A Collection of Technical Interview
Questions

http://www.spellscroll.com

December 3, 2008

http://www.spellscroll.com

Contents

(1 Data Structures and Algorithms| 7
(.1 Tinked [ist Problems 7
(1.2 Problems on 'Irees and Graphs| 17
(1.3 String Manipulation Problems| 20
(1.4 Recursion Problems|. 23
[L.5 Problems on Searching and Sortingl 24
(.6 Problems on Numbers 28
(1.7 Geometry Problems|. 29
(.8 Miscellaneous Problems|. 29

(Bibliography| 33

CONTENTS

Disclaimer

All the questions (and solutions) presented in this document were originally
collected by the spellscroll.com team from various sources including books,
mailing-lists and online forums, etc. The spellscroll.com team spent signif-
icant amount of time in selecting, editing and formatting these questions
(and solutions), in the hope that our efforts will be of help to people who are
preparing technical interviews. Any comments, suggestions and corrections
are welcome. This document is free to be downloaded, copied and distributed
so long as this disclaimer is clearly reproduced at its beginning. However,
we are NOT responsible for the possible mistakes contained in this
document or any improper use of this document.

CONTENTS

Chapter 1

Data Structures and
Algorithms

1.1 Linked List Problems

Problems 1-7 and accompanying discussions are taken from the book [Mon07].

1. [Stack Implementation] Discuss the stack data structure. Imple-
ment a stack in C using either a linked list or a dynamic array, and
justify your decision. Design the interface to your stack to be complete,
consistent, and easy to use.

Discussion:

e A stack is last-in-first-out data structure: Elements are always
removed in the reverse order in which they were added. The add
element and remove element operations are conventionally called
push and pop, respectively. Stacks are useful data structures for
tasks that are divided into multiple subtasks. Tracking return
addresses, parameters, local variables for subroutines is one ex-
ample of stack use; tracking tokens when parsing a programming
language is another.

e One of the ways to implement a stack is by using a dynamic array,
an array that changes size as needed when elements are added.
The main advantage of dynamic arrays over linked lists is that
arrays offer random access to the array elements. However, oper-
ations on a stack always work on one end of the data structure (the
top of the stack), so the random accessibility of a dynamic array

1.1. LINKED LIST PROBLEMS

gains you little. In addition, as a dynamic array grows, it must
occasionally be resized, which can be a time-consuming operation
as elements are copied from the old array to the new array.

e Conversely, linked lists usually allocate memory dynamically for
each element, and that overhead can be significant when dealing
with small-sized elements, especially if heuristics are used to min-
imize the number of times the array has to be resized. For these
reasons, a stack based on a dynamic array is usually faster than
one based on a linked list. In the context of an interview, though,
the primary concern is ease and speed of implementation: Imple-
menting a linked list is far less complicated than implementing a
dynamic array, so a linked list is probably the best choice for your
solution.

e A C-style implementation

typedef struct Element {
struct Element *next;
void *data;

} Element;

bool push(Element **stack, void *data);
bool pop(Element **stack, void **data);
bool createStack(Element **stack);
bool deleteStack(Element **stack);

bool createStack(Element **stack){
xstack = NULL;
return true;

3

bool push(Element **stack, void *data){
Element *elem = new Element;
if (lelem) return false;
elem->data = data;
elem->next *stack;
*stack = elem;

return true;

bool pop(Element *xstack, void **data){

http://wuw.spellscroll.com

Element *elem = *stack;
if (lelem) return false;

*data = elem—>data;
*stack = elem—->next;
delete elem;
return true;

bool deleteStack(Element **stack)q{
Element *next;
while (*stack)
{
next = (*stack)->next;
delete *stack;
*stack = next;
+

return true;

}
o A C++ version

class Stack A{
public
Stack();
virtual “Stack();
void push(void *data);
void pop();

protected :
typedef struct Element{
struct Element *next;
void *data;
}Element;
Element *head;

};

