Desanka P. Radunović

TALASIĆI (WAVELETS)

AKADEMSKA MISAO Beograd, 2005

Predgovor

Knjiga je nastala kao rezultat želje autora da jednu novu, vrlo atraktivnu oblast primenjene matematike približi studentima Matematičkog fakulteta u Beogradu kroz izborni predmet koji se već nekoliko godina predaje na završnoj godini studija. Verujem da će ona biti od koristi i stručnjacima u drugim oblastima nauke i primena. Tu pre svega mislim na one koji se na bilo koji način bave obradom digitalnih signala, dakle obradom nizova ili matrica brojevnih podataka, a takođe i one koji koriste matematičke modele za opis i analizu složenih procesa u prirodi i društvu.

Dugo sam se dvoumila kako i da li uopšte da prevedem već odomaćeni termin "vejvlet" (engl. wavelet). Kao što se iz samog naslova knjige vidi, odlučila sam se za donekle bukvalan prevod "talasić", jer odgovara suštini ideje. Sve oko nas, priroda i društvo, u stalnim je promenama, brzim ili sporim, kratkotrajnim ili dugotrajnim. Stoga je potpuno prirodna ideja da se talasima, kratkim ili dugim, predstave procesi i pojave. Pri tome nam poseban problem u njihovom proučavanju i razumevanju zadaju vrlo bitni tzv. nelinearni efekti, koji se karakterišu brzim i kratkim promenama, te se mali talasi ili talasići javljaju kao idealan alat za njihovu analizu. Zato nije iznenađenje što su veliki doprinos izgradnji ove teorije, pored matematičara, dali pre svega fizičari i inženjeri. I kao što je Metoda konačnog elementa, osmišljena od strane inženjera i teorijski podržana od strane matematičara, napravila revoluciju posebno u modeliranju parcijalnim diferencijalnim jednačinama, očekujem da svetla budućnost talasićima tek predstoji. Tome u prilog govori činjenica da je američki Federalni istražni biro (FBI) za obradu zapisa otisaka prstiju usvojio standard koji se zasniva na talasićima. S obzirom da je celovita teorija talasića formirana tek osamdesetih godina prošlog veka, jasno je da postoje još mnoga otvorena pitanja i mogućnosti za istraživanja i primene.

Knjiga ima za cilj da uputi čitaoca samo u osnove teorije talasića i naznači neke oblasti u kojima se oni već uspešno primenjuju. U uvodnom delu, prvo poglavlje, dat je kratak razvoj ideje u toku prošlog veka. Teorija talasića je prirodni nastavak Fourier-ove transformacije i njene modifikacije Kratkotrajne Fourier-ove transformacije, te se u drugom poglavlju govori o ovim transformacijama i njihovoj vezi. Konstatuju se njihovi nedostaci i uvode pojmovi talasić i transformacija talasićima kao alat kojim se neki od ovih nedostataka mogu prevazići. Treće poglavlje posvećeno je multirezoluciji, tj. reprezentaciji funkcije na različitim skalama prema precizno utvrđenim pravilima, što predstavlja osnovnu ideju teorije talasića. Polazeći od matematičke definicije multirezolucije, dolazi se do dilatacione jednačine i

njenog rešenja funkcije skaliranja, kao i veze ove funkcije sa talasićima. Dokazuju se neke osobine funkcije skaliranja i talasića, i daju algoritmi za rešavanje dilatacione jednačine i konstrukciju talasića. Povezivanje talasića sa filtrima koji se koriste u obradi diskretnih signala, za šta je zaslužna pre svega Ingrid Daubechies, doprinosi formiranju celovite teorije talasića. Stoga je četvrto poglavlje posvećeno diskretnim signalima, filtrima i njihovoj vezi sa talasićima. Posebno su analizirani ortogonalni filtri koji definišu Daubechies familiju talasića. Neki nazivaju ove talasiće novim specijalnim funkcijama. Neke osobine talasića bitne za aproksimaciju funkcija, kao što su egzistencija i glatkost rešenja dilatacione jednačine, kao i tačnost aproksimacije talasićima, analizirane su u poglavlju pet. Ove osobine bazisa talasića određene su svojstvima filtra definisanog koeficijentima dilatacione jednačine. Teorija daje opšte principe na osnovu kojih se mogu kreirati talasići željenih osobina. Osnovni algoritmi važni za primenu talasića, pre svega piramidalni algoritam, dati su u poglavlju šest. Raznovrsnost primena uslovila je modifikacije postojećih i razvoj novih metoda i algoritama, što će biti predmet daljih istraživanja i možda nastavak ove knjige. Poslednje, sedmo poglavlje, sadrži kratak pregled osnovnih familija talasića i njihove osobine. Takođe su navedene neke ideje za konstrukciju novih familija talasića, što nikako ne iscrpljuje sve što je do sada urađeno. Na kraju je ilustrovana raznolikost primene talasića navodjenjem nekih oblasti u kojima se oni koriste. Mnogo više o tome može se naći na internetu, na nekoj od web adresa koje su navedene na kraju poslednjeg poglavlja.

