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Abstract

In this paper we discuss an application of the Simplex method in check-

ing software safety — the application in automated detection of buffer

overflows in C programs. This problem is important because buffer over-

flows are suitable targets for hackers’ security attacks and sources of seri-

ous programs’ misbehavior. We also describe our implementation, includ-

ing a system for generating software correctness conditions and a Simplex

-based theorem prover that resolves these conditions.

1 Introduction

The Simplex method is considered to be one of the most significant algorithms
of the last century.1 It is a method for solving the linear optimization problem
[4] and its worst case complexity is exponential in the number of variables [11].
However, it is very efficient in practice and converges in polynomial time for
many input problems, including certain classes of randomly generated problems
([17], [9]). Apart from the basic Simplex method for the optimization problem,
there are many other variants, including a decision variant that decides if a set
of linear constraints is satisfiable or not.
The Simplex method has a wide range of applications, in different sorts of

optimization problems, but also in software and hardware verification. In this
paper, we describe how a decision version of the Simplex method can be used
in automated detection of buffer overflows in programming language C. Buffer
overflow (or buffer overrun) is a programming flaw which enables storing more

∗This work was partially supported by Serbian Ministry of Science grant 144030.
1For instance, the journal Computing in Science and Engineering listed it as one of the

top 10 algorithms of the century.
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data in a data storage area (buffer) than it was intended to hold. This shortcom-
ing can produce many problems. Namely, buffer overflows are suitable targets
for breaking security of programs and sources of serious programs’ misbehavior.
Further in this paper, in Section 2 we give background information, in Section

3 we describe one decision variant of the Simplex method and our implementa-
tion, and in Section 4 we present our technique for automated detection of buffer
overflows, that uses the mentioned implementation. In Section 5 we briefly dis-
cuss related work and in Section 6 we draw final conclusions and discuss the
future work.

2 Background

Linear programming. Linear programming, sometimes known as linear op-
timization, is the problem of maximizing or minimizing a linear function over a
convex polyhedron specified by linear and non-negativity constraints. A linear
programming problem consists of a collection of linear inequalities on a number
of real variables and a given linear function (on these real variables) to be maxi-
mized or minimized. A linear programming problem, in its standard form, is to
maximize function given by ctx with regards to constraints of the type Ax ≤ b

where b ≥ 0, x ≥ 0, x, b and c are vectors from Rn, and A is a real m × n

matrix.

Linear Arithmetic. Linear arithmetic (over rationals (LRA) or integers (LIA))
is a fragment of arithmetic (over rationals or integers) involving addition, but
not multiplication, except multiplication by constants. A quantifier-free linear
arithmetic formula is a first-order formula whose atoms are equalities, disequal-
ities, or inequalities of the form a1x1 + . . . + anxn ./ b, where a1,. . . , an and b
are rational numbers, x1, . . . , xn are (rational or integer) variables, and ./ is
one of the operators =, ≤, <, >, ≥, or 6=.
Linear arithmetic (both over rationals and integers) is decidable (i.e., there

is a decision procedure, returning true if and only if an input linear arithmetic
sentence Φ is a theorem, and returning false otherwise)). Two most popular
methods for deciding satisfiability of linear arithmetic formulae are Fourier-
Motzkin procedure [14] and the Simplex method [7]. Linear arithmetic is widely
used in software verification, especially its quantifier-free fragment, because it
can model many types of constraints, and it is decidable. Decision procedures
for LRA are much faster then decision procedures for LIA.

Simplex method. The Simplex method is originally constructed to solve lin-
ear programming optimization problem, but its variants can be used to solve
the decision problem for quantifier-free fragment of linear arithmetic. The
method iteratively finds feasible solutions satisfying all the given constraints,
while greedily tries to maximize the objective function.
In geometric terms, a series of linear inequalities defines a closed convex

polytope (called simplex), defined by intersecting a number of half-spaces in
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n-dimensional Euclidean space; each half-space is an area which lies on one
side of a hyperplane. The Simplex algorithm begins at a starting vertex and
moves along the edges of the polytope until it reaches the vertex of the optimum
solution. At every iteration an adjacent vertex is chosen such that the value
of the objective function does not decrease. If no such vertex exists, a solution
to the problem is found. Usually, such an adjacent vertex is not unique, and
a pivot rule must be specified to determine which vertex to pick. There are
various pivot rules used in practice.
The decision problem for linear arithmetic reduces to finding a single feasible

solution. The basic Simplex method can be modified to cover some other,
different types of constraints than those used in standard linear programming
optimization problem (e.g., some variables xi might be unconstrained, some
coefficients bi might be negative, a minimal solution instead of maximal one
might be requested). The dual Simplex algorithm [15] is quite effective when
constraints are added incrementally. This algorithm is particularly useful for
reoptimizing the problem after a constraint has been added or some parameters
have been changed so that the previously optimal solution is no longer feasible.