Stack: :Stack() {
head = NULL;
return;

http://www.spellscroll.com

10

1.1. LINKED LIST PROBLEMS

Stack::"Stack() {
while(head) {
Element* next = head->next;
delete head;
head = next;
}

return;

void Stack::push(void *data) {
Element *element = new Element;
element->data = data;
element->next head;
head = element;

void* Stack::pop(){
Element *element = head;
void *data;
if ('element)
throw StackError (E_EMPTY);

data = element->data;
head element->next;
delete element;

2. [Maintain Linked List Tail Pointer| head and tail are global point-
ers to the first and last element, respectively, of a singly-linked list of
integers. Implement C functions for the following prototypes:

bool remove(Element *elem);
bool insertafter(Element *elem, int data);

The argument to remove is the element to be deleted. The two argu-
ments to insertAfter give the data for the new element and the element
after which the new element is to be inserted. It should be possible to
insert at the beginning of the list by calling insertAfter with NULL as

http://wuw.spellscroll.com 11

the element argument. These functions should return true if successful
and false is unsuccessful.

Your functions must keep the head and tail pointers current.

bool remove(Element *elem){

Element * curPos = head;
if (lelem)

return false;
if (elem==head) {

head = elem—->next;

delete elem;

if ('head) /% special case for 1 element list */

tail = NULL;
return true;

while (curPos){
if (curPos==elem){
curPos—->next = elem—->next;
delete elem;
if (curPos->next==NULL)
tail = curPos;
return true;
}
curPos = curPos->next;
+

return false;

bool insertAfter(Element *elem, int data) {
Element *newElem, *curPos = head;
newElem = new Element;
if ('newElem){
return false;
}
newElem->data = data;
/* Insert at beginning of list */
if (lelem){
newElem->next = head;

http://www.spellscroll.com

12 1.1. LINKED LIST PROBLEMS

head = newElem;
/* special case for empty list */
if (!ltail)
tail = newElem;
return true;
}
while (curPos){
if (curPos == elem) {
newElem->next = curPos->next;
curPos->next = newElem;
/* special case for inserting at the end of list */
if (!(newElem—>next))
tail = newElemn;
return true;

¥

curPos = curPos->next;

/* Insert Position not found */
delete newElem;
return false;

3. [Bugs in removeHead] Find and fix the bugs in the following C/C++

function that is supposed to remove the head element from a singly-
linked list:

void removeHead(Node *head){
delete head;
head = head->next;

e Check that (i)the data comes into the function properly; (ii) each
line of the function works correctly; (iii) Check that the data
comes out the function correctly; (iv) Check the common error
conditions.

e Corrected code:

http://wuw.spellscroll.com 13

void removeHead(Node **¥head){
Node* temp;
if (!(xhead)){
temp = (xhead)->next;
delete *head;
*head = temp;

4. [Mth-to-Last Element of a Linked List] Given a singly-linked list,
devise a time- and space-efficient algorithm to find the mth-to-last el-
ement of the list. Implement your algorithm, taking care to handle
relevant error conditions. Define mth to last such that when m=0, the
last element of the list is returned. [

Element* findMToLastElement (Element* head, int m){

Element *current, *mBehind;
int i;
/* Advance current m elements from beginning, checking for

the end of the list */
current = head;
for (i = 0; i<m; i++){

if (current->next) {
current = current->next;

+
elseq{

return NULL;
+

b

/* Start mBehind at beginning and advance pointers together
until current hits last element */
mBehind = head;
while (current->next){
curren=current->next;
mBehind = mBehind->next;

}

LA wariant of this problem is to find the middle node of a given singly-linked list.

http://www.spellscroll.com

14

1.1. LINKED LIST PROBLEMS

/* mBehind now points to the element we were searching for x/
return mBehind;

5. [Null or Cycle] Write a function that takes a pointer to the head of a
list and determines whether the list is cyclic or acyclic. Your function
should return false if the list is acyclic and true if it is cyclic. You may
not modify the list in any way.

e Algorithm outline:

