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Abstract: We present a new type of sat problem called the k-gd-sat, which gen-
eralizes k-sat and gd-sat. In k-gd-sat, clause lengths have geometric distribution,
controlled by a probability parameter p; for p = 1, a k-gd-sat problem is a k-sat
problem. We report on the phase transition between satisfiability and unsatisfiability
for randomly generated instances of k-gd-sat. We provide theoretical analysis and
experimental results suggesting that there is an intriguing relationship (linear in the
parameter 1/p) between crossover points for different parameters of k-gd-sat. We also
consider a relationship between crossover points for k-sat and k-gd-sat and provide
links between these values.
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1 Introduction

The phenomenon of phase transition in sat and in other np-complete problems is

one of the most intriguing problems linking logic and computer science. There is

still no full understanding of this phenomenon. Phase transition in np-complete

problems has been deeply explored since the first results in the early 90’s (see,

for instance, [21]). Investigating phase transition in np-complete problems gives

insight into the famous np=p problem. Most of the research in this area has been

devoted to different variants of the sat problem, especially k-sat, a typical np-

complete problem. For different variants of the sat problem, experimental data

1 This work was supported by the Ministry of Science of the Republic of Serbia, grant
144030.



suggests that there is a phase transition (occurring around a crossover point)

between satisfiable and unsatisfiable formulae: a transition, in the parameter

ratio between the number of clauses and the number of variables, from almost all

satisfiable formulae to almost all unsatisfiable formulae. Experimental data also

suggests that the hardest instances of the sat problem for all decision procedures

are those around the crossover point.

In this paper we introduce a random k-gd-sat model, a generalisation of the

random k-sat. We present experimental results confirming a phase transition for

this problem and present results about the relationship between crossover points

for random k-gd-sat with different parameters. We also consider the relationship

between crossover points for k-sat and k-gd-sat. We build this work on some

results from [15] and extend them in several directions. In [15], a model gd-sat

is considered, which is a special case of k-gd-sat (when k = 2). Experimental

results for gd-sat from [15] are extended to much larger values of 1/p. The

linearity of the crossover curve for gd-sat was shown in [15], and in this paper

we generalise it for k-gd-sat and prove an upper bound. We also give possible

relationships between crossover points for k-sat and k-gd-sat, properties that

cannot be discussed in the context of the gd-sat model. We know of no other

work dealing with random sat formulae with geometric distribution of clause

lengths.

In this paper, we concentrate on the satisfiability functions for k-gd-sat and

on locating the crossover point. We do not analyze computational complexity

issues or performance of sat solvers on k-gd-sat.

Overview of the paper: The rest of the paper is organized as follows: in Section

2 we give some background information about the sat problem, phase transi-

tion, and sat solvers. In Section 3 we introduce k-gd-sat, provide experimental

results for its phase transition, prove the upper bound for crossover points (§3.1);

discuss 50% satisfiability points (that approximate crossover points) (§3.2); an-

alyze their behavior for N = 1 (§3.3); for N > 1 (§3.4); and approximate the

crossover points for k-gd-sat on the basis of a hypothesis from the literature.

In Section 4 we establish a relationship between crossover points for k-sat and

k-gd-sat on the basis of a conjecture from the literature (§4.1) and on the basis

of our experimental results (§4.2). In Section 5 we draw some final conclusions

and discuss future work.

2 Background

In this section we give a brief overview of the sat problem, phase transition, and

sat solvers.



2.1 sat Problem

The boolean satisfiability problem (sat) is the problem of deciding if there is a

truth assignment under which a given propositional formula (in conjunctive nor-

mal form) evaluates to true. Cook showed that sat is np-complete [3]. This was

the first known example of an np-complete problem, and it is still regarded as the

canonical np-complete problem. Practical applications reinforce the importance

of the sat problem, since many difficult real-world problems in AI planning,

circuit satisfiability, and software verification can be efficiently reformulated as

instances of sat. Therefore, good sat solvers are of great importance and much

research is devoted to finding efficient sat algorithms.

In the k-sat problem, all clauses have length k. It is known that k-sat is

np–complete for k > 2. There is a polynomial decision procedure for the 2-sat

problem (i.e., 2-sat ∈ P ) [11].

The recent advances in research in this area and some of the current problems

in different subareas are given in [18].

2.2 sat Solvers and zChaff

There is a number of different sat solvers (for a survey, see [13]). Most of the

state-of-the-art complete sat solvers are based on the branch and backtracking

algorithm called the Davis-Logemann-Loveland algorithm [5] (sometimes called

the DPLL algorithm for historical reasons). Some of the algorithms also use

heuristic local search techniques, but this makes them incomplete (they are not

certain to find a satisfying assignment if one exists). Many modern DLL-based

solvers use a pruning technique called learning. This technique extracts and

memorizes information from the previously searched space to prune the search

in the future. Also, in order to improve the efficiency of the system, techniques

such as preprocessing, sophisticated branching heuristics, and random restarts

are used (for a survey, see [24]). There are currently many sat packages available.