SMT. Satisfiability Modulo Theories (SMT) solvers check satisfiability of Boolean
combination of constraints formulated in some first-order theory or combination
of several such theories. SMT solving has many industrial applications, espe-
cially in software and hardware verification. Some of the interesting background
theories for different applications are linear arithmetic, theory of uninterpreted
functions, and theories of program structures like arrays and recursive struc-
tures. Most state-of-the-art SMT solvers have support for linear arithmetic and
can deal with extremely complex conjectures coming from industry. In these
cases the decision procedures are usually based on the Simplex method.
The SMT-lib initiative2 is aimed at producing a library of SMT benchmarks

and all required standards and notational conventions [18], linking a range of
SMT solvers and research groups. In SMT-lib, the underlying logic is classical
first order logic with equality.

Buffer Overflow Bug Buffer overflow, i.e., writing outside the bounds of a
block of allocated memory, can lead to different sorts of bugs and can provide
possibility to an execution of malicious code. According to some estimates,
buffer overflows account for up to 50% of software vulnerabilities, and this per-
cent seems to be increasing over time [22]. In particular, buffer overflow is
probably the best known form of software security vulnerability. Attackers have
managed to identify and exploit buffer overflows in a large number of products
and components [21, 3].
Buffer overflows are very frequent because programming language C is in-

herently unsafe. Namely, array and pointer references are not automatically
bounds-checked. In addition, many of the string functions from the standard C

2http://www.smt-lib.org/
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library (such as strcpy(), strcat(), sprintf(), gets()) are unsafe. Program-
mers often assume that calls to these functions are safe, or do the inadequate
checks. The consequence is that there are many applications using the string
functions unsafely.
In handling and avoiding possible buffer overflows, standard testing is not

sufficient, and more involved techniques are required. The problem of automated
detection of buffer overflows attracted a lot of attention and several techniques
for handling this problem were proposed, most of them over the last ten years.
Modern techniques can help in detecting bugs missed by hand audits. The
approaches for detecting buffer overruns are divided into dynamic and static
techniques. Dynamic techniques examine the program during its execution.
Methods based on static program analysis aim at detecting potential buffer
overflows before run-time and their major advantage is that bugs can be found
and eliminated before code is deployed.

3 Simplex-based SMT Solving

In this section we will describe basics of a DPLL(T) framework for SMT, and
then present a Simplex-based decision procedure for Linear Arithmetic (over
rationals) designed to fit within the DPLL(T) framework.
ArgoLib is an SMT solver based on DPLL(T) framework and developed

by the Automatic Reasoning GrOup at Faculty of Mathematics in Belgrade.3

Among several supported theories, ArgoLib contains a solver for the theory of
Linear Arithmetic over rationals (LRA), based on the Simplex method imple-
mentation described in Section 3.2.

3.1 DPLL(T)

Amongst a plethora of recent research on satisfiability modulo theory, theDPLL(T)
framework [16] has proven to be very successful. Within this framework, an SMT
solver consists of two separated components:

1. DPLL(X) — a Boolean satisfiability solver based on a slightly modified
variant of Davis-Putnam-Logeman-Loveland (DPLL) algorithm [5].

2. SolverT — a solver for the given theory T capable to check the consistency
of conjunctions of atomic formulae from T .

These two components have to cooperate during the solving process. DPLL(X)
is parameterized with SolverT , giving a DPLL(T ) solver. A given formula Φ
of the theory T is transformed into a Boolean formula Φbool by replacing its
atoms φ1, . . . , φk with fresh propositional variables p1, . . . , pk. The role of the
DPLL(X) component is to find and enumerate propositional models of the
formula Φbool. Each propositional model M induces a conjunction of atoms

ΦM
T =

∧|M |
i=1

ψi, such that ψi = φi if pi ∈ M or ψi = ¬φi if ¬pi ∈ M . The

3ArgoLib is being developed by the second author of this paper.
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role of the SolverT component is to check consistency of conjunctions Φ
M
T , with

respect to the background theory T . The formula Φ is satisfiable if and only
if there is a propositional model M satisfying Φbool such that its corresponding
formula ΦM

T is consistent with the theory T .

