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Abstract

We present a formalization and a formal total correctness proof of a MiniSAT-
like SAT solver within the system Isabelle/HOL. The solver is based on the
DPLL procedure and employs most state-of-the art SAT solving techniques,
including the conflict-guided backjumping, clause learning, and the two-watch
unit propagation scheme. A shallow embedding into HOL is used and the solver
is expressed as a set of recursive HOL functions. Based on this specification,
the Isabelle’s built-in code generator can be used to generate executable code in
several supported functional languages (Haskell, SML, and OCaml). The SAT
solver implemented in this way is, to our knowledge, the first fully formally and
mechanically verified modern SAT solver.

Key words: formal program verification, SAT problem, DPLL procedure,
Isabelle

1. Introduction

Propositional satisfiability problem (SAT) is the problem of deciding if there
is a truth assignment under which a given propositional formula (in conjunctive
normal form) evaluates to true. It is a canonical NP-complete problem [Coo71]
and it holds a central position in the field of computational complexity. SAT
problem is also important in many practical applications such as electronic
design automation, software and hardware verification, artificial intelligence,
and operations research. Thanks to recent advances in propositional solving
technology, SAT solvers are becoming the tool for attacking more and more
practical problems. Most modern SAT solvers are based on the Davis-Putnam-
Logemann-Loveland (DPLL) procedure [DP60, DLL62] and its modifications.

Since SAT solver are used in applications that are very sensitive (e.g., soft-
ware and hardware verification), their misbehavior could be both financially
expensive and dangerous from the aspect of security. Clearly, having a trusted
SAT solving system is vital. This can be achieved in two different ways.

1. One approach is to extend an online SAT solver with the possibility of
generating models of satisfiable formulas and proofs of unsatisfiability for
unsatisfiable formulas. The generated models and proofs are then checked
offline by an independent trusted checker [ZM03, Gel07].

2. Another approach is to apply software verification techniques and verify
the implementation of the SAT solver itself, so that it becomes trusted
[Mar08a, SV08].
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The first approach has successfully been used in recent years. It is relatively
easy to implement, but it has some drawbacks. Generating object-level proofs
introduces about 10% overhead to the solver’s running time and proof checking
can also take significant amount of time [Gel07]. More importantly, since proofs
are very large objects, they can consume up to several gigabytes of storage space.
Since proof checkers have to be trusted, they must be very simple programs so
that they could be ,,verified” only by manually inspecting their source code
[Gel07]. On the other hand, in order to handle large proof objects, checkers
must use specialized functionality of the underlying operating system, which
reduces the level of their confidence.1

In this work we take the second, harder, approach and formally verify a full
implementation of a SAT solver. There are several reasons for doing this.

1. We believe that this verification effort could help in better theoretical un-
derstanding of how and why modern SAT solver procedures work.

2. Although the overheads of generating unsatisfiability proofs during solving
are not unmanageable, they can still be avoided if the SAT solver itself is
trusted.

3. Verified SAT solvers can serve as the trusted kernel checkers for verifying
results of other untrusted verifiers such as BDDs, model checkers, and SMT
solvers [SV08]. Also, verification of some SAT solver modules (e.g., Boolean
constraint propagation) can serve as a basis for creating a verified, yet
efficient, proof checker for SAT.

4. Finally, we want to demonstrate that, thanks to the recent advances in
both automated and semi-automated software verification technology, the
time has finally come when it is possible to have a non-trivial software fully
verified. We hope that this work contributes to the Verification Grand
Challenge [VSTTE].

In order to prove correctness of a SAT solver implementation, it needs to
be formalized in some meta-theory so its properties can be analyzed by using
an appropriate mathematical apparatus. In order to achieve the desired, high-
est level of trust, formalization in a classical “pen-and-paper” fashion is not
satisfactory and a mechanized and machine-checkable formalization is required.
All formalizations presented here were made within the system Isabelle/HOL
[NPW02]. A shallow embedding is used, i.e., the SAT solver is expressed as
a set of recursive functions in HOL. Original proof documents are available in
[Mar08b].

Overview of the paper. The rest of the paper is structured as follows. In
§2 we give some background information about the DPLL procedure and its
modifications. We also give some background on program verification. In §3
we introduce basic notions of the system Isabelle and formulate an underlying
theory for our formalization. The central section of the paper is §4 in which we
present the specification of the SAT solver and introduce correctness conditions
along the way. In §5 we outline the correctness proof of our implementation and
in §6 we discuss some aspects of the proof management. In §7 we list some of

1For example, proof checker used in SAT competitions uses Linux’s mmap functionality
[Gel07].
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function dpll (F : Formula) : (SAT, UNSAT)

begin

if F is empty then

return SAT

else if there is an empty clause in F then

return UNSAT

else if there is a pure literal l in F then

return dpll(F [l → ⊤])
else there is a unit clause [l] in F then

return dpll(F [l → ⊤])
else begin

select a literal l occurring in F

if dpll(F [l → ⊤]) = SAT then

return SAT

else

return dpll(F [l → ⊥])
end

end

Figure 1: DPLL algorithm — recursive definition

the related work, in §8 we list some possible directions for further work, and in
§9 we draw final conclusions.

2. Background

DPLL Procedure and its Modifications. Most modern SAT solvers are
based on the Davis-Putnam-Logemann-Loveland (DPLL) procedure. Its original
recursive version is shown in Figure 1, where F denotes a set of propositional
clauses tested for satisfiability and F [l → ⊤] denotes the formula obtained
from F by substituting the literal l with ⊤, its opposite literal l with ⊥, and
simplifying afterwards. A literal is pure if it occurs in the formula but its
opposite literal does not occur. A clause is unit if it contains only one literal.
This recursive implementation is practically unusable for larger formulae and
therefore it is not used in modern SAT solvers, nor in this paper.

Starting with the work on the GRASP and SATO systems [MSS99, Zha97]
and continuing with Chaff, BerkMin and MiniSAT [MMZ+01, GN02, ES04],
the spectacular improvements in the performance of DPLL-based SAT solvers
achieved in the last years are due to (i) several conceptual enhancements of
the original DPLL procedure, aimed at reducing the amount of explored search
space, such as backjumping (a form of non-chronological backtracking), conflict-
driven lemma learning, and restarts, and (ii) better implementation techniques,
such as the two-watched literals scheme for unit propagation. These advances
make it possible to decide satisfiability of industrial SAT problems with tens of
thousands of variables and millions of clauses.

Rule-based descriptions of the DPLL procedure. During the last few years
two transition rule systems which model modern DPLL-based SAT solvers and
related SMT solvers have been published [NOT06, KG07]. These descriptions
define the top-level architecture of solvers as mathematical object that can be
grasped as a whole and fruitfully reasoned about. Both systems are accompanied
by pen-and-paper correctness and termination proofs. Although they succinctly
and accurately capture all major aspects of the solvers’ global operation, they

3



Decide:
l ∈ F l, l /∈ M

M := M ld

UnitPropag:
l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M l, l /∈ M

M := M l
Conflict:

C = no cflct l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M

C := {l1, . . . , lk}
Explain:

l ∈ C l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ≺ l

C := C ∪ {l1, . . . , lk} \ {l}
Learn:

C = {l1, . . . , lk} l1 ∨ . . . ∨ lk /∈ F

F := F ∪ {l1 ∨ . . . ∨ lk}
Backjump:

C = {l, l1, . . . , lk} l ∨ l1 ∨ . . . ∨ lk ∈ F level l > m ≥ level li
C := no cflct M := M [m] l

Forget:
C = no cflct c ∈ F F \ c � c

F := F \ c
Restart:

C = no cflct

M := M [0]

Figure 2: Rules of dpll as given in [KG07]

are still high level and far from the actual implementations. Both systems
model the solver behavior as transitions between states that represent the values
of global variables of the solver. These include the set of clauses F and the
corresponding assertion trail M . Transitions between states are performed only
by using precisely defined transition rules. The solving process is finished when
no transition rule applies and final state is reached.

The system presented in [NOT06] is very coarse. It can capture many dif-
ferent strategies seen in the state-of-the art SAT solvers, but this comes at a
price. Several important aspects still have to be specified in order to build the
implementation based on the given set of rules.

The system presented in [KG07] gives a more detailed description of some
parts of the solving process (particularly the conflict analysis phase) than the
previous one. Since this system is used as a basis of the implementation given in
this paper, we list its transition rules in Figure 2. Together with the formula F
and the trail M , the state of the solver is characterized by the conflict analysis
set C which is either the set of literals or the distinguished symbol no cflct.
The input to the system is an arbitrary set of clauses F0, modeled as initial
state in which F = F0, M = [ ], and C = no cflct. The rules have guarded
assignment form: above the line is the condition that enables the application of
the rule, below the line is the update to the state variables.

