AFFINE HYPERSURFACES WITH WARPED PRODUCT STRUCTURE

Miroslava Antić

University of Belgrade, Faculty of Mathematics, Belgrade, Serbia
[mira@matf.bg.ac.rs]
The aim of this work is to classify all the strictly locally convex affine hypersurface $M^{n+1}, n \geq 2$ in R^{n+2} such that there exists an affine hypersphere M^{n} in R^{n+1} such that $M^{n+1}=I \times{ }_{\rho} M^{n}$, where $I \subset R$ and the function ρ depends only on I, meaning M^{n+1} admits a warped product structure. If $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial x_{i}}, i=1, \ldots, n$ span the tangent bundles of I and M^{n}, respectively, then there exist differentiable functions $\lambda_{1}, \lambda_{2}, \mu_{1}$ and μ_{2} such that the difference tensor and the shape operator are of the following form

$$
\begin{aligned}
& K\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=\lambda_{1} \frac{\partial}{\partial t}, \quad K\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x_{i}}\right)=\lambda_{2} \frac{\partial}{\partial x_{i}}, \\
& S \frac{\partial}{\partial t}=\mu_{1} \frac{\partial}{\partial t}, \quad S \frac{\partial}{\partial x_{i}}=\mu_{2} \frac{\partial}{\partial x_{i}}, \quad \forall i=1, \ldots, n .
\end{aligned}
$$

Conversely, suppose M^{n+1} is a locally strongly convex hypersurface of the affine space R^{n+2} such that its tangent bundle is an orthogonal sum, with respect to the metric h, of two distributions, one-dimensional \mathcal{D}_{1} spanned by unit vector field T and n-dimensional $\mathcal{D}_{2}(n \geq 2)$, with orthonormal frame $X_{1}, X_{2}, \ldots, X_{n}$ such that

$$
\begin{aligned}
& K(T, T)=\lambda_{1} T, \quad K(T, X)=\lambda_{2} X, \\
& S T=\mu_{1} T, \quad S X=\mu_{2} X, \quad \forall X \in \mathcal{D}_{2} .
\end{aligned}
$$

Let $\gamma_{1}, \gamma_{2}: R \rightarrow R$ be functions such that $\gamma_{1}^{\prime} \neq 0, \gamma_{1}^{\prime} \gamma_{2}^{\prime \prime} \neq \gamma_{1}^{\prime \prime} \gamma_{2}^{\prime}$. Then M^{n+1} an affine hypersphere such that $K_{T}=0$ or is affine congruent to one of the following immersions

1. $f\left(t, x_{1}, \ldots, x_{n}\right)=\left(\gamma_{1}(t), \gamma_{2}(t) g_{2}\left(x_{1}, \ldots, x_{n}\right)\right)$, where $g_{2}: R^{n} \rightarrow A^{n+1}$ is a proper affine hypersphere centered at the origin, for γ_{1}, γ_{2} such that $\gamma_{2} \neq 0$, $\gamma_{1}^{\prime} \gamma_{2}-\gamma_{1} \gamma_{2}^{\prime} \neq 0$, and moreover, $\operatorname{sgn}\left(\gamma_{1}^{\prime} \gamma_{2}\right)=\operatorname{sgn}\left(\gamma_{1}^{\prime} \gamma_{2}-\gamma_{1} \gamma_{2}^{\prime}\right)=\operatorname{sgn}\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\right.$ $\left.\gamma_{1}^{\prime \prime} \gamma_{2}^{\prime}\right)$,
2. $f\left(t, x_{1}, \ldots, x_{n}\right)=\gamma_{1}(t) C\left(x_{1}, \ldots, x_{n}\right)+\gamma_{2}(t) e_{n+1}$, where $C: R^{n} \rightarrow A^{n+2}$ is an improper affine sphere given by

$$
C\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, p\left(x_{1}, \ldots, x_{n}\right), 1\right)
$$

, with the affine normal e_{n+1}, for γ_{1}, γ_{2} such that $\operatorname{sgn}\left(\frac{\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\gamma_{1}^{\prime \prime} \gamma_{2}^{\prime}}{\gamma_{1}^{\prime}}\right)=-\operatorname{sgn} \gamma_{1}$,
3. $f\left(t, x_{1}, \ldots, x_{n}\right)=C\left(x_{1}, \ldots, x_{n}\right)+\gamma_{2}(t) e_{n+1}+\gamma_{1}(t) e_{n+2}$ where $C: R^{n} \rightarrow A^{n+2}$ is previously given improper affine sphere, for γ_{1}, γ_{2} such that $\operatorname{sgn}\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime \prime}-\right.$ $\left.\gamma_{1}^{\prime \prime} \gamma_{2}^{\prime}\right)=s g n \gamma_{1}^{\prime}$.

This is a joint work with F. Dillen, K. Schoels and L. Vrancken

