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Filip MARI Ć, Predrag JANǏCIĆ,
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Abstract. The DPLL procedure for the SAT problem is one of the fundamental

algorithms in computer science, with many applications in a range of domains, including

software and hardware verification. Most of the modern SAT solvers are based on this

procedure, extending it with different heuristics. In this paper we present a formal proof

that the DPLL procedure is correct. As far as we know, this is the first such proof. The

proof was formalized within the Isabelle/Isar proof assistant system. This proof adds to

the growing body of formalized mathematical knowledge and it also provides a number

of lemmas relevant for proving correctness of modern SAT and SMT solvers.
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1. Introduction The propositional satisfiability problem (SAT) is the prob-
lem of deciding whether there is a truth assignment under which a given propo-
sitional formula (in conjunctive normal form) evaluates to true. It is a canonical
NP-complete problem (Cook, 1971) and it holds a central position in the field of
computational complexity.

One of the first algorithms for testing satisfiability is a branch and back-
tracking procedure called Davis-Putnam-Logemann-Loveland (in short DPLL)
procedure (Davis et al., 1960, Davis et al., 1962). Although there have been
many improvements to this procedure (including techniques called backjumping,
conflict-driven lemma learning, restarts, etc.) it is still a core of the majority of
the state-of-the-art complete SAT solvers (e.g., zChaff (Moskewicz et al., 2001),
MiniSAT (Eén et al., 2003) and their successors). Modern SAT solvers show ex-
cellent performance even for huge formulae. They are used in many practical
applications (electronic design automation, hardware and software verification,
scheduling, etc.). SAT solving and modifications of the DPLL procedure such as
DPLL(T ) (Nieuwnhuis et al., 2006) are also used for SMT (Satisfiability Modulo
Theories) — the problem of deciding whether a given formula is satisfiable with
respect to a background first-order theoryT (Ranise et al., 2006). SMT solving
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also has many important industrial applications. For a survey of SAT solvers,
their performances, and applications see, for instance, (Gu et al., 1997, Zhang et
al., 2002, Le Berre et al., 2005).

Despite their significance and wide applications, there are still no formal
correctness proofs for SAT and SMT solvers, neither for the original DPLL pro-
cedure nor for its modern successors. For most of the modern SAT solvers, there
are no even informal correctness proofs. In this paper we address this issue and
present a first formalized correctness proof for the DPLL procedure, a proof that
can be verified by an independent and reliable proof checking system. In its forty-
five years history, there were no doubts about the correctness of this algorithm,
but we believe that it is important to have its correctness proof formalized for,
at least, the following two reasons: first, the correctness proof for the DPLL pro-
cedure will be useful for checking correctness of modern SAT and SMT solvers,
some of which are still unreliable2; second, this proof adds to the growing body of
formalized, verifiable mathematical knowledge (which is important as the rigour,
reliability, and objectivity of formal proofs is vital in many computer science
applications, such as software and hardware verification).

Our correctness proof for the DPLL procedure is formalized within Is-
abelle proof assistant and for object-level proofs we use Isar (Intelligible semi-
automated reasoning) language, natively supported in Isabelle. For definitions of
some functions we use primitive recursion, also natively supported in Isabelle.
We also use Isabelle’s built-in theory of lists (Nipkow et al., 2005; pp. 16) and,
to a limited extent, Isabelle’s built-in theory of sets (only for finite sets) (Nipkow
et al., 2005; pp. 109).

Overview of the paper.In Section 2 we give background information on the
DPLL algorithm, on formal proofs and the Isabelle/Isar system, and on program
verification. In Section 3 we give basic notation, definitions and properties of
propositional logic, required for our proof. In Section 4 we give a formalization of
the DPLL procedure (with one concrete implementation discussed in Appendix),
and in Section 5 we prove the procedure’s total correctness (partial correctness
and termination). In Section 6, we discuss some technical details and give some
fragments of our formalization made in Isabelle/Isar. In Section 7 we briefly dis-
cuss related work, and in Section 8 we draw final conclusions and discuss future
work.

2For instance, over the previous years, several SMT solvers turned out to be unsound according
to the results from SMT competitionshttp://www.smtcomp.org/
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Procedure DPLL(CNF formulaΦ)
if Φ is emptyreturn yes.
else ifthere is an empty clause inΦ return no.
else ifthere is a pure literall in Φ return DPLL(Φ(l)).
else ifthere is a unit clause{l} in Φ return DPLL(Φ(l)).
else

