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Some of the following results are based on a joint work with Professor Philippos J.
Xenos.

A real hypersurface M in a complex space form Mn(c), is an immersed subman-
ifold and its dimension is 2n − 1. An almost contact metric structure (φ, ξ, η, g)
can be defined on M and it is induced from the Kaehler metric G and the com-
plex structure J of Mn(c). A real hypersurface is said to be Hopf if the structure
vector field ξ is principal, i.e. Aξ = αξ, where A is the shape operator of M. The
classification problem of real hypersurfaces in non-flat complex space form (Mn(c),
c 6= 0) is of great importance in the area of Differential Geometry. It was initiated
by Takagi in 1973 (see [6], [7]), who classified the homogeneous real hypersurfaces
of CPn. Further work on this area was done by Cecil and Ryan ( see [2]) and fi-
nally Kimura in [3] gave the local classification of Hopf hypersurfaces with constant
principal curvatures. In the case of CHn, Berndt in [1] classified Hopf hypersurfaces
with constant principal curvatures.

The structure Jacobi operator of a real hypersurface M is denoted by l and
is given by the relation lX = RξX = R(X, ξ)ξ and it plays an important role in
the study of them. In [5] Perez and Santos classified real hypersurfaces in complex
projective space CPn, n ≥ 3, whose Lie derivative of the structure Jacobi operator
with respect to ξ coincides with the covariant derivative of it in the same direction,
i.e. Lξl = ∇ξl. Motivated by their work, in [4] the same condition is studied for
real hypersurfaces in CP 2 and CH2 and they are classified. Additionally, the case
in which the Lie derivative of the structure Jacobi operator in the direction of X
∈ D = ker(η) coincides with the covariant derivative in the same direction, i.e.
LX l = ∇X l will be presented. More precisely, real hypersurfaces in CP 2 and CH2

equipped with structure Jacobi operator which satisfies the latter condition do not
exist.
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