Start two pointers at the head of the list
Loop infinitely
If the fast pointer reaches a NULL pointer
Return that the list is Null terminated
If the fast pointer moves onto or over the slow pointer
Return that there is a cycle
Advance the slow pointer one node
Advance the fast pointer two nodes

e Code

/* Takes a pointer to the head of a linked list and determine if the
list ends in a cycle or is NULL terminated */
bool determineTerminate(Node *head){
Node *fast, *slow;
fast = slow = head;

while(true)
{
if (!fast||!fast->next) return false;
else if(fast==slow||fast->next==slow) return true;
else {
slow = slow—->next;
fast fast->next->next;

http://wuw.spellscroll.com 15

6. How do you reverse a linked list. Why don’t you use recur-
sion?

Node* reverselLinkedList(Node *base){
Node* next; Node *current ;
current = base;
node *previous = NULL;

while(current != NULL) {
next = current->next;
current->next = previous;
previous = current;
current = next;

}

return (previous);

// Recursive version
Node *reverse(Node *head) {
Node *temp;
if (head->next) {
temp = reverse(head->next);
head>next->next = head;
head->next = NULL;
}
else
temp = head;
return temp,

call as: head=reverse(head);

http://www.spellscroll.com

16 1.1. LINKED LIST PROBLEMS

7. [Sort a linked list]

//sorting in descending order
struct Node { int value; Nodex NEXT; }
//Assume HEAD pointer denotes the first element in the list
//only change the values, don’t have to change the pointers
Sort(Node *Head) {
node* first,second,temp;
first = Head;
while(first!=null) {
second = first->NEXT;
while(second!=null) {
if (first->value < second->value) {
temp = new node();
temp->value = first->value;
first->value = second->value;
second->value = temp->value;
delete temp;
}

second = second->NEXT;

}
first = first->NEXT;

8. Given a linked list which is sorted. How will you insert new elements
in sorted way.

9. Delete an element from a singly linked list. How about deleting an
element from a doubly linked list.

10. Under what circumstances can one delete an element from a singly
linked list in constant time?

11. What is the difference between arrays and linked lists? What is the
advantage of contiguous memory over linked lists?

12. Write the most efficient algorithm to find the minimum element in a
sorted circular list.

More linked list problems can be found at http://cslibrary.stanford.
edu/105/LinkedListProblems.pdf

http://cslibrary.stanford.edu/105/LinkedListProblems.pdf
http://cslibrary.stanford.edu/105/LinkedListProblems.pdf

http://wuw.spellscroll.com 17

1.2 Problems on Trees and Graphs

Problems 1-6 and accompanying discussions are taken from the book [Mon(7].

1. [Preorder Traversal, No Recursion] Perform a preorder traversal
of a binary search tree, printing the value of each node, but this time
you may not use recursion.

e Algorithm outline:

Create the stack
Push the root node on the stack
While the stack is not empty
Pop a node
If he node is not null
print its value
Push the node’s right child on the stack
Push the node’s left child on the stack

e Code (with no error checking)

void preorderTraversal(Node root){
NodeStack stack = new NodeStack();
stack.push(root);
while (true) {
Node curr = stack.pop(Q);
if (curr==null) break;
curr.printValue();
Node n= curr.getRight();
if (n!=null) stack.push(n);
n = curr.getleft();
if (n!=null) stack.push(n);

3

2. [Lowest Common Ancestor] Given the value of two nodes in a bi-
nary search tree, find the lowest (nearest) common ancestor. You may
assume that both values already exist in the tree.

e Algorithm outline:

Examine the current node
If valuel and value2 are both less than the current node

http://www.spellscroll.com

1.2. PROBLEMS ON TREES AND GRAPHS

Examine the left child

If valuel and value2 are both greater than the current node
Examine the right child

Otherwise
The current node is the lowest common ancestor

e Code

Node findLowestCommonAncestor (Node root,
int valuel, int value2){
while(root!=null){
int value = root.getValue();
if (value>valuel && value>value2) {
root = root.getLeft();
}
else if (value<valuel && value<value2) {
root = root.getright();

}
else {

return root;
}

. You have a tree (not Binary) and you want to print the values of all
the nodes in this tree level by level.

. Here is a tree. It’s a binary tree but in no particular order. How do
you write this tree to a file so that it can be reread in an reconstructed
exactly as shown?

. Here is a graph of distribution centers and the weight to go from one to
another. How would you represent this using a data structure? Code
an algorithm that allows me to check if there is a path from one node
to another and what the weight of this path is.