select a variablev occurring inΦ.
if DPLL(Φ(v))=yes

return yes.
else

return DPLL(Φ(¬v)).
end

end

Fig. 1. DPLL procedure

2. Background
Davis-Putnam-Logemann-Loveland (in short DPLL) procedure.The Davis-

Putnam procedure was introduced in 1960 by Martin Davis and Hilary Putnam
(Davis et al., 1960). Two years later, Martin Davis, George Logemann, and Don-
ald W. Loveland introduced a refined version of the algorithm, in which they
replaced theelimination ruleby asplitting rule(Davis et al., 1962). In this newer
version, the splitting rule leads to two smaller subproblems (one for each truth
value for a selected variable), instead of a single, possibly larger, subproblem
generated by the elimination rule. Nowadays, this later version of the algorithm
is often referred to asDPLL procedure. The algorithm is shown in Figure 1. In
the algorithm,Φ is a set of propositional clauses tested for satisfiability.Φ(l)
denotes the formula obtained fromΦ by substituting a literall by >, by substi-
tuting the opposite literal ofl by ⊥, and by simplifying afterwards. A literal is
pure if it occurs in the formula but its opposite literal does not occur. A clause is
unit if it contains only one literal. A non-recursive version of the algorithm can
be found in (Davis et al., 1994). There are also rule based descriptions of some
more advanced versions of this algorithm (Krstić et al., 2007, Nieuwnhuis et al.,
2006).

The selection of a variablev within the given algorithm is critical for its
performance. Choosing a variable may be trivial — choosing a first remaining
variable or a random variable, but it can also be very complex. In the original
version of the procedure, the variable occurring in the first clause of minimal
length was chosen. The worst case complexity for this procedure on 3-SAT (3-
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SAT is a variant of the SAT problem, with all clauses consisting of exactly three
literals) isO(20.762n) (Cook et al., 1997). For more references on selecting a split
variable and on worst case complexity analysis of the DPLL procedure see, for
instance, (Cook et al., 1997, Irgens et al., 2004).

Formal proofs and Isabelle.Over the last years, in all areas of mathemat-
ics and computer science, with a history of huge number of flawed published
mathematical proofs and also flawed software and hardware components, for-
mal proofs (machine verifiable, given in object-level form, in terms of axioms
and inference rules) have gained more and more importance. There are growing
efforts in this direction, with many extremely complex mathematical theorems
formally proved3 and with many software tools producing and checking formal
proofs. Isabelle is a generic theorem prover that supports a variety of logics, with
Gentzen’s natural deduction as the basic built-in logic (Paulson, 1994). Distinc-
tive Isabelle’s features include representation of logics within a meta-logic and
the use of higher-order unification to combine inference rules. Isabelle can be
applied to reasoning in pure mathematics or verification of computer systems.
Isabelle is one of the most popular theorem proving systems nowadays.

Readable formal proofs and Isar.Theorem proving system supporting both
interactive proof development and some degree of automation have become quite
successful in sizable applications in recent years. Most of them are based on tradi-
tional proof scripts which explicitly list all axioms and inference rules used in ev-
ery single proof step. Despite success of semi-automated proving systems based
on such scripts in formalizing fragments of mathematics and computer science,
they are still not accepted by a wide range of researchers. The Intelligible semi-
automated reasoning (Isar) (Wenzel, 2007) approach to readable formal proof
documents aims to bridge the semantic gap between internal notions of proof
given by state-of-the-art interactive theorem proving systems and an appropriate
level of abstraction for user-level work. Isar is an alternative proof language in-
terface layer, beyond traditional formal proof tactic scripts, which is much more
readable for the users. The Isabelle/Isar system provides an interpreter for the
Isar formal proof document language, and readable Isar proof documents are
converted and executed as series of low-level inference steps. It allows users to
express proofs in a human-friendly way but still have proofs that are automati-
cally formally verified by an underlying proof system and that rely only on valid
axioms and inference rules.

3For a list of selected formally proved theorems see, for instance,http://www.cs.ru.nl/
˜freek/100/ .
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Program verification.Program verification is the process of formally prov-
ing that a computer program meets its specification. Program verification is old,
but very much active field. Following the lessons from major software failures in
recent years, more and more efforts have been invested in this field. Many funda-
mental algorithms and properties of data structures have been formalized. Also,
a lot of work has been devoted to formalization of compilers, program semantics,
communication protocols, security protocols, etc. Formal verification is vital for
SAT and SMT solvers and first steps in this direction have been made. For a short
overview of results in program verification see Section 7.

3. Notation and Definitions In this section, we introduce notation, defini-
tions, and basic propositions used in our formalized correctness proof for the
DPLL procedure. Our proof is almost self-contained, so here we also define
notions (and notation) of literals, clauses, formulae, satisfiability, etc. All no-
tions introduced here are also formalized within Isabelle’s higher order logic
(Isabelle/HOL). Some of them are defined by primitive recursion, supported in
Isabelle/HOL.

Formulae and logical connectives of this meta-logic (∧, ∨, ¬, ⇒, ⇔)
are written in the usual way. Ternaryif−then−else connective is also used:
if f then f1 else f2 denotesf ⇒ f1 ∧ ¬f ⇒ f2. The symbol= denotes
syntactical identity of two expressions.4

The theory that we built for expressing correctness of the DPLL procedure
uses Isabelle’s built-in theory of lists and Isabelle’s built-in theory of sets (only
for finite sets). Figure 2 informally describes the notions from these theories that
we use.

