Levi-parallel contact Riemannian manifolds

Giulia Dileo
joint work with Antonio Lotta

University of Bari (Italy)
Let \((M, \eta)\) be a contact manifold of dimension \(N = 2n + 1, n \geq 1\), i.e. \(\eta\) is a 1-form satisfying

\[\eta \wedge (d\eta)^n \neq 0\]

everywhere on \(M\).

Let \(D := \text{Ker}(\eta)\) be the contact distribution.
Let \((M, \eta)\) be a contact manifold of dimension \(N = 2n + 1, \ n \geq 1\), i.e. \(\eta\) is a 1-form satisfying

\[
\eta \wedge (d\eta)^n \neq 0
\]
everywhere on \(M\).

Let \(D := \text{Ker}(\eta)\) be the contact distribution.

The skew-symmetric Levi-Tanaka form

\[
L_{\eta}(X, Y) = -d\eta(X, Y) \quad X, Y \in D
\]
is nondegenerate.
Let (M, η) be a contact manifold of dimension $N = 2n + 1$, $n \geq 1$, i.e. η is a 1-form satisfying
\[
\eta \wedge (d\eta)^{n} \neq 0
\]
everywhere on M.

Let $D := \text{Ker}(\eta)$ be the contact distribution.

The skew-symmetric Levi-Tanaka form
\[
L_\eta(X, Y) = -d\eta(X, Y) \quad X, Y \in D
\]
is nondegenerate.

The Reeb vector field is the unique globally defined vector field ξ, transverse to D, such that
\[
\eta(\xi) = 1, \quad d\eta(X, \xi) = 0 \quad \text{for any } X \in \mathfrak{X}(M).
\]
An associated metric is a Riemannian metric g for which there exists a $(1, 1)$-tensor field φ such that

$$\varphi^2 = -Id + \eta \otimes \xi, \quad \eta(X) = g(X, \xi), \quad d\eta(X, Y) = g(X, \varphi Y).$$
An associated metric is a Riemannian metric g for which there exists a $(1, 1)$-tensor field φ such that

$$\varphi^2 = -Id + \eta \otimes \xi, \quad \eta(X) = g(X, \xi), \quad d\eta(X, Y) = g(X, \varphi Y).$$

Equivalently,

- $\xi = \eta^\sharp$,
- the endomorphism $J := (L_\eta)^\sharp : D \to D$ defined by
 $$g(X, Y) = L_\eta(X, JY), \quad X, Y \in D$$
satisfies
 $$J^2 = -Id$$
An associated metric is a Riemannian metric g for which there exists a $(1, 1)$-tensor field φ such that

$$\varphi^2 = -Id + \eta \otimes \xi, \quad \eta(X) = g(X, \xi), \quad d\eta(X, Y) = g(X, \varphi Y).$$

Equivalently,

- $\xi = \eta^\#$,
- the endomorphism $J := (L_\eta)^\# : D \to D$ defined by
 $$g(X, Y) = L_\eta(X, JY), \quad X, Y \in D$$
 satisfies
 $$J^2 = -Id \quad \leadsto \quad (D, J) \text{ is an almost } CR \text{ structure}$$
An associated metric is a Riemannian metric g for which there exists a $(1,1)$-tensor field φ such that

$$\varphi^2 = -Id + \eta \otimes \xi, \quad \eta(X) = g(X, \xi), \quad d\eta(X,Y) = g(X, \varphi Y).$$

Equivalently,

- $\xi = \eta^\#$,
- the endomorphism $J := (L_\eta)^\# : D \to D$ defined by $g(X,Y) = L_\eta(X, JY), \; X,Y \in D$

satisfies

$$J^2 = -Id \quad \leadsto (D, J) \text{ is an almost CR structure}$$

(φ, ξ, η, g) is a contact metric structure

J is integrable $\leadsto (M, J, \eta)$ is a pseudohermitian manifold

J is integrable $+ \xi$ is Killing $\leadsto (\varphi, \xi, \eta, g)$ is a Sasakian structure
Curvature of associated metrics

Theorem (Blair, 1976)

A contact manifold of dimension ≥ 5 cannot admit any flat associated Riemannian metric.
Curvature of associated metrics

Theorem (Blair, 1976)

A contact manifold of dimension ≥ 5 cannot admit any flat associated Riemannian metric.

Theorem (Olszak, 1979)

Let g be an associated metric on (M, η) with constant sectional curvature c. If $\dim M \geq 5$ then $c = 1$ and the structure is Sasakian.
Curvature of associated metrics

Theorem (Blair, 1976)

A contact manifold of dimension \(\geq 5 \) cannot admit any flat associated Riemannian metric.

Theorem (Olszak, 1979)

Let \(g \) be an associated metric on \((M,\eta)\) with constant sectional curvature \(c \). If \(\dim M \geq 5 \) then \(c = 1 \) and the structure is Sasakian.

Theorem (Boeckx-Cho, 2006)

A locally symmetric contact metric manifold of dimension \(N = 2n + 1 \) is either Sasakian of constant curvature 1 or locally isometric to \(E^{n+1} \times S^n(4) \).
Blair’s conjecture:

non existence of contact metric manifolds having **nonpositive curvature**, with the exception of the flat 3-dimensional case
Blair’s conjecture:
non existence of contact metric manifolds having nonpositive curvature, with the exception of the flat 3-dimensional case

Theorem (Rukimbira, 1998)

A compact contact manifold cannot admit any associated metric of negative curvature.
Blair’s conjecture:
non existence of contact metric manifolds having nonpositive curvature, with the exception of the flat 3-dimensional case

Theorem (Rukimbira, 1998)
A compact contact manifold cannot admit any associated metric of negative curvature.