Na kraju svakog poglavlja dat je izvestan broj zadataka koji, zajedno sa brojnim primerima datim u tekstu, pomažu čitaocu u razumevanju materijala obrađenog u knjizi. Neki od zadataka predstavljaju primere ili tvrđenja koja pojašnjavaju izloženi sadržaj, te se kao takvi i referišu u tekstu.

Radi lakšeg čitanja teksta, autor skreće pažnju na korišćene oznake. Numeracija teorema, lema, definicija, posledica, primera i formula u svakom poglavlju počinje od broja jedan. Pozivanje u tekstu na bilo koji od ovih iskaza iz nekog drugog poglavlja vrši se navodjenjem broja poglavlja ispred broja iskaza o kome je reč; na primer, (3.24) znači formula (24) u poglavlju 3, a teorema 3.1 označava teoremu 1 u poglavlju 3. Ukoliko se citiraju iskazi iz istog poglavlja, broj poglavlja je izostavljen.

I pored brojne strane literature koja sa različitih aspekata obrađuje ovu oblast, smatram da će ova knjiga biti od koristi studentima, a i diplomiranim studentima, pre svega matematičkih i tehničkih fakulteta, jer objedinjuje matematički i inženjerski pristup ovoj oblasti. Knjiga je pisana tako da su pojmovi koji se koriste prethodno definisani, te se ne traži posebno predznanje.

Koristim ovu priliku da se zahvalim kolegama prof. dr Branimiru Reljinu, prof. dr Bošku Jovanoviću i prof. dr Milošu Arsenoviću, kao i studentu poslediplomskih studija Zlatku Udovičiću na pažljivom čitanju rukopisa knjige i korisnim primedbama i sugestijama.

Beograd, januar 2005.

D. P. Radunović

iv

Sadržaj

1	Uvo	d	1			
2	Tra	Transformacija				
	2.1	Srednjekvadratna aproksimacija	5			
	2.2	Fourier-ova transformacija	10			
	2.3	Kratkotrajna Fourier-ova transformacija	16			
	2.4	Transformacija talasićima	21			
3	Mul	tirezolucija	27			
	3.1	Multirezolucijska analiza	27			
	3.2	Multirezolucijski razvoj funkcije	31			
	3.3	Konstrukcija multirezolucije	35			
	3.4	Ortogonalnost funkcije skaliranja i talasića	39			
	3.5	Rešavanje dilatacione jednačine	42			
	3.6	Konstrukcija talasića	50			
4	Filtri 5'					
	4.1	Signal	57			
	4.2	Filtar	60			
	4.3	Nisko-frekvencijski i visoko-frekvencijski filtri	63			
	4.4	Ortogonalni filtri	70			
	4.5	Daubechies filtri	76			
	4.6	Osobine filtra važne za talasiće	81			
5	Oso	bine talasića	87			
	5.1	Matrice filtra	89			
	5.2	Tačnost aproksimacije	93			
	5.3	Konvergencija kaskadnog algoritma	96			
	5.4	Glatkost funkcije skaliranja i talasića	03			
6	Reprezentacija talasićima 109					
	6.1	Piramidalni algoritam	09			
	6.2	Početni izbor koeficijenata	13			
	6.3	Diskretna transformacija talasićima	14			

7	Prin	neri talasića 123
	7.1	Daubechies talasići
	7.2	Biortogonalni talasići
	7.3	Interpolacioni talasići
	7.4	Kardinalni B-splajnovi
	7.5	Nestandardni talasići
	7.6	Talasići druge generacije
	7.7	Primene