. Determine whether a graph is acyclic. Use the Floyd algorithm
to find all shortest path within the adjacency algorithm. If any element
on the main diagonal ends up being non-infinity, you know there is a
cycle in the graph.

http://wuw.spellscroll.com 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

If you want a simple algorithm, just take the 0-1 adjacency matrix and
calculate its N+1 power, if it is an N x N matrix. If the result is all
zeroes then there are no cycles. Otherwise there are.

e If the graph has no nodes, stop. The graph is acyclic.

e If the graph has no leaf, stop. The graph is cyclic.

e Choose a leaf of the graph. Remove this leaf and all arcs going
into the leaf to get a new graph.

e Go to 1.

In a general tree, how would you find the lowest common ancestor of
two nodes that are given to you as parameters?

If there are two structs, TreeNode and Tree. TreeNode contains 3
elements, data, IChild and rChild. Tree contains 2 elements, int size
and TreeNode *root. The tree is a complete tree. So how to find a
O(logN) approach to insert a new node.

Design an algorithm and write code to serialize and deserialize a binary
tree/graph

Given two binary trees, find whether or not they are equal. Being equal
means that they have the same values and same structure.

Given a binary tree, write code to check whether it is a binary search
tree or not.

Design a graph class. Write the C++ interface for it.
Given a binary tree, convert it into a doubly linked list in place.

Given a binary tree with nodes, print out the values in pre-order/in-
order/post-order without using any extra space.

Write a function to find the depth/width of a binary tree.

How do you represent an n-ary tree? Write a program to print the
nodes of such a tree in breadth first order.

Implement a breadth first traversal of a (binary) tree.

Find the n-th node in an in-order search of a tree.

http://www.spellscroll.com

20 1.3. STRING MANIPULATION PROBLEMS

19. Given a binary tree with the following constraints: a) A node has either
both a left and right child OR no children b) The right child of a node
is either a leaf or NULL. write code to invert this tree.

20. What is a balanced tree?

21. Given a graph (any type - Directed acyclic graph or undirected graphs
with loops), find a minimal set of vertices which affect all the edges of
the graph.

An edge is affected if the edge is either originating or terminating from
that vertex.

22. Tree search algorithms. Write BFS and DFS code, explain run time
and space requirements. Modify the code to handle trees with weighted
edges and loops with BFS and DFS, make the code print out the path
to goal state.

23. Suppose you have N companies, and we want to eventually merge them
into one big company. How many ways are there to merge?

1.3 String Manipulation Problems

Problems 1-4 and accompanying discussions are taken from the book [Mon07].

1. [Find the first nonrepeated character| Write an efficient function
to find the first nonrepeated character in a string.

e Algorithm outline:

First, build the character count hash table:

For each character
If no value is stored for the character. store 1
Otherwise, increment the value

Second, scan the string:
For each character

Return character if count in hash table is 1

If no characters have count 1, return null

e Code

public static Character fiestNonRepeated (String str)

{
Hashtable charHash = new HashTable();

http://wuw.spellscroll.com 21

int i, length;

Character c’

Object seenOnce = new Object();
Object seenTwice = new Object();

length = str.length();
//Scan str, building hash table
for (i=0; i< length; i++) {
¢ = new Character(str.charAt(i));
Object o = charHash.get(c);
if (o==null) {charHash.put(c, seenOnce);}
else if (o==seenonce) {
charHash.put(c, seenTwice);

3

for (i=0; i< length; i++){
¢ = new Character(str.charAt(i));
if (charHash.get(c) == seenOnce)
return c;

b

return null;

}

A (significantly) further speedup could be achieved by implement-
ing a faster char to Character mapping, possibly using an array to
cache the mappings, or at least the most frequent mapping (such
as for ASCII characters). Or use a hash table implementation that
could directly store character char values.

2. [Remove Specified Characters] Write an efficient function that
deletes characters from a string. Use the prototype

string removeChars(string str, string remove);

where any character existing in remove must be deleted from str. Jus-
tify any design decisions you make and discuss the efficiency of your
solution.

e Algorithm outline O(m+n):
1. Set all the elements in your lookup array to false.