One of them, the zChaff solver [22], employs efficient pruning techniques, is

highly optimized, and achieves very good results in practice. For that reason we

chose it as the sat solver for our experiments. All experimental results presented

in the rest of the paper were obtained by using zChaff sat solver.

2.3 Worst Case and Average Case Performance for sat Solvers

The theory of np–completeness is based on worst–case complexity. However, the

theory of average–case complexity can better explain the behavior of sat solvers

in practice. For this, a probability distribution on formulae for each input length

is required. There are two families of “random formulae”: one based on fixed

clause lengths and the other based on random clause lengths.



The first average-case analysis of sat was given by Goldberg [12] on random

clause length formulae. Formulae from his random clause length model (called

the fixed density model), over a set of N variables, are constructed in the following

way: for each of the L clauses, include each of the 2N literals with probability p

(where p and L may be functions of N). It follows from Goldberg’s work that, for

any value of p, DPLL solves these formulae in time O(LN 2) on average. Later,

Franco and Paull [6] showed that this was a consequence of a favorable choice

of distribution, rather than favorable properties of DPLL: a constant number of

guesses of random truth assignments will find one that satisfies an instance from

this family with probability tending to 1 as N grows. Deterministic algorithms

are now known which solve instances of the fixed density problem in polynomial

time on average for all but a vanishingly small part of the parameter space.

The formulae not yet known to be solvable efficiently in the average case occur

roughly when the expected clause length is a little less than ln(L) [7].

Fixed clause length formulae over N variables are generated by selecting

clauses uniformly at random from the set of all possible (and nontrivial) clauses

of a given length k. We call this model the random k-sat. Franco found that the

fixed clause length formulae took exponential time on average for DPLL when

finding all solutions [6]. The empirical performance of a version of DPLL on

random 3-sat was investigated in [21]. When L/N is small (less than 3) most

instances are very quickly solved. When L/N is large (more than 6) instances

are harder than those at small ratios, but only moderately. In the region between

these ratios, the average difficulty is dramatically greater. Also between these

ratios, the probability of satisfiability shifts smoothly from near 1 to near 0.

Worst-case analysis can be important for the problem of finding sets of hard

instances of the sat problem. Finding sets of hard instances of sat is of inter-

est for understanding the complexity of sat, and for experimentally evaluating

sat solvers. For instance, cryptography hash functions can be used for generat-

ing both hard satisfiable and hard unsatisfiable propositional formulae [17]. An

overview of techniques for generating hard instances of the sat problem is given

in [4].

As said, in this paper we will not concentrate on computational complexity

issues or on performance of sat solvers but on the satisfiability function and

crossover points for the model that we propose.

2.4 Phase Transition and Crossover Points in Random sat Problems

Experimental results suggest that there is a phase transition in sat problems

between satisfiability and unsatisfiability as the ratio of the number of clauses to

the number of variables is increased [21]. It is conjectured that for different types

of problem sets (based on specific distributions of clause lengths and distributions

of literals within one clause) there are values c0 of L/N , which we call phase



transition points such that:

lim
N→∞

s(N, [cN ]) =

{
1, for c < c0

0, for c > c0
,

where s is a satisfiability function that maps sets of propositional formulae (of L

clauses over N variables) into the segment [0, 1] and corresponds to a percentage

of satisfiable formulae. As mentioned in §2.3, experimental results also suggest

that in all sat problems there is a typical easy-hard-easy pattern as the ratio

L/N is increased, while the most difficult sat formulae for all decision procedures

are those in the crossover region.

For a random k-sat, experiments suggest that the phase transition occurs

at2 c3 ≈ 4.17±0.05, c4 ≈ 9.75±0.05, c5 ≈ 20.9±0.1, c6 ≈ 43.2±0.2 (ck denotes

a crossover point for k-sat) [19]. Figure 1 (left) shows a satisfiability function

experimentally approximated for 3-sat, for 25, 50, 75, and 100 variables. Non-

rigorous results based on techniques from statistical physics give the estimates

c2 = 1, c3 ≈ 4.267, c4 ≈ 9.931, c5 ≈ 21.117, c6 ≈ 43.37, c7 ≈ 87.79 [20]. In [2],

there are rigorous bounds for ck given: 2k ln 2 − k ≤ ck ≤ 2k ln 2 (see Figure 1

(right)). Although 2-sat ∈ P , there is a phase transition in 2-sat, as for k-sat

for k > 2. Goerdt proved that the crossover point for 2-sat problem is 1 [11].

