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The generalized Kirchhoff equations of rigid body motion in fluid have the form

ṡ = s× ∂H

∂s
+ r × ∂H

∂r
, ṙ = r × ∂H

∂s
, (1)

where s, r ∈ R3 are the impulse moment and the impulse force respectively, H =
H(s, r) is the total energy. This system of equations always possesses the geometric
integral f1 = r2

1 + r2
2 + r2

3, the area integral f2 = s1r1 + s2r2 + s3r3, and the energy
integral H. At the common level set {f1 = a2, f2 = g} the system is Hamiltonian.
In [1] D. N. Goryachev found an integrable case where
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.

In [2], on the basis of Boolean functions method of M. P. Kharlamov [3], P. E. Ryabov
obtained the real seraration of variables for the Goryachev case which allowed to
study phase topology of the system.

For the partial case b = 0 integrability of the system (1) was proved by S. A. Chap-
lygin in [4]. In the case g = 0 he found an additional integral and also reduced the
problem to elliptic quadratures. In [5] topology of the Liouville foliation in the case
b = 0 was investigated (topological type of energy surfaces, bifurcation sets, bifur-
cations of Liouville tori). In the present talk for the Chaplygin case we calculate
the Fomenko-Zieschang invariant which is known to be a complete invariant for the
Liouville equivalence (see [6]).
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