Proposition
Let \((M, \varphi, \xi, \eta, g)\) be a contact metric manifold such that \(\xi\) belongs to a \((\kappa, \mu)\)-nullity distribution, i.e.

\[
R(X, Y)\xi = \kappa(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY), \quad h := \frac{1}{2}\mathcal{L}_\xi\varphi.
\]

Then \(M\) cannot have negative curvature.
Blair’s conjecture in the homogeneous case

A contact metric manifold is defined to be \textit{homogeneous} if it admits a transitive Lie group of diffeomorphisms preserving the structure tensor fields \((\varphi, \xi, \eta, g)\).
Blair’s conjecture in the homogeneous case

A contact metric manifold is defined to be *homogeneous* if it admits a transitive Lie group of diffeomorphisms preserving the structure tensor fields \((\varphi, \xi, \eta, g)\).

Theorem (Lotta, 2010)

Let \((M, \varphi, \xi, \eta, g)\) be a simply connected *homogeneous* contact metric manifold having nonpositive sectional curvature. Then \(M\) is 3-dimensional, flat, and it is equivalent to the Lie group \(\tilde{E}(2)\), endowed with a left invariant contact metric structure.
Blair’s conjecture in the homogeneous case

A contact metric manifold is defined to be *homogeneous* if it admits a transitive Lie group of diffeomorphisms preserving the structure tensor fields \((\varphi, \xi, \eta, g)\).

Theorem (Lotta, 2010)

Let \((M, \varphi, \xi, \eta, g)\) be a simply connected *homogeneous* contact metric manifold having nonpositive sectional curvature. Then \(M\) is 3-dimensional, flat, and it is equivalent to the Lie group \(\tilde{E}(2)\), endowed with a left invariant contact metric structure.

Actually, a more general result holds, involving *admissible* metrics instead of *associated* metrics.
Definition

Let \((M, \eta)\) be a contact manifold. A Riemannian metric \(g\) on \(M\) will be called admissible if

\[\xi = \eta^\# \]

i.e. the Reeb vector field \(\xi\) is of unit length and orthogonal to the contact distribution \(D\) with respect to \(g\).

Every associated metric is admissible.
Definition

Let (M, η) be a contact manifold. A Riemannian metric g on M will be called admissible if

$$\xi = \eta^\#$$

i.e. the Reeb vector field ξ is of unit length and orthogonal to the contact distribution D with respect to g.

Every associated metric is admissible.

Theorem (Lotta, 2010)

Let (M, η) be a simply connected homogeneous contact manifold of dimension $N \geq 5$. Then M does not admit any admissible homogeneous Riemannian metric g having nonpositive curvature.
Question: do the curvature rigidity results also hold for admissible metrics? (not necessarily associated)
Question:

do the curvature rigidity results also hold for **admissible** metrics?
(not necessarily associated)

We shall give an answer within the class of **Levi-parallel** contact Riemannian manifolds.
Proposition

Let \((M, \eta, g)\) be a contact manifold endowed with an admissible metric. Then there exists a unique connection \(\tilde{\nabla}\) on \(M\) such that

1. \(\tilde{\nabla}\eta = 0;\)
2. \(\tilde{\nabla}g = 0;\)
3. \(g(\tilde{T}(X,Y), Z) = 0\) for any \(X, Y, Z \in \mathcal{D};\)
4. the tensor \(\tau: \mathcal{D} \to \mathcal{D}\) defined by

\[
\tau X = \tilde{T}(\xi, X) \quad \forall X \in \mathcal{D}
\]

is symmetric with respect to \(g\).

\(\tilde{\nabla}\) will be called the canonical connection associated to \((\eta, g)\).

It induces a connection on the vector bundle \(\mathcal{D}\).
Proposition

Let (M, η, g) be a contact manifold endowed with an admissible metric. Then there exists a unique connection $\tilde{\nabla}$ on M such that

1. $\tilde{\nabla} \eta = 0$;
2. $\tilde{\nabla} g = 0$;
3. $g(\tilde{T}(X,Y), Z) = 0$ for any $X, Y, Z \in \mathcal{D}$;
4. the tensor $\tau : \mathcal{D} \to \mathcal{D}$ defined by

$$\tau X = \tilde{T}(\xi, X) \quad \forall X \in \mathcal{D}$$

is symmetric with respect to g.

$\tilde{\nabla}$ will be called the canonical connection associated to (η, g). It induces a connection on the vector bundle \mathcal{D}.

Significance of τ:

$$\tau = 0 \iff \xi \text{ is Killing.}$$
If \(g \) is an associated metric then \(\tilde{\nabla} \) is the Tanno connection.

For pseudohermitian manifolds it is the Tanaka-Webster connection.
If g is an associated metric then $\tilde{\nabla}$ is the Tanno connection.

For pseudohermitian manifolds it is the Tanaka-Webster connection.

In the context of sub-Riemannian geometry $\tilde{\nabla}$ coincides with connection used by Falbel & Gorodski (1995) to characterize contact sub-Riemannian symmetric manifolds.
If g is an associated metric then $\tilde{\nabla}$ is the Tanno connection.

For pseudohermitian manifolds it is the Tanaka-Webster connection.

In the context of sub-Riemannian geometry $\tilde{\nabla}$ coincides with connection used by Falbel & Gorodski (1995) to characterize contact sub-Riemannian symmetric manifolds.

Definition

We say that (M, η, g) is a **Levi-parallel contact Riemannian manifold** if the Levi-Tanaka form L_η is parallel with respect to $\tilde{\nabla}$.

*If moreover ξ is Killing, we say that (M, η, g) is of **Sasakian type**.*
Let \((M, \eta, g)\) be a contact manifold with a fixed admissible metric. Let

\[\varphi := (L_\eta)^\# : D \to D \]

be the endomorphism dual of \(L_\eta\) with respect to \(g\).
Let \((M, \eta, g)\) be a contact manifold with a fixed admissible metric.

Let

\[\varphi := (L_\eta)^\# : D \to D \]

be the endomorphism dual of \(L_\eta\) with respect to \(g\).