2. Iterate through each character in remove, setting the corre-
sponding value in the lookup array to true.

http://www.spellscroll.com

22

1.3. STRING MANIPULATION PROBLEMS

3. Iterate through str with a source and destination index, copying
each character only if its corresponding value in the lookup array
is false.

e Code

string removeChars(string str, string remove){
char[] s = str.toCharArray();
char[] r = remove.toCharArray();
bool[] flags = new bool[128]; //assume ASCII!
int len = s.Length;
int src, dst;

//Set flags for characters to be removed
for (src=0; src<len; ++src){
flags[r[srcl] = true;
}
src = 0; dst = 0;
//Now loop through all the characters,
//Copying only if they are not flagged
while (src<len){
if ('flags[(int)s[src]]) { sldst++] = s[srcl;}
++src;
}

return new string(s,0,dst);

3. [Reverse Words] Write a function that reverses the order of the words

in a string. For example, your function should transform the string “Do
or do not, there is no try.” to “try. no is there not, do or Do”. Assume
that all words are space delimited and treat punctuation the same as
letters.

. [Integer/String Conversions] Write two conversion routines. The

first routine converts a string to a signed integer. You may assume that
the string only contains digits and the minus character(’-’), that it is
a properly formatted integer number, and that the number is within
the range of an int type. The second routine converts a signed integer
stored as an int back to a string.

. Suggest an algorithm to find the first non-repeating character in a given

string.

http://wuw.spellscroll.com 23

6.
7.

10.

11.
12.

13.

14.

15.

Write code to tokenize a string.

If you are given a number as a parameter, write a function that would
put commas after every third digit from the right.

Implement the unix command WordCount (wc) using language of your
choice. The method takes a string and returns the number of words in
the string, number of chars and the number of lines.

Write a function that returns the longest run of a letter in a string. e.g.
“ccec” in the string “abceccedef”.

Write an atoi() function for decimal. Once this was done, generalize it
for any radix.

Write a program to convert a decimal number to Roman numerals.

Algorithm and code to detect occurrence of a string(patterns) in an-
other string ex: aab, aababa.

Write a function that returns the longest palindrome in a given string.
e.g “ccddec” in the string “abaccddccefe”.

Develop an algorithm for printing different permutations of the string.
Try both recursive and non recursive solution.

Write a function that takes a string and converts '%20’ sequences to
spaces (in place).

1.4 Recursion Problems

Problems 1-4 and accompanying discussions are taken from the book [Mon07].

1.

[Binary Search] Implement a function to perform a binary search on
a sorted array of integers to find the index of a given integer. Use this
method declaration.

int binarySearch(int[] array, int lower, int upper, int target);
Comment on the efficiency of this search and compare it with other

search methods.

[Permutations of a String| Implement a routine that prints all pos-
sible orderings of the characters in a string. Treat each character in
the input string as a distinct character, even if it is repeated. Given

http://www.spellscroll.com

24 1.5. PROBLEMS ON SEARCHING AND SORTING

the string “aaa”, your routine should print “aaa” six times. You may
print the permutation in any order you choose.

3. [Combinations of a String] Implement a routine that prints all pos-
sible combinations of the characters in a string. These combinations
range in length from one to the length of the string. Two combinations
that differ only in ordering of their characters are the same combina-
tions.

4. [Telephone Words| Write a routine that takes a seven-digit telephone
number and prints out all of the possible “words” or combinations of
letters that can represent the given number. Because the 0 and 1 keys
have no letters on them, you should change only the digits 2-9 to letters.
You'll be passed an array of seven integers, with each element being one
digit in the number. You may assume that only valid phone numbers
will be passed to your routine. You can use the helper routine

char getCharKey(int telephoneKey, int place)

which takes a telephone key (0-9) and a place of either 1,2,3 and re-
turns the character corresponding to the letter in that position on the
specified key.

5. Code a function that returns the n-th fibonacci number. Do it in the
most efficient way by using 3 variable. What are the pros and cons of
your(iterative) approach and recursive approach.