Example 1 Let us consider the formula Φ ≡ (x + y > 0 ∧ x < 0) ∨ y < 0
(implicitly existentially quantified) with respect to the theory of linear arithmetic
over rationals. The atoms φ1 ≡ x + y > 0, φ2 ≡ x < 0 and φ3 ≡ y <

0, are abstracted with propositional variables p1, p2 and p3 respectively and
the corresponding Boolean formula Φbool is (p1 ∧ p2) ∨ p3. The model M1 =
{p1, p2, p3} for Φbool induces the formula Φ

M1

LRA ≡ x + y > 0 ∧ x < 0 ∧ y <

0, which is inconsistent in linear arithmetic. On the other hand, the model
M2 = {p1, p2,¬p3} for Φbool induces the formula Φ

M2

LRA ≡ x + y > 0 ∧ x <

0 ∧ y ≥ 0 which is consistent in linear arithmetic and, therefore, the formula
Φ is satisfiable.

The DPLL(X) component based on DPLL search algorithm builds propo-
sitional models incrementally, starting from an empty valuation, and assert-
ing literals one-by-one until all variables become assigned, or until it shows
that formula has no propositional models. In order to obtain better efficiency,
propositional models are not only checked against theory T a posteriori i.e.,
when they are completely constructed, but also, partial propositional models
are checked during the Boolean search process. Therefore, SolverT should be
incremental, i.e., once it has found a conjunction of atoms consistent, it has to
be able to check the consistency of that conjunction extended with additional
atom(s), without having to redo all the previous work. In order to achieve this,
SolverT maintains a state consisting of atoms corresponding to propositions as-
serted so far by DPLL(X). As the search progresses, new literals are asserted
and their corresponding atoms are given to SolverT which then checks the con-
sistency of its state. When inconsistency is detected, the DPLL(X) module
is notified about it.Then, it backtracks and removes some asserted literals and
their corresponding atoms until a consistent state is restored. Literals and their
corresponding atoms are asserted and backtracked in LIFO fashion.
When inconsistency of ΦM

T is detected, it usually comes from a subset of
atoms that have been asserted. SolverT should be able to generate a (prefer-
ably small) inconsistent subset of ΦM

T . This set is called the explanation for
inconsistency of ΦM

T and it helps the Boolean search engine DPLL(X) to reject
some Boolean models that could induce the same inconsistent core again.

SolverT should be able also to infer which atoms (and their corresponding
propositions) have to hold as a consequence of its current state. This is called
the theory propagation and it can significantly speed up the search, since the
information from the background theory T is used to guide the Boolean search
process.
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3.2 Simplex-based Solver for LRA

We now describe a SolverLRA based on specific variant of dual Simplex method
developed by Duterte and de Moura and used in their SMT solver yices [8].
This procedure consists of a preprocessing phase and a solving phase.

Preprocessing. The first step of the procedure is to rewrite the formula Φ
into an equisatisfiable formula Φ= ∧ Φ′, where Φ= is a conjunction of linear
equalities and Φ′ is an arbitrary Boolean formula in which all atoms occurring
in Φ′ are elementary atoms of the form xi ./ b, where xi is a variable and b is
a rational constant. This transformation is straightforward, and it introduces a
new variable si for every linear term ti that is not a variable and that occurs as
a left-hand side of an atom ti ./ b of Φ.

Example 2 If Φ is x ≥ 0∧x+y < 0∧2x+3y > 1, Φ′ is x ≥ 0 ∧ s1 < 0 ∧ s2 > 1,
and Φ= is s1 = x+ y ∧ s2 = 2x+ 3y.

In the next preprocessing step, all disequalities of the form x 6= b are rewrit-
ten to x < b ∨ x > b. Then, each strict inequality of the form x < b is replaced
by x ≤ b−δ, where δ has a role of a sufficiently small rational number. Similarly,
each x > b is replaced with x ≥ b+ δ. This enables us to assume that there are
no strict inequalities in Φ′.

Example 3 After the second preprocessing step, the formula Φ′ from Example
2 becomes x ≥ 0 ∧ s1 ≤ −δ ∧ s2 ≥ 1 + δ.

