Nilpotent Lie algebras Filiform nilpotent Lie algebras N-graded filiform nilpotent Lie algebras

Totally geodesic subalgebras for various inner products on nilpotent Lie algebras

Ana Hinić Galić La Trobe University, Australia

coauthors: Grant Cairns, Yury Nikolayevsky La Trobe University, Australia

September 07, 2012 XVII Geometrical Seminar, Zlatibor, Serbia

Table of contents

Nilpotent Lie algebras

- Nilpotent Lie algebras
- Totally geodesic subalgebras of nilpotent Lie algebras

2 Filiform nilpotent Lie algebras

- Filiform nilpotent Lie algebras
- Totally geodesic subalgebras of filiform Lie algebras

③ ℕ-graded filiform nilpotent Lie algebras

- \mathbb{N} -graded filiform nilpotent Lie algebras
- \bullet Totally geodesic subalgebras of $\mathbb N\text{-}\mathsf{graded}$ filiform nilpotent Lie algebras

Nilpotent Lie algebras Filiform nilpotent Lie algebras N-graded filiform nilpotent Lie algebras

Nilpotent Lie algebras Totally geodesic subalgebras of nilpotent Lie algebras

< ∃→

æ 👘

Nilpotent Lie algebras

Let \mathfrak{g} be an *n*-dimensional Lie algebra over \mathbb{R} .

⊒ ⊳

Nilpotent Lie algebras

Let \mathfrak{g} be an *n*-dimensional Lie algebra over \mathbb{R} .

 \star Defined the following ideals:

$$\left\{\begin{array}{ll} \mathcal{C}^0(\mathfrak{g}) = \mathfrak{g} \ ,\\ \mathcal{C}^1(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}],\\ \mathcal{C}^{k+1}(\mathfrak{g}) = [\mathcal{C}^k(\mathfrak{g}), \mathfrak{g}], \ \ \text{for all} \ k \geq 0. \end{array}\right.$$

Then, we have the *descending central series* of \mathfrak{g} :

$$\mathfrak{g} = \mathcal{C}^0(\mathfrak{g}) \supset \mathcal{C}^1(\mathfrak{g}) \supset \cdots \supset \mathcal{C}^k(\mathfrak{g}) \supset \ldots$$

Nilpotent Lie algebras

Let \mathfrak{g} be an *n*-dimensional Lie algebra over \mathbb{R} .

ć

 \star Defined the following ideals:

$$\left\{ \begin{array}{ll} \mathcal{C}^0(\mathfrak{g}) = \mathfrak{g} \ ,\\ \mathcal{C}^1(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}],\\ \mathcal{C}^{k+1}(\mathfrak{g}) = [\mathcal{C}^k(\mathfrak{g}), \mathfrak{g}], \ \ \text{for all} \ k \geq 0. \end{array} \right.$$

Then, we have the *descending central series* of \mathfrak{g} :

$$\mathfrak{g} = \mathcal{C}^0(\mathfrak{g}) \supset \mathcal{C}^1(\mathfrak{g}) \supset \cdots \supset \mathcal{C}^k(\mathfrak{g}) \supset \ldots$$

Definition

A Lie algebra g is called **nilpotent** if there is an integer k such that

$$\mathcal{C}^k(\mathfrak{g}) = \{0\}.$$

The smallest integer k such that $C^{k}(\mathfrak{g}) = \{0\}$ is called the nilindex of \mathfrak{g} .

3

- (E) - (

Examples of nilpotent Lie algebras

- Every abelian Lie algebra is nilpotent with the nilindex equal to 1.
- **2** The Heisenberg algebra \mathfrak{h}_{2k+1} defined in the basis $\{X_1, X_2, \ldots, X_{2k+1}\}$ by

$$[X_{2i-1}, X_{2i}] = X_{2k+1}$$
, $i = 1, \dots, k$.

The nilindex is equal to 2.

() The *n*-dimensional algebra $\mathfrak{m}_0(n)$ defined in a basis $\{X_1, \ldots, X_n\}$ by the brackets

$$[X_1, X_i] = X_{i+1}$$
 for all $2 \le i \le n-1$.