We assume that all meta-logic formulae in the following text are implicitly
universally quantified, if not stated otherwise. We use typed logic, but for better
readability, when printing formulae we omit types, and use the following conven-
tion:

• vbl denotes a variable and has the typenat;
• l, l′, l1, l2, . . . denote literals and have the typeLiteral;
• c, c′, c1, c2, . . . denote clauses and have the typeClause;
• F, F ′, F1, F2, . . . denote formulae and have the typeFormula;
• v, v′, v1, v2, . . . denote valuations and have the typeValuation.

Definition 1. A variableis identified with a natural number.

4Note that in this presentation we make a clear distinction between syntactical identity and
logical equivalence and use different symbols for them,= and⇔ (while in Isabelle/HOL these two
notions are denoted by the same symbol,=).
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[ ] the empty list.
[e1, . . . , en] the list ofn given elementse1, . . . , en.
e ∈ list e is a member of the listlist.
e # list the list obtained by prepending elemente to the listlist.
list1@list2 the list obtained by appending listslist1 andlist2.
head(list) the first element of the listlist (assuming the list is non empty).
tail(list) the list obtained by removing the first element of the listlist
list \ e the list obtained by removing all occurrences of the element

e from the listlist
list1 \ list2 the list obtained from the listlist1 by removing from it

all elements of the listlist2.
list1 ⊆ list2 all elements oflist1 are also elements oflist2.
|list| the length of the listlist.
{} the empty set.
e ∈ set e is a member of the setset.
set1 ∪ set2 the union of the setsset1 andset2.

Fig. 2. Notions from the theory of lists and the theory of sets that are used.

Definition 2. A literal is either a positive variable (denoted by+vbl) or a
negative variable (denoted by−vbl).

Definition 3. A clauseis a list of literals.

Definition 4. A formula is a list of clauses.

Definition 5. A valuationis a list of literals.

Definition 6. A variable of a literal, denotedvar(l), is defined in the follow-
ing way:var(+vbl) = var(−vbl) = vbl.

Definition 7. A opposite literal of a literal, denotedl, is defined in the fol-
lowing way:+vbl = −vbl,−vbl = +vbl.

Notice that we abuse the notation and overload some symbols. For example,
the symbol∈ denotes both set membership and list membership. It is also used
to denote that a literal occurs in a formula.

Definition 8. A formulaF contains a literall (and the literall occurs in the
formulaF ), denotedl ∈ F , iff (∃c)(c ∈ F ∧ l ∈ c).

Symbolvars is also overloaded and denotes the set of variables occurring in
a clause, formula, valuation, defined by primitive recursion.
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Definition 9. A set of variables that occur in a clausec, denotedvars(c), is
defined in the following way:

vars([ ]) = {}
vars(l # c) = var(l) ∪ vars(c)

A set of variables that occur in a formulaF , denotedvars(F ), is defined in the
following way:

vars([ ]) = {}
vars(c # F ) = vars(c) ∪ vars(F )

A set of variables that occur in a valuationv, denotedvars(v), is defined in the
following way:

vars([ ]) = {}
vars(l # v) = var(l) ∪ vars(v)

The semantics is introduced by the following definitions.

Definition 10. A literal l is true in a valuationv, denotedv � l, iff l ∈ v.
A clausec is true in a valuationv, denotedv � c, iff (∃l)(l ∈ c ∧ v � l).
A formulaF is true in a valuationv, denotedv � F , iff (∀c)(c ∈ F ⇒ v �

c).

Definition 11. A literal l is false in a valuationv, denotedv �¬ l, iff l ∈ v.
A clausec is false in a valuationv, denotedv �¬ c, iff (∀l)(l ∈ c ⇒ v �¬ l).
A formulaF is false in a valuationv, denotedv �¬F , iff (∃c)(c ∈ F ∧ v �

¬ c).

Definition 12. A valuationv is inconsistentiff it contains both literal and its
opposite i.e.,(∃l)(v � l∧v � l). A valuation isconsistentiff it is not inconsistent.

Definition 13. A model of a formulaF is a consistent valuationv under
which F is true i.e.,model(v, F ) iff consistent(v) ∧ v � F . A formulaF is
satisfiable, denotedsat(F ) iff it has a model i.e.,(∃v)(model(v, F ))

The following proposition gives some basic properties of the notions we have
just introduced. These properties were formulated and proved in Isabelle/Isar and
used in the correctness proof for the DPLL procedure.
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Proposition 1.