Formal program verification. Formal program verification is the process
of proving that a computer program meets its specification which formally de-
scribes the expected program behavior. Early results date back to 1950’s and
pioneers in this field were A. Turing, J. von Neumann and J. McCarthy. In the
late 1960’s R. Floyd introduced equational reasoning on flowcharts for proving
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program correctness and T. Hoare introduced axiomatic semantics for program-
ming constructs. Following the lessons from major software failures in recent
years, an increasing amount of effort is being invested in this field.

To achieve the highest level of trust, mechanically checkable formal proofs
of correctness are required. Many fundamental algorithms and properties of
data structures have been formalized and verified in this way. Also, lot of
work has been devoted to formalization of programming language semantics,
compilers, communication protocols, security protocols, etc. Many of early
results in mechanical program verification were carried out by Boyer and Moore
using their theorem prover. Theorem provers that are most commonly used
for program verification nowadays are Isabelle, HOL, Coq, PVS, Nuprl, etc. A
large collection of formalized theories (of both pure mathematics and computer
science) mechanically checked by the theorem prover Isabelle is available in
Archive of formal proofs (http://afp.sourceforge.net).

Formal program verification by shallow embedding into HOL. Shallow
embedding into higher-order logic is a technique that is widely used for verifica-
tion, despite its well-known limitations [BKH+08]. This success is due in part
to the simplicity of the approach: a formal model of the operational or denota-
tional semantics of the language is not required and many technical difficulties
(e.g., the representation of binders) are avoided altogether. Furthermore, the
proof methods used are just standard induction principles and equational rea-
soning, and no specialized program logic (e.g., Hoare logic) is necessary. The
specifications may be turned into executable code directly by means of code
generation [Haf08]. The main drawback of this approach is that all programs
must be expressed as purely functional. As the notion of side-effect is alien to
the world of HOL functions, programs with imperative updates of references
or arrays cannot be expressed directly which heavily effects the efficiency of
the generated code. Still, approaches to overcome these difficulties have been
proposed recently [BKH+08].

3. Underlying Theory

In order to create and reason about the correctness of a SAT solver, we have
to formally define some basic notions of propositional logic. The full formal-
ization has been made in higher-order logic of the system Isabelle and basic
knowledge about this system is assumed in the rest of the paper. We will use a
syntax similar to the syntax used in Isabelle. Formulas and logical connectives
of this logic (∧, ∨, ¬, −→, ←→) are written in the usual way. The symbol =
denotes syntactical identity of two expressions. Function applications are writ-
ten in prefix form, as in (f x1 . . . xn). Existential quantification is denoted by
∃ x. ... and universal quantification by ∀ x. ....

We assume that the underlying theory we are defining includes the theory of
ordered pairs, lists, (finite) sets, and optional data-types (all of them are built-
in in Isabelle). We also assume that record data-types are available. Syntax of
these operations is summarized in the first column of Figure 3 and the semantics
is informally described in the second column.

Basic types. Apart from the basic built-in types, we introduce the types used
in propositional logic of CNF formulas as given by Definition 1.
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bool the Boolean type with values True and False

ExtendedBool the extended Boolean type with values True, False and Undef

nat the type of natural numbers

(′a ×′ b) the type of ordered pairs with elements of types ′a and ′b

(a, b) the ordered pair of elements a and b
′a list the type of lists with elements of type ′a

[ ] the empty list

[e1, . . . , en] the list of n given elements e1, . . . , en

e# list the list obtained by prepending the element e to the list list

list1@list2 the list obtained by appending the lists list1 and list2
e ∈ list e is a member of the list list

(removeAll e list) the list obtained by removing all occurrences of the element e
from the list list

(list diff list1 list2) the list obtained from the list list1 by removing all elements
of the list list2 from it

(fst list), (hd list) the first element of the list list

(tl list) the list obtained by removing the first element of the list list

list ! n the n-th element of the list list

(last list) the last element in the nonempty list list

(length list) the length of the list list

(distinct list) check if the list list contains no repeating elements

(remdups list) the list obtained from the list list by removing
all its duplicate elements

(filter P list) the list obtained from the list list by taking
all its elements that satisfy the condition P

(map f list) the list obtained from the list list by applying
the function f to all its elements

(prefixToElement e list) the prefix of the list list up to the first occurrence
of the element e (including it)

a ≺list b the element a precedes the element b in the list b
′a set the type of sets with elements of type ′a

{} the empty set

e ∈ set e is a member of the set set

set1 ∪ set2 the set union of set1 and set2
|set| the number of elements in the set set
′a option the type of optional values of the type ′a

Some a the optional value exists and is a

None the optional value does not exist

f(x := y) the mapping obtained from the mapping f by setting
the value of x to y

recLf1 := a1, . . . , fk := akM the record obtained from the record rec by setting
the values of fields f1, . . . , fk to values a1, . . . , ak,
respectively

Figure 3: Summary of Isabelle’s basic types and operations
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Definition 1.

Variable natural number.
Literal either a positive variable (Pos vbl) or a negative variable (Neg vbl)
Clause a list of literals
Formula a list of clauses
Valuation a list of literals

Or in Isabelle’s syntax:

types Variable = nat

datatype Literal = Pos Variable | Neg Variable

types Clause = "Literal list"

types Formula = "Clause list"

types Valuation= "Literal list"

For the sake of readability, we will sometime omit printing types and use
the following naming convention: literals (i.e., variables of the type Literal) are
denoted by l (e.g., l, l′, l0, l1, l2, . . .), variables by vbl, clauses by c, formulae by
F , and valuations by v.

Most of the following definitions are formalized by using the primitive recur-
sion, so that they can be used to generate executable code. However, in order to
simplify the presentation and improve readability we give their characterizations
in an informal way and omit the Isabelle code.

Definition 2. The opposite literal of a literal l, denoted l, is defined by: Pos vbl =
Neg vbl, Neg vbl = Pos vbl.

We abuse the notation and overload some symbols. For example, the symbol
∈ denotes both set membership and list membership. It is also used to denote
that a literal occurs in a formula.

Definition 3. A formula F contains a literal l (i.e., a literal l occurs in a
formula F ), denoted l ∈ F , iff ∃c. c ∈ F ∧ l ∈ c.

Symbol vars is also overloaded and denotes the set of variables occurring in
a clause, in a formula, or in a valuation.

Definition 4. The set of variables that occur in a clause c is denoted by (vars c).
The set of variables that occur in a formula F is denoted (vars F ). The set of
variables that occur in a valuation v is denoted (vars v).

The semantics is introduced by the following definitions.

Definition 5. A literal l is true in a valuation v, denoted v � l, iff l ∈ v. A
clause c is true in a valuation v, denoted v � c, iff ∃l. l ∈ c ∧ v � l. A formula
F is true in a valuation v, denoted v � F , iff ∀c. c ∈ F ⇒ v � c.

We will write v 2 l to denote that l is not true in v (note that it does not
mean that l is false in v), v 2 c to denote that c is not true in v, and v 2 F to
denote that F is not true in v. We will say that l (or c, or F ) is unsatisfied in v.

Definition 6. A literal l is false in a valuation v, denoted v �¬ l, iff l ∈ v. A
clause c is false in a valuation v, denoted v �¬ c, iff ∀l. l ∈ c ⇒ v �¬ l. A
formula F is false in a valuation v, denoted v �¬F , iff ∃c. c ∈ F ∧ v �¬ c.
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We will write v 2¬ l to denote that l is not false in v, v 2¬ c to denote that
c is not false in v, and v 2¬F to denote that F is not false in v. We will say
that l (or c, or F ) is unfalsified in v.

Definition 7. A valuation v is inconsistent, denoted (inconsistent v), iff it con-
tains both literal and its opposite i.e., iff ∃l. v � l ∧ v � l. A valuation is
consistent, denoted (consistent v), iff it is not inconsistent.

Definition 8. A model of a formula F is a consistent valuation under which
F is true. A formula F is satisfiable, denoted (sat F ), iff it has a model i.e.,
∃v. (consistent v) ∧ v � F .

Definition 9. A formula F entails a clause c, denoted F � c, iff c is true in
every model of F . A formula F entails a literal l, denoted F � l, iff l is true in
every model of F . A formula F entails valuation v, denoted F � v, iff it entails
all its literals i.e., ∀l. l ∈ v ⇒ F � l. A formula F1 entails a formula F2 denoted
F1 � F2, if every model of F1 is a model of F2.

Definition 10. Formulae F1 and F2 are logically equivalent, denoted F1 ≡ F2,
iff any model of F1 is a model of F2 and vice versa, i.e., iff F1 � F2 and F2 � F1.

Definition 11. A clause c is unit in a valuation v with a unit literal l, denoted
(isUnit c l v) iff l ∈ c, v 2 l, v 2¬ l and v �¬ (c \ l) (i.e., ∀l′. l′ ∈ c ∧ l′ 6= l ⇒
v �¬ l′).

Definition 12. A clause c is a reason for propagation of literal l in valuation
v, denoted (isReason c l v) iff l ∈ c, v � l, v �¬ (c \ l), and for each literal
l′ ∈ (c \ l), the literal l′ precedes l in v.