The nilindex is equal to n-1.

★ ∃ ► ★ ∃ ►
●

* Let $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ be a Lie algebra equipped with an inner product (a metric Lie algebra).

 \star (*G*, *g*)-the corresponding simply connected Lie group with left-invariant Riemannian metric *g*.

* If \mathfrak{g} is a metric Lie algebra, with inner product $\langle \cdot, \cdot \rangle$, the Levi-Civita connection on \mathfrak{g} is given by:

 $2\langle \nabla_X Y, Z \rangle = \langle [X, Y], Z \rangle + \langle [Z, X], Y \rangle + \langle [Z, Y], X \rangle, \quad \forall X, Y, Z \in \mathfrak{g}.$ (1)

Totally geodesic subalgebras

Definition (Totally geodesic submanifolds)

For a Riemannian manifold (M, g), a submanifold M' is said to be **totally geodesic** if, for any vector fields $X, Y \in T(M'), \nabla_X Y$ is in T(M').

Let \mathfrak{h} be a subalgebra of \mathfrak{g} and consider the corresponding connected subgroup H of G

 \star A subalgebra h of a metric Lie algebra g is said to be **totally geodesic subalgebra** if the Lie subgroup H corresponding to \mathfrak{h} is a totally geodesic submanifold relative to the left-invariant Riemannian metric defined by the inner product, on the simply connected Lie group G associated to \mathfrak{g} .

Lemma

Let \mathfrak{h} be a subalgebra of \mathfrak{g} and let \mathfrak{h}^{\perp} denote the orthogonal complement of \mathfrak{h} in g. Then \mathfrak{h} is a **totally geodesic subalgebra** of \mathfrak{g} if and only if (2)

 $\langle [Z, X], Y \rangle + \langle [Z, Y], X \rangle = 0$, for all $Z \in \mathfrak{h}^{\perp}, X, Y \in \mathfrak{h}$.

Nilpotent Lie algebras Filiform nilpotent Lie algebras N-graded filiform nilpotent Lie algebras

Nilpotent Lie algebras Totally geodesic subalgebras of nilpotent Lie algebras

Totally geodesic subalgebras of nilpotent Lie algebras

Proposition 1.

- Every metric Lie algebra possesses a geodesic.
- **2** If \mathfrak{g} is a nilpotent Lie algebra and $Y \in \mathfrak{g}$ is nonzero, then there is an inner product on \mathfrak{g} for which Y is a geodesic.

Nilpotent Lie algebras Filiform nilpotent Lie algebras N-graded filiform nilpotent Lie algebras

Nilpotent Lie algebras Totally geodesic subalgebras of nilpotent Lie algebras

- E - E

Totally geodesic subalgebras of nilpotent Lie algebras

Proposition 1.

- Every metric Lie algebra possesses a geodesic.
- **2** If \mathfrak{g} is a nilpotent Lie algebra and $Y \in \mathfrak{g}$ is nonzero, then there is an inner product on \mathfrak{g} for which Y is a geodesic.

Proposition 2.

If \mathfrak{g} be a nilpotent metric Lie algebra and \mathfrak{h} is a totally geodesic subalgebra of \mathfrak{g} of codimension one, then \mathfrak{g} is a direct sum of Lie ideals,

 $\mathfrak{g} \cong \mathfrak{h} \oplus \mathbb{R}.$

< ∃ →

э

Totally geodesic subalgebras of two-step nilpotent Lie algebras

Define the linear map

$$j : \mathfrak{z}(\mathfrak{g}) \to \mathfrak{so}(\mathfrak{z}^{\perp})$$

 $[X, Y], Z\rangle = \langle j(Z)X, Y\rangle \quad \text{for} \quad X, Y \in \mathfrak{z}^{\perp}(\mathfrak{g}), Z \in \mathfrak{z}(\mathfrak{g}).$ (3)

Nonsingular two-step nilpotent Lie algebras \mathfrak{g} are defined by the condition that for all $X \notin \mathfrak{z}(\mathfrak{g})$ the map $\operatorname{ad}(X) : \mathfrak{g} \to \mathfrak{z}(\mathfrak{g})$ is surjective.