Basic properties of opposite literals:

(A1) l = l

(A2) l1 = l2 ⇔ l2 = l1
(A3) l1 = l2 ⇔ l1 = l2
(A4) l 6= l

(A5) var(l) = var(l)
(A6) var(l1) = var(l2) ⇔ l1 = l2 ∨ l1 = l2

Basic properties ofvars:
(B1) l ∈ c ⇒ var(l) ∈ vars(c)
(B2) l ∈ F ⇒ var(l) ∈ vars(F )
(B3) c ∈ F ⇒ vars(c) ⊆ vars(F )
(B4) l ∈ v ⇒ var(l) ∈ vars(v)
(B5) var(l) ∈ vars(c) ⇔ l ∈ c ∨ l ∈ c

(B6) var(l) ∈ vars(F ) ⇔ l ∈ F ∨ l ∈ F

(B7) var(l) ∈ vars(v) ⇔ v � l ∨ v �¬ l

Basic properties of consistent valuations:
(C1) consistent([ ])
(C2) inconsistent(v \ l) ⇒ inconsistent(v)

Basic properties of the relation�:
(D1) v � c \ l ⇒ v � c

(D2) var(l) /∈ vars(F ) ∧ v � F ⇒ v \ [l, l] � F

Basic properties of models and formula satisfiability:
(E1) model(v, F ) ∧ vbl /∈ vars(F ) ⇒

(∃v′)(model(v′, F ) ∧ vbl /∈ vars(v′))
(E2) F ⊆ F ′ ⇒ (sat(F ′) ⇒ sat(F ))
(E3) sat([ ])
(E4) [ ] ∈ F ⇒ ¬sat(F )

4. Formalization of the DPLL Procedure In this section, we present a
formalization of theDPLL procedure and all required notions. We give a special
attention to the notions ofpure literalandunit clause, essential for certain steps of
the procedure. All the given proofs are rigorously formulated and verified within
Isabelle/Isar.
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4.1. Substitution One of the basic steps of theDPLL procedure is substitu-
tion of a literal by logical constants> and⊥, and simplification of the obtained
formula. This operation is formalized by the following definition.

Definition 14. F [l → >] is the formula that is obtained fromF by deleting
all clauses that containl and deleting all occurences of the literall. It is defined
by primitive recursion:

[ ] [l → >] = [ ]
(c # F ) [l → >] = if l ∈ c then

F [l → >]
else ifl ∈ c then

(c \ l) # F [l → >]
else

c # F [l → >]

F [l → ⊥] denotesF [l → >].

The following proposition (proved in Isabelle/Isar) gives some basic proper-
ties of of this operation.

Proposition 2.

(1) var(l) /∈ vars(F [l → >])
(2) var(l) /∈ vars(F ) ⇒ F [l → >] = F

(3) l /∈ F ∧ l /∈ F ⇒ F [l → >] = F [l → ⊥] = F

(4) model(v, F ) ∧ l ∈ v ⇒ model(v, F [l → >])
(5) model(v, F ) ∧ var(l) /∈ vars(v) ⇒ model(v, F [l → >])
(6) v � F [l → >] ⇒ (l # v) � F

(7) [l] ∈ F ⇒ ¬sat(F [l → ⊥])
(8) l ∈ F ∧ l /∈ F ⇒ F [l → >] ⊆ F [l → ⊥]

The following lemma suggests that the satisfiability of a formula can be, by
using substitution, checked by testing the satisfiability of two smaller formulae.
Since this is a fundamental lemma in the proof of the DPLL correctness, we give
a sketch of its proof. This sketch is still very close to its formal, Isabelle/Isar
counterpart. It also illustrates the use of the listed properties.

Lemma 1 (Split rule lemma).

sat(F ) ⇔ sat(F [l → >]) ∨ sat(F [l → ⊥])
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Proof:

(⇒) : Let us assumesat(F ). This means that there is a valuationv such that
model(v, F ), i.e.,consistent(v) andv � F . We consider two cases:

1. var(l) /∈ vars(v): from Proposition 2(5) it follows thatv is a model for
F [l → >], and, therefore, it holds thatsat(F [l → >]).
2. var(l) ∈ vars(v): from Proposition 1(B7), eitherv � l or v �¬ l holds.
(a) v � l: from Proposition 2(4) it follows thatv is a model forF [l → >],
and, therefore, it holds thatsat(F [l → >]).
(b) v � l: from Proposition 2(4), it holds thatv is a model forF [l → >],
and, therefore, it holds thatsat(F [l → ⊥]).

(⇐) : Let us assumesat(F [l → >]) ∨ sat(F [l → ⊥]).

Consider the case whensat(F [l → >]) holds. This means that there is a
valuationv such thatmodel(v, F ), i.e.,consistent(v) andv � F [l → >].
From Proposition 2(1), it holds thatvar(l) /∈ vars(F [l → >]). From
Proposition 1(E1) applied to the formulaF [l → >], variablevar(l),
and the valuationv, it follows that there is a valuationv′ such that
consistent(v′), v′ � F [l → >] andvar(l) /∈ vars(v′). Then, from Propo-
sition 2(6) applied to the valuationv′, it follows that(l # v′) � F . Since
var(l) /∈ vars(v′), it follows l /∈ v′ and thereforeconsistent(l # v′).
Finally, sat(F ) holds sincel # v′ is a model ofF .

The case whensat(F [l → ⊥]) holds is analogous to the previous case,
with the literall replaced byl. �

This lemma inspires a naive, but still sound and complete, procedure for
satisfiability checking. In some situations, one of the two formulaesat(F [l →
>]) andsat(F [l → ⊥]) from the above lemma does not need to be considered.
For instance, if the first disjunct is satisfied, then the second one does not need
to be checked (as indicated by the algorithm shown in Figure 1). Also, in some
special cases discussed below it suffices to consider just one of these disjuncts.

