degree at most 2 in G[{x1, . . . , xi}], and hence L

can be 3-colored by coloring greedily on this ordering of vertices. Such an
ordering can be constructed in O(|V (L)|2) time. Let L1, . . . , Lk be the leaves
of T , and for i = 1, . . . , k let ni = |V (Li)|. Since the clique cutsets in ∆-free
graphs are of size at most 2, the sum of the nodes of children of an internal
node G′ of T is at most 2 greater than |V (G′)|. It follows that Σk

i=1
ni ≤ 3n,

and hence, since Σk
i=1

n2
i ≤ (Σk

i=1
ni)

2, step 2 can be implemented to run in
O(n2) time.

In the third step of our algorithm we backtrack along T to obtain a
3-coloring of G from the 3-colorings of leaves of the decomposition tree as
follows. Let H be an internal node of T , and H1, . . . ,Hk its children in T .
So H1, . . . ,Hk are blocks of decomposition of H with respect to some clique
cutset S. Since S is a clique, nodes of S must have different colors in all
of these colorings. So we can permute the colors of the colorings of Hi’s so
that they all agree on the colors of the nodes of S, and by putting together
such colorings we get a 3-coloring of H.

This algorithm can clearly be implemented to run in O(nm) time. 2

Observe that the algorithm given in the proof of Theorem 1.9 can easily
be turned into a robust algorithm as discussed in Section 1.2. In step 1, if a
clique of size greater than 2 is used in the construction of the decomposition
tree, then output “G is not (∆, 3PC(., .))-free” and stop. In step 2, in case
a leaf that is considered is not a cube and does not have the desired ordering
of vertices, then output “G is not (∆, 3PC(., .))-free” and stop.
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