_ ∢ ≣ ▶

Totally geodesic subalgebras of two-step nilpotent Lie algebras

Define the linear map

$$j : \mathfrak{z}(\mathfrak{g}) \to \mathfrak{so}(\mathfrak{z}^{\perp})$$

 $[X, Y], Z\rangle = \langle j(Z)X, Y\rangle \quad \text{for} \quad X, Y \in \mathfrak{z}^{\perp}(\mathfrak{g}), Z \in \mathfrak{z}(\mathfrak{g}).$ (3)

Nonsingular two-step nilpotent Lie algebras \mathfrak{g} are defined by the condition that for all $X \notin \mathfrak{z}(\mathfrak{g})$ the map $\operatorname{ad}(X) : \mathfrak{g} \to \mathfrak{z}(\mathfrak{g})$ is surjective.

Theorem (P. Eberlein, 1994)

Let $\mathfrak g$ be a nonsingular metric two-step nilpotent Lie algebra. A subalgebra $\mathfrak h$ of $\mathfrak g$ is totally geodesic if and only if exactly of one the following occurs:

- (a) \mathfrak{h} is a subspace of $\mathfrak{z}^{\perp}(\mathfrak{g})$;
- (b) \mathfrak{h} is a subspace of $\mathfrak{z}(\mathfrak{g})$;
- (c) \mathfrak{h} is a nontrivial direct sum $\mathfrak{h} = (\mathfrak{h} \cap \mathfrak{z}(\mathfrak{g})) \oplus (\mathfrak{h} \cap \mathfrak{z}^{\perp}(\mathfrak{g}))$ and j(Z) leaves invariant $\mathfrak{h} \cap \mathfrak{z}^{\perp}(\mathfrak{g})$ for all $Z \in \mathfrak{h} \cap \mathfrak{z}(\mathfrak{g})$.

Filiform Lie algebras

- 金田 ト 三臣

Definition (Filiform Lie algebras)

A nilpotent Lie algebra \mathfrak{g} of dimension n is said to be **filiform** if it possesses an element of maximal nilpotency; that is,

there exists
$$X \in \mathfrak{g}$$
 with $\operatorname{ad}^{n-2}(X) \neq 0$, (4)

where $\operatorname{ad}(X) : \mathfrak{g} \to \mathfrak{g}$ is the adjoint map $\operatorname{ad}(X)(Y) = [X, Y]$.

3

프 🖌 🔺 프 🕨 👘

The Kerr-Payne result

Consider a standard metric filiform Lie algebra n defined in an orthonormal basis $\{X_1, X_2, \ldots, X_n\}$ such that

$$[X_1, X_i] = c_i X_{i+1}$$
, for all $i = 2, ..., n-1$,

where constants $c_i \neq 0$.

Theorem (M. Kerr and T.Payne, 2010)

If $\mathfrak h$ is a totally geodesic proper subalgebra of the filiform metric Lie algebra $\mathfrak n,$ then

 $\dim(\mathfrak{h}) \leq \dim(\mathfrak{n})/2.$

4 B K 4 B K

3

The Kerr-Payne result

Consider a standard metric filiform Lie algebra n defined in an orthonormal basis $\{X_1, X_2, \ldots, X_n\}$ such that

$$[X_1, X_i] = c_i X_{i+1}$$
, for all $i = 2, ..., n-1$,

where constants $c_i \neq 0$.

Theorem (M. Kerr and T.Payne, 2010)

If ${\mathfrak h}$ is a totally geodesic proper subalgebra of the filiform metric Lie algebra ${\mathfrak n},$ then

 $\dim(\mathfrak{h}) \leq \dim(\mathfrak{n})/2.$

* Moreover, they obtained that \mathfrak{h} is a proper totally geodesic subalgebra $(\dim(\mathfrak{h}) \geq 2)$ of standard metric filiform Lie algebra \mathfrak{n} if and only if it is a subspace of a certain cone which is a codimension one subset of X_1^{\perp} .

A E > A E >

э.