1.5 Problems on Searching and Sorting
Recommended readings: [Knu98al; Knu98b: Ben99; [Gus97]

1. How do you merge n sorted lists with average length K in O(n*log(K))
time?

http://wuw.spellscroll.com 25

2. Implement a binary search in a sorted array.

int binarysearch(DataType t) {
int 1, u, m;
1 =0;
u = n-1;
while (1 <= u) {
m=(1+u / 2;
if (x[m] < %)

1 = mt+1;
else if (x[m] == t)
return m;
else /x x[m] > t */
u=m1;
}
return -1;

3. Design an algorithm and write code to find two numbers in an array
whose sum equals a given value.

4. Given a list of numbers and a target sum, how would you efficiently
determine whether a pair of numbers from the list can add up to the
target sum? (list based approach is O(n?) while hash-table based ap-
proach is O(n))

5. Given an array of integers, find the contiguous sub-array with the
largest sum.

6. Suppose you have an N x N matrix of positive and negative integers.
Write some code that finds the sub-matrix with the maximum sum of
its elements.

7. How to find the two numbers whose difference is minimum among the
set of numbers.

8. Given an array of length N containing integers between 1 and N, de-
termine if it contains any duplicates.

9. Design an algorithm to find duplicates in an array. Discuss different
approaches.

http://www.spellscroll.com

26

1.5. PROBLEMS ON SEARCHING AND SORTING

10

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

How would you detect a repeated element in an integer array. Discuss
various solutions and the order of the algorithm.

Write a program to remove duplicates from a sorted array.

Sort an array of size n containing integers between 1 and K, given a
temporary scratch integer array of size K.

You have a fixed list of numbers. Now given any other list, how can
you efficiently find out if there is any element in the second list that is
an element of the first list (fixed list).

Given 2 files, each with names of thousands of customers who bought
something from Amazon.com on that particular day. Find the common
customers (i.e. common names in filel and file2)

If you are given a set of 1000 integers in a set A , and 10,000,000
integers in a set B, how would you create a set C that would only
contain numbers that are both in A and B?

Find the intersection of 2 sorted integer arrays. What if one of them is
huge? What if one of them is so huge, it can’t fit in memory. How do
you minimize the number of disk seeks?

From K sorted arrays, each of size N, how would you construct one big
array, and what would the big-O of the procedure be? What if you
only had memory of size 2N.

You have a file with millions of lines of data. Only two lines are identi-
cal; the rest are all unique. Each line is so long that it may not even fit
in memory. What is the most efficient solution for finding the identical
lines?

Design an algorithm to find the 100 shortest distances to stars in the
universe.

Given 1 million customer addresses, how to store and search them
efficiently. Suppose you can search the address by phone number or
name or account number.

Given two log files, each with a billion usernames (each username ap-
pended to the log file), find the usernames existing in both documents
in the most efficient manner? Use pseudo-code or code. If your code
calls pre-existing library functions, create each library function from
scratch.

http://wuw.spellscroll.com 27

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

You have 50,000 html files, some of which contain phone numbers. How
would you create a list of all the files which contain phone numbers?

Given a file containing approx 10 million words, Design a data structure
for finding all the anagrams in that set.

Design an algorithm to find the most user viewed pages.

You're looking for a set of words in a file. Return the location of the
shortest excerpt containing all of these target words.

Given a unsorted queue, sort it via using another queue and some
variable. what if use stack instead of queue?

What method would you use to look up a word in a dictionary?

You have a collection of numbers that’s so big that it would not fit
onto one single computer. It is therefore scattered across N number
of machines, with roughly L number of numbers in each machine, how
would you find the median in this entire collection?

Design an algorithm which can find all the dictionary words correspond
to a n-digit telephone number, assuming each digit maps to several
alphabet letter.

What is the best and worst performance time for a hash tree and binary
search tree?

If you had a million integers how would you sort them efficiently, and
how much memory would that consume? (modify a specific sorting
algorithm to solve this)

Find or determine non existence of a number in a sorted list of N
numbers where the numbers range over M, M >> N and N large
enough to span multiple disks. Algorithm to beat O(logn); bonus
points for a constant time algorithm.

How do you put a Binary Search Tree in an array in a efficient manner?