The number δ is not computed in advance, it is treated symbolically, and
its effective computation is done only when a concrete, rational model of the
formula that is found to be satisfiable over Q is requested. This means that
after the preprocessing phase, all computations are performed in the field Qδ,
where Qδ is the set {a + b δ | a, b ∈ Q}. While addition and multiplication of
elements of Qδ is trivial, comparison of Qδ elements is defined in the following
way: a1 + b1 δ ./ a2 + b2 δ if and only if a1 ./ a2 ∨ (a1 = a2 ∧ b1 ./ b2), where
./∈ {≤,≥}. It can be shown that the original formula is satisfiable over Q if
and only if the transformed formula is satisfiable over Qδ. For more details of
this subject see [8].

Incremental Simplex Algorithm The formula Φ= is a conjunction of equal-
ities and it does not change during the search process, so it can be given to
Simplex solver before the model search begins. Let x1, . . . , xn be all variables
occurring in Φ= ∧ Φ′ (that is, all variables from Φ and m additional variables
s1, . . . , sm). If all variables are put on the left hand sides, the formula Φ= can
be represented in matrix form as Ax = 0, where A is a matrix m × n, m ≤ n,
and x is a vector of n variables. Instead of that, we will keep this system of
equations in a form solved for m variables, i.e., in a tableau derived from the
matrix A, written in the form:

xi =
∑

xj∈N

aijxj , xi ∈ B.
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The variables on the left hand side will be called basic variables, and variables
on the right hand side will be called non-basic variables. We will denote the
current set of basic variables by B and the current set of non-basic variables by
N . Basic variables do not occur on the right hand side of the tableau. Initially,
only the additional variables will be the basic variables.
On the other hand, formula Φ′ is an arbitrary Boolean combination of el-

ementary atoms of the form xi ./ b, where b ∈ Qδ. As said in Section 3.1,
the Boolean structure is handled by a separate DPLL(X) component, so the
Simplex solver needs to be able to check consistency only of conjunctions of
elementary atoms of Φ′ (where elementary atoms are asserted and backtracked
one by one). Because of their special structure (x ≤ u or x ≥ l), the conjunction
of asserted elementary atoms determines lower and upper bounds for variables.
Therefore, Φ is consistent if there is x ∈ Qn

δ satisfying

Ax = 0 and lj ≤ xj ≤ uj for j = 1, . . . , n,

where lj is an element of Qδ or −∞ and uj is an element of Qδ or +∞. The
solver state includes:

1. A tableau derived from the formula Φ=, written in the form:

xi =
∑

xj∈N

aijxj , xi ∈ B.

2. The known upper and lower bounds li and ui for every variable xi, derived
from asserted atoms of Φ′.

3. The current valuation, i.e., a mapping β assigning a value β(xi) ∈ Qδ to
every variable xi.

Initially, all lower bounds are set to −∞, all upper bounds are set to +∞,
and β assigns zero to each variable xi.
The main invariant of the algorithm (the property that holds after each step)

is that β always satisfies the tableau i.e., Aβ(x) = 0 and β always satisfies the
bounds i.e., ∀xj ∈ B ∪N , lj ≤ β(xj) ≤ uj .
When a new elementary atom is asserted, the solver state is updated. Since

disequalities and strict inequalities are removed in the preprocessing phase, only
equalities and non-strict inequalities are asserted.
Instead of equality xi = b, two inequalities xi ≤ b and xi ≥ b are asserted.
After asserting inequality xi ≤ b (assertion of inequality of xi ≥ b is handled

in a similar way), the value b is compared with the current bounds for xi and
bounds are updated:

• If b is greater then ui, the inequality xi ≤ b does not introduce any new
information and state is not changed.

• If b is less then li, then the state becomes inconsistent and unsatisfiability
is detected.
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• In other cases, the upper bound ui for the variable xi is decreased and set
to b.