Filiform Lie algebras

Theorem (c.f. Michèle Vergne, 1970)

Every filiform nilpotent Lie algebra has a basis $\{X_1, \ldots, X_n\}$ such that $\begin{bmatrix} X_1, X_i \end{bmatrix} = X_{i+1}, \text{ for all } i \ge 2,$ $\begin{bmatrix} X_i, X_j \end{bmatrix} \in \mathfrak{g}_{i+j}, \text{ for all } i, j \text{ with } i+j \neq n+1,$ $\exists \alpha \in \mathbb{R} \text{ such that } [X_i, X_{n-i+1}] = (-1)^i \alpha X_n, \text{ for all } 2 \le i \le n-1, \quad (5)$ if $n \text{ is odd}, \alpha = 0,$ where $\mathfrak{g}_k = \text{Span}\{X_k, \ldots, X_n\}$ and for convenience we have set $X_i = 0$ for

i > n.

* We will say that a filiform nilpotent Lie algebra \mathfrak{g} is regular if \mathfrak{g} has a basis $\{X_1, \ldots, X_n\}$ satisfying the conditions of Theorem, with $\alpha = 0$. Otherwise, \mathfrak{g} will be called irregular.

э.

-∢ ≣ ▶

Totally geodesic subalgebras of filiform Lie algebras

 \star There are **no codimension one totally geodesic subalgebras** of a metric filiform nilpotent Lie algebra g.

(신문) 문

Totally geodesic subalgebras of filiform Lie algebras

 \star There are **no codimension one totally geodesic subalgebras** of a metric filiform nilpotent Lie algebra g.

* Suppose that \mathfrak{g} is a filiform nilpotent metric Lie algebra, \mathfrak{h} is a proper subalgebra of \mathfrak{g} and \mathfrak{h}^{\perp} is \mathfrak{h} -invariant i.e. $[\mathfrak{h}^{\perp}, \mathfrak{h}] \subseteq \mathfrak{h}^{\perp}$. Then

 $dim(\mathfrak{h}) \leq dim(\mathfrak{g})/2.$

글 🖌 🔺 글 🕨 👘

3

Totally geodesic subalgebras of filiform Lie algebras

 \star There are **no codimension one totally geodesic subalgebras** of a metric filiform nilpotent Lie algebra $\mathfrak{g}.$

* Suppose that \mathfrak{g} is a filiform nilpotent metric Lie algebra, \mathfrak{h} is a proper subalgebra of \mathfrak{g} and \mathfrak{h}^{\perp} is $\mathfrak{h}\text{-invariant}$ i.e. $[\mathfrak{h}^{\perp},\mathfrak{h}]\subseteq\mathfrak{h}^{\perp}$. Then

 $\dim(\mathfrak{h}) \leq \dim(\mathfrak{g})/2.$

 \star Consider the following 6-dimensional filiform Lie algebra $\mathfrak g$

$$[X_1, X_i] = X_{i+1},$$
 for $i = 2, \dots, 5,$
 $[X_2, X_3] = -X_6.$

For no choice of inner product, does $\mathfrak g$ possess a totally geodesic subalgebra of dimension >2.

< ∃ >

\mathbb{N} -graded filiform nilpotent Lie algebras

Definition (\mathbb{N} -graded filiform Lie algebras)

An *n*-dimensional nilpotent Lie algebra \mathfrak{g} is N-graded filiform, if it can be decomposed in a direct sum of one dimensional subspaces $\mathfrak{g} = +_{i=1}^{n} V_{i}$ with

$$[V_1, V_i] = V_{i+1}, \quad \text{for all } i > 1 \text{ and}$$

 $[V_i, V_j] \subseteq V_{i+j}, \quad \text{for all } i, j \in \mathbb{N}$ (6)

where for convenience we set $V_i = 0$ for i > n.

э.

ℕ-graded filiform Lie algebras

Theorem (D. Millionshchikov, 2004)

Let $\mathfrak{g} = +_{i=1}^{n} V_i$ be an \mathbb{N} -graded filiform Lie algebra.