4.2. Unit ClausesOne sort of optimization of the mentioned naive proce-
dure for satisfiability checking is based on exploitingunit clauses.

Definition 15. A clausec is a unit clauseiff it has only one literal, i.e.,c =
[l]. Then we also say thatl is aunit literal.

The following lemma shows that when a formula contains a unit clause,
checking its satisfiability can be reduced to checking satisfiability of just one
smaller formula (in constrast to Lemma 1).
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Lemma 2 (Unit clause rule lemma).

[l] ∈ F ⇒ (sat(F ) ⇔ sat(F [l → >]))

Proof: By Proposition 2(7) it holds that[l] ∈ F ⇒ ¬sat(F [l → ⊥]), so the
lemma is a direct consequence of the split rule lemma (Lemma 1). �

4.3. Pure Literals Another sort of optimizations of the naive procedure for
satisfiability checking is based onpure literals.

Definition 16. A literal l is apure literalin F iff l ∈ F andl /∈ F .

Lemma 3 (Pure literal rule lemma).

l ∈ F ∧ l /∈ F ⇒ (sat(F ) ⇔ sat(F [l → >]))

Proof: By Proposition 2(8) it holds that

l ∈ F ∧ l /∈ F ⇒ F [l → >] ⊆ F [l → ⊥],

so the lemma is a simple consequence of the Proposition 1(E2) applied toF [l →
>] andF [l → ⊥], and the Split rule lemma (Lemma 1). �

4.4. Definition of the DPLL Procedure A recursive definition of the
DPLL procedure is given in the following definition.

Definition 17.
dpll(F )⇔

if F = [ ] then
>

else if[ ] ∈ F then
⊥

else ifhasPureLiteral(F ) then
dpll(F [getPureLiteral(F ) → >])

else ifhasUnitLiteral(F ) then
dpll(F [getUnitLiteral(F ) → >])

else ifdpll(F [selectLiteral(F ) → >] then
>

elsedpll(F [selectLiteral(F ) → ⊥]

Notice that the functionsgetUnitLiteral, getPureLiteral andselectLiteral

returning literals and Boolean functionshasUnitLiteral, hasPureLiteral,
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must be effectively defined in order to have an effective DPLL procedure. As
said in Section 2, this can be done in many ways. The choice of a specific imple-
mentation of these functions, can affect the procedure performance but does not
affect its correctness, as long as they meet the following specification (their sorts
are obvious from the context):

(1) hasUnitLiteral(F ) ⇒
[getUnitLiteral(F )] ∈ F

(2) hasPureLiteral(F ) ⇒
getPureLiteral(F ) ∈ F ∧ getPureLiteral(F ) /∈ F

(3) F 6= [ ] ∧ [ ] /∈ F ⇒
selectLiteral(F ) ∈ F

One simple way to define these functions is given in Appendix.

5. Termination and Correctness of the DPLL procedure In this section
we prove termination and, finally, correctness of the DPLL procedure. Our proof
roughly follows the informal proof given in (Davis et al., 1994). In Isabelle spirit,
termination is ensured by defining a measure that is decreased by each recursive
call of the procedure. This property is ensured by proving several propositions
corresponding to different recursive calls.

5.1. Termination In order to prove termination of the specified procedure,
we show that the total number of literals in all clauses ofF is decreased by
each recursive call.5 This number, denoted bynumLiterals(F ), is defined by
primitive recursion.

Definition 18.

numLiterals([ ]) = 0

numLiterals(c # F ) = |c| + numLiterals(F )

From the following proposition it follows that the total number of literals in
F is reduced by each recursive call. Because of that, the total number of literals in
the formula can be used as a decreasing measure suitable for proving termination
of the DPLL procedure. This measure and the following proposition are used by
Isabelle/Isar for the automatic proof of termination.

5There are other suitable termination measures that can be used as well (e.g., the number of
occuring variables).
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Proposition 3.

(1) l ∈ F ⇒ numLiterals(F [l → >]) < numLiterals(F )
(2) l ∈ F ⇒ numLiterals(F [l → ⊥]) < numLiterals(F )
(3) F 6= [ ] ∧ [ ] /∈ F ⇒

numLiterals(F [selectLiteral(F ) → >]) < numLiterals(F )
(4) F 6= [ ] ∧ [ ] /∈ F ⇒

numLiterals(F [selectLiteral(F ) → ⊥]) < numLiterals(F )
(5) hasUnitLiteral(F ) ⇒

numLiterals(F [getUnitLiteral(F ) → >]) < numLiterals(F )
(6) hasPureLiteral(F ) ⇒

numLiterals(F [getPureLiteral(F ) → >]) < numLiterals(F )

5.2. CorrectnessFinally, we can prove the correctness of the procedure
defined by Definition 17.

Theorem 1.
dpll(F ) ⇔ sat(F )

Proof: As a base of the inductive proof, we consider the cases in which the
function does not perform a recursive call. There are two such branches:

• If F = [ ] then, by Proposition 1(E3),dpll(F ) = > andsat(F ) = >, so
the conjecture trivially holds.