If xi is non-basic variable (i.e., when xi ∈ N ), and when its value β(xi) does
not satisfy the updated bounds li or ui, its value has to be updated. If it holds
that β(xi) > ui (the case β(xi) < li is handled in a similar way), the value
β(xi) is decreased and set to ui. With every change of the value of a non-basic
variable, the values of basic variables need to be updated in order to keep the
tableau satisfied.
The problem arises if xi is a basic variable (i.e., when xi ∈ B), and when its

value β(xi) does not satisfy its bounds li or ui. If it holds that β(xi) > ui (the
case β(xi) < li is handled in a similar way), the value β(xi) has to be decreased
and set to ui. In order for the tableau equation xi =

∑
xj∈N aijxj to remain

valid, there must exist a non-basic variable xj such that its value β(xj) can
be decreased (if for its corresponding coefficient aij it holds that aij > 0) or
increased (if for its corresponding coefficient aij it holds that aij < 0). If there
is no non-basic variable xj allowing this kind of change (because all values are
already set to their lower/upper bounds), the state is inconsistent and unsatis-
fiability is detected. If a non-basic variable xj that allows this kind of change is
found, the pivoting operation is performed. The equation xi =

∑
xj∈N aijxj is

solved for xj and the variable xj is then substituted in every other equation of
the tableau. Therefore, xj becomes a basic variable, and xi becomes a non-basic
variable so its value can be set to ui. Still, this can cause bound violation for
some other basic variables, and the process should be iteratively performed until
all variables satisfy their bounds, or until inconsistency is detected. A variant of
Bland’s rule [2] which relies on a fixed variable ordering can be used to ensure
termination of this process.
In this variant of the Simplex method, during backtracking, only the bounds

have to be changed, while the valuation and tableau can remain the same and
no pivoting is requested. This feature is very important.
Explanations for inconsistencies are generated from the bounds of variables

occurring in the equation that has become violated. For more details about
generating explanations and performing theory propagation see [8].
Implementation of the described algorithm is given in Figure 1. The proce-

dure assert is invoked by the DPLL(X) component whenever an atom xi ./ b

is asserted. This procedure automatically checks and updates bounds and val-
ues for non-basic variables, since this operation is cheap and does not require
pivoting. The procedure check is used to check bounds and update values for
all basic variables. It loops in an infinite loop and iteratively changes the valua-
tion using pivoting until all bounds are satisfied, or an inconsistency is detected.
Changing the value of a basic variable can be quite expensive, and the procedure
check should be invoked only from time to time. This could delay the detec-
tion of inconsistency, but usually gives better overall performance. Procedures
update and pivotAndUpdate are auxiliary.
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procedure assert(xi ./ b)
if (./ is =) then

assert(xi ≤ b)
assert(xi ≥ b)

else if (./ is ≤) then
if (b ≥ ui) then return satisfiable

if (b < li) then return unsatisfiable

ui := b

if (xi ∈ N and β(xi) > b) then
update(xi, b)

else if (./ is ≥) then
if (b ≤ li) then return satisfiable

if (b > ui) then return unsatisfiable

li := b

if (xi ∈ N and β(xi) < b)
update(xi, b)

procedure check()
loop

select the smallest xi ∈ B such that β(xi) < li or beta(xi) > ui
if there is no such xi then return satisfiable

if β(xi) < li then

select the smallest xj ∈ N such that
(aij > 0 and β(xj) < uj) or (aij < 0 and β(xj) > lj)

if there is no such xj then return unsatisfiable

pivotAndUpdate(xi, li, xj)
if β(xi) > ui then

select the smallest xj ∈ N such that
(aij < 0 and β(xj) < uj) or (aij > 0 and β(xj) > lj)

if there is no such xj then return unsatisfiable

pivotAndUpdate(xi, ui, xj)
end loop

procedure update(xi, v)
for each xj ∈ B

β(xj) := β(xj) + aji(v − β(xi))
β(xi) := v

procedure pivotAndUpdate(xi, v, xj)

θ :=
v−β(xi)

aij

β(xi) := v

β(xj) := β(xj) + θ

for each xk ∈ B \ {xi}
β(xk) := β(xk) + akjθ

pivot(xi, xj)

Figure 1: Implementation of a decision variant of the Simplex method.
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Example 4 Let us check the satisfiability of the conjunction

x ≥ 1 ∧ y ≤ 1 ∧ x+ y ≤ 0 ∧ y − x ≥ 0.