Friedgut proved that the transition region for k-sat problems narrows as the

number of variables increases [8]. However, this still does not prove that the

crossover points for k-sat exist.

In random mixed sat [10], each clause is generated as in random k-sat except

that the length of clauses is chosen randomly according to a finite probability

distribution φ on integers. For instance, if φ(2) = 1/3 and φ(4) = 2/3, clauses of

length 2 appear with the probability 1/3 and clauses of length 4 with the prob-

ability 2/3 (this problem is then called 2, 4, 4-sat). For instance, the crossover

point for 2, 3-sat is estimated at 1.75, and for 2, 4, 4-sat at 2.74 [10].

In the 2 + p-sat model [1], a formula with L clauses has (approximately)

(1 − p)L clauses of the length 2 and pL clauses of the length 3 (0 ≤ p ≤ 1).3

Hence, this model smoothly interpolates between 2-sat and 3-sat. For p ≤ 2/5,

the crossover point is at 1/(1 − p), while for p > 2/5, the crossover point is

between 24p
(p+2)2 and min(1/(1−p), r), where r is the solution of (7.6)rp(3/4)r(2−

e−r(2/3−5p/21)) = 1.

In the fixed density model (or the constant probability model as called in [14]),

given N variables and L clauses, each clause is generated so that it contains

each of 2N different literals with probability p. For instance, for p = 1.5N , the

crossover point is estimated to be around 2.8 [10].

2 It was shown that allowing repeating variables in clauses does not influence the
satisfiability function for formulae with a large number of variables [16].

3 This model is closely related to the random mixed sat and can be considered as its
special case.



0 1 2 3 4 5 6 7

1

L/N

sat

N = 25
N = 50

N = 75
N = 100

c3

0 1 2 3 4 5 6 7

10

20

30

40

c2

c3

c4

c5

c6

k

L/N

Figure 1: Experimentally approximated satisfiability function for 3-sat problem,

for N = 25, 50, 75, 100 (left); Experimental estimates for ck and rigorous lower

(thin) and upper (thick) bound (right)

The relation between different crossover points is conjectured in [10]: if φ(k)

is a distribution on clause lengths, cφ the crossover point for that sat model,

and ck (k = 2, 3, . . .) the crossover points for k-sat, then it holds that4:

1

cφ
=

∞∑

i=2

φ(i)

ci
(1)

3 Random k-gd-sat Model

We consider a family of random sat problems based on geometric distribution

of clause lengths, denoted by k-gd-sat. In this model, the generation of clauses

over the set of N variables, for the probability parameter p (0 < p ≤ 1), is

specified by the stochastic context–free grammar given in Table 1.5 Clauses are

generated independently of each other.

By the given stochastic grammar for k-gd-sat, only clauses of length equal

or greater than k can be generated. Lengths of clauses in the k-gd-sat model

have a geometric distribution; the probability of a clause of length l is p(1 −

p)l−k, for l ≥ k, and is equal to 0, for l < k. According to the properties of

4 This estimate, for the sat problem, is a more refined version of the generic estimate
given in [9].

5 A stochastic context–free grammar is a context–free grammar with a stochastic com-
ponent that attaches a probability to each of the production rules and controls its
use.



# Rule Probability

1. 〈clause〉 := 〈clause〉 ∨ 〈literal〉 1 − p

2. 〈clause〉 := 〈literal〉 ∨ 〈literal〉 ∨ . . . ∨ 〈literal〉
︸ ︷︷ ︸

k

p

3. 〈literal〉 := 〈variable〉 | ¬〈variable〉 0.5

4. 〈variable〉 := v1 | v2 | . . . | vN 1/N

Table 1: Stochastic grammar for generating k-gd-sat clauses

geometric distribution, the most probable clause length in k-gd-sat is k (with

the probability p), while the expected clause length can be shown to be equal

to k − 1 + 1/p. For p = 1, the k-gd-sat model is exactly the random k-sat

model. For p = 1, the 2-gd-sat model is exactly the 2-sat model and, hence, it

belongs to the class p. For any fixed p such that p < 1, k-gd-sat is np-complete.

As p decreases, 2-gd-sat problems smoothly interpolate between 2-sat and np-

complete 2-gd-sat problems. This makes k-gd-sat convenient for exploring a

computational cost for directly linked p and np-complete problems (in a similar

manner as in 2 + p-sat). Since it uses the probability parameter p, k-gd-sat

has some similarities with the fixed density model, but they have substantially

different distributions of clause lengths and different crossover points.