Then ${\mathfrak g}$ is isomorphic to the one and only one Lie algebra from the following list:

- Lie algebras of the six sequences m₀(n), m₂(n), V_n, m_{0,1}(2k + 1), m_{0,2}(2k + 2), m_{0,3}(2k + 3), defined by the basis X₁,..., X_n and commutating relations in Table 1
- **2** Lie algebras of 5 one-parameter families $g_{n,\alpha}$ of dimensions n = 7, ..., 11 respectively, defined by their basses and Lie structure relations in Table 2

≣⇒

algebra	dimension	presentation
$\mathfrak{m}_0(n)$	$n \ge 3$	$[X_1, X_i] = X_{i+1},$ $i = 2, \dots, n-1$
$\mathfrak{m}_2(n)$	$n \ge 5$	$[X_1, X_i] = X_{i+1},$ $i = 2, \dots, n-1$
		$[X_2, X_i] = X_{i+2},$ $i = 3, \dots, n-2$
\mathcal{V}_n	$n \ge 12$	$[X_i, X_j] = \begin{cases} (j-i)X_{i+j}, & i+j \le n; \\ 0, & i+j > n; \end{cases}$
$\mathfrak{m}_{0,1}(2k+1)$,	n=2k+1	$[X_1, X_i] = X_{i+1},$ $i = 2, \dots, 2k$
$k \ge 3$		$[X_l, X_{2k-l+1}] = (-1)^{l+1} X_{2k+1}, \qquad l = 2, \dots, k.$
$m_{0,2}(2k+2),$	n=2k+2	$[X_1, X_i] = X_{i+1},$ $i = 2, \dots, 2k + 1$
$k \ge 3$		$[X_l, X_{2k-l+1}] = (-1)^{l+1} X_{2k+1}, \qquad l = 2, \dots, k$
		$[X_j, X_{2k-j+2}] = (-1)^{j+1}(k-j+1)X_{2k+2}, j = 2, \dots, k$
$m_{0,3}(2k+3)$,	n=2k+3	$[X_1, X_i] = X_{i+1},$ $i = 2, \dots, 2k+2$
$k \ge 3$		$[X_l, X_{2k-l+1}] = (-1)^{l+1} X_{2k+1}, \qquad l = 2, \dots, k$
		$[X_j, X_{2k-j+2}] = (-1)^{j+1}(k-j+1)X_{2k+2}, j = 2, \dots, k$
		$[X_m, X_{2k-m+3}] = (-1)^m \left((m-2)k - \frac{(m-2)(m-1)}{2} \right) X_{2k+3},$
		$m = 3, \ldots, k+1$

 $\star \mathfrak{m}_{0}(3) \cong \mathfrak{m}_{2}(3) \cong \mathcal{V}_{3}, \mathfrak{m}_{0}(4) \cong \mathfrak{m}_{2}(4) \cong \mathcal{V}_{4}, \mathfrak{m}_{2}(5) \cong \mathcal{V}_{5}, \mathfrak{m}_{2}(6) \cong \mathcal{V}_{6}, \mathfrak{m}_{2}(6) \cong \mathfrak{m}_{2}(6) \cong$

Nilpotent Lie algebras Filiform nilpotent Lie algebras N-graded filiform nilpotent Lie algebras

N-graded filiform nilpotent Lie algebras Totally geodesic subalgebras of N-graded filiform nilpotent Lie algebras