How do you find out the fifth maximum element in a Binary Search
Tree in an efficient manner?

Given two sequences of items, find the items whose absolute number
increases or decreases the most when comparing one sequence with the
other by reading the sequence only once.

http://www.spellscroll.com

28

1.6. PROBLEMS ON NUMBERS

36

37.

38.

39.

40.

41.

Given that you have one string of length N and M small strings of length
L. How do you efficiently find the occurrence of each small string in the
larger one?

Given That One of the strings is very very long, and the other one
could be of various sizes. Windowing will result in O(N+M) solution
but could it be better? May be NlogM or even better?

You are given a small sorted list of numbers, and a very very long sorted
list of numbers - so long that it had to be put on a disk in different
blocks. How would you find those short list numbers in the bigger one?

Given a file of 4 billion 32-bit integers, how to find one that appears at
least twice?

Write a program for displaying the ten most frequent words in a file
such that your program should be efficient in all complexity measures.

Given an array, i) find the longest continuously increasing subsequence.
ii) find the longest increasing subsequence.

You are given with three sorted arrays (in ascending order), you are re-
quired to find a triplet (one element from each array) such that distance
is minimum. Distance is defined like this : If a[i], b[j] and c[k] are three
elements then distance=max(abs(a[i]-b[j]),abs(ali]-c[k]),abs(b[j]-c[k])).
Please give a solution in O(n) time complexity.

1.6 Problems on Numbers

. Design an algorithm to find the £th number divisible by only 3 or 5 or

7 i.e the only factors of these numbers should be 3,5 and 7.

Write a function that prints out all sets of consecutive integers that add
up to all and any numbers within a given range. For example, given a
range of 4-9, your function must print out the fact that 5 =2+ 3,6 =
14+24+3,7=3+49=24+3+4,9=4+5.

Write a function to determine whether a number is a power of two
(used a bit-shifting based algorithm).

Describe an algorithm to find out if an integer is a square? (e.g. 16 is,
15 isn’t)

http://wuw.spellscroll.com 29

D.

6.

Given a function that returns a random number between 1-5, write one
that returns a random number between 1-7.

Given a number, describe an algorithm to find the next number which
is prime.

7. Write a function that outputs an integer in ASCII format.

1.7 Geometry Problems

1.

In a plane, n points are given i.e. the input is (x1,v1), (2, y2), - (Tn, Yn)-
Now given these npoints, find the maximum number of collinear points.

There is a convex polygon with n vertices. Given a point, determine
whether this point is inside the polygon.

Given n points in the plane, find the pair that is closet together.

How many lines can be drawn in a 2D plane such that they are equidis-
tant from 3 non-collinear points ?

1.8 Miscellaneous Problems

Implement a queue in an array.

How would you implement a stack to achieve constant time for “push”,
“pop” and “find minimum” operations?

Implement division (without using the divide operator, obviously).

Develop an algorithm to find out all valid combinations of n brackets.
Like for n =3 possible combinations can be ((())) or ()()() or (()()) and

SO on.

You need read a lot of records, you don’t know how many records here
before you complete it. After you read all those records, you need select
k record randomly. In another words, every record has same chance to
be selected. The memory is limited, that means you cannot store all
those records at one time.

Your input is a string which is composed from bracket characters.
The allowed characters are: ()[[{} <>. Your mission is to determine

http://www.spellscroll.com

30

1.8. MISCELLANEOUS PROBLEMS

whether the brackets structure is legal or not. Example of a legal ex-
pression: ([J(< {} >)). Example of an illegal expression: ({<) >}.
Provide the most efficient, elegant and simple solution for that prob-
lem.

. An array of integers of size n. Generate a random permutation of the

array, given a function rand n() that returns an integer between 1 and
n, both inclusive, with equal probability. What is the expected time of
your algorithm?

. How could a linked list and a hash table be combined to allow someone

to run through the list from item to item while still maintaining the
ability to access an individual element in O(1) time?