Our experiments show that there is a phase transition between satisfiability

and unsatisfiability in k-gd-sat,6 for a range of values of k and of the probability

parameter p. Figure 2 shows satisfiability function for random k-gd-sat, for

k = 2, p = 1/2, and for N = 25, 50, 75, 100. Percentage of satisfiable formulae is

shown (as usual) against parameter L/N ; for each N , in each L/N point, there

were 1000 formulae randomly generated.

Hereafter, we will let c(k, p) denote a crossover point for k-gd-sat with the

probability parameter p. The following analysis, both theoretical and experi-

mental, suggests that there is a linear relationship, in parameter 1/p, between

crossover points c(k, p).

3.1 Upper Bounds for Crossover Points

Upper bounds for crossover points for the k-sat problem can be established

following the approach from [2]. We consider the k-sat formulae with L clauses,

over N variables. Let us fix any truth assignment (out of 2N ) and observe that a

random k-sat clause is satisfied by it with probability 1−2−k. Since constraints

are chosen independently, the expected number of satisfying truth assignments

6 All experimental data and programs used to obtain them are available upon request
from the first author.
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Figure 2: Satisfiability function for random k-gd-sat, for k = 2, for p = 1/2,

and for N = 25, 50, 75, 100

for a formula with L clauses and N variables is at most

2N
(
1 − 2−k

)L
.

For large k, 2N
(
1 − 2−k

)L
= 2N

(
1 + −1

2k

)2kL/2k

is close to eN ln 2−L/2k

and,

therefore, less than 1 for N ln 2 − L/2k < 0 i.e., for L/N > 2k ln 2. Therefore,

the crossover point for k-sat is less or equal to 2k ln 2.

The same approach can be applied to k-gd-sat. We consider random formu-

lae of k-gd-sat problem with parameter p, and with L clauses over N variables.

Let us fix any truth assignment (out of 2N ) and observe that a random k-gd-sat

clause is satisfied by it with the following probability (sum for different clause

lengths):
∞∑

l=0

(

1 − 2−(k+l)
)

p(1 − p)l .

This value is equal to

∞∑

l=0

p(1 − p)l −

∞∑

l=0

2−(k+l)p(1 − p)l = p ·
1

1 − (1 − p)
− 2−kp

∞∑

l=0

(
1 − p

2

)l

=

1 − 2−kp
1

1 − 1−p
2

= 1 − 2−k 2p

1 + p
= 1 − 2−(k−log2(

2p

1+p)) .

Hence, the expected number of satisfying truth assignments for a formula with

L clauses, and over N variables, is at most

2N
(

1 − 2−(k−log2(
2p

1+p ))
)L

.



Following the same argument as above, we conclude that the crossover point

c(k, p) for k-gd-sat with parameter p is less or equal to

2(k−log2(
2p

1+p )) ln 2 =
2k

2p
1+p

ln 2 =
1 + p

2p
2k ln 2 .

Therefore, we have shown that the upper bound for k-gd-sat with parameter

p is
(

1

2
+

1

2p

)

2k ln 2 = 2k−1 ln 2/p + 2k−1 ln 2 . (2)

Note that this function is linear in parameter 1/p. Of course, for p = 1, the

above upper bound for k-gd-sat becomes the upper bound for crossover points

for k-sat.

It is known that the upper bound for k-sat is asymptotically tight and can

approximate crossover points [2]. On these grounds, it is possible that the above

upper bound for k-gd-sat is also asymptotically tight and can approximate

crossover points for k-gd-sat.

3.2 50% Satisfiability Points

We are interested in a relationship between crossover points for different values

of p (for a fixed k). For that purpose, for each p, we consider 50% satisfiability

points, i.e., values of L/N for which there are 50% satisfiable formulae. For

different types of the k-gd-sat problem (for different values of k, p, and N), we

experimentally approximate these 50% satisfiability points in the following way:

– we start with an interval (of values L) wide enough to cover the required point

(i.e., in the left endpoint the percentage of satisfiable formulae is greater

than, and in the right endpoint the percentage of satisfiable formulae is less

than 50%);

– in each iteration, we generate M random k-gd-sat formulae for the param-

eter p over N variables, and calculate the percentage of satisfiable formulae

in the endpoints;

– we narrow the interval by binary search until the distance between the end-

points is 1; then we use linear interpolation for approximating 50% satisfia-

bility point.

Since the phase transition region narrows as N grows, these 50% satisfiability

points converge to the crossover point.7 We consider 50% points obtained in this

way for different values of N and p. First, we consider rigorous results about

these points for N = 1.