algebra	restrictions	presentation
$\mathfrak{g}_{7,lpha}$	$\alpha \neq -2$	$[X_1, X_j] = X_{j+1}, \qquad \qquad 2 \le j \le 6$
		$[X_2, X_3] = (2 + \alpha)X_5, [X_2, X_4] = (2 + \alpha)X_6,$
		$[X_2, X_5] = (1 + \alpha)X_7, [X_3, X_4] = X_7,$
$\mathfrak{g}_{8,lpha}$	lpha eq -2	relations of $\mathfrak{g}_{7,lpha}$ and:
		$[X_1, X_7] = X_8, [X_2, X_6] = \alpha X_8, [X_3, X_5] = X_8,$
$\mathfrak{g}_{9,lpha}$	$\alpha \neq -\frac{5}{2}, -2$	relations of $\mathfrak{g}_{8,lpha}$ and:
		$[X_1, X_8] = X_9, [X_2, X_7] = \frac{2\alpha^2 + 3\alpha - 2}{2\alpha + 5}X_9,$
		$[X_3, X_6] = \frac{2\alpha + 2}{2\alpha + 5} X_9, [X_4, X_5] = \frac{3}{2\alpha + 5} X_9,$
$\mathfrak{g}_{10,lpha}$	$\alpha \neq -\frac{5}{2}$	relations of $\mathfrak{g}_{9,lpha}$ and:
		$[X_1, X_9] = X_{10}, [X_2, X_8] = \frac{2\alpha^2 + \alpha - 1}{2\alpha + 5} X_{10},$
		$[X_3, X_7] = \frac{2\alpha - 1}{2\alpha + 5} X_{10}, [X_4, X_6] = \frac{3}{2\alpha + 5} X_{10},$
$\mathfrak{g}_{11,lpha}$	$\alpha \neq -\frac{5}{2}, -1, -3$	relations of $\mathfrak{g}_{10,\alpha}$ and:
		$[X_1, X_{10}] = X_{11}, [X_2, X_9] = \frac{2\alpha^3 + 2\alpha^2 + 3}{2(\alpha^2 + 4\alpha + 3)}X_{11},$
		$[X_3, X_8] = \frac{4\alpha^3 + 8\alpha^2 - 8\alpha - 21}{2(\alpha^2 + 4\alpha + 3)(2\alpha + 5)} X_{11}, [X_4, X_7] = \frac{3(2\alpha^2 + 4\alpha + 5)}{2(\alpha^2 + 4\alpha + 3)(2\alpha + 5)}$
		$[X_5, X_6] = \frac{3(4\alpha+1)}{2(\alpha^2+4\alpha+3)(2\alpha+5)} X_{11}$

* $\mathfrak{g}_{n,8} \cong \mathcal{V}_n$ where $n = 7, \ldots, 11$ (the relevant basis $\{X_1, \frac{1}{(k-2)! \cdot 60}X_k : k = 2, \ldots, n\}$) * $\mathfrak{g}_{7,-2} \cong \mathfrak{m}_{0,1}(7), \mathfrak{g}_{8,-2} \cong \mathfrak{m}_{0,2}(8)$ and $\mathfrak{g}_{9,-2} \cong \mathfrak{m}_{0,3}(9).$

Ana Hinić Galić La Trobe University, Australia Totally geodesic subalgebras of nilpotent Lie algebras

- A 🖻 🕨

э

Totally geodesic subalgebras of ℕ-graded filiform Lie algebras

* Take an inner product on an \mathbb{N} -graded filiform Lie algebra \mathfrak{g} for which X_1, \ldots, X_n are orthonormal. Then the subalgebra

 $\mathfrak{h} = \operatorname{Span}(X_i : i \text{ is even})$

is a totally geodesic subalgebra of dimension $\lfloor \frac{\dim(\mathfrak{g})}{2} \rfloor$.

Totally geodesic subalgebras of ℕ-graded filiform Lie algebras

* Take an inner product on an \mathbb{N} -graded filiform Lie algebra \mathfrak{g} for which X_1, \ldots, X_n are orthonormal. Then the subalgebra

 $\mathfrak{h} = \operatorname{Span}(X_i : i \text{ is even})$

is a totally geodesic subalgebra of dimension $\lfloor \frac{\dim(\mathfrak{g})}{2} \rfloor$.

Theorem (G. Cairns, A. Hinić Galić, Y. Nikolayevsky)

The dimension of a totally geodesic subalgebra $\mathfrak h$ of an $\mathit{n}\text{-dimensional}$ metric $\mathbb N\text{-graded}$ filiform Lie algebras $\mathfrak g$ is

$$\leq \lfloor \frac{\operatorname{dim}(\mathfrak{g})}{2}
floor,$$

except if

- $\ \, \mathfrak{g}\cong\mathfrak{m}_0(n) \text{ when } \dim(\mathfrak{h})\leq\dim(\mathfrak{g})-2 \text{, or } \\$
- 2 $\mathfrak{g} \cong \mathfrak{m}_{0,1}(2k+1)$ when dim $(\mathfrak{h}) \leq \dim(\mathfrak{g}) 4$.