Extend \(\varphi\) to a skew-symmetric \((1, 1)\)-tensor field requiring \(\varphi(\xi) = 0\), so that

\[d\eta(X, Y) = g(X, \varphi Y) \quad X, Y \in \mathfrak{X}(M). \]
Let (M, η, g) be a contact manifold with a fixed admissible metric. Let
\[\varphi := (L_\eta)^\#: D \to D \]
be the endomorphism dual of L_η with respect to g. Extend φ to a skew-symmetric $(1,1)$-tensor field requiring $\varphi(\xi) = 0$, so that
\[d\eta(X,Y) = g(X, \varphi Y) \quad X, Y \in \mathfrak{X}(M). \]

The following are equivalent:
- L_η is parallel with respect to $\tilde{\nabla}$,
- $\tilde{\nabla} \varphi = 0$,
Let \((M, \eta, g)\) be a contact manifold with a fixed admissible metric.

Let
\[\varphi := (L_\eta)^\#: D \to D \]
be the endomorphism dual of \(L_\eta\) with respect to \(g\).

Extend \(\varphi\) to a skew-symmetric \((1, 1)\)-tensor field requiring \(\varphi(\xi) = 0\), so that
\[d\eta(X, Y) = g(X, \varphi Y) \quad X, Y \in \mathfrak{X}(M). \]

The following are equivalent:

1. \(L_\eta\) is parallel with respect to \(\tilde{\nabla}\),
2. \(\tilde{\nabla}\varphi = 0\),
3. \((\nabla_X \varphi)Y = g(\varphi(\tau - \varphi)X, Y)\xi - \eta(Y)\varphi(\tau - \varphi)X\).
Let \((M, \eta, g)\) be a contact manifold with a fixed admissible metric. Let
\[
\varphi := (L_\eta)^\# : D \to D
\]
be the endomorphism dual of \(L_\eta\) with respect to \(g\).

Extend \(\varphi\) to a skew-symmetric \((1, 1)\)-tensor field requiring \(\varphi(\xi) = 0\), so that
\[
d\eta(X,Y) = g(X, \varphi Y) \quad X, Y \in \mathfrak{X}(M).
\]

The following are equivalent:

- \(L_\eta\) is parallel with respect to \(\tilde{\nabla}\),
- \(\tilde{\nabla} \varphi = 0\),
- \((\nabla_X \varphi)Y = g(\varphi(\tau - \varphi)X, Y)\xi - \eta(Y)\varphi(\tau - \varphi)X\).
- \(\nabla \xi \varphi = 0\) and \(\varphi\) is \(\eta\)-parallel

\(\varphi\) is \(\eta\)-parallel \iff \(g((\nabla_X \varphi)Y, Z) = 0\) for every \(X, Y, Z \in D\).
If g is an associated metric on (M, η), by a result of Tanno (1989), the following are equivalent:

- (M, η, g) is Levi-parallel,
- the almost CR structure $(D, J := \varphi|_D)$ is integrable.
If g is an associated metric on (M, η), by a result of Tanno (1989), the following are equivalent:

- (M, η, g) is Levi-parallel,
- the almost CR structure $(D, J := \varphi|_D)$ is integrable.

Consequence of the parallelism:

Let (M, η, g) be a Levi-parallel contact Riemannian manifold. The spectrum \mathcal{S} of the symmetric operator

$$\varphi^2 : D \rightarrow D$$

consists of negative constants.
If g is an associated metric on (M, η), by a result of Tanno (1989), the following are equivalent:

- (M, η, g) is Levi-parallel,
- the almost CR structure $(D, J := \varphi|_D)$ is integrable.

Consequence of the parallelism:

Let (M, η, g) be a Levi-parallel contact Riemannian manifold. The spectrum S of the symmetric operator

$$\varphi^2 : D \to D$$

consists of negative constants.

For $\lambda \in S$, denote by $D(\lambda) \subset D$ the eigendistribution of φ^2 with eigenvalue λ.

It has even rank, it is $\tilde{\nabla}$-parallel and invariant under τ and φ.
Basic example with prescribed Levi-Tanaka form:

Let \((V, \langle \cdot, \cdot \rangle)\) be a Euclidean vector space, \(\Theta : V \times V \to \mathbb{R}\) a symplectic form.

On the space \(m := V \oplus \mathbb{R}\) define a nilpotent Lie algebra structure:

\[[X,Y] := 2\Theta(X,Y) \quad X,Y \in V. \]

Extend \(\langle \cdot, \cdot \rangle\) in a natural way to a scalar product \(g\) on \(m\).

Let \(\eta\) be the 1-form on \(m\) such that \(\eta(X + t) = t\).

Let \(M\) is simply connected Lie group with \(\text{Lie}(M) = m\) carries a standard left-invariant Levi-parallel contact Riemannian structure \((\eta, g)\) such that \(L_{\eta} = \Theta\) at the identity of \(M\).

In this case \(\xi\) is Killing, i.e. \(\tau = 0\) (Sasakian type).
Basic example with prescribed Levi-Tanaka form:

Let \((V,\langle ,\rangle)\) be a Euclidean vector space,
\(\Theta : V \times V \to \mathbb{R}\) a symplectic form.

On the space
\(m := V \oplus \mathbb{R}\) define a nilpotent Lie algebra structure:
\[[X,Y] := 2\Theta(X,Y) \quad X,Y \in V. \]

Extend \(\langle ,\rangle\) in a natural way to a scalar product \(g\) on \(m\).

Let \(\eta\) be the 1-form on \(m\) such that
\(\eta(X + t) = t\).

\(M\) carries a standard left-invariant Levi-parallel contact Riemannian structure
\((\eta,g)\) such that
\(L_\eta\Theta\) at the identity of \(M\).

In this case \(\xi\) is Killing, i.e.
\(\tau = 0\) (Sasakian type).
Basic example with prescribed Levi-Tanaka form:

Let \((V, \langle , \rangle)\) be a Euclidean vector space,
\(\Theta : V \times V \to \mathbb{R}\) a symplectic form.

On the space
\[m := V \oplus \mathbb{R} \]
define a nilpotent Lie algebra structure:
\[
[X, Y] := 2\Theta(X, Y) \quad X, Y \in V.
\]

Extend \(\langle , \rangle\) in a natural way to a scalar product \(g\) on \(m\).