7 Alternatively, a crossover point (for a fixed model) can be estimated as a point
at which the percentage of satisfiable formulae is approximately constant for large
values of N .
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3.3 50% Satisfiability Points in k-gd-sat for N = 1

The k-gd-sat formula for N = 1 (with a single variable, a) is unsatisfiable if

and only if it has a clause a ∨ a ∨ . . . ∨ a (we will call it a-clause) and a clause

¬a ∨ ¬a ∨ . . . ∨ ¬a (we will call it ¬a-clause).

Consider the k-gd-sat with probability parameter p and one variable (N =

1). The probability of generating a clause of length k is equal p and the probabil-

ity that that clause is an a-clause is equal to 1/2k. More generally, the probability

of generating a clause of length l (l ≥ n) is p(1−p)l−k, while the probability that

that clause is an a-clause is equal 1/2l. Hence, the total probability of generating

an a-clause is equal to:

∞∑

l=k

1

2l
p(1 − p)l−k =

∞∑

l=k

p

2k

(
1 − p

2

)l−k

=
p

2k−1(p + 1)
.

The probability that a generated formula with L clauses does not have an

a-clause is equal to
(

1 −
p

2k−1(p + 1)

)L

.

The same values apply to ¬a-clauses.

The probability of generating a clause that is neither an a-clause nor an



¬a-clause is equal to:

1 − 2
p

2k−1(p + 1)
= 1 −

p

2k−2(p + 1)
.

The formula is satisfiable if and only if it does not contain both an a-clause

and an ¬a-clause. The probability of such a formula is equal to the sum of the

probability of a formula with no a-clause and the probability of a formula with

no ¬a-clause, minus the probability of a formula with neither an a-clause nor an

¬a-clause:

2

(

1−
p

2k−1(p + 1)

)L

−

(

1−
p

2k−2(p + 1)

)L

i.e.,

sk(1, L) = 2

(

1−
1

2k−1(1 + 1/p)

)L

−

(

1 −
1

2k−2(1 + 1/p)

)L

,

where sk(N, L) is the satisfiability function for the k-gd-sat formulae (over N

variables and with L clauses). Figure 3 shows the function sk(1, L), for different

values of p and k.

If we consider the value of L such that the above probability sk(1, L) is equal

to 50%, then we get the equation: sk(1, L) = 0.5. This relation gives an implicit

function L on the parameter 1/p. The numerical solutions for this equation, for

different values of p and k, are shown in Figure 4 (left). These results suggest that

the 50% satisfiability curves for N = 1 are asymptotically linear in parameter

1/p.

3.4 50% Satisfiability Points in k-gd-sat for N > 1

We performed a series of experiments and obtained experimental approximation

for 50% satisfiability points for different values of k, p, and N .

Figure 5 shows 50% satisfiability points for k-gd-sat, for k = 2, N = 50, and

for 1/p ranging from 1 to 101 by step 1. The points are determined as described

in §3.2, with M = 1000. We determined the line that is the least square fit

(i.e., the line for which the sum of squares of residuals is minimized) and we

measured residuals for all points and for the fit given by this line. This line is

given by y = 0.987281x + 0.558788 (i.e., L/N = 0.987281/p + 0.558788) and

the corresponding residuals are shown in Figure 6 (left). Although there is a

noise in these results due to the relatively small sets of formulae used in the

experiments, all residuals are much less then 1 (on interval from 1/p = 1 to

1/p = 101). Similar results were obtained for other values of k and N . These

results provide further evidence that 50% satisfiability curves for the k-gd-sat

model are (asymptotically) linear (in parameter 1/p).

Figure 6 (right) gives a closer look on the same curve: it shows 50% satisfia-

bility points for k = 2, N = 50, M = 1000, 1/p ranging from 1 to 5 by step 0.01.
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It can be observed that for values 1/p close to 1, the 50% satisfiability points

are below the line y = 0.987281x + 0.558788. Similar interesting behavior was

observed for 2+ p-sat: up to value 0.4 for probability parameter p the crossover

curve behaves as 1/(1−p) (and the problem behaves as in the class P ), and then

it changes its behavior (this change is called second-order phase transition) [1].

We call a crossover curve for the k-gd-sat model a curve determined by

the points (1/p, c(k, p)). As said, for a fixed k and probability parameter p, the

sequence of 50% satisfiability points converges to the crossover point for those

parameters. Consequently, curves determined by 50% satisfiability points (in

parameter 1/p) approach crossover curves, when N grows. If, as suggested by

the above results, 50% satisfiability points belong to lines, the crossover curve

for k-gd-sat for each k is linear, hence we will call it the crossover line.