Definition 13. The resolvent of clauses c1 and c2 over the literal l, denoted
(resolvent c1 c2 l) is the clause (c1 \ l)@(c2 \ l).

Definition 14. A clause c is a tautological clause, denoted (clauseTautology c),
if it contains both a literal and its opposite (i.e., ∃ l. l ∈ c ∧ l ∈ c).

Definition 15. The conversion of a valuation v to a formula 〈v〉 is the list that
contains all single literal clauses made of literals from v.

Assertion Trail. In order to build a non-recursive implementation of the
dpll algorithm, the notion of valuation should be slightly extended. During the
solving process, the solver should keep track of the current partial valuation. In
that valuation, some literals are called decision literals. Non-decision literals are
called implied literals. These check-pointed sequences that represent valuations
with marked decision literals will be stored in the data structure called assertion
trail. All literals that belong to the trail will be called asserted literals. Assertion
trail operates as a stack and literals are always added and removed from its top.
We extend the underlying theory with the type LiteralTrail, as given by Definition
16:

Definition 16.

LiteralTrail a list of literals, with some of them marked as decision literals.
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We will denote variables of the type LiteralTrail by M (e.g., M, M ′, M0, . . .).

Example 1. A trail M could be [+1, |−2, +6, |+5,−3, +4, |−7]. The symbol +
is written instead of the constructor Pos, the symbol − instead of Neg and the
decision literals are marked with the symbol | on their left hand sides.

A trail can be implemented, for example, as a list of (Literal, bool) or-
dered pairs and all following definitions will be based on this specific implemen-
tation. Our SAT solver implementation effectively uses the LiteralTrail datatype
and so we also show its Isabelle formalization.

types LiteralTrail = "(Literal × bool) list"

Definition 17. For a trail element a, (element a) denotes the first (Literal)
component and (isDecision a) denotes the second (Boolean) component. For a

trail M , (elements M) (abbreviated as M̂) denotes the list of all its elements and
(decisions M) denotes the list of all its marked elements (i.e., of all its decision
literals).

definition element :: "(Literal × bool) ⇒ Literal"

where "element x = fst x"

definition isDecision :: "(Literal × bool) ⇒ bool"

where "isDecision x = snd x"

definition elements :: "LiteralTrail ⇒ Literal list"

where "elements M = map element M"

definition decisions :: "LiteralTrail ⇒ Literal list"

where "decisions trail = filter (λ e. isDecision e) trail"

Definition 18. (decisionsTo M l) is the list of all marked elements from a trail
M that precede the first occurrence of the element l, including l if it is marked.

definition decisionsTo :: "Literal ⇒ LiteralTrail ⇒ Literal list"

where

"decisionsTo e trail = decisions (prefixToElement e trail)"

Example 2. For the trail given in Example 1, (decisions M) = [−2, +5,−7],
(decisionsTo M + 4) = [−2, +5], and (decisionsTo M − 7) = [−2, +5,−7].

Definition 19. The current level for a trail M , denoted (currentLevel M), is the
number of marked literals in M , i.e., (currentLevel M) = (length (decisions M)).

definition currentLevel :: "LiteralTrail ⇒ nat"

where

"currentLevel trail = length (decisions trail)"

Definition 20. The decision level of a literal l in a trail M , denoted (level l M),
is the number of marked literals in the trail that precede the first occurrence of
l, including l if it is marked, i.e., (level l M) = (length (decisionsTo M l)).

definition elementLevel :: "Literal ⇒ LiteralTrail ⇒ nat"

where

"elementLevel e trail = length (decisionsTo e trail)"
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Definition 21. (prefixToLevel M level) is the prefix of a trail M containing all
elements of M with levels less or equal to level.

definition prefixToLevel :: "nat ⇒ LiteralTrail ⇒ LiteralTrail"

Example 3. For the trail in Example 1, (level +1 M) = 0, (level +4 M) = 2,
(level − 7 M) = 3, (currentLevel M) = 3, (prefixToLevel M 1) = [+1, |+2, +6].

Definition 22. The last asserted literal of a clause c, denoted (lastAssertedLiteral c M̂),

is the literal from c that is in M̂ , such that no other literal from c comes after
it in M̂ .

The function isLastAssertedLiteral is used to check if the given literal is the
last asserted literal of the given clause in the given valuation.

definition isLastAssertedLiteral::"Literal ⇒ Literal list ⇒ Valuation ⇒ bool"

where

"isLastAssertedLiteral literal clause valuation =

literal ∈ clause ∧ valuation � literal ∧
(∀ literal’. literal’ ∈ clause ∧ literal’ 6= literal −→

literal ⊀valuation literal’)”

The function getLastAssertedLiteral is used to detect the last asserted literal
of the given clause in the given valuation.

definition getLastAssertedLiteral :: "Clause ⇒ Valuation ⇒ Literal"

where

"getLastAssertedLiteral clause valuation =

last (filter (λ l. l ∈ clause) valuation)"

Example 4. Let c is [+4, +6,−3] and M is the trail from Example 1. Then,

(lastAssertedLiteral c M̂) = +4.

4. SAT Solver Formalization

In this section we will present formalized implementation of a SAT solver
within the underlying theory introduced in Section 3. Different concepts and
algorithms will be described in separate subsections. Together with the solver
implementation we will give conditions that describe its variables and their rela-
tionships that must be invariant for the solver functions. These invariants fully
characterize the role of some variables in the system and help understanding the
whole system. Because invariants are listed simultaneously with the implemen-
tation, the style used can be seen as implementation driven by its specification.

Note that the following solver description is very formal and concise, and
that some previous knowledge about the SAT solving technology is assumed.
Useful tutorial descriptions can be found, for example, in [GKSS07, Mar08a].

4.1. Solver State

In an imperative or object-oriented language, the state of the solver is rep-
resented by using global or class variables. Functions of the solver access and
change these variables as their side-effects. In HOL, functions cannot have side-
effects, so the solver state must be wrapped up in a record and passed around
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with each function call. Therefore, all functions in our functional implemen-
tation will receive the current solver state as their last parameter and return
the modified state as their result. This cumbersome feature can be avoided if
monadic programming is used, as it will be described in Section 8.

The state of the solver is represented by the following record:

record State =
"getSATFlag" :: ExtendedBool

"getF" :: Formula

"getM" :: LiteralTrail

"getConflictFlag" :: bool

"getConflictClause" :: pClause

"getQ" :: "Literal list"

"getReason" :: "Literal ⇒ pClause option"

"getWatch1" :: "pClause ⇒ Literal option"

"getWatch2" :: "pClause ⇒ Literal option"

"getWatchList" :: "Literal ⇒ pClause list"

"getC" :: Clause

"getCl" :: Literal

"getCll" :: Literal

The data-type pClause is just a synonym for nat and it indicates “pointers”
to clauses i.e., indices of clauses in the clause list representing the formula.

Basic variables of the solver state are the following.

- The variable SATFlag reflects the status of the solving process and it
remains Undef until the formula which is being solved is detected to be
satisfiable (when SATFlag is set to True) or to be unsatisfiable (when
SATFlag is set to False). Its characterization will be the main partial
correctness result and it will be proved in Section 5.

InvariantSATFlag
2:

SATFlag = True↔ (sat F0) ∧ SATFlag = False↔ ¬(sat F0),

where F0 is the formula tested for satisfiability.

- The literal trail M contains the current partial valuation (i.e., M̂ is the
current partial valuation). It is characterized by the following invariants:

InvariantMconsistent:
(consistent M̂)

InvariantMdistinct:
(distinct M̂),

which ensure that M also represents a mapping of some variables to their
truth values.

The trail M contains literals whose variables are in the initial formula F0

and literals whose variables are in the special set of decision variables (de-
noted by decisionV ars and used in decide operation formalized in Section

2We will say that a state satisfies an invariant and that invariant holds in a state if the
components (getXXX) of the state satisfy the condition given by the invariant.
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4.6). Note that these two sets usually coincide, but this is not necessarily
the case. This domain property of M is given by the following invariant.

InvariantMvars:

(vars M) ⊆ (vars F0) ∪ decisionV ars

- The formula F will be referred to as the current set of clauses. It changes
during the solving process and its clauses are either (simplified) clauses
of the initial formula F0 or its consequences that are learned during the
solving process. Since initial clauses are built from literals of F0 and
learned clauses are built from literals of M , the formula F satisfies the
following domain property.

InvariantFvars:

(vars F ) ⊆ (vars F0) ∪ decisionV ars

All clauses in F will have at least two different literals. Single literal clauses
[l] will never be added to F , but instead their only literal l will be immediately
added to M . Indeed, adding a single literal clause [l] to F would be useless
because its only literal l must be contained in every satisfying valuation and [l]
is automatically satisfied when l is asserted. To ensure correctness, once these
literals are added to M , they must never get removed from it. This is the case
in the implementation we provide, since all these literals will be asserted at the
decision level zero of the trail M which never gets backtracked.