After the initial transformation, the tableau becomes:

s1 = x+ y

s2 = −x+ y

and B = {s1, s2}, N = {x, y}. The formula Φ′ is x ≥ 1 ∧ y ≤ 1 ∧ s1 ≤
0 ∧ s2 ≥ 0.
The initial valuation is β(x) = 0, β(y) = 0, β(s1) = 0, β(s2) = 0, and the

initial bounds are −∞ ≤ x ≤ +∞, −∞ ≤ y ≤ +∞, −∞ ≤ s1 ≤ +∞, −∞ ≤
s2 ≤ +∞.
When x ≥ 1 is asserted, the bounds for x become 1 ≤ x ≤ +∞, and the

valuation becomes β(x) = 1, β(y) = 0, β(s1) = 1, β(s2) = −1. No pivoting is
performed.
When y ≤ 1 is asserted, the bounds for y become −∞ ≤ y ≤ 1, and the

valuation is not changed since y satisfies new bounds. No pivoting is performed.
When s1 ≤ 0 is asserted, the bounds for s1 become −∞ ≤ s1 ≤ 0. The value

β(s1) = 1 violates this bound, and β(s1) has to be decreased to 0. Since s1 is
a basic variable, pivoting has to be performed. The value of x is already on its
lower bound so it cannot get decreased. The value of y can be decreased, so y is
chosen to be the pivot variable. After pivoting, the tableau becomes:

y = s1 − x

s2 = −2x+ s1

and y becomes a basic, and s1 becomes a non-basic variable. The updated valu-
ation becomes β(x) = 1, β(y) = −1, β(s1) = 0, β(s2) = −2.
Finally, when s2 ≥ 0 is asserted, the bounds for s2 become 0 ≤ s2 ≤ +∞.

The current value β(s2) = −2 violates this bound, and β(s2) has to be increased
to 0. Since s2 is a basic variable, pivoting has to be performed. Consider the
equation s2 = −2x+ s1. The value of s2 can be increased only if x is decreased,
or s1 is increased. Since the value of x1 is already set to its lower bound, and
the value of s1 is already set to its upper bound, the inconsistency is detected.
The explanation for the detected inconsistency is the formula x ≥ 1∧x+y ≤

0 ∧ y − x ≥ 0. It is itself inconsistent, and minimal in the sense that its every
subset is consistent. It is inferred from the bounds of the violated equation.

4 New Approach for Automated Detection of
Buffer Overflows

In this section we describe our new, static, flow-sensitive and inter-procedural
system for detecting buffer overflows, with modular architecture. We also de-
scribe our prototype implementation, called Fado (from Flexible Automated
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Detection of Buffer Overflows).4 The system is built from the following build-
ing blocks that can be easily changed or updated.

Parser, Intermediate Code Generator, and Code Transformer The parser5

reads code from the source files, parses it, and builds a parse tree. The
parse tree is then exported to a specific intermediate code simpler for pro-
cessing. The code transformer reads the intermediate code and performs
a range of steps (e.g., eliminating multiple declarations, eliminating all
compound conjunctions and disjunctions, etc.), yielding a program in a
subset of C, that is equivalent to the original program, i.e., it preserves
its semantics. This transformation significantly simplifies and speeds-up
further processing stages. Our motivation, transformation and the target
language are similar to the ones described in [26].

Modelling Semantics of Programs, Database and Conditions Generator

For modelling the data-flow and semantics of programs, in formulation of
the constraints, we use the following functions:

• value — gives a value of a given variable,

• size— gives a number of elements allocated for the given buffer, and

• used, relevant only for string buffers — gives a number of bytes used
by the given buffer (i.e., the number of used bytes including the
terminating zero).

All these functions have an additional (integer) argument called state or
timestamp, capturing data-flow, i.e., the temporal nature of variables and
memory space. So, value(k, 0) gives a value of k in state 0, used(s, 1) gives
a number of bytes used by s in state 1, etc. When processing a sequence
of commands, states for value, size, and used, are updated, with respect
to previous commands and states, in order to take into account the wider
context. The values size(s, i) and used(s, i) are always non-negative.

The database is used for generating preconditions and postconditions for
single commands. The database stores triples (precondition, command,
postcondition). The semantics of a database entry (φ, F, ψ) is as follows:
in order F to be safe, the condition φ must hold; in order F to be flawed,
the condition ¬φ must hold; after F , the condition ψ holds. The database
is external and can be changed by the user. Initially, the database stores
information about standard C operators and functions from standard C
library. Preconditions and postconditions for the user-defined functions
are generated automatically in some simpler cases, while in remaining
cases, the user can add them to the database (but the system can also
work if the user fails to do that). So, while processing a C program, the

4FADO is being developed by the first author of this paper.
5The Fado tool uses the parser JSCPP, written by Jörg Schön, available from

http://www.die-schoens.de/prg/index.html.
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database may temporarily expand with entries corresponding to functions
from the program being processed.