3.5 Gent/Walsh Conjecture

In k-gd-sat it holds that φ(l) = p(1 − p)l−k (l = 2, 3, . . .), so thanks to the

equation (1) (from §2.4), we can approximate crossover points c(k, p) (for k-

gd-sat, for parameter p): using the estimates c2 = 1, c3 ≈ 4.267, c4 ≈ 9.931,

c5 ≈ 21.117, c6 ≈ 43.37, c7 ≈ 87.79 [20] and ck ≈ 2k ln 2 for k > 7 (these are

upper bounds from [2], the lower bounds give almost identical results), we obtain

an estimation for c(k, p) shown in Figure 4 in parameter 1/p.
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Using the equation (1) and ck ≈ 2k ln 2, we can also estimate the asymptotic

behavior of crossover points c(k, p) in the following way:

1

c(k, p)
≈

∞∑

l=k

p(1 − p)l−k

2l ln 2
=

p

2k ln 2

∞∑

i=0

(
1 − p

2

)i

=
p

2k−1 ln 2(1 + p)

which yields (the estimate is the same as the equality (2)):

c(k, p) ≈

(
1

2
+

1

2p

)

2k ln 2 = 2k−1 ln 2/p + 2k−1 ln 2 . (3)

This result also suggests that the crossover curves for k-gd-sat are linear (in

parameter 1/p).

4 Linking Crossover Points in k-sat and k-gd-sat

In this section we consider the relationship between crossover points for k-sat

and k-gd-sat. The first approach is based on the conjecture by Gent and Walsh

from [10] and the second one is based on our experimental results.
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Figure 6: Residuals from the line L/N = 0.987281/p + 0.558788 of the 50%

satisfiability points for k = 2, N = 50, M = 1000, 1/p ranging from 1 to 101 by

step 1 (left) and of 50% satisfiability points for k = 2, N = 50, M = 1000, 1/p

ranging from 1 to 5 by step 0.01 (right)

4.1 Approach Based on Gent/Walsh Conjecture

The experiments suggest that the crossover curve for k-gd-sat (for a fixed k)

behaves asymptotically as a line (in parameter 1/p). This line can be approx-

imated by experiments or via the crossover points ck for k-sat by conjecture

given by the equation (1). We are also interested in the opposite direction: given

a crossover line for k-gd-sat (for a fixed k), can we compute the crossover points

ck for k-sat?

Following the equation (1), it holds that:

∞∑

l=k

φ(l)

cl
=

1

cφ

where φ(l) is the probability of generating a clause of length l. For the k-gd-sat

model with probability parameter p, it holds that:

∞∑

l=k

p(1 − p)l−k

cl
=

1

c(k, p)

i.e.,

1

ck
(1−p)0+

1

ck+1
(1−p)1+

1

ck+2
(1−p)2+ . . .+

1

cn+1
(1−p)n−1+ . . . =

1

p · c(k, p)
.



For a fixed k, for different values of p (pi), this equality yields systems (in un-

known variables xi) of the form:

x1 + a1x2 + . . . + an−1
1 xn = b1

x1 + a2x2 + . . . + an−1
2 xn = b2

. . . (4)

x1 + anx2 + . . . + an−1
n xn = bn

where a1, a2, . . ., an are distinct real numbers: ai = 1 − pi, bi = 1/(pic(k, pi)),

and xi = 1/(ck+i−1). This system has the following (unique) solution [23]:

xj = (−1)n+j
n∑

i=1

bifij

(ai − a1) . . . (ai − ai−1)(ai − ai+1) . . . (ai − an)

where fij is the sum of all possible products of n − j out of n − 1 numbers a1,

a2, . . ., ai−1, ai+1, . . ., an.

We observed that the crossover curve behaves asymptotically as a line for

large values of 1/p, so we should consider large values of this parameter: let 1/p

take n values between n + 1 and 2n and let bi = 1/(pi(λ/pi + µ)), for values λ

and µ that determine the crossover line λ/pi+µ. If the equation (1) is valid, then

the solutions xi would converge to the values ck (crossover points for k-sat) as

n grows. However, solving this system8 gives solutions such that xj converges to

αβj . Indeed, taking xj = 1/cj to be αβj , the equation (1) becomes:

∞∑

i=k

p(1 − p)i−k

αβi
=

1

c(k, p)

which gives the following linear relationship:

c(k, p) = αβk−1(β − 1)
1

p
+ αβk−1 .

Since the system (4) has a unique solution, it is of the form xj = αβj . Hence, this

approach cannot give exact values for ck for small k (since the ck do not behave as

αβk for small k, although ck+1/ck → 2, for k → ∞). Further, this suggests that

the equation (1) gives good asymptotic estimates, but is not an exact equality. It

gives only an approximate relationship between crossover points for k-sat and

k-gd-sat.