As said, all clauses in F are logical consequences of F0. Also, the decision
level zero of the trail M contains literals that are logical consequences of the
formula F0. The following invariant describing the relation between the initial
formula F0, the formula F , and the trail M plays a very important role in the
soundness and completeness of the solving process. It states that the formula
F0 is fully characterized by the formula F and the decision level zero of the trail
M .

Invariantequivalent :

F0 ≡ F @ 〈 ̂prefixToLevel 0 M〉

The fact that F contains only clauses with two or more different literals also
simplifies the implementation of the two-watch literal scheme (see Section 4.4.1).

Other components of the solver state are used in specific phases of the solving
process and will be explained in the following sections.

4.2. Initialization

In this section we describe the process of initializing the solver state by the
given formula F0 tested for satisfiability.

The function initialize calls addClause for each clause in F0 which appropri-
ately updates the solver state.

primrec initialize :: "Formula ⇒ State ⇒ State"

where

"initialize [] state = state" |

"initialize (clause # formula) state =

initialize formula (addClause clause state)"
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The function initialize is initially called only for initialState, so there are no
decision literals in M when it is called.

definition initialState :: "State"

where

"initialState =

L getSATFlag = UNDEF,

getF = [],

getM = [],

getConflictFlag = False,

getConflictClause = 0,

getQ = [],

getWatch1 = λ c. None,

getWatch2 = λ c. None,

getWatchList = λ l. [],

getReason = λ l. None,

getC = arbitrary,

getCl = arbitrary,

getCll = arbitrary

M
"

Before we introduce the function addClause, we define an auxiliary function
removeFalseLiterals used to simplify clauses. It removes all literals from the given
clause that are false in the given valuation.

definition removeFalseLiterals :: "Clause ⇒ Valuation ⇒ Clause"

where

"removeFalseLiterals clause valuation =

filter (λ l. valuation 2¬ l) clause"

The function addClause (called only by initialize) preprocesses the clause by
removing its repeated literals and removing its literals that are false in the
current trail M . After this, several cases arise.

- If the clause is satisfied in the current trail M , it is just skipped. The
rationale for this is that if there is a satisfying valuation for F0, it will be
an extension of the current trail M , so it will also satisfy the clause that
was skipped.

- If the clause is empty after preprocessing, the formula F0 is unsatisfiable
and SATFlag is set to False, since the empty clause cannot be satisfied
in any valuation.

- Tautological clauses (i.e., clauses containing both a literal and its opposite)
are also skipped since they can always be satisfied.

The two remaining cases actually update F or M .

1. As described, clauses [l] containing only a single literal l are treated in a
special way. Since they can only be satisfied if their literal l is true in M ,
l it is immediately added to M . Then a round of unit propagation (see
Section 4.5) is performed, which can infer further consequences of asserting
l.

2. Clauses containing more than one literal are added to F and data structures
related to the two-watch literal scheme are appropriately initialized (see
Section 4.4.1).

13



definition addClause :: "Clause ⇒ State ⇒ State"

where

"addClause clause state =

(let clause’ =

(remdups (removeFalseLiterals clause (elements (getM state)))) in

(if elements (getM state) � clause’ then

state

else (if clause’=[] then

state L getSATFlag := False M
else (if length clause’ = 1 then

let state’ = (assertLiteral (hd clause’) False state) in

exhaustiveUnitPropagate state’

else (if clauseTautology clause’ then

state

else

let clauseIndex = length (getF state) in

let state’ = stateL getF := (getF state) @ [clause’] M in

let state’’ = setWatch1 clauseIndex (clause’ ! 0) state’ in

let state’’’ = setWatch2 clauseIndex (clause’ ! 1) state’’ in

state’’’

)))

))"

4.3. Top Level Solver Operation

The only function of the solver that end-users are expected to call is the func-
tion solve. First it performs initialization and then it performs the main solver
loop while the status of the solving process (given by the variable SATFlag)
is UNDEF . The first time SATFlag changes, the main solver loop stops and
the current value of SATFlag is the final solver result.

definition solve :: "Formula ⇒ ExtendedBool"

where

"solve F0 = getSATFlag

(solve_loop

(initialize F0 initialState)

(vars F0)

)

"

function (domintros, tailrec) solve loop :: "State ⇒ Variable set ⇒ State"

where

"solve_loop state decisionVars =

(if (getSATFlag state) 6= UNDEF then

state

else

let state’ = solve loop body state decisionVars in

solve loop state’ decisionVars

)

"

by pat completeness auto

Note that the solve loop is defined by general recursion, so its termination is
not trivial.

The body of the solver loop begins with a round of exhaustive unit propa-
gation. After that, four different cases arise.

1. It has been detected that M �¬F . In that case we say that a conflict
occurred.
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(a) If there are no decision literals in M , we say that a conflict at deci-
sion level zero occurred and it is determined that the formula F0 is
unsatisfiable. In that case, SATFlag is set to FALSE.

(b) If there are some decision literals in M , then the conflict analysis and
resolving procedure is performed (see Section 4.7).

2. It has been detected that M 2¬F .

(a) If all variables from the fixed variable set decisionV ars are defined in
the current trail M , it is determined that the formula is satisfiable.
In that case, SATFlag is set to TRUE. The set decisionV ars must
meet additional requirements in order to guarantee soundness of this
conclusion. For example, it suffices that (vars F0) ⊆ decisionV ars, as
it is the case in our implementation.

(b) If there are some decision variables that are undefined in M , a new
decision is made (see Section 4.6) and a decision literal is asserted.

The detection of clauses of F that are false in M̂ or unit in M̂ must be done
efficiently so that it does not become the bottleneck of the whole solver. An
optimized way to achieve this is given in Section 4.4.

definition solve loop body :: "State ⇒ Variable set ⇒ State"

where

"solve loop body state decisionVars =

(let state up = exhaustiveUnitPropagate state in

(if (getConflictFlag state up) then

(if (currentLevel (getM state up)) = 0 then

state upL getSATFlag := False M
else

let state c = applyConflict state up in

let state e = applyExplainUIP state c in

let state l = applyLearn state e in

let state b = applyBackjump state l in

state b

)

else

(if (vars (elements (getM state’)) ⊇ decisionVars) then

state’L getSATFlag := TRUE M
else

applyDecide state’ decisionVars

)

))

"

4.4. Conflict and Unit Clause Detection

Each time a literal is added to M , the formula F is checked for existence
of unit or false clauses. Results of this check are stored in the following state
variables.

- The variable conflictF lag is set when it is determined that the current
set of clauses F is false in the valuation M̂ . The invariant that fully
characterizes it is:

InvariantconflictF lagCharacterization:

conflictF lag ←→ M̂ �¬F
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- The number conflictClause is the index of a clause in F that is false in
the valuation M̂ . Its defining invariant is:

InvariantconflictClauseCharacterization:

conflictF lag −→ conflictClause < |F | ∧ M̂ �¬ (F ! conflictClause)

- The list Q is a list of all literals that are unit literals for clauses in F
which are unit clauses wrt. the valuation M̂ . These literals are ready to
be asserted in M as a result of the unit propagation operation. The unit
propagation queue Q is fully characterized by the following invariant.

InvariantQCharacterization:

¬conflictF lag −→ (∀l. l ∈ Q ←→ (∃c. c ∈ F ∧ (isUnitClause c l M̂)))

Note that this condition guarantees the completeness for unit propagation
i.e., it guarantees that all unit literals for unit clauses in F are contained
in Q. This is not necessary for the soundness nor completeness of the
whole procedure, but, if satisfied, leads to better efficiency.

Also, there should be no repeated elements in Q.

InvariantQdistinct:
(distinct Q)

As Q is built of literals of F its domain (its set of variables) is the same
as the domain of F .

InvariantQvars

(vars Q) ⊆ (vars F0) ∪ decisionV ars

- The mapping reason maps literals in Q to indices of clauses in F for
which they are the unit literals. Since this mapping does not change
when the literals from Q get asserted in M , it continues to map non-
decision literals of M to indices of clauses in F that are reasons for their
propagation. Notice that no reason clauses can be attached to the literals
at the decision level zero. This is because literals at the decision level
zero have a special role in the solving process, as they can get asserted by
propagating single literal clauses which are not explicitly stored in F , as
described in Section 4.1. All this is characterized by the following complex
invariant.

InvariantreasonCharacterization:

((currentLevel M) > 0 −→ ∀l. l ∈ Q −→

(∃c. (reason l) = (Some c) ∧ c < |F | ∧ (isUnit (F ! c) l M̂))) ∧

(∀l. l ∈ M̂ ∧ l /∈ (decisions M) ∧ (level l) > 0 −→

(∃c. (reason l) = (Some c) ∧ c < |F | ∧ (isReason (F ! c) l M̂)))
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4.4.1. Two-watched Literal Scheme

An efficient way to check for false and unit clauses is by using the two-watch
literal scheme. It introduces the following variables to the state.

• Mappings watch1 and watch2 assign two distinguished literals to each
clause of F . This condition is imposed through the following invariants.

InvariantwatchesEl:

∀c. c < |F | −→ ∃w1 w2. (watch1 c) = (Some w1) ∧ w1 ∈ F ! c ∧

(watch2 c) = (Some w2) ∧ w2 ∈ F ! c

InvariantwatchesDiffer:

∀c. c < |F | −→ (watch1 c) 6= (watch2 c)

• The mapping watchList assigns to each literal l a list of clause indices in
F that represent clauses in which l is a watched literal. This is imposed
by the following invariants.

InvariantwatchListsCharacterization:

∀l c. c ∈ (watchList l) ←→

c < |F | ∧
(
(watch1 c) = (Some l) ∨ (watch2 c) = (Some l)

)

It also holds that watch lists do not contain repeated clauses.

InvariantwatchListsDistinct:

∀l. (distinct (watchList l))

Next, we describe the function assertLiteral that adds the given literal (either
decision or implied) to the trail M . The variables conflictF lag, conflictClause,
Q, and reason are then updated by using the two watched literal propagation
scheme encoded by the function notifyWatches.

definition assertLiteral :: "Literal ⇒ bool ⇒ State ⇒ State"

where

"assertLiteral literal decision state =

let state’ = stateL getM := (getM state) @ [(literal, decision)] M in

notifyWatches (opposite literal) state’

"

Before we introduce and explain the function notifyWatches, we introduce
several auxiliary functions.

Functions setWatch1 and setWatch2 promote the given literal to be a new
watched literal of the given clause and then add that clause to its watch list3.

definition addToWatchList :: Literal ⇒ pClause ⇒ State ⇒ State

"addToWatchList literal clause state =

stateL getWatchList :=

(getWatchList state)

3Only setWatch1 is listed since setWatch2 is similar.
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(literal := clause # (getWatchList state literal))

M
"

definition setWatch1 :: "pClause ⇒ Literal ⇒ State ⇒ State"

where

"setWatch1 clause literal state =

let state’ = stateL getWatch1 :=

(getWatch1 state)(clause := Some literal) M in

addToWatchList literal clause state’ "

The function swapWatches swaps the two watched literals of the given clause.

definition swapWatches :: "pClause ⇒ State ⇒ State"

where

"swapWatches clause state =

stateL getWatch1 :=

(getWatch1 state)(clause := (getWatch2 state clause)),

getWatch2 :=

(getWatch2 state)(clause := (getWatch1 state clause))

M
"

The function getNonWatchedUnfalsifiedLiteral checks if there is a literal in
the given clause, other then its watched literals, which is not false in M .

primrec getNonWatchedUnfalsifiedLiteral ::

"Clause ⇒ Literal ⇒ Literal ⇒ LiteralTrail ⇒ Literal option"

where

"getNonWatchedUnfalsifiedLiteral [] w1 w2 M = None" |

"getNonWatchedUnfalsifiedLiteral (literal # clause) w1 w2 M =

(if literal 6= w1 ∧ literal 6= w2 ∧ (elements M) 2¬ literal then

Some literal

else

getNonWatchedUnfalsifiedLiteral clause w1 w2 M

)
"

The function setReason updates the mapping reason by assigning the given
clause index to the given literal.

definition setReason :: "Literal ⇒ pClause ⇒ State ⇒ State"

where

"setReason literal clause state =

stateL getReason := (getReason state)(literal := Some clause) M
"

Next, we explain the essence of the two-watch literal scheme encoded in the
functions notifyWatches and notifyWatches loop. The two-watch literal scheme
relies on the fact that a watched literal of a clause can be false in M̂ only
when the clause is either true, false or unit in M . In all other cases (when it is
undefined and is not unit), both watched literals of the clause are known to be
unfalsified. This is formalized by the following invariant (with two instances for
i = 1 and i = 2).

∀c. c < |F | −→ M �¬ (watchi c) −→

(∃l. l ∈ c ∧ M � l ∧ level l ≤ level (watchi c)) ∨

(∀l. l ∈ c ∧ l 6= (watch1 c) ∧ l 6= (watch2 c) −→

M �¬ l ∧ level l ≤ level (watchi c)).
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Note that the additional conditions imposed on the literal levels are required
only for the correctness of backjumping, as described in Section 4.7.

During the assertLiteral operation, the trail M gets extended by a literal l.
When this happens, all clauses that do not have l as their watched literal still
satisfy the condition of InvariantwatchCharacterization and they cannot be unit
nor false in the extended trail. The only clauses that could have become unit
or false are the ones that have l as their watched literal. These clauses are
exactly the ones whose indices are contained in (watchList l). The function
notifyWatches calls the function notifyWatches loop which traverses this list and
processes all clauses represented by it. In order to simplify the implementation,
for each processed clause index c, watches are swapped if necessary so that it is
ensured that (watch2 c) = l and so (watch2 c) is false. The following cases may
further arise:

1. If it can be quickly detected that the clause F ! c contains a true literal t,
there is no need to change its watches, since it satisfies the condition of In-
variantwatchCharacterization for the extended trail. In order to achieve high
performance, this check should be done only by using the clause index and
other data structures which are most of the time present in the processor
cache, without accessing the clause itself. The older solvers checked only
if (watch1 c) is true in M and this is the case in the implementation we
provide. Some new solvers sometimes cache some arbitrary literals of the
clause and check if they are true in M .

2. If a quick check does not detect a true literal t, then the clause is ac-
cessed and its other literals are examined by the function getUnfalsifiedNon-

WatchedLiteral.

(a) If there exist a non-watched literal l that is not false in M , it becomes
a new (watch2 c).

(b) If all non-watched literals and (watch1 c) are false in M , then the
whole clause is false and conflictF lag is raised. The watches are not
changed, since they will both become undefined in M , if the backjump
operation is performed (see Section 4.7).

(c) If all non-watched literals are false in M , but (watch1 c) is undefined,
then the clause just became a unit clause and (watch1 c) is enqueued
in Q for propagation (if it is not already present there). The reason
for its propagation is set to c. The watches are not changed, as the
clause will have a true literal (watch1 c) after propagation.

When a literal which was not watched becomes a new (watch2 c), the literal
l stops being the watched literal of c and the clause index c should be removed
from its watch list. Since this happens many time during the traversal performed
by the notifyWatches loop, it turns out that it is more efficient to regenerate the
new watch list for the literal l, then to do successive remove operations instead.
This is the role of newWl parameter in the notifyWatches loop function.

definition notifyWatches :: "Literal ⇒ State ⇒ State"

where

"notifyWatches literal state =

notifyWatches loop literal (getWatchList state literal) [] state

"
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primrec

notifyWatches loop :: "Literal ⇒ pClause list ⇒ pClause list ⇒ State ⇒ State"

where

"notifyWatches loop literal [] newWl state =

stateL getWatchList := (getWatchList state)(literal := newWl) M" |

"notifyWatches loop literal (clause # list’) newWl state =

(let state’ = (if Some literal = (getWatch1 state clause) then

(swapWatches clause state)

else

state) in

case (getWatch1 state’ clause) of Some w1 ⇒ (

case (getWatch2 state’ clause) of Some w2 ⇒ (

(if (literalTrue w1 (elements (getM state’))) then

notifyWatches loop literal list’ (newWl @ [clause]) state’

else

(case (getNonWatchedUnfalsifiedLiteral

((getF state’) ! clause) w1 w2 (getM state’)) of

Some l’ ⇒
notifyWatches loop literal list’ newWl (setWatch2 clause l’ state’) |

None ⇒
(if (literalFalse w1 (elements (getM state’))) then

let state’’ = (state’L getConflictFlag := True,

getConflictClause := clause M) in

notifyWatches loop literal list’ (newWl @ [clause]) state’’

else

let state’’ = state’L getQ := (if w1 el (getQ state’) then

(getQ state’)

else

(getQ state’) @ [w1]

)M in

let state’’’ = (setReason w1 clause state’’) in

notifyWatches loop literal list’ (newWl @ [clause]) state’’’

)

)))))

"

The invariants InvariantwatchListsCharacterization and InvariantwatchesEl

together guarantee that for each clause there will always be two watched lit-
erals (hence, the missing None branches in the case expressions are indeed not
needed).