• If F 6= [ ] and[ ] ∈ F then, by Proposition 1(E4),dpll(F ) = ⊥ and
sat(F ) = ⊥, so the conjecture trivially holds.

Now, let us assume that the conjecture holds for each recursive call, and let
us show that the conjecture holds for the top level procedure call. Therefore, let
us assume the following inductive hypotheses.

(F 6= [ ] ∧ [ ] /∈ F ) ⇒
(hasPureLiteral(F ) ⇒

dpll(F [getPureLiteral(F ) → >]) ⇔ sat(F [getPureLiteral(F ) → >]))

(F 6= [ ] ∧ [ ] /∈ F ∧ ¬hasPureLiteral(F )) ⇒
(hasUnitLiteral(F ) ⇒

dpll(F [getUnitLiteral(F ) → >]) ⇔ sat(F [getUnitLiteral(F ) → >]))
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(F 6= [ ] ∧ [ ] /∈ F ∧ ¬hasPureLiteral(F ) ∧ ¬hasUnitLiteral(F )) ⇒
dpll(F [selectLiteral(F ) → >]) ⇔ sat(F [selectLiteral(F ) → >])

(F 6= [ ] ∧ [ ] /∈ F ∧ ¬hasPureLiteral(F ) ∧ ¬hasUnitLiteral(F )) ⇒
(¬dpll(F [selectLiteral(F ) → >]) ⇒

dpll(F [selectLiteral(F ) → ⊥]) ⇔ sat(F [selectLiteral(F ) → ⊥]))

Let us consider different branches ofif−then−else in the definition ofdpll

function:

• If F 6= [ ] and[ ] /∈ F , andhasPureLiteral(F ), then by thedpll

definition:

dpll(F ) ⇔ dpll(F [getPureLiteral(F ) → >])

Also, by the inductive hypothesis, it holds:

dpll(F [getPureLiteral(F ) → >]) ⇔ sat(F [getPureLiteral(F ) → >])

From the specification ofgetPureLiteral and the assumption
hasPureLiteral(F ), it holds that
getPureLiteral(F ) ∈ F ∧ getPureLiteral(F ) /∈ F . Then, by
Lemma 3:

sat(F [getPureLiteral(F ) → >]) ⇔ sat(F )

Therefore,dpll(F ) ⇔ sat(F ).
• If F 6= [ ] and[ ] /∈ F and¬hasPureLiteral(F ), and

hasUnitLiteral(F ), then by thedpll definition:

dpll(F ) ⇔ dpll(F [getUnitLiteral(F ) → >])

Also, by the inductive hypothesis, it holds:

dpll(F [getUnitLiteral(F ) → >]) ⇔ sat(F [getUnitLiteral(F ) → >])
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From the specification ofgetUnitLiteral and the assumption
hasUnitLiteral(F ), it holds that[getUnitLiteral(F )] ∈ F . Then, by
Lemma 2:

sat(F [getUnitLiteral(F ) → >]) ⇔ sat(F )

Therefore,dpll(F ) ⇔ sat(F ).
• If F 6= [ ] and[ ] /∈ F and¬hasPureLiteral(F ), and
¬hasUnitLiteral(F ) then, from the specification ofdpll and the
definition ofif − then− else connective, it holds that

dpll(F ) ⇔ (dpll(F [selectLiteral(F ) → >]) ⇒ >) ∧
(¬dpll(F [selectLiteral(F ) → >]) ⇒

dpll(F [selectLiteral(F ) → ⊥])

Therefore, it holds that

dpll(F ) ⇔ dpll(F [selectLiteral(F ) → >]) ∨
dpll(F [selectLiteral(F ) → ⊥]).

If dpll(F [selectLiteral(F ) → >]) then, by the inductive hypothesis, it
holds thatsat(F [selectLiteral(F ) → >]). Otherwise, if
¬dpll(F [selectLiteral(F ) → >]) anddpll(F [selectLiteral(F ) → ⊥])
hold then, by the inductive hypothesis,sat(F [selectLiteral(F ) → ⊥])
holds. Therefore:

dpll(F ) ⇔ sat(F [selectLiteral(F ) → >]) ∨
sat(F [selectLiteral(F ) → ⊥]).

Then, by Lemma 1, it holds thatdpll(F ) ⇔ sat(F ).

�
This proof, together with the termination argument, proves the total correct-

ness of thedpll function.

6. Formalization in Isabelle/Isar Our formalization of the DPLL proce-
dure and its correctness proof in Isabelle/Isar6 faithfully follow the definitions

6All proof documents are available fromhttp://argo.matf.bg.ac.yu/
formalizations .
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given in the previous sections. Using this formalization, an effective, operational
ML implementation of the DPLL procedure is automatically generated from Is-
abelle, yielding a formally verified (although not quite efficient) SAT solver that
is guaranteed to be correct (Haftmann, 2008). As an example, here we give some
fragments of Isabelle/Isar code that formalizes some of the content given in the
previous sections.