4.2 Approach Based on Experimental Results

We performed a series of experiments aimed at estimating 50% crossover points

for k-gd-sat, for different values of k and p. Since the arguments presented in §3

8 We have developed a special-purpose C++ library for dealing with large numbers
(more precisely, fractions with numerators and denominators that are large numbers)
and solving the system (4) with total precision.



N k = 2 k = 3 k = 4

25 1.0325/p + 0.6933 2.4304/p + 2.1505 5.2235/p + 4.8269

50 0.9860/p + 0.5727 2.4085/p + 1.9873 5.2051/p + 4.8086

75 0.9630/p + 0.6205 2.4027/p + 2.0287 5.0798/p + 4.5017

100 0.9586/p + 0.5243 2.4026/p + 2.0192 n/a

N k = 5 k = 6

25 10.886/p + 10.180 21.884/p + 24.697

50 10.859/p + 10.105 n/a

75 n/a n/a

100 n/a n/a

Table 2: Experimentally approximated 50% satisfiability lines (in the form y =

a(1/p) + b) based on values in 1/p = 10 and 1/p = 50, for k = 2, 3, 4, 5, 6, and

for N = 25, 50, 75, 100.

suggest that there is a linear relationship between 50% crossover points for each

k and N , in order to approximate a line consisting of 50% crossover points, it

suffices to determine two of its points. Because of the considerations (from 3.4)

concerning values 1/p close to 1 for 2-gd-sat, we determine 50% crossover points

(in a way described in §3.2) for 1/p = 10 and 1/p = 50, for k = 2, 3, 4, 5, 6, and

for N = 25, 50, 75, 100. We used M = 5000 for k ≤ 3 or N = 25, while because

of high computational cost we used smaller values for M (1000 or 100) for other

combinations of k and N . For some combinations of k and N we did not perform

full experiments.9

Experimentally estimated 50% satisfiability lines are shown in Figure 7 and

their coefficients (in the form y = a(1/p) + b) are shown in Table 2.

These experimental results suggest that all crossover curves intersect in one

point (or approach a single point) — let it be (xc, yc). On the other hand, since

for p = 1, k-gd-sat becomes k-sat, the crossover line for k-gd-sat passes

through the point (1, ck) (for simplicity, we omit the effect of slightly increased

residuals for k = 2 and 1/p close to 1). Therefore, a crossover line for k-gd-sat

is determined by:

y =
ck − yc

1 − xc
x +

−ckxc + yc

1 − xc
.

i.e.,

c(k, p) =
ck − yc

1 − xc
·
1

p
+

−ckxc + yc

1 − xc
.

9 For instance, for k = 4 and N = 100, processing a single formula for p = 0.1 takes
more than one hour of CPU time on a PC computer working on 1.7 GHz, so it is
very difficult to produce relevant experimental results.
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Figure 7: Experimentally approximated 50% satisfiability points for N =

25, 50, 75, 100, based on values for 1/p = 10 and 1/p = 50, and for k = 2, 3, 4, 5, 6.

If the above hypothesis holds, then we could also use the obtained equation

the other way round: for computing the values ck, on the basis of points on

crossover curves for k-gd-sat:

ck =
p(1 − xc) · c(k, p) − ycp + yc

1 + p
.

For xc = −1 and yc = 0 (values roughly suggested by the experimental

results), we have:

c(k, p) =

(
1

2
+

1

2p

)

ck

and

ck =
2p

p + 1
· c(k, p) .



N k = 2 k = 3 k = 4 k = 5 k = 6

25 2.0033 4.8100 10.3748 21.6436 44.3031

50 1.8969 4.7404 10.3382 21.5818 n/a

75 1.8638 4.7374 10.0545 n/a n/a

100 1.8382 4.7355 n/a n/a n/a

Table 3: Estimates of values ck based on the points on crossover curves for k-

gd-sat for 1/p = 10.

If we replace c(k, p) by the approximation given by 50% satisfiability point

for k-gd-sat (for some fixed N), we will get an approximation for ck. Table 3

shows that these approximations for ck approach their known values. Notice that

the values from Table 3 can also serve as approximations for 50% satisfiability

points for k-sat for given values of N (they are close to the results that can be

obtained experimentally). Of course, the estimate for the common intersection

point (xc, yc) is the subject of further refinement.

Finally, for large values of k, we can approximate ck by 2k ln 2 [2], and we

have the following estimate for c(k, p):

c(k, p) =

(
1

2
+

1

2p

)

2k ln 2 ,

the estimate same to the one given by the equations (2) and (3) from §3.1

and §3.5. This shows that the hypothesis that crossover lines intersect in one

point (or approach a single point) is consistent with the available theoretical

and experimental results.

