LEVI-PARALLEL CONTACT RIEMANNIAN MANIFOLDS

Giulia Dileo

University of Bari, Dipartimento di Matematica - Universit degli Studi di Bari Aldo Moro Via E. Orabona 4,70125 Bari, Italy [dileo@dm.uniba.it]

An associated metric on a contact manifold (M, η) is a Riemannian metric g such that the Reeb vector field ξ is of unit length and orthogonal to the contact distribution $D := Ker(\eta)$, and also, denoting by L_{η} the Levi-Tanaka form, the endomorphism $J := (L_{\eta})^{\sharp} : D \to D$ is a partial complex structure, i.e. $J^2 = -I$. If we only require the former condition, we define g an *admissible metric*.

In the talk I will show some recent results obtained in a joint work with A. Lotta, concerning the Riemannian geometry of a special class of contact manifolds (M, η, g) equipped with an admissible metric: we ask the Levi-Tanaka form to be parallel with respect to a canonical connection with torsion, parallelizing both η and g. For the special case of associated metrics, this condition of Levi-parallelism is equivalent to the integrability condition of J, so that the canonical connection we deal with plays the role of the Tanaka-Webster connection in pseudohermitian geometry.

To each Levi-parallel contact Riemannian manifold (M, η, g) one can associate in a canonical way a finite set of negative numbers \mathcal{S} , called its *spectrum*, determined by the eigenvalues of the symmetric operator $J^2: D \to D$. First we study Einstein metrics, providing a sufficient condition ensuring (M, η, g) to be of Sasakian type, namely ξ be Killing. Finally we show that, under suitable curvature assumptions on g, the spectrum \mathcal{S} must actually be trivial, and we obtain some rigidity theorems, including a classification result for locally symmetric spaces.