Like some other tools, our system tests only the first iteration of a loop
(which is reasonable and sufficient in some cases), covers function calls
with constant arguments, and applies several other simple heuristics for
dealing with commands within loops.

Generator and Optimizer for Correctness and Incorrectness Conditions

For a command K, let Φ be conjunction of postconditions for all com-
mands that precede K (within its function). The command K is:

• safe (it never causes an error during execution) if Φ ⇒ precond(K)
(universal closure is assumed) is valid;

• flawed (when encountered, it always causes an error during execution)
if Φ⇒ ¬precond(K) (universal closure is assumed) is valid;

• unsafe, if neither of above (when encountered, it can cause an error
during execution).

Notice that our system can prove that some commands are unsafe, but can
also prove that some commands are safe. This feature limits the number
of false alarms — one of the main concerns for most approaches. Addi-
tionally, in some cases, a command can be proved to be both safe and
flawed (when the preconditions that precede the command are inconsis-
tent), meaning that the command is not reachable. So, our system can be
used for detecting non-reachable code, too.

Before sending conditions to the prover, conjectures are preprocessed. All
references to preconditions and postconditions of functions are resolved,
all irrelevant conjuncts are eliminated, ground expressions are evaluated,
certain expressions are simplified, and terms that do not belong to linear
arithmetic are abstracted, i.e., replaced by new variables. This transfor-
mation is not complete, but it is sound: if abstracted formula is valid,
then the original formula is valid too.

The generated correctness conditions are checked for validity by an auto-
mated theorem prover. A theorem prover for linear fragment of arithmetic
is suitable for this task as many (or most) of conditions belong to linear
arithmetic (namely, pointer arithmetic is based on addition and subtrac-
tion only, so it can be well modelled by linear arithmetic).

Example 5 For illustration of the described approach, let us consider the
following fragment of code:

char src[200];

fgets(src,200,stdin);

Let the database have the following entries:
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precondition command postcondition

– char x[N] size(x, 1) = value(N, 0)
size(x, 0) ≥ value(y, 0) fgets(x,y,z) used(x, 1) ≤ value(y, 0)

For instance, used(x, 1) ≤ value(y, 0) says that space used by x after
execution of the command fgets(x,y,z) is less or equal to the value of y
before execution of this command.

After the initial analysis of the code, it is transformed to an intermediate
code (the same code in this example) and then preconditions and postcon-
ditions are generated based on the database:

precondition command postcondition

– char src[200] size(src, 1) = value(200, 0)
size(src, 0) ≥ value(200, 0) fgets(src,200,stdin) used(src, 1) ≤ value(200, 0)

After updating states in functions size and used, and after evaluation (in
this case, value(200, 0) is rewritten to 200), we get:

precondition command postcondition

– char src[200]; size(src, 1) = 200
size(src, 1) ≥ 200 fgets(src,200,stdin); used(src, 1) ≤ 200

The correctness and incorrectness conditions are abstracted (so they fall
in linear arithmetic). For instance, the command fgets(src,200,stdin)
is safe if (0 ≤ size src 1) ∧ (size src 1 = 200) ⇒ (size src 1 ≥ 200) is
valid. This can be proved by a theorem prover covering linear arithmetic.

Invoking Automated Theorem Prover Formulae produced by conditions
generator are translated to smt-lib format and passed to the ArgoLib
prover. Since external files are used for communication, it is possible to
use any theorem prover that can parse smt-lib format. The system could
be made faster if the ArgoLib API was used for communication instead
of using external smt-lib files, but this would reduce the flexibility of the
system because theorem prover could not be changed. Rather than testing
the validity of a quantifier-free formula F (implicitly universally quanti-
fied) obtained by conditions generator, SMT provers equivalently test the
satisfiability of the formula ¬F (implicitly existentially quantified).6 The
prover can check whether or not the given formula is unsatisfiable (unless
the time limit was exceeded), yielding an information whether a corre-
sponding command is safe/flawed. If a command was proved to be flawed
or unsafe (i.e., it was not proved to be safe), the theorem prover can,
in some cases, generate a counterexample for the corresponding correct-
ness conjecture. This counterexample can be used for building a concrete
illustration of a buffer overflow, which could be very helpful to the user.

6The formula ∀ ∗ F is valid if and only if ∃ ∗ ¬F is unsatisfiable.