The above equations (dependent on the given hypotheses) give a simple re-

lationship between all crossover points in k-sat and k-gd-sat. This interesting

relationship is important because knowing crossover points from one model, en-

able us to estimate the crossover point from the other and vice versa. A deep

understanding of one model would give us a deep understanding of the other, and

vice versa. Also, this relationship provides a new link between p and np-complete

problems, leading possibly to a deeper understanding of the relationship between

these complexity classes.

5 Conclusions and Future Work

In this paper, we presented a new random sat model — k-gd-sat, based on

probability parameter p that controls geometrical distribution on clause lengths.

We provided experimental evidence about the phase transition for this model.



The experimental results and theoretical analysis also suggest that for each k,

there is a linear relationship between crossover points (in parameter 1/p). Fur-

ther, our results and analysis suggest that all these crossover lines intersect in

one point (or approach a single point). This leads to an intriguing property,

a relationship that links all crossover points in k-sat and k-gd-sat. Knowing

crossover points from one model enables us to estimate the crossover point from

the other and vice versa.

In our future work, we are planning to perform further, more extensive exper-

iments, to look for further experimental confirmation of the hypotheses presented

in this paper, and to obtain finer approximations of relevant parameters. We will

look, on the basis of the presented results, for ways of improving the conjecture

given by the equation (1). We will also look for theoretical explanations of our

experimental results, following successful approaches for estimating crossover

points in other classes of sat problems. In particular, we will try to apply the

approach from [2] in order to estimate lower bound for crossover points for k-

gd-sat problem. In this paper, we considered the relationship between crossover

points for different models and model parameters. In further work, we will also

more deeply consider the relationship between 50% crossover points for differ-

ent values of N . We are planning to use the finite-scaling method [19] which

provides a transformation by which, for one sat model, satisfiability functions

for all N scale to a single one. This way, with appropriate parameters of this

scaling (that will be a subject of our research) — all 50% satisfiability curves

would be mapped to a single line. This would provide new information on the

k-gd-sat model and provide simple estimates for the 50% satisfiability points

for any particular values of k, p, and N . We are also planning to look at compu-

tational complexity issues and performance of sat solvers on k-gd-sat problem,

in particular following approaches from [7] and [6].

References

1. Achlioptas, D., Kirousis, L. M., Kranakis, E., Krizanc, D.: Rigorous Results for
Random (2 + p)-SAT, Proceedings of RALCOM’ 97, 1997.

2. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard
optimization problems, Nature, 435, 2005, 759–764.

3. Cook, S. A.: The complexity of theorem-proving procedures, STOC ’71: Proceed-
ings of the third annual ACM symposium on Theory of computing, ACM Press,
1971.

4. Cook, S. A., Mitchell, D. G.: Finding Hard Instances of the Satisfiability Problem:
A Survey, DIMACS Series in Descrete Mathematics and Theoretical Computer
Science, 35, 1997, 1–17.

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving,
Communications of the ACM, 5(7), 1962, 394–397, ISSN 0001-0782.

6. Franco, J., Paull, M.: Probabilistic Analysis of the David Putnam procedure for
solving the satisfiability problem, Discrete Applied Mathematics, 5, 1983, 77–87.



7. Franco, J., Swamanithan, R.: Average Case Results for Satisfiability Algorithms
Under the Random Clause Model, Anals of Mathematics and Artificial Intelli-
gence, 20, 1997, 357–391.

8. Friedgut, E.: Sharp threshold for graph properties and the k-sat problem, Journal
of the American Mathematical Society, 12, 1999, 1017–1054.

9. Gent, I., Macintyre., E., Prosser, P., Walsh, T.: The Constraidness of Search, Pro-
ceedings of AAAI-96, Menlo Park, AAAI Press/MIT Press., 1996.

10. Gent, I. P., Walsh, T.: The SAT phase transition, Proceedings of ECAI-94, 1994.
11. Goerdt, A.: A treshold for unsatisfiability, Proceedings of the 17th International

Symposium on Mathematical Foundations of Computer Science, 1992.
12. Goldberg, A.: On the complexity of the satisfiability problem, Technical Report

Courant Computer Science Report No. 16, New York University, 1979.
13. Gu, J., Purdom, P. W., Franco, J., Wah, B.: Algorithms for the Satisfiability (SAT)

Problem: A Survey, DIMACS Series in Descrete Mathematics and Theoretical
Computer Science, 35, 1997, 19–151.

14. Hooker, J., Fedjki, C.: Branch-and-cut soultion of inference problems in proposi-
tional logic, Ann. Math. Artif. Intell., 1, 1990, 123–139.
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