ALGEBRAIC SUPERGROUPS ASSOCIATED WITH SIMPLE LIE SUPERALGEBRAS

Fabio Gavarini

Universita di Roma "Tor Vergata" - Dipartimento di Matematica, via della ricerca scientifica 1 - I-00133 Roma - Italy [gavarini@mat.uniroma2.it]

For any finite dimensional (complex) simple Lie superalgebra \mathfrak{g} , I provide an explicit recipe to construct an algebraic supergroupe G — defined via its functor of points - whose tangent Lie superalgebra is \mathfrak{g} itself. To do that, I generalise the classical Chevalley method, which construct a (semi)simple algebraic group G_V starting from any complex, finite dimensional (semi)simple Lie algebra \mathfrak{g} and from a faithful finite dimensional \mathfrak{g} -module V. I shall show that one can do the same when \mathfrak{g} is replaced with a simple Lie supealgebra: first one introduces then a (super-analogue of the classical) notion of "Chevalley basis", then one proves the existence of these objects, and finally one implements the same method — up to some variations, of course. Remarkably enough, this strategy is successful both with the (simple) Lie superalgebras of classical type and with those of Cartan type - somehow extending the range of application of Chevalley's original idea. Time permitting, besides this "existence" result, I shall present also a "uniqueness" one: every connected algebraic supergroup whose Lie superalgebra be (finite dimensional) simple is isomorphic to one of the supergroups G_V that I just constructed. Thus one eventually finds a complete classification of such supergroups.