Nilpotent Lie algebras Filiform nilpotent Lie algebras N-graded filiform nilpotent Lie algebras

- < ∃ >

3 N

э

Case $m_0(n)$: Define an orthonormal basis $\{E_1, \ldots, E_n\}$ as follows: set $E_1 = X_1, E_n = X_n$ and for each $i \in \{2, 3, \ldots, n-1\}$, pose

$$E_{i} = \sum_{j=0}^{\lfloor \frac{n-1-i}{2} \rfloor} {n-1-i-j \choose j} X_{i+2j}.$$
 (7)

The basis has been chosen so that

$$[E_1, E_i] = E_{i+1} + E_{i+3} + E_{i+5} + \dots, \text{ for all } i \ge 2.$$
(8)

_ ∢ ≣ ▶

Case $m_0(n)$: Define an orthonormal basis $\{E_1, \ldots, E_n\}$ as follows: set $E_1 = X_1, E_n = X_n$ and for each $i \in \{2, 3, \ldots, n-1\}$, pose

$$E_{i} = \sum_{j=0}^{\lfloor \frac{n-1-i}{2} \rfloor} {n-1-i-j \choose j} X_{i+2j}.$$
 (7)

The basis has been chosen so that

$$[E_1, E_i] = E_{i+1} + E_{i+3} + E_{i+5} + \dots, \text{ for all } i \ge 2.$$
(8)

Then, totally geodesic subalgebra \mathfrak{h} of codimension two is spanned by the vectors $Y_2, Y_3, \ldots, Y_{n-2}, Y_n$, where for $i \in \{2, 3, \ldots, n-2, n\}$,

$$Y_i = \begin{cases} E_i & : \text{ if } n-i \text{ is even,} \\ E_i - E_{n-1} & : \text{ otherwise.} \end{cases}$$
(9)

The orthogonal complement \mathfrak{h}^{\perp} to \mathfrak{h} is spanned by the vectors

$$Z_1 := E_1$$
 and $Z_2 := \sum_{\substack{1 \le j \le n-2 \\ j \text{ odd}}} E_{n-j}$.

▲ 国 ▶ | ▲ 国 ▶ |

Case $\mathfrak{m}_0(n)$: Define an orthonormal basis $\{E_1, \ldots, E_n\}$ as follows: set $E_1 = X_1, E_n = X_n$ and for each $i \in \{2, 3, \ldots, n-1\}$, pose

$$E_{i} = \sum_{j=0}^{\lfloor \frac{n-1-i}{2} \rfloor} {n-1-i-j \choose j} X_{i+2j}.$$
 (7)

The basis has been chosen so that

$$[E_1, E_i] = E_{i+1} + E_{i+3} + E_{i+5} + \dots, \text{ for all } i \ge 2.$$
(8)

Then, totally geodesic subalgebra \mathfrak{h} of codimension two is spanned by the vectors $Y_2, Y_3, \ldots, Y_{n-2}, Y_n$, where for $i \in \{2, 3, \ldots, n-2, n\}$,

$$Y_i = \begin{cases} E_i & : \text{ if } n-i \text{ is even,} \\ E_i - E_{n-1} & : \text{ otherwise.} \end{cases}$$
(9)

The orthogonal complement \mathfrak{h}^{\perp} to \mathfrak{h} is spanned by the vectors

$$Z_1 := E_1$$
 and $Z_2 := \sum_{\substack{1 \leq j \leq n-2 \\ j \text{ odd}}} E_{n-j}$.

* If a filiform nilpotent metric Lie algebra \mathfrak{g} of dimension n possesses a totally geodesic subalgebra of codimension two, then \mathfrak{g} is isomorphic to the filiform Lie algebra $\mathfrak{m}_0(n)$.