13



Presentation of Results Each command carries a line number in the original
source file and the prover’s results are associated to these line numbers
and reported to the user. The commands that are marked flawed cause
errors in any run of the program and they must be changed (these errors
are often trivial, and usually trivial to detect by simple program testing).
The commands that are marked unsafe are possible causes of errors and
they also must be checked by human programmers.

It is impossible to build a complete and sound static system (a system that
detects all possible buffer overflows and has no false alarms) for detecting buffer
overflow errors. One of the reasons for this is undecidability of the halting
problem. Our system has the following restrictions: it deals with loops in a
limited manner; for computing preconditions and postconditions of user-defined
functions, our system may require human’s assistance; the generated conjectures
belong to linear arithmetic, so the other involved theories are not considered.
The system uses the ArgoLib prover for linear arithmetic over rational numbers,
which is sound but not complete for integers (i. e., some valid conditions may
not be proved). Despite the above restrictions, our system can detect many
buffer overflows.
The power of our system is also determined by the contents of the database.

We deliberately leave the database to be external and open — so its contents
can be extended by the user.

5 Related work

Several state-of-the-art SMT solvers support linear arithmetic. Although several
decision procedures for linear arithmetic have been developed (based on both
Simplex and Fourier-Motzkin elimination), the variant of the Simplex method
used in yices and described in this paper is adopted by more solvers (e.g.,
MathSat, Barselogic, Z3, CVC).
Concerning the static techniques for detecting buffer overflows, over the last

several years, there have been several tools developed. There cannot be a com-
plete and sound static system (a system that detect all possible buffer overflows
and nothing more). Systems that perform static analysis of code try to maxi-
mize the number of detected bugs and to minimize the number of false alarms.
These systems can be divided into two classes, first that performs only lexical
analysis of code and second that takes into account semantics of the code being
analyzed. Systems based on lexical analysis of code, like ITS4 [20], RATS [19]
and Flawfinder [23], scan the source code and try to match its fragments with
critical calls stored in a special-purpose library. Systems that perform deeper
analysis of code, like ARCHER [25], BOON [22], UNO [10], CSSV [6] and Splint
[13], usually generate different sorts of constraints over integer variables. These
constraints correspond to the safety critical commands and represent correctness
conditions that have to be satisfied for the commands to be safe. To generate
and check constraints different approaches and algorithms are used. For ex-
ample, ARCHER [25] uses a custom built integer constraint solver (that is not
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sound nor complete), BOON [22] uses a complete custom built range solver,
etc. For an empirical comparison between different static analysis tools see, for
instance, [27, 24, 12].

6 Conclusions and Future Work

We presented an application of the Simplex method for automated detection of
buffer overflows in programs written in C. Our system for automated detection
of buffer overflows performs flow-sensitive and inter-procedural static analysis.
The system generates correctness and incorrectness conditions for individual
commands, and then tests them for validity by a variant of the Simplex method.
Some of the novelties introduced by our system are: its very flexible architec-
ture (so its building blocks can be easily changed), buffer overflow correctness
conditions given in terms of Hoare logic (with a clear logical meaning), using
external theorem provers (that can also provide formal correctness proofs), etc.
The presented system is a subject of further improvements and development.

For instance, despite the fact that heuristics for dealing with loops are very
efficient and can have a wide range, for the next stage of development, we are
planning to extend our system to preform full analysis of loops (in a similar
manner as proposed in some modern systems [6]). We are also planning to
improve analysis of user-defined functions so the system would be sound and
fully automatic.
In the theorem proving part of our system, we are planning to modify it

to use stronger background theories. The current version of our system checks
the satisfiability of linear arithmetic constraints over rationals. The Simplex
method could be modified to determine the satisfiability of linear arithmetic
constraints over integers i.e., to check if there is an integer valuation of the
variables satisfying the given constraints. Although this is more natural ap-
proach for checking buffer overflows, it could significantly slow down the whole
system. The current version of the system simply abstracts all function calls
with variables. So, for the following snippet of code a = b; x = f(a); y =

f(b);7 it holds that x = y, but the system cannot deduce that. This could
be improved by using Ackermans reduction [1] which statically adds constraints
a = b =⇒ f(a) = f(b), for all function calls, or by replacing the theory LRA
with the combination of theories EUF (Equality with Uninterpreted Functions)
and LRA.
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