4.5. Unit Propagation

The operation of unit propagation asserts unit literals of unit clauses of F .
Since the two-watch literal scheme is complete for false and unit clause detection
(as the function assertLiteral preserves InvariantconflictF lagCharacterization and
InvariantQCharacterization), all unit literals of clauses in F can be found in Q.
This makes unit propagation a rather trivial operation — literals are picked
from Q and asserted until Q is not emptied or until a conflict is detected.

definition applyUnitPropagate :: "State ⇒ State"

where

"applyUnitPropagate state =

(let state’ = (assertLiteral (hd (getQ state)) False state) in

state’L getQ := tl (getQ state’) M
"

function (domintros, tailrec) exhaustiveUnitPropagate :: "State ⇒ State"

where
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"exhaustiveUnitPropagate state =

(if (getConflictFlag state) | (getQ state) = [] then

state

else

exhaustiveUnitPropagate (applyUnitPropagate state)

)

"

by pat completeness auto

Notice that the termination of the exhaustiveUnitPropagate function is non-
trivial, since it is defined by using the general recursion.

4.6. Decision Heuristics

When unit propagation exhausts, no new literal can be inferred and a kind
of backtracking search must be performed. This search is driven by the guesses
made by the decision heuristics. The heart of the decision heuristics is the
selectLiteral function whose role is to pick a literal whose variable is in the fixed
set of decision variables decisionV ars, but which is not yet asserted in M . The
literals are selected based on some given criteria. Many different criteria can be
used and experimental evidence shows that this heuristic is often crucial for a
solver’s performance. However, in this paper we will specify it only by its effect
given by the following postcondition.

consts selectLiteral :: "State ⇒ Variable set ⇒ Literal"

axioms selectLiteral def:

"let diff = decisionVars \ vars (elements (getM state)) in

diff 6= ∅ −→ var (selectLiteral state decisionVars) ∈ diff"

definition applyDecide :: "State ⇒ Variable set ⇒ State"

where

"applyDecide state decisionVars =

assertLiteral (selectLiteral state decisionVars) True state

"

4.7. Conflict Handling

The conflict handling procedure consists of the conflict analysis, learning
and backjumping and it is executed whenever a conflict occurs at a decision
level higher then zero (when the conflict occurs at the decision level zero, then
the formula is determined to be unsatisfiable). After the conflict handling pro-
cedure, a top portion of trail is removed and a non-conflicting state is restored.
Unlike the classic backtrack operation which would remove only the last decision
made, the backjump operation performs a form of non-chronological backtrack-
ing which undoes as many decisions as possible. Backjumping is guided by a
backjump clause, which is a consequence of the formula F0 and which corre-
sponds to variable assignment that lead to the conflict. When the backjump
clause is constructed, the top literals from the trail M are removed, until the
backjump clause becomes a unit clause in M . From that point, its unit literal is
propagated and the search process continues. Backjump clauses are constructed
in the process called conflict analysis.

Several components of the solver state are used during the conflict handling
procedure.
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- The clause C represents the current conflict analysis clause, which becomes
the backjump clause once the conflict analysis process is finished. This
clause is characterized by the following invariants4.

InvariantCFalse:
conflictF lag −→ M �¬C

InvariantCEntailed:

conflictF lag −→ F0 � C

The following variables represent different aspects of the clause C and are
cached in the solver state only for performance reasons.

- The literal Cl is the last asserted literal of C in the trail M .

InvariantClCharacterization:

conflictF lag −→ (isLastAssertedLiteral Cl C M)

- The literal Cll is the last asserted literal of C \ Cl.

InvariantCllCharacterization:

conflictF lag ∧ C \ Cl 6= [] −→ (isLastAssertedLiteral Cll (C \ Cl) M)

- The number Cn is the number of literals on the highest decision level of
the trail M .

InvariantCnCharacterization:

conflictF lag −→

Cn = (length (filter (λ l. level l M = currentLevel M) (remdups C)))

4.7.1. Conflict Analysis

In order to implement the conflict analysis procedure, we introduce several
auxiliary functions.

The function findLastAssertedLiteral is used to set the value of Cl based on
the current values of C and M .

definition findLastAssertedLiteral :: "State ⇒ State"

where

"findLastAssertedLiteral state =

state L getCl := getLastAssertedLiteral (oppositeLiteralList (getC state))

(elements (getM state)) M"

The function countCurrentLevelLiterals is used to set the value of Cn based
on the current values of C and M .

4All invariants that are relevant for the conflict handling process need to hold only until the
conflict has been resolved. Therefore, the are guarded with the condition conflictF lag −→
so that they can be treated as other global invariants.
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definition countCurrentLevelLiterals :: "State ⇒ State"

where

"countCurrentLevelLiterals state =

(let filterFn = (λ l. elementLevel (opposite l) (getM state) =

currentLevel (getM state)) in

state L getCn := length (filter filterFn (getC state)) M))"

Since for some literals asserted at the decision level zero there are no reason
clauses in F , it is required that the clause C does not contain literals from the
decision level zero. Also, it is reasonable to require that the clause C does not
contain repeated literals. The function setConflictAnalysisClause sets the clause
C to the given one, but first it preprocesses it by removing duplicates and literals
asserted at decision level zero. It also caches the values of Cl and Cn.

definition setConflictAnalysisClause :: "Clause ⇒ State ⇒ State"

where "setConflictAnalysisClause clause state =

(let oppM0 = oppositeLiteralList (elements (prefixToLevel 0 (getM state))) in

let state’ = state L getC := remdups (list diff clause oppM0) M in

let state’’ = findLastAssertedLiteral state’ in

let state’’’ = countCurrentLevelLiterals state’’ in

state’’’)"

The conflict analysis algorithm can be described as follows:

- The conflict analysis process starts with a conflict clause itself (the clause
of F that is false in M) and the clause C is initialized to it. The function
applyConflict initializes the clause C to the current conflict clause.

definition applyConflict :: "State ⇒ State"

where

"applyConflict state =

(let conflictClause = (getF state) ! (getConflictClause state) in

setConflictAnalysisClause conflictClause state)

"

- Each literal contained in the current clause C is false in the current trail
M and is either a decision made by the search procedure or the result
of some propagation. For each propagated literal l, there is a clause c
that caused the propagation. These clauses are called reason clauses and
(isReason c l M̂) holds. Propagated literals from the current clause C are
then replaced (we say explained) by other literals from the reason clauses,
continuing the analysis backwards. The explanation step can be seen as
a resolution between the backjump and the reason clause. The function
applyExplain performs this resolution.

definition applyExplain :: "Literal ⇒ State ⇒ State"

where

"applyExplain literal state =

(case (getReason state literal) of Some reason ⇒
let res = resolve (getC state)

(getF state) ! reason

(opposite literal) in

setConflictAnalysisClause res state)"

Notice that InvariantreasonCharacterization guarantees that each propa-
gated literal has an assigned reason clause and that the missing None

branch in the case expression is not necessary.
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- The conflict analysis procedure we implemented always explains the last
asserted literal of C and the procedure is repeated until the isUIP condition
is fulfilled, i.e., until there is exactly one literal in C such that all other
literals of C are asserted at strictly lower decision levels. This condition
can be easily checked by examining the value of Cn. The implementation
of this technique is given by the function applyExplainUIP.

function (domintros, tailrec) applyExplainUIP :: "State ⇒ State"

where

"applyExplainUIP state =

(if getCn state = 1 then

state

else

applyExplainUIP (applyExplain (getCl state) state))

"

by pat completeness auto

Notice that this function is defined by general recursion so its termination
is non-trivial and must be appropriately addressed.

4.7.2. Learning

During the learning process, the formula F (or the level zero of the trail
M in case of single literal clauses) is extended by learned (redundant) clauses
that are logical consequences of the formula F0. In our implementation (as it is
often the case in modern SAT solvers), the only clauses that are being learned
are the backjump clauses. Since we require that all clauses in F have more
than two different literals, if a backjump clause C contains only one literal,
then learning is not explicitly performed (it is performed implicitly as a part
of the backjumping operation). The implementation of learning is given by the
function applyLearn. After extending F by C, the watch literals for the clause
C are set in a way which ensures InvariantwatchCharacterization. In the same
time, the literal Cll is computed and cached.

definition applyLearn :: "State ⇒ State"

where

"applyLearn state =

(if getC state 6= [opposite (getCl state)] then

let state’ = state L getF := (getF state) @ [getC state] M in

let Cl = getCl state in

let Cll = getLastAssertedLiteral

(removeAll l (oppositeLiteralList (getC state)))

(elements (getM state)) in

let clauseIndex = length (getF state) in

let state’’ = setWatch1 clauseIndex (opposite Cl) state’ in

let state’’’ = setWatch2 clauseIndex (opposite Cll) state’’ in

state’’’L getCll := Cll M
else

state

)

"

4.7.3. Backjumping

The backjump operation consists of removing literals from M up to a min-
imal level in which the backjump clause C becomes a unit clause, after which
its unit literal Cl is propagated. This level is found by using the function get-

BackjumpLevel.
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definition getBackjumpLevel :: "State ⇒ nat"

where

"getBackjumpLevel state =

(if getC state 6= [opposite (getCl state)] then

elementLevel (getCll state) (getM state)

else

0

)"

The function applyBackjump performs the backjump operation itself.

definition applyBackjump :: "State ⇒ State"

where

"applyBackjump state =

(let l = (getCl state) in

let level = getBackjumpLevel state in

let state’ = stateL getConflictFlag := False,

getQ := [],

getM := (prefixToLevel level (getM state)) M in

let state’’ = (if level > 0 then

setReason (opposite l) (length (getF state) - 1) state’

else

state’) in

assertLiteral (opposite l) False state’’ )"

Notice that after taking the prefix of M , it is concluded that conflict has
been successfully resolved (so conflictF lag is unset), and that there are no unit
clauses in F with respect to the taken prefix of M (so Q is cleared). For these
conclusions to be valid, it is required that no new decisions are made once M is
in a conflicting state. Also, unit propagation has to be exhaustive and no new
decisions should be made while there are unit clauses in F . These conditions
are imposed by the following invariants.