B b d B b

Case $\mathfrak{m}_{0,1}(2k+1)$: Let $\mathfrak{m} = \mathbb{R}^{2k+1}$, $k \ge 3$, be a Euclidean space with the inner product $\langle \cdot, \cdot \rangle$ and an orthonormal basis E_i , $i = 1, \ldots, 2k + 1$. Introduce the subspace $\mathfrak{m}' = \text{Span}(E_2, \ldots, E_{2k+1})$, and define a bilinear skew-symmetric map $[\cdot, \cdot] : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ by

$$[E_1, X] = NX, \quad [X, Y] = \langle KX, Y \rangle E_{2k+1}, \text{ for all } X, Y \in \mathfrak{m}',$$
 (10)

where $N, K \in End(\mathfrak{m}')$ are defined by their matrices relative to the orthonormal basis E_2, \ldots, E_{2k+1} for \mathfrak{m}' as follows:

where I_{k-1} is the identity matrix, $u, p \in \mathbb{R}^{k-1}$, and S is a symmetric nonsingular $(k-1) \times (k-1)$ -matrix such that the matrix $T = S(-S + uu^t)$ is nilpotent.

• = • • = •

Case $\mathfrak{m}_{0,1}(2k+1)$: Let $\mathfrak{m} = \mathbb{R}^{2k+1}$, $k \ge 3$, be a Euclidean space with the inner product $\langle \cdot, \cdot \rangle$ and an orthonormal basis E_i , $i = 1, \ldots, 2k + 1$. Introduce the subspace $\mathfrak{m}' = \text{Span}(E_2, \ldots, E_{2k+1})$, and define a bilinear skew-symmetric map $[\cdot, \cdot] : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ by

$$[E_1, X] = NX, \quad [X, Y] = \langle KX, Y \rangle E_{2k+1}, \text{ for all } X, Y \in \mathfrak{m}',$$
 (10)

where $N, K \in End(\mathfrak{m}')$ are defined by their matrices relative to the orthonormal basis E_2, \ldots, E_{2k+1} for \mathfrak{m}' as follows:

where I_{k-1} is the identity matrix, $u, p \in \mathbb{R}^{k-1}$, and S is a symmetric nonsingular $(k-1) \times (k-1)$ -matrix such that the matrix $T = S(-S + uu^t)$ is nilpotent.

* The subalgebra $\mathfrak{h} = (\text{Span}(E_1, E_{2k}, (0, u, 0_{k+1})^t, (0_k, u, 0, 0)^t))^{\perp}$ is a totally geodesic subalgebra of \mathfrak{m} of codimension 4.

< 🗇 🕨

-

Case $\mathfrak{m}_{0,1}(2k+1)$: Let $\mathfrak{m} = \mathbb{R}^{2k+1}$, $k \ge 3$, be a Euclidean space with the inner product $\langle \cdot, \cdot \rangle$ and an orthonormal basis E_i , $i = 1, \ldots, 2k + 1$. Introduce the subspace $\mathfrak{m}' = \text{Span}(E_2, \ldots, E_{2k+1})$, and define a bilinear skew-symmetric map $[\cdot, \cdot] : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ by

$$[E_1, X] = NX, \quad [X, Y] = \langle KX, Y \rangle E_{2k+1}, \text{ for all } X, Y \in \mathfrak{m}',$$
 (10)

where $N, K \in End(\mathfrak{m}')$ are defined by their matrices relative to the orthonormal basis E_2, \ldots, E_{2k+1} for \mathfrak{m}' as follows:

where I_{k-1} is the identity matrix, $u, p \in \mathbb{R}^{k-1}$, and S is a symmetric nonsingular $(k-1) \times (k-1)$ -matrix such that the matrix $T = S(-S + uu^t)$ is nilpotent.

* The subalgebra $\mathfrak{h} = (\text{Span}(E_1, E_{2k}, (0, u, 0_{k+1})^t, (0_k, u, 0, 0)^t))^{\perp}$ is a totally geodesic subalgebra of \mathfrak{m} of codimension 4.

* It can be shown that for a suitable choice of S, u and p, $\mathfrak{m} \cong \mathfrak{m}_{0,1}(2k+1)$.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Ξ 9 Q (P

< 17 ►

★ Ξ → < Ξ →</p>

æ

THANK YOU FOR YOUR ATTENTION