Let \(\eta\) be the 1-form on \(m\) such that \(\eta(X + t) = t\).
Basic example with prescribed Levi-Tanaka form:

Let \((V, \langle \cdot, \cdot \rangle)\) be a Euclidean vector space,
\(\Theta : V \times V \to \mathbb{R}\) a symplectic form.
On the space
\[m := V \oplus \mathbb{R} \]
define a nilpotent Lie algebra structure:
\[[X, Y] := 2\Theta(X, Y) \quad X, Y \in V. \]
Extend \(\langle \cdot, \cdot \rangle\) in a natural way to a scalar product \(g\) on \(m\).
Let \(\eta\) be the 1-form on \(m\) such that \(\eta(X + t) = t\).
\(M =\) simply connected Lie group with \(\text{Lie}(M) = m\)
\(M\) carries a standard left-invariant Levi-parallel contact Riemannian structure \((\eta, g)\) such that \(L_\eta = \Theta\) at the identity of \(M\).
In this case \(\xi\) is Killing, i.e. \(\tau = 0\) (Sasakian type).
Example: Hopf hypersurfaces of complex space forms
Example: Hopf hypersurfaces of complex space forms

Let \((M_{n+1}(c), J, g)\) be a complex space form with \(c \neq 0\).

Let \(M \subset M_{n+1}(c)\) be a Levi non-degenerate real hypersurface.
Example: Hopf hypersurfaces of complex space forms

Let \((M_{n+1}(c), J, g)\) be a complex space form with \(c \neq 0\).

Let \(M \subset M_{n+1}(c)\) be a Levi non-degenerate real hypersurface.

Assume \(M\) orientable with unit normal vector field \(N\).
Example: Hopf hypersurfaces of complex space forms

Let \((M_{n+1}(c), J, g)\) be a complex space form with \(c \neq 0\).

Let \(M \subset M_{n+1}(c)\) be a Levi non-degenerate real hypersurface.

Assume \(M\) orientable with unit normal vector field \(N\).

Assume \(M\) is a Hopf hypersurface, i.e. the tangent vector field

\[\xi := -JN \]

is an eigenvector of the shape operator \(A\).
Example: Hopf hypersurfaces of complex space forms

Let \((M_{n+1}(c), J, g)\) be a complex space form with \(c \neq 0\).
Let \(M \subset M_{n+1}(c)\) be a **Levi non-degenerate** real hypersurface.
Assume \(M\) orientable with unit normal vector field \(N\).
Assume \(M\) is a **Hopf hypersurface**, i.e. the tangent vector field

\[
\xi := -JN
\]

is an eigenvector of the shape operator \(A\).
The 1-form \(\eta\) dual of \(\xi\) is a contact form.
The Riemannian metric \(g\) induced on \(M\) is an admissible metric.
Hopf hypersurfaces with constant principal curvatures:

- Takagi’s list of Hopf hypersurfaces in $\mathbb{C}P^n A_1, A_2, B, C, D, E$
- Berndt’s list of Hopf hypersurfaces in $\mathbb{C}H^n A_0, A_1, A_2, B$

In our case

If $M \subset \mathbb{C}P^n$ then (M, η, g) is Levi-parallel if and only if M is locally congruent to a hypersurface of type A_1, A_2, B, C, D, E

If $M \subset \mathbb{C}H^n$ then (M, η, g) is Levi-parallel if and only if M is locally congruent to a hypersurface of type A_0, A_1, A_2, B

Consequently:

(M, η, g) is Levi-parallel \iff the shape operator A is η-parallel

Remark

Our condition of Levi-parallelism is equivalent to the one studied by Cho (2006), using a different linear connection.
Hopf hypersurfaces with constant principal curvatures:

- Takagi’s list of Hopf hypersurfaces in $\mathbb{C}P^n A_1, A_2, B, C, D, E$
- Berndt’s list of Hopf hypersurfaces in $\mathbb{C}H^n A_0, A_1, A_2, B$

In our case

- If $M \subset \mathbb{C}P^n$ then (M, η, g) is Levi-parallel if and only if M is locally congruent to a hypersurface of type A_1, A_2, B,
- If $M \subset \mathbb{C}H^n$ then (M, η, g) is Levi-parallel if and only if M is locally congruent to a hypersurface of type A_0, A_1, A_2, B
Hopf hypersurfaces with constant principal curvatures:

- Takagi’s list of Hopf hypersurfaces in $\mathbb{C}P^n$ A_1, A_2, B, C, D, E
- Berndt’s list of Hopf hypersurfaces in $\mathbb{C}H^n$ A_0, A_1, A_2, B

In our case

- If $M \subset \mathbb{C}P^n$ then (M, η, g) is Levi-parallel if and only if M is locally congruent to a hypersurface of type A_1, A_2, B,
- If $M \subset \mathbb{C}H^n$ then (M, η, g) is Levi-parallel if and only if M is locally congruent to a hypersurface of type A_0, A_1, A_2, B

Consequently:

(M, η, g) is Levi-parallel \iff the shape operator A is η-parallel
Hopf hypersurfaces with constant principal curvatures:

- Takagi’s list of Hopf hypersurfaces in $\mathbb{C}P^n$ A_1, A_2, B, C, D, E
- Berndt’s list of Hopf hypersurfaces in $\mathbb{C}H^n$ A_0, A_1, A_2, B

In our case

- If $M \subset \mathbb{C}P^n$ then (M, η, g) is Levi-parallel if and only if M is locally congruent to a hypersurface of type A_1, A_2, B,
- If $M \subset \mathbb{C}H^n$ then (M, η, g) is Levi-parallel if and only if M is locally congruent to a hypersurface of type A_0, A_1, A_2, B

Consequently:

(M, η, g) is Levi-parallel \iff the shape operator A is η-parallel

Remark

Our condition of Levi-parallelism is equivalent to the one studied by Cho (2006), using a different linear connection.
A basic formula

Let (M, η, g) Levi-parallel contact Riemannian manifold. Let $l : TM \to TM$ be the Jacobi operator defined by

$$lX := R(X, \xi)\xi \quad X \in \mathcal{X}(M).$$

Then,

$$l = -\varphi^2 - \tau^2 - \nabla_\xi \tau.$$
A basic formula

Let \((M, \eta, g)\) Levi-parallel contact Riemannian manifold.
Let \(l : TM \rightarrow TM\) be the Jacobi operator defined by

\[
lX := R(X, \xi)\xi \quad X \in \mathfrak{X}(M).
\]

Then,

\[
l = -\varphi^2 - \tau^2 - \nabla_\xi \tau.
\]

If \(\tau = 0\) (Sasakian type), then \(l = -\varphi^2\) and all the \(\xi\)-sectional curvatures are positive.