InvariantnoDecisionsWhenConflict:

∀level′ < (currentLevel M) −→ (prefixToLevel level′ M) 2¬F

InvariantnoDecisionsWhenUnit :

∀level′ < (currentLevel M) −→

¬∃c l. c ∈ F ∧ (isUnitClause c l (prefixToLevel level′ M))

5. Highlights of the Total Correctness Proof

The invariants listed in Section 4 are sufficient to prove the total correctness
of the procedure. Proving that they are preserved by all solver functions was
the most involved part of the total correctness proof. These proofs are available
in [Mar08b] and we will not list them here.

Next we will describe the techniques used to prove the termination of our
main solver function solve. We will also prove its total correctness theorem.

5.1. Termination

In the code presented in this paper, only the functions exhaustiveUnitProp-

agate, explainUIP, and solve loop are defined by using general recursion and it
is not obvious if they are terminating. The only function that end-users of the
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solver are expected to call directly is the function solve as it is the solver’s only
entry-point. This means that all three functions defined by general recursion are
called only indirectly by the function solve and all parameters that are passed to
them are computed by the solver. Therefore, these functions can be regarded to
be partial functions and it is not necessary to show that they terminate for all
possible values of their input parameters. It suffices to show that they terminate
for those values of their input parameters that could actually be passed to them
during a solver’s execution starting from the initial state.

We use Isabelle’s built-in features to model this kind of partiality [Kra08].

1. Notice that all three functions are defined by using the tail recursion and
annotated by the directive tailrec. This is a very important feature,
because it enables the code generator to work with these partial functions.

2. When an n-ary function f is defined by using a general recursion, a predicate
f dom which tests if an n-tuple (a1, . . . , an) is in the domain of f (i.e., if f

terminates on input (a1, . . . , an)) is automatically generated. If the function
definition is annotated by the directive domintros, Isabelle generates a
theorem of the form

g −→ (f dom (f1(a1), . . . , fn(an))) −→ (f dom (a1, . . . , an)),

for each recursive call f(f1(a1), . . . , fn(an)) in the definition of f, where g
is a guard for this recursive call. Until the termination of f is proved i.e.,
until f is proved to be total, the usual induction scheme theorem for the
function f (which would be called f.induct) cannot be proved and used.
However, when f is defined a weaker, partial induction scheme theorem
(called f.pinduct) is automatically proved. It differs from the usual in-
duction scheme only because it adds the domain predicate f dom both to
the induction base and to the induction steps. These domain predicates
are then carried over and assumed in all lemmas about the function f which
are proved by (the partial) induction. Still, in order to complete the whole
correctness proof, at one point they have to be discharged. This is done by
proving that all inputs passed to the function f imply the domain predicate.

In our case, we know that invariants are preserved throughout any solver’s
run and that each state for which our solver functions are called satisfies all given
invariants. We show that some of these invariants imply the domain predicates,
i.e., that our three functions defined by general recursion terminate for states
in which these invariants hold.

As an illustration, we will outline the proof that the function exhaustive-

UnitPropagate (p20) terminates if its input satisfies certain invariants.
In order to prove this, we introduce a well-founded ordering of trails such

that applications of applyUnitPropagate advances, i.e., decreases the trail, in
that ordering. So, let us first define an ordering ≺lit of marked literals (it is
trivially well-founded).

Definition 23. l1 ≺
lit l2 ←→ (isDecision l1) ∧ ¬(isDecision l2)

Now we can introduce an ordering of trails, which will be used as a basis for the
ordering that we are constructing.

Definition 24.

M1 ≻M M2 ←→ M1 ≺
lit
lex M2,

where ≺lit
lex is a lexicographic extension of relation ≺lit.
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The function applyUnitPropagate advances in this ordering (trivially, by the
definition of lexicographic extension), but, unfortunately, this ordering need not
be well-founded. However, since invariants hold in every state during the solver’s
operation, we can make a restriction of ≻M that is also well-founded.

Definition 25.

M1 ≻
r
M M2 ←→ (consistent M1) ∧ (unique M1) ∧ (vars M1) ⊆ V bl

(consistent M2) ∧ (unique M2) ∧ (vars M2) ⊆ V bl

M1 ≻M M2

This is the ordering we were looking for and now we can prove a lemma
saying that if the state satisfies certain invariants, then it is in the domain of
the applyUnitPropagate function (i.e., that this function terminates when applied
to that state).

Lemma 1. If the set decisionV ars is finite and the state state is such that:

(a) InvariantMconsistent (p11) and InvariantMdistinct (p11) hold in state,

(b) InvariantMvars (p12), InvariantFvars (p12), and InvariantQvars (p16)
hold in state,

(c) InvariantconflictF lagCharacterization (p15), InvariantQCharacterization (p16),
and InvariantQdistinct (p16) hold in state,

(d) InvariantwatchListsCharacterization (p17) and InvariantwatchListsDistinct (p17)
hold in state,

(e) InvariantwatchesEl (p17), InvariantwatchesDiffer (p17) and
InvariantwatchCharacterization (p18) hold in state,

then the function exhaustiveUnitPropagate terminates when applied to state i.e.,
(exhaustiveUnitPropagate dom state).

Proof: If Q is empty or conflictF lag is raised in the state state, then the
function exhaustiveUnitPropagate terminates and state is trivially in its domain.
So, let us assume that Q is not empty and conflictF lag is false.

The proof is carried by well-founded induction on the ordering ≻r
M . As-

sume, as an inductive hypothesis, that the statement holds for all states state′

for which state ≻r
M state′. Let state′ = (applyUnitPropagate state). Since in-

variants hold in state and are preserved by the applyUnitPropagate function,
they hold in state′ as well5. Since the trail M in state′ is extended by a single
literal, it holds that the state ≻r

M state′. So, by inductive hypothesis, it holds
that (exhaustiveUnitPropagate dom state′). The lemma then follows from the
domain introduction theorem exhaustiveUnitPropagate.domintros:

¬conflictF lagstate ∧ Qstate 6= [] −→

(exhaustiveUnitPropagate dom (applyUnitPropagate state)) −→

(exhaustiveUnitPropagate dom state).

5Note that only InvariantconsistentM , InvariantdistinctM , and InvariantvarsM need to
hold in order to use the ordering ≻r

M
. However, we had to assume many additional invariants

in the premises of this lemma, because they are needed to show that these three key invariants
are preserved when applyUnitPropagate is applied.

27



�

Termination (on relevant inputs) of the applyExplainUIP and solve loop func-
tions is proved in a similar way. The termination proof for solve loop function
uses the same ordering ≻r

M and the termination proof for applyExplainUIP uses
the following well-founded ordering of clauses ≻M

C parametrized by the trail M .

Definition 26.

C1 ≻
M
C C2 ←→ {remdups C2} ≺

cM
mult {remdups C1},

where {. . .} denotes the multiset of list elements and ≺
cM
mult is the multiset ex-

tension of the order ≺
cM induced by the list M̂ .

5.2. Total Correctness

Total correctness of the solve function is given by the following theorem.

Theorem 1.

((solve F0) = TRUE ∧ (sat F0)) ∨ ((solve F0) = FALSE ∧ ¬(sat F0))

Assuming that all invariants hold in each state reached during the solve

function execution, the proof of Theorem 1 relies on the following two soundness
lemmas, which correspond to the two places in the solver code where SATFlag
is changed.

Lemma 2. If in some state state it holds that:

(a) Invariantequivalent (p12) holds in state,

(b) InvariantconflictF lagCharacterization (p15) holds in state,

(c) conflictF lag is true in state,

(d) (currentLevel M) = 0 in state,

then it holds that ¬(sat F0).

Proof: From (currentLevel M) = 0 it follows that (prefixToLevel 0 M) = M .