Definitions 1 and 2:

types Variable = nat
datatype Literal = Pos Variable | Neg Variable

Definitions 6 and 7:

text{* The variable of a literal *}
consts var :: "Literal => Variable"
primrec
"var (Pos v) = v"
"var (Neg v) = v"

text{* The opposite of a given literal *}
consts opposite :: "Literal => Literal"
primrec
"opposite (Pos v) = (Neg v)"
"opposite (Neg v) = (Pos v)"

The DPLL procedure, as defined in Section 4.4:

function dpll::"Formula => bool"
where
"(dpll formula) =

(if (formula = []) then
True

else if ([] mem formula) then
False

else if (hasPureLiteral formula) then
(dpll (setLiteralTrue

(getPureLiteral formula) formula))
else if (hasUnitLiteral formula) then

(dpll (setLiteralTrue
(getUnitLiteral formula) formula))

else if (dpll (setLiteralTrue
(selectLiteral formula) formula)) then

True
else

(dpll (setLiteralTrue
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(opposite (selectLiteral formula)) formula))
)"

by pat_completenesss auto
termination
by (relation "measure (% formula. (numLiterals formula))")

(auto simp add: dpllTermination_1 dpllTermination_2
dpllTermination_3 dpllTermination_4)

The proof of correctness of the DPLL procedure, corresponding to the outlined
proof given in Section 5:

lemma dpllCorrectness: "(dpll F) = (satisfiable F)"
proof (induct F rule: dpll.induct)

case (inductiveStep formula)
note inductive_hypothesis = this
show ?case
proof (cases "formula = []")

case True
thus ?thesis

by (simp add:emptyFormulaIsSatisfiable)
next

case False
show ?thesis
proof (cases "[] mem formula")

case True
with ‘formula ˜= []‘ show ?thesis

by (simp add:formulaWithEmptyClauseIsUnsatisfiable)
next

case False
show ?thesis
proof (cases "hasPureLiteral formula")

case True
let ?pl = "getPureLiteral formula"
hence "?pl el formula" and "˜opposite ?pl el formula"

by (auto simp add: getPureLiteralIsPure)
with ‘formula ˜= []‘ ‘˜[] mem formula‘

‘hasPureLiteral formula‘
inductive_hypothesis
pureLiteraRule [of "?pl" "formula"]

show ?thesis
by auto

next
case False
show ?thesis
proof (cases "hasUnitLiteral formula")

case True
let ?ul = "getUnitLiteral formula"
hence "[?ul] mem formula"

by (simp add: getUnitLiteralIsUnit)
with ‘formula ˜= []‘ ‘˜[] mem formula‘
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‘˜hasPureLiteral formula‘ ‘hasUnitLiteral formula‘
inductive_hypothesis
unitLiteralRule [of "?ul" "formula"]

show ?thesis
by auto

next
case False
with ‘formula ˜= []‘ ‘˜[] mem formula‘

‘˜hasPureLiteral formula‘ ‘˜hasUnitLiteral formula‘
inductive_hypothesis

show ?thesis
using split_rule[of "formula" "selectLiteral formula"]
by auto

qed
qed

qed
qed

qed

7. Related Work There is a large and growing body of formalized math-
ematical knowledge. In this section we briefly overview formalized knowledge
and proofs relevant for computer science, especially those formalized in Isabelle,
and those relevant for automated reasoning and SAT and SMT solving.

Archive of formal proofs7 is a collection of proof libraries, examples, and
larger scientific developments, mechanically checked in the theorem prover Is-
abelle. A range of algorithms and data structures have been formalized and veri-
fied in Isabelle and similar proof assistant tools. These algorithms include Quick-
sort, Binary Search, AVL Trees, Binary Search Trees, Depth First Search, Fast
Fourier Transform, File Refinement, Cryptographic algorithms (Lindenberg et
al., 2006), a range of distributed and parallel algorithms (Disk Paxos, Peterson’ s
algorithm).

Flaws were detected in many security protocols (e.g., (Li et al., 2007)). Even
if security protocols are accompained with correctness proofs, they can still be
flawed if these proofs are not formally verifiable (e.g., (Choo, 2006)). Proof assis-
tant tools have been used for formal verification of properties of various protocols
(e.g., (Nipkow, 2006, Barsotti et al., 2006)).

A lot of efforts have been invested in verifying programming language se-
mantics and compilers. For example, Klein and Nipkow introduced Jinja (Klein et
al., 2006), a Java-like programming language with a formal semantics designed to
exhibit core features of the Java language architecture. A model of the language,
virtual machine and a compiler are then formally verified. Berghofer described

7http://afp.sourceforge.net
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a formally verified, fully executable compiler which was extracted from a proof
assistant (Berghofer et al., 2003). Blech and Glesner developed a formal seman-
tics for static single assignment (SSA) phase of compilation (Blech et al., 2004).
Qian and Xu used iterative abstraction refinement and automated theorem prov-
ing for automatically verifying C programs against safety specifications (Qian et
al. 2007).