Slike

$\begin{array}{c} 1.1 \\ 1.2 \end{array}$	Haar-ov razvoj 1 Schauder-ov razvoj 2
$2.1 \\ 2.2$	Srednjekvadratna aproksimacija za različite težinske funkcije \dots 6 Bazisi u \mathcal{R}^2 \dots 8
2.3	Fourier-ova analiza stacionarne i nestacionarne funkcije
2.4	Vremensko-frekvencijska lokalizacija funkcije
2.5	Efekat translacije i modulacije (a), i skaliranja (b)
2.6	Reprezentacije nestacionarne funkcije
2.7	Diadska mreža tačaka
3.1	Diadska dilatacija sinusne funkcije i Db2 talasića
3.2	Translacija Db2 talasića
3.3	Prostor funkcija koje su deo po deo konstanta
3.4	Dilataciona jednačina četvrtke
3.5	Prostor neprekidnih i deo po deo linearnih funkcija
3.6	Dilataciona jednačina krov funkcije
3.7	Bazisne funkcije prostora prekidnih deo po deo linearnih funkcija 37
3.8	Kubni B-splajn
3.9	Daubechies funkcija skaliranja
3.10	Krov funkcija kao granica kaskadnog algoritma 43
3.11	Sinusoida i talasić
3.12	Jednačina Haar-ovog talasića
3.13	Osnovni talasići
3.14	Db2 $(r = 2)$ funkcija skaliranja i talasić
3.15	Db3 $(r = 3)$ funkcija skaliranja i talasić
4.1	Različita odabiranja signala $\cos \pi t$
4.2	Idealni filtri
4.3	Gustina energijskog spektra maksimalno ravnog filtra 76
5.1	Slaba konvergencija kaskadnog algoritma
6.1	Aproksimacije Db2 funkcije skaliranja i talasića (2. i 10. iteracija) 114
6.2	Diskretna transformacija talasićima (DWT) 115

SLIKE

6.3	Komponente signala u aproksimacionom prostoru i prostorima talasića119
6.4	Polazni i kompresovani signali
7.1	Coiflet funkcija skaliranja i talasić $\ldots\ldots\ldots\ldots\ldots\ldots\ldots$ 125
7.2	Biortogonalne funkcije skaliranja ((a) i (c)) i talasići ((b) i (d)) $\ .$. 128
7.3	Interpolaciona funkcija skaliranja i talasić $(M=4)$
7.4	Linearni, kvadratni i kubni splajn
7.5	Kvadratni splajn i priduženi talasić
7.6	Krov funkcija i njoj pridružen semiortogonalni talasić
7.7	Interpolacione funkcije skaliranja i usavršeni talasić i $\ \ldots\ \ldots\ \ldots\ 148$

viii

Glava 1 Uvod

U istoriji matematike postoji nekoliko "početaka" analize talasićima, pri čemu se prvi od njih vezuje za ime Haar-a 1909. godine. Većina toga je urađena do 1930. godine, a od tada, u narednih pedesetak godina, javljali su se samo pojedinačni doprinosi koji nisu bili deo celovite teorije. Pri tome, naziv talasić (wavelet) i odgovarajuća teorija nisu bili poznati, pa su mnoge specifične tehnike kasnije ponovo otkrivali fizičari i matematičari koji se bave talasićima. Primenom talasića u obradi signala i slike, početkom osamdesetih godina prošlog veka, nastaje celovita teorija talasića i ekspanzija njihove primene u raznim oblastima.

Osnovna ideja potiče od Fourier-a (Jean-Baptiste Joseph), koji je 1807. godine izneo tezu da je svaka 2π -periodična integrabilna funkcija suma svog Fourier-ovog reda

$$\frac{a_0}{2} + \sum_k (a_k \cos kx + b_k \sin kx),$$

za odgovarajuće vrednosti koeficijenata a_k , b_k (detaljnije u §2.2).

Slika 1.1: Haar-ov razvoj

Haar ([15]) se zapitao da li postoji ortonormirani sistem funkcija na intervalu [0, 1],

takav da za bilo koju funkciju f(x) neprekidnu na tom intervalu, red

$$(f, h_0)h_0(x) + (f, h_1)h_1(x) + \dots + (f, h_n)h_n(x) + \dots$$

(skalarni proizvod funkcija (f, h) je definisan form. (2.1)) uniformno konvergira ka f(x) na intervalu [0, 1]? Ovaj problem ima beskonačno mnogo rešenja. Haar je dao najjