AFFINE HYPERSURFACES WITH WARPED PRODUCT STRUCTURE

Miroslava Antić

University of Belgrade, Faculty of Mathematics, Belgrade, Serbia [mira@matf.bg.ac.rs]

The aim of this work is to classify all the strictly locally convex affine hypersurface M^{n+1} , $n \geq 2$ in \mathbb{R}^{n+2} such that there exists an affine hypersphere M^n in \mathbb{R}^{n+1} such that $M^{n+1} = I \times_{\rho} M^n$, where $I \subset \mathbb{R}$ and the function ρ depends only on I, meaning M^{n+1} admits a warped product structure. If $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial x_i}$, $i = 1, \ldots, n$ span the tangent bundles of I and M^n , respectively, then there exist differentiable functions $\lambda_1, \lambda_2, \mu_1$ and μ_2 such that the difference tensor and the shape operator are of the following form

$$\begin{split} K(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}) &= \lambda_1 \frac{\partial}{\partial t}, \quad K(\frac{\partial}{\partial t}, \frac{\partial}{\partial x_i}) = \lambda_2 \frac{\partial}{\partial x_i}, \\ S\frac{\partial}{\partial t} &= \mu_1 \frac{\partial}{\partial t}, \quad S\frac{\partial}{\partial x_i} = \mu_2 \frac{\partial}{\partial x_i}, \quad \forall i = 1, \dots, n \end{split}$$

Conversely, suppose M^{n+1} is a locally strongly convex hypersurface of the affine space R^{n+2} such that its tangent bundle is an orthogonal sum, with respect to the metric h, of two distributions, one-dimensional \mathcal{D}_1 spanned by unit vector field Tand n-dimensional \mathcal{D}_2 $(n \geq 2)$, with orthonormal frame X_1, X_2, \ldots, X_n such that

$$K(T,T) = \lambda_1 T, \quad K(T,X) = \lambda_2 X,$$

$$ST = \mu_1 T, \quad SX = \mu_2 X, \quad \forall X \in \mathcal{D}_2.$$

Let $\gamma_1, \gamma_2 : R \to R$ be functions such that $\gamma'_1 \neq 0, \gamma'_1 \gamma''_2 \neq \gamma''_1 \gamma'_2$. Then M^{n+1} an affine hypersphere such that $K_T = 0$ or is affine congruent to one of the following immersions

- 1. $f(t, x_1, \ldots, x_n) = (\gamma_1(t), \gamma_2(t)g_2(x_1, \ldots, x_n))$, where $g_2 : \mathbb{R}^n \to \mathbb{A}^{n+1}$ is a proper affine hypersphere centered at the origin, for γ_1, γ_2 such that $\gamma_2 \neq 0$, $\gamma'_1\gamma_2 \gamma_1\gamma'_2 \neq 0$, and moreover, $sgn(\gamma'_1\gamma_2) = sgn(\gamma'_1\gamma_2 \gamma_1\gamma'_2) = sgn(\gamma'_1\gamma''_2 \gamma''_1\gamma''_2)$,
- 2. $f(t, x_1, \ldots, x_n) = \gamma_1(t)C(x_1, \ldots, x_n) + \gamma_2(t)e_{n+1}$, where $C: \mathbb{R}^n \to \mathbb{A}^{n+2}$ is an improper affine sphere given by

$$C(x_1, \ldots, x_n) = (x_1, \ldots, x_n, p(x_1, \ldots, x_n), 1)$$

, with the affine normal e_{n+1} , for γ_1, γ_2 such that $sgn(\frac{\gamma'_1\gamma''_2 - \gamma''_1\gamma'_2}{\gamma'_1}) = -sgn\gamma_1$,

3. $f(t, x_1, \ldots, x_n) = C(x_1, \ldots, x_n) + \gamma_2(t)e_{n+1} + \gamma_1(t)e_{n+2}$ where $C: \mathbb{R}^n \to \mathbb{A}^{n+2}$ is previously given improper affine sphere, for γ_1, γ_2 such that $sgn(\gamma'_1\gamma''_2 - \gamma''_1\gamma'_2) = sgn\gamma'_1$.

This is a joint work with F. Dillen, K. Schoels and L. Vrancken