(the \(\xi\)-sectional curvatures are the sectional curvatures \(K(X, \xi)\) of the 2-planes containing the direction of \(\xi\))
Proposition (D-Lotta, 2011)

Let (M, g) be a Riemannian manifold. The following are equivalent:

a) M admits a contact form η such that (M, η, g) is a Levi-parallel contact Riemannian manifold of Sasakian type.

b) M admits a global unit Killing vector field ξ such that

i) $K(X, \xi) > 0$ for every $X \in [\xi]^{\perp}$

ii) $R(X, Y)\xi = 0$ for every $X, Y \in [\xi]^{\perp}$.
Proposition (D-Lotta, 2011)

Let \((M, g)\) be a Riemannian manifold. The following are equivalent:

a) \(M\) admits a contact form \(\eta\) such that \((M, \eta, g)\) is a Levi-parallel contact Riemannian manifold of Sasakian type.

b) \(M\) admits a global unit Killing vector field \(\xi\) such that

 i) \(K(X, \xi) > 0\) for every \(X \in [\xi]^\perp\)

 ii) \(R(X, Y)\xi = 0\) for every \(X, Y \in [\xi]^\perp\).

Remark

Sasakian manifolds \(\iff K(X, \xi) = 1\)
The following result is analogous to a result of Blair in contact metric geometry.

Theorem (D-Lotta, 2011)

Let (M, η, g) be a Levi-parallel contact Riemannian manifold of dimension ≥ 5. Assume that $R(X,Y)\xi = 0$ for any vector fields X, Y.

Then $S = \{-\lambda\}$, $\lambda > 0$, and M is locally isometric to the Riemannian product $E_{n+1} \times S_n(4\lambda)$.

Levi-parallel contact Riemannian manifolds Giulia Dileo University of Bari (Italy) Zlatibor, September 2012
The following result is analogous to a result of Blair in contact metric geometry.

Theorem (D-Lotta, 2011)

Let \((M, \eta, g)\) be a Levi-parallel contact Riemannian manifold of dimension \(\geq 5\). Assume that

\[
R(X, Y)\xi = 0 \quad \text{for any vector fields } X, Y.
\]

Then \(S = \{-\lambda\}, \lambda > 0\), and \(M\) is locally isometric to the Riemannian product

\[
E^{n+1} \times S^n(4\lambda).
\]
The Einstein case

Theorem (D-Lotta, 2011)

Let \((M, g, \eta)\) be a Levi-parallel contact Einstein Riemannian manifold of dimension \(\geq 5\). Assume \(\nabla_{\xi} l = 0\).
The Einstein case

Theorem (D-Lotta, 2011)

Let \((M, g, \eta)\) be a Levi-parallel contact Einstein Riemannian manifold of dimension \(\geq 5\). Assume \(\nabla_\xi l = 0\).

Then \(M\) is of Sasakian type.
The Einstein case

Theorem (D-Lotta, 2011)

Let \((M, g, \eta)\) be a Levi-parallel contact Einstein Riemannian manifold of dimension \(\geq 5\). Assume \(\nabla_\xi l = 0\).

Then \(M\) is of Sasakian type.

Corollary

Let \((M, g, \eta)\) be a Levi-parallel contact Riemannian manifold of dimension \(\geq 5\). Assume that \(M\) has constant sectional curvature \(c\).

Then \(M\) is of Sasakian type, \(c > 0\) and \(S = \{-c\}\).
Steps of the proof

\[\tilde{\nabla} \tilde{R}(X,Y,Z,W) = - \tilde{R}(Y,X,Z,W) = - \tilde{R}(X,Y,W,Z) = \tilde{R}(X,Y,Z,W) - \tilde{R}(Z,W,X,Y) = 2d\eta(Y,Z)g(\tau X,W) + 2d\eta(X,W)g(\tau Y,Z) - 2d\eta(X,Z)g(\tau Y,W) - 2d\eta(Y,W)g(\tau X,Z) + 2d\eta(Y,Z)g(\tau X,\phi W) + 2d\eta(X,\phi W)g(\tau Y,Z) - 2d\eta(X,Z)g(\tau Y,\phi W) - 2d\eta(Y,\phi W)g(\tau X,Z) \]
Steps of the proof

1) Symmetries of the curvature tensor of $\tilde{\nabla}$
Steps of the proof

I) Symmetries of the curvature tensor of $\tilde{\nabla}$

Steps of the proof

I) Symmetries of the curvature tensor of $\tilde{\nabla}$

- $\tilde{R}(X, Y, Z, W) - \tilde{R}(Z, W, X, Y) =$

 $= 2d\eta(Y, Z)g(\tau X, W) + 2d\eta(X, W)g(\tau Y, Z) - 2d\eta(X, Z)g(\tau Y, W) - 2d\eta(Y, W)g(\tau X, Z)$
Steps of the proof

1) Symmetries of the curvature tensor of $\tilde{\nabla}$

- $\tilde{\nabla}(X, Y, Z, W) = -\tilde{\nabla}(Y, X, Z, W) = -\tilde{\nabla}(X, Y, W, Z)$

- $\tilde{\nabla}(X, Y, Z, W) - \tilde{\nabla}(Z, W, X, Y) =$
 $$2d\eta(Y, Z)g(\tau X, W) + 2d\eta(X, W)g(\tau Y, Z)$$
 $$- 2d\eta(X, Z)g(\tau Y, W) - 2d\eta(Y, W)g(\tau X, Z)$$