. Shuffling

/*
* get_shuffle --
* Construct a random shuffle array of t elements
*/
static size_t * get_shuffle(size_t t) {
size_t *shuffle;
size_t i, j, k, temp;

shuffle = emalloc(t * sizeof(size_t));

for (i = 0; i < t; i++)
shuffle[i] = i;

/*

* This algorithm is taken from D. E. Knuth,

* The Art of Computer Programming, Volume 2:
* Seminumerical Algorithms, 2nd Ed., page 139.
*/

for (j =t -1; j>0; j—) {
k = arc4random() % (j + 1);
temp = shufflel[j];
shuffle[j] shuffle[k];
shuffle[k] temp;

http://wuw.spellscroll.com 31

return shuffle;

10. You have a stream of infinite queries (ie: real time Google search queries

11.

12.

that people are entering). Describe how you would go about finding a
good estimate of 1000 samples from this never ending set of data and
then write code for it.

There are a set of n integers. Describe an algorithm to find for each of
all its subsets of n-1 integers the product of its integers.

Given a set of coin denominators, find the minimum number of coins
to give a certain amount of change.

http://www.spellscroll.com

32

1.8. MISCELLANEOUS PROBLEMS

Bibliography

[Ben99)]

[Cor01]

[Das06]

[Gus97]

[Kle05]

[Knu98a]

[Knu9sb

[Mon07]

J. Bentley. Programming Pearls. ~ ACM Press, 2nd edn.,
1999. Buy at Amazon.com: http://www.amazon.com/exec/obidos/
ASIN/0201657880/spellscrollco-20.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2nd edn.,
2001. Buy at Amazon.com: http://www.amazon.com/exec/obidos/
ASIN/0262032937/spellscrollco-20.

S. Dasgupta, C. H. Papadimitriou, and U. Vazirani. Algorithms.
McGraw-Hill, 2006. Buy at Amazon.com: http://www.amazon.com/
exec/obidos/ASIN/0073523402/spellscrollco-20.

D. Gusfield. Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge University Press,
1997. Buy at Amazon.com: http://www.amazon.com/exec/obidos/
ASIN/0521585198/spellscrollco-20.

J. Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley,
2005. Buy at Amazon.com: http://www.amazon.com/exec/obidos/
ASIN/0321295358/spellscrollco-20.

D. E. Knuth. The Art of Computer Programming, Volume 1:
Fundamental Algorithms. Addison-Wesley Professional, 2nd edn.,
1998. Buy at Amazon.com: http://www.amazon.com/exec/obidos/
ASIN/0201896834/spellscrollco-20.

D. E. Knuth. The Art of Computer Programming, Volume 3:
Sorting and Searching. Addison-Wesley Professional, 2nd edn.,
1998. Buy at Amazon.com: http://www.amazon.com/exec/obidos/
ASIN/0201896850/spellscrollco-20.

J. Mongan, N. Suojanen, and E. Giguére. Programming Interviews
FExposed: Secrets to Landing Your Next Job. Wrox, 2nd edn.,

http://www.amazon.com/exec/obidos/ASIN/0201657880/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0201657880/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0262032937/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0262032937/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0073523402/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0073523402/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0521585198/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0521585198/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0321295358/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0321295358/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0201896834/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0201896834/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0201896850/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0201896850/spellscrollco-20

34

BIBLIOGRAPHY

[Sed01]

2007. Buy at Amazon.com: http ://www.amazon.com/exec/obidos/
ASIN/047012167X/spellscrollco-20.

R. Sedgewick. Algorithms in C++, Parts 1-5: Funda-
mentals, Data Structure, Sorting, Searching and Graph Al-
gorithms. Addison-Wesley Professional, 3rd edn., 2001.
Buy at Amazon.com: http://www.amazon.com/exec/obidos/ASIN/
0201756080/spellscrollco-20.

http://www.amazon.com/exec/obidos/ASIN/047012167X/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/047012167X/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0201756080/spellscrollco-20
http://www.amazon.com/exec/obidos/ASIN/0201756080/spellscrollco-20

	Contents
	Data Structures and Algorithms
	Linked List Problems
	Problems on Trees and Graphs
	String Manipulation Problems
	Recursion Problems
	Problems on Searching and Sorting
	Problems on Numbers
	Geometry Problems
	Miscellaneous Problems

	Bibliography