Clark Barrett formally proved correctness of Stanford Framework for Co-
operating Decision Procedures, but this proof, although quite detailed, was not
verified using a proof assistant (Barret, 2003).

Tom Ridge presented an efficient, mechanically verified sound and complete
theorem prover for first order logic (Ridge, 2004). After formalization in Isabelle,
OCaml code is generated, yielding a directly executable program.

Chaieb and Nipkow formalized and verified quantifier elimination based de-
cision procedures for Presburger arithmetic (Chaieb et al., 2005).

Isabelle has been combined with different tools to achieve a higher degree of
automation. For instance, Weber described integration of SAT solvers zChaff and
MiniSat with Isabelle (Weber, 2005, Weber, 2006). Both SAT solvers generate
resolution-style proofs of unsatisfiability of their input formulae. These proofs
are verified by the theorem prover. Fontaine et al. (Fontaine et al., 2006) used
Isabelle to verify the correctness of proof traces generated by the SMT solver
Harvey. Barsotti at al. experimented in combining the theorem prover Isabelle
with automatic first-order arithmetic provers to increase automation on the ver-
ification of distributed protocols (Barsotti et al., 2005). As a case study for the
experiment, they verified several clock synchronization algorithms.

Abstract descriptions of the DPLL algorithm and its extensions for ground
Satisfiability Modulo Theory (SMT) have been developed. In (Nieuwnhuis et
al., 2006, Tinelli, 2002, Krstić et al., 2007), rule based presentations of these al-
gorithms and their informal correctness proofs are given. Informal correctness
proofs of the DPLL procedure can be found in many mathematical logic text-
books (e.g., (Davis et al., 1994)). However, as far as we know, our proof is the
first formalized correctness proof for the DPLL procedure.

8. Conclusions and Future Work In this paper we presented the first for-
mal proof of correctness of the forty-five years old DPLL algorithm, one of the
most fundamental algorithms in computer science. In its history, there were no
doubts about the correctness of this algorithm. So, our proof does not resolve a
long-standing mystery, but rather:(i) it adds to the growing body of formalized,
verifiable mathematical knowledge, knowledge that can be verified by indepen-
dent and reliable proof checkers;(ii) it serves as a first building block of formal-
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ized correctness proofs for modern SAT and SMT solvers. That task — formally
proving correctness of state-of-the-art SAT and SMT solvers, very important for
many applications, is in the focus of our current work.

Appendix: One Concrete Implementation In this section we give very
simple definitions of the functions used in the DPLL definition given in subsec-
tion 4.4. They give a concrete, instantiated procedure and enable obtaining an
effectively executable ML implementation. In order to have a more efficient SAT
solver, these functions should be defined in a more sophisticated way.

A formula has a unit literal iff it has a clause with only one literal. We define
hasUnitLiteral(F ) function by primitive recursion.

Definition 19.

¬hasUnitLiteral([ ])

hasUnitLiteral(c # F ) ⇔ (|c| = 1) ∨ hasUnitLiteral(F )

getUnitLiteral(F ) is the first literall such that[l] ∈ F . It is also defined
by primitive recursion.

Definition 20.
getUnitLiteral(c # F ) =

if |c| = 1 then
head(c)

else
getUnitLiteral(F )

Procedures that find and select a pure literal from a formula are defined using
a series of auxiliary functions.

The functionsliterals(F ) is a list that contains all literals that occur in the
formulaF . It is defined by primitive recursion.

Definition 21.

literals([ ]) = [ ]

literals(c # F ) = c @ literals(F )

The functionhasPureLiteralAux(c1, c2) checks if there is a literal from
the list c1 whose opposite literal does not occur in the listc2. It is defined by
primitive recursion.



Formal Correctness Proof for DPLL Procedure 21

Definition 22.
¬hasPureLiteralAux([ ], c)
hasPureLiteralAux(l # c′, c) ⇔

if l /∈ c then
>

else
hasPureLiteralAux(c′, c)

Using this auxiliary function, we definehasPureLiteral:

Definition 23.

hasPureLiteral(F ) ⇔ hasPureLiteralAux(literals(F ), literals(F ))

The functiongetPureLiteralAux(c1, c2) finds the literal from the listc1

whose opposite literal does not occur in the listc2. It is defined by primitive
recursion.

Definition 24.
getPureLiteralAux(l # c′, c) ⇔

if l /∈ c then
l

else
getPureLiteralAux(c′, c)

Finally, we can define the functiongetPureLiteral.

Definition 25.

getPureLiteral(F ) = getPureLiteralAux(literals(F ), literals(F ))

selectLiteral(F ) is used to select an arbitrary literal ofF . For example, it
can be the first literal of the first clause ofF .

Definition 26.

selectLiteral(F ) = head(head(F ))

It was proved that the functions defined in the above way meet the spec-
ification given in Section 4.4. These proofs can also be found inhttp://
argo.matf.bg.ac.yu/formalizations , while we don’t present them
here since this simple implementation is just one of many meeting the required
specification.
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