- $\tilde{\nabla}(\varphi X, Y, Z, W) + \tilde{\nabla}(X, \varphi Y, Z, W) = 0$
Steps of the proof

I) Symmetries of the curvature tensor of $\tilde{\nabla}$

- $\tilde{R}(X, Y, Z, W) - \tilde{R}(Z, W, X, Y) =
 = 2d\eta(Y, Z)g(\tau X, W) + 2d\eta(X, W)g(\tau Y, Z) - 2d\eta(X, Z)g(\tau Y, W) - 2d\eta(Y, W)g(\tau X, Z)$

- $\tilde{R}(\varphi X, Y, Z, W) + \tilde{R}(X, \varphi Y, Z, W) = 0$

- $\tilde{R}(X, Y, \varphi Z, W) + \tilde{R}(X, Y, Z, \varphi W) =
 = 2d\eta(Y, \varphi Z)g(\tau X, W) + 2d\eta(X, W)g(\tau Y, \varphi Z) - 2d\eta(X, \varphi Z)g(\tau Y, W) - 2d\eta(Y, W)g(\tau X, \varphi Z) + 2d\eta(Y, Z)g(\tau X, \varphi W) + 2d\eta(X, \varphi W)g(\tau Y, Z) - 2d\eta(X, Z)g(\tau Y, \varphi W) - 2d\eta(Y, \varphi W)g(\tau X, Z)$
II) Interaction of the Ricci tensor s of $\tilde{\nabla}$ with φ

\[
s(\varphi X, \varphi Y) = 2 \sum_{i=1}^{n} \tilde{R}(\varphi e_i, Y, \varphi e_i, X) + 4 g(\tau \varphi, X, Y) - 2 \text{tr}(\varphi^2) g(\tau \varphi, X, Y).
\]

For $Y \in D(\lambda)$ eigendistribution of φ^2, $\lambda \in S$

\[
\text{For } Y \in D(\lambda) \text{ eigendistribution of } \varphi^2, \lambda \in S \quad \varphi X, \varphi Y) = -s(X,Y) + 2(2\lambda - \text{tr}(\varphi^2)) g(\tau \varphi, X, Y).
\]
II) Interaction of the Ricci tensor s of $\tilde{\nabla}$ with φ

Levi-parallelism $\sim s$ satisfies for $X, Y \in D$:

\[
s(\varphi X, \varphi Y) = \sum_{i=1}^{2n} \tilde{R}(\varphi e_i, Y, \varphi e_i, X) + 4g(\tau \varphi^3 X, Y) - 2tr(\varphi^2)g(\tau \varphi X, Y).
\]
II) Interaction of the Ricci tensor s of $\tilde{\nabla}$ with φ

Levi-parallelism $\leadsto s$ satisfies for $X, Y \in D$:

$$s(\varphi X, \varphi Y) = \sum_{i=1}^{2n} \tilde{R}(\varphi e_i, Y, \varphi e_i, X)$$

$$+ 4g(\tau \varphi^3 X, Y) - 2tr(\varphi^2)g(\tau \varphi X, Y).$$

For $Y \in D(\lambda)$ eigendistribution of φ^2, $\lambda \in S$

$$s(\varphi X, \varphi Y) = -\lambda s(X, Y) + 2(2\lambda - tr(\varphi^2))g(\tau \varphi X, Y).$$
III) Comparison of s and Ric

$$s(X, Y) = Ric(X, Y) - 2g(\varphi^2 X, Y) + g((\nabla_\xi \tau) X, Y), \ X, Y \in D.$$
III) Comparison of s and Ric:

$$s(X, Y) = Ric(X, Y) - 2g(\varphi^2 X, Y) + g((\nabla_\xi \tau) X, Y), \; X, Y \in D.$$

$$\nabla_\xi l = 0 \Rightarrow \nabla_\xi \tau = 0 \quad \Rightarrow \quad s(X, Y) = \rho g(X, Y) - 2g(\varphi^2 X, Y).$$
III) Comparison of s and Ric:

$$s(X, Y) = Ric(X, Y) - 2g(\varphi^2 X, Y) + g((\nabla_\xi \tau)X, Y), \ X, Y \in D.$$

$$\nabla_\xi l = 0 \Rightarrow \nabla_\xi \tau = 0$$

\[
\begin{align*}
g \text{ Einstein metric} \\
\Rightarrow s(X, Y) &= \rho g(X, Y) - 2g(\varphi^2 X, Y).
\end{align*}
\]

Taking $X \in D(\lambda), \ Y \in D$ and comparing with

$$s(\varphi X, \varphi Y) = -\lambda s(X, Y) + 2(2\lambda - tr(\varphi^2))g(\tau \varphi X, Y)$$
III) Comparison of \(s \) and \(Ric \):

\[
s(X, Y) = Ric(X, Y) - 2g(\varphi^2 X, Y) + g((\nabla_\xi \tau)X, Y), \quad X, Y \in D.
\]

\[
\nabla_\xi l = 0 \Rightarrow \nabla_\xi \tau = 0
\]

\[
\Rightarrow s(X, Y) = \rho g(X, Y) - 2g(\varphi^2 X, Y).
\]

Taking \(X \in D(\lambda), \ Y \in D \) and comparing with

\[
s(\varphi X, \varphi Y) = -\lambda s(X, Y) + 2(2\lambda - tr(\varphi^2))g(\tau \varphi X, Y)
\]

we get

\[
(2\lambda - tr(\varphi^2)) g(\tau \varphi X, Y) = 0.
\]
III) Comparison of s and Ric:

$$s(X, Y) = Ric(X, Y) - 2g(\varphi^2 X, Y) + g(\nabla_\xi \tau X, Y), \quad X, Y \in D.$$

$$\nabla_\xi l = 0 \Rightarrow \nabla_\xi \tau = 0 \Rightarrow s(X, Y) = \rho g(X, Y) - 2g(\varphi^2 X, Y).$$

With g Einstein metric

Taking $X \in D(\lambda)$, $Y \in D$ and comparing with

$$s(\varphi X, \varphi Y) = -\lambda s(X, Y) + 2(2\lambda - tr(\varphi^2))g(\tau \varphi X, Y)$$

we get

$$(2\lambda - tr(\varphi^2)) g(\tau \varphi X, Y) = 0.$$

$$\text{rank}(D) > 2 \Rightarrow g(\tau \varphi X, Y) = 0,$$
III) Comparison of s and Ric:

$$s(X, Y) = Ric(X, Y) - 2g(\varphi^2 X, Y) + g((\nabla_\xi \tau)X, Y), \quad X, Y \in D.$$

$$\nabla_\xi \tau = 0 \Rightarrow \nabla_\xi \tau = 0 \quad \Rightarrow \quad s(X, Y) = \rho g(X, Y) - 2g(\varphi^2 X, Y).$$

Taking $X \in D(\lambda)$, $Y \in D$ and comparing with

$$s(\varphi X, \varphi Y) = -\lambda s(X, Y) + 2(2\lambda - tr(\varphi^2))g(\tau \varphi X, Y)$$

we get

$$(2\lambda - tr(\varphi^2))g(\tau \varphi X, Y) = 0.$$

$$\text{rank}(D) > 2 \Rightarrow g(\tau \varphi X, Y) = 0,$$

and thus

$$\tau = 0.$$
Einstein examples with $\tau = 0$ and non trivial spectrum:
Einstein examples with $\tau = 0$ and non trivial spectrum:

$$(M_1, J_1, g_1), \ldots, (M_k, J_k, g_k) \text{ Kähler-Einstein with } c_1(M_i) > 0$$
Einstein examples with $\tau = 0$ and non trivial spectrum:

$$(M_1, J_1, g_1), \ldots, (M_k, J_k, g_k)$$ Kähler-Einstein with $c_1(M_i) > 0$

$$c_1(M_i) = q_i \alpha_i, \quad q_i > 0, \quad \alpha_i \text{ indivisible in } H^2(M_i, \mathbb{Z})$$

Normalize g_i in such a way that $\text{Ric}_{g_i} = q_i g_i$.
Einstein examples with $\tau = 0$ and non trivial spectrum:

$$(M_1, J_1, g_1), \ldots, (M_k, J_k, g_k) \text{ Kähler-Einstein with } c_1(M_i) > 0$$

$$c_1(M_i) = q_i \alpha_i, \quad q_i > 0, \quad \alpha_i \text{ indivisible in } H^2(M_i, \mathbb{Z})$$

Normalize g_i in such a way that $\text{Ric}_{g_i} = q_i g_i$.

Let

$$\pi : P \to B$$

be a non trivial principal S^1-bundle on $B := M_1 \times \cdots \times M_k$.
Einstein examples with $\tau = 0$ and non trivial spectrum:

\[(M_1, J_1, g_1), \ldots, (M_k, J_k, g_k)\] Kähler-Einstein with $c_1(M_i) > 0$

\[c_1(M_i) = q_i \alpha_i, \quad q_i > 0, \quad \alpha_i \text{ indivisible in } H^2(M_i, \mathbb{Z})\]

Normalize g_i in such a way that $Ric_{g_i} = q_i g_i$.

Let

\[\pi : P \to B\]

be a non trivial principal S^1-bundle on $B := M_1 \times \cdots \times M_k$.

Assume P has non-trivial Euler class

\[e(P) = \sum b_i \pi_i^* \alpha_i, \quad b_i \in \mathbb{Z}, \quad \pi_i : B \to M_i.\]
Einstein examples with $\tau = 0$ and non trivial spectrum:

$$(M_1, J_1, g_1), \ldots, (M_k, J_k, g_k)$$ Kähler-Einstein with $c_1(M_i) > 0$

$c_1(M_i) = q_i \alpha_i$, $q_i > 0$, α_i indivisible in $H^2(M_i, \mathbb{Z})$

Normalize g_i in such a way that $\text{Ric}_{g_i} = q_i g_i$.

Let

$$\pi : P \to B$$

be a non trivial principal S^1-bundle on $B := M_1 \times \cdots \times M_k$.

Assume P has non-trivial Euler class

$$e(P) = \sum b_i \pi_i^* \alpha_i, \quad b_i \in \mathbb{Z}, \quad \pi_i : B \to M_i.$$

Denote by η be the connection form on P such that

$$d\eta = \pi^* \Omega, \quad \Omega := \sum b_i \pi_i^* \omega_i,$$

where ω_i is the Kähler form of M_i.
According to a result of Wang-Ziller (1990), up to scaling there exists a unique Einstein metric g on P such that

$$\pi : (P, g) \to (B, g_0)$$

is a Riemannian submersion with totally geodesic fibers and

$$g_0 = x_1 g_1 \perp \cdots \perp x_k g_k, \quad x_i > 0.$$
According to a result of Wang-Ziller (1990), up to scaling there exists a unique Einstein metric g on P such that

$$\pi : (P, g) \to (B, g_o)$$

is a Riemannian submersion with totally geodesic fibers and $g_o = x_1 g_1 \perp \cdots \perp x_k g_k$, $x_i > 0$.

We choose the scaling factor in such a way that

$$g = \pi^* g_o + \eta \otimes \eta.$$
According to a result of Wang-Ziller (1990), up to scaling there exists a unique Einstein metric g on P such that

$$
\pi : (P, g) \to (B, g_0)
$$

is a Riemannian submersion with totally geodesic fibers and

$$
g_0 = x_1 g_1 \perp \cdots \perp x_k g_k, \quad x_i > 0.
$$

We choose the scaling factor in such a way that

$$
g = \pi^* g_0 + \eta \otimes \eta.
$$

Then (P, η, g) is a Levi-parallel contact Riemannian manifold of Sasakian type.

The spectrum S depends on the constants $x_1, \ldots, x_k, b_1, \ldots, b_k$.
Classification of locally symmetric metrics

Theorem (D-Lotta, 2011)

Let (M, η, g) be a Levi parallel contact locally symmetric Riemannian manifold of dimension $2n + 1 \geq 5$.

Moreover, either M is of Sasakian type with constant sectional curvature λ, or M is locally isometric to the Riemannian product $E_n + 1 \times S_n(4\lambda)$.

Levi-parallel contact Riemannian manifolds Giulia Dileo University of Bari (Italy) Zlatibor, September 2012
Classification of locally symmetric metrics

Theorem (D-Lotta, 2011)

Let \((M, \eta, g)\) be a Levi parallel contact locally symmetric Riemannian manifold of dimension \(2n + 1 \geq 5\). Then \(S = \{-\lambda\}, \lambda > 0\).
Classification of locally symmetric metrics

Theorem (D-Lotta, 2011)

Let \((M, \eta, g)\) be a Levi parallel contact locally symmetric Riemannian manifold of dimension \(2n + 1 \geq 5\).

Then \(S = \{-\lambda\}, \lambda > 0\). Moreover, either

- \(M\) is of Sasakian type with constant sectional curvature \(\lambda\), or
- \(M\) is locally isometric to the Riemannian product \(E^{n+1} \times S^n(4\lambda)\).
Core of the proof: $\mathcal{S} = \{-\lambda\}$.

Levi-parallel contact Riemannian manifolds Giulia Dileo University of Bari (Italy) Zlatibor, September 2012
Core of the proof: \(S = \{-\lambda\} \).

We argue by contradiction, admitting two distinct eigenvalues.
Core of the proof: $\mathcal{S} = \{-\lambda\}$.
We argue by contradiction, admitting two distinct eigenvalues.

computations involving ∇, $\tilde{\nabla}$, curvature and Ricci tensors

In both cases the spectrum is trivial.
Core of the proof: $\mathcal{S} = \{-\lambda\}$.

We argue by contradiction, admitting two distinct eigenvalues.

computations involving ∇, $\tilde{\nabla}$, curvature and Ricci tensors

There are two possibilities for the Jacobi operator l:
Core of the proof: $\mathcal{S} = \{-\lambda\}$.

We argue by contradiction, admitting two distinct eigenvalues.

computations involving ∇, $\tilde{\nabla}$, curvature and Ricci tensors

There are two possibilities for the Jacobi operator l:

- $l = 0$
Core of the proof: $\mathcal{S} = \{-\lambda\}$.

We argue by contradiction, admitting two distinct eigenvalues.

computations involving ∇, $\tilde{\nabla}$, curvature and Ricci tensors

There are two possibilities for the Jacobi operator l:

- $l = 0$
- $l = c\,Id$ on D, $c \neq 0$
Core of the proof: $\mathcal{S} = \{-\lambda\}$.

We argue by contradiction, admitting two distinct eigenvalues.

computations involving ∇, $\tilde{\nabla}$, curvature and Ricci tensors

There are two possibilities for the Jacobi operator l:

- $l = 0 \Rightarrow R(X, Y)\xi = 0$ for every vector fields X, Y
- $l = c \text{Id on } D$, $c \neq 0$
Core of the proof: \(S = \{-\lambda\} \).
We argue by contradiction, admitting two distinct eigenvalues.

computations involving \(\nabla, \tilde{\nabla} \), curvature and Ricci tensors

There are two possibilities for the Jacobi operator \(l \):

- \(l = 0 \) \(\Rightarrow \) \(R(X, Y)\xi = 0 \) for every vector fields \(X, Y \)
- \(l = c \text{Id} \) on \(D \), \(c \neq 0 \) \(\Rightarrow \) \(M \) has constant sectional curvature \(c \).
Core of the proof: $\mathcal{S} = \{-\lambda\}$.

We argue by contradiction, admitting two distinct eigenvalues.

computations involving $\nabla, \tilde{\nabla}$, curvature and Ricci tensors

There are two possibilities for the Jacobi operator l:

- $l = 0 \Rightarrow R(X, Y)\xi = 0$ for every vector fields X, Y
- $l = c \text{Id}$ on D, $c \neq 0 \Rightarrow M$ has constant sectional curvature c

In both cases the spectrum is trivial.
Core of the proof: \(\mathcal{S} = \{-\lambda\} \).

We argue by contradiction, admitting two distinct eigenvalues.

computations involving \(\nabla, \tilde{\nabla}, \)

curvature and Ricci tensors

There are two possibilities for the Jacobi operator \(l \):

- \(l = 0 \Rightarrow R(X, Y)\xi = 0 \) for every vector fields \(X, Y \)
- \(l = c \text{Id} \) on \(D \), \(c \neq 0 \Rightarrow M \) has constant sectional curvature \(c \).

In both cases the spectrum is trivial.

Taking the homothetic deformation

\[
\varphi' = \frac{1}{\sqrt{\lambda}} \varphi, \quad \xi' = \frac{1}{\sqrt{\lambda}} \xi, \quad \eta' = \sqrt{\lambda} \eta, \quad g' = \lambda g,
\]

we get a (CR integrable) contact metric structure.
Core of the proof: \(\mathcal{S} = \{-\lambda\} \).

We argue by contradiction, admitting two distinct eigenvalues.

computations involving \(\nabla, \tilde{\nabla}, \) curvature and Ricci tensors

There are two possibilities for the Jacobi operator \(l \):

- \(l = 0 \Rightarrow R(X,Y)\xi = 0 \) for every vector fields \(X, Y \)
- \(l = c \text{Id} \) on \(D \), \(c \neq 0 \Rightarrow M \) has constant sectional curvature \(c \).

In both cases the spectrum is trivial.

Taking the homothetic deformation

\[
\varphi' = \frac{1}{\sqrt{\lambda}} \varphi, \quad \xi' = \frac{1}{\sqrt{\lambda}} \xi, \quad \eta' = \sqrt{\lambda} \eta, \quad g' = \lambda g,
\]

we get a (CR integrable) contact metric structure.

The result follows from the Boeckx-Cho classification of locally symmetric contact metric manifolds.