Hence, from Invariantequivalent it follows that F @ 〈M̂〉 ≡ F0. Since from
conflictF lag and InvariantconflictF lagCharacterization it holds that M �¬F ,

by monotonicity it also holds that M �¬F @ 〈M̂〉. Since F @ 〈M̂〉 � M , the

formula F @ 〈M̂〉 is false in a valuation that it entails, so is unsatisfiable. Since

F0 is logically equivalent to F @ 〈M̂〉, it is also unsatisfiable. �

Lemma 3. If in some state state it holds that:

(a) (vars F0) ⊆ decisionV ars,

(b) InvariantMconsistent (p11) holds in state,

(c) InvariantFvars (p12) holds in state,

(d) Invariantequivalent (p12) holds in state,

(e) InvariantconflictF lagCharacterization (p15) holds in state,

(f) conflictF lag is false in state,

(g) (vars M̂) ⊇ decisionV ars in state,

then (sat F0) and (model M̂ F0) hold.
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Proof: From InvariantFvars, it follows that (vars F ) ⊆ (vars F0)∪ decisionV ars.
With (vars F0) ⊆ decisionV ars, it holds that (vars F ) ⊆ decisionV ars. With

(vars M̂) ⊇ decisionV ars, it holds that (vars F ) ⊆ (vars M̂) and M̂ is a total

valuation wrt. the variables of F . Therefore, it is either the case that M̂ �¬F
or M̂ � F . Since conflictF lag is false, by InvariantconflictF lagCharacterization

it holds that M̂ 2¬F , so it must be the case that M̂ � F . It trivially holds that

M̂ � 〈 ̂prefixToLevel 0 M〉 and M̂ is consistent by InvariantMconsistent. There-

fore M̂ is a model for F @ 〈 ̂prefixToLevel 0 M〉. Since F0 ≡ F @ 〈 ̂prefixToLevel 0 M〉,

it holds that M̂ is also a model for F0 and (sat F0) holds. �

6. Discussion on Proof Management

Although it is hard to quantify the efforts invested in this work, we can
estimate it to be around one man-year. The proof scripts are around 30000 lines
of Isabelle code and the generated PDF proof documents are around 700 pages
long. These numbers are of course heavily dependent on the indentation style
used. Proof-checking time by Isabelle is under 5 minutes on a 1.6GHz/512Mb
RAM machine running Linux. We estimate that carefull investigation of the
proof text and its reorganization mainly by extracting some common parts of
different proofs into lemmas could lead to 10-20 percent reductions.

During this verification effort some interesting technical issues arose. In or-
der to make such a large-scale verification effort possible, it was necessary to
introduce some kind of modularity to the formalization. The crucial step in this
direction was to prove the properties of abstract rule-based DPLL systems of
[NOT06, KG07] and then use these proofs in the correctness proof of low-level
implementation presented here. A good direction to follow would be to define
internal data-structures (for example the assertion trail) as abstract data-types
(ADT) with some desired properties given axiomatically. Although, unfortu-
nately, this has not been explicitly done in our formalization, this idea has been
followed to some extent. Namely, after introducing basic definitions, we showed
lemmas that could be regarded as axioms of the ADT and all further proofs
relied only on those lemmas, without using the low-level properties of the im-
plementation. This, of course, enables changing the low-level implementation
into a more efficient one without changing much of the whole correctness proof.
We think that explicit encoding the ADT approach (for example by using type-
classes or locales [NPW02]) would lead to even more flexible formalization and
is a step in a right direction.

When proving properties about recursively defined functions we had a di-
lemma whether to repeat the same induction scheme in proofs of many similar
lemmas (one for each property of the recursive function) or to formulate one
bigger lemma that groups all assumptions and conclusions for several properties
that are being shown. We took the second approach and reduced the total
number of lemmas and the total size of proofs, but the price that had to be
payed is that we lost track of which assumptions are effectively used for proving
a specific conclusion. For example, most of our high-level lemmas that show
that invariants are preserved by the function calls assume that all invariants
hold before the function call and show that all invariants hold after the function
call. The only way to find out which invariants are necessary to hold before the
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function call so that a specific invariant holds after it is reading the proof texts
which can be very tedious an unpleasant.

7. Related work

First steps towards verification of SAT and SMT solvers have been recently
made. Shankar has formally and mechanically proved soundness, complete-
ness, and decidability of propositional logic (by means of a satisfiability solver)
[Sha85]. Zhang and Malik have informally proved correctness of a modern SAT
solver [ZM03]. Barret, in his PhD thesis has formally (but not mechanically)
proved correctness of the Stanford framework for cooperating decision proce-
dures [Bar03]. Rule based descriptions of [NOT06, KG07] formally describe
high-level operation of modern SAT solvers and authors have informally proved
their correctness. Shankar and Vaucher have formally and mechanically verified
a higher level description of a modern DPLL procedure within the system PVS.
Although these descriptions include most state-of-the art SAT algorithms, lower-
level implementation techniques (e.g., two-watch unit propagation scheme) are
not covered by any of these descriptions. In [Mar08a], the author gives a tuto-
rial exposure of the modern SAT solving techniques (both high and low level)
with correctness properties formulated in a Hoare-style framework and proved
(to some extent) mechanically within the system Isabelle. The present paper is
a sequel of work described in [Mar08a], but without the tutorial aspect. More
importantly, it covers program termination and provides fully mechanicized cor-
rectness proofs of both higher and lower level SAT techniques. As we know, this
is the first fully mehanicized formalization of several low-level techniques, most
notably the two-watched literal propagation scheme.

8. Further Work

The specification of the SAT solver given in this paper is such that a fully
executable code in a functional language can be automatically generated from
it, providing that an executable decision heuristic is supplied. However, the
efficiency of the generated code must still be improved, if we want to get a
competitive solver.

First, there are several low-level algorithmic improvements that have to be
made. For example, in the current implementation, checking if a literal is true
in a trail M requires performing a linear-time scan through the list. Most
real-world solvers cache truth values of all literals in an array and so allow a
constant time check. Also, the conflict analysis phase is expressed here in a bit
more abstract way then in implementations of MiniSat style solvers.

Next, some higher-level heuristics have to be implemented more carefully.
For example, we have only made tests with a trivial decision heuristics that
selects a random undefined literal, but in order to have a usable solver, a more
involved decision heuristics (e.g., the MiniSat one) should be used. It would also
be useful to implement forgetting and restarting techniques [KG07, NOT06].

Although these modifications require to invest more work, we believe that
they are straightforward. However, the most problematic issue is the fact that
because of the pure functional nature of HOL no side-effects are possible and
there can be no destructive updates of data-structures. We will now explain
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one possible way to overcome this problem. In order to avoid explicit passing
of the solver state throughout function calls, the Haskell-like monadic style
of programming can be used. In this way, all functions are regarded to be
StateTransformers of some type, i.e., their results are actions that transform
State along with returning a result of some given type.

types ’a StateTransformer = "State ⇒ (’a × State)”

Basic state transformers for accessing and modifying each component of the
state can be introduced. For example:

definition readWatch1 :: "nat ⇒ Literal option StateTransformer"

where

"readWatch1 clause = (λ state. (getWatch1 state clause, state))"

definition updateWatch1 :: "nat ⇒ Literal option ⇒ unit StateTransformer"

where

"updateWatch1 clause literal =

(λ state. ((), stateL getWatch1 := (getWatch1 state)(clause := literal) M))"

Standard monadic bind and return operators can be introduced and they can
be used to combine StateTransformers. Isabelle allows to introduce a convenient
Haskell-like do syntax. In this way, the function setWatch1 (p17) becomes:

definition setWatch1 :: "nat ⇒ Literal ⇒ unit StateTransformer"

where

"setWatch1 clause literal =

do

updateWatch1 clause (Some literal);

addToWatchList literal clause

done

"

which is much easier to read and resembles imperative style of programming.
It can be easiliy shown that these new definitions, written in monadic style,

are in their essence equivalent to definitions given throughout this paper. How-
ever, apart from the better readability, there is one huge difference — it is pos-
sible to adapt the code generator to generate monadic Haskell and imperative
ML code which would lead to huge efficiency benefits since it allows mutable
references and arrays. We hope that with these modifications, the generated
code could become comparable to real-world SAT solvers and this would be the
main direction of our further work.

9. Conclusions

In this paper, we have presented a formalization and a total correctness
proof of a MiniSAT-like SAT solver within the system Isabelle/HOL. The solver
is based on the DPLL procedure and employs most state-of-the art SAT solv-
ing techniques including the conflict-guided backjumping, clause learning and
the two-watch unit propagation scheme. The described solver specification can
serve as a basis for implementation of an efficient and correct SAT solver. One
possible approach for that would be to manually implement a SAT solver (in an
imperative programming language) by strictly following the descriptions of the
solver given in this paper. However, the highest possible level of trust could be
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achieved only if fully executable code (in a functional programming language)
is automatically generated by using the Isabelle’s built-in code generator. Al-
though this can already be done, the efficiency of generated code should further
be improved and that is the field of our future research. We hope that this work
can facilitate better understanding of modern SAT solvers. The final product of
this research will be a trusted and efficient SAT solver that can be used either
independently or as a kernel for checking results of other untrusted verifiers.
We also hope that this work will show that it is possible to have a fully verified
implementation of a very non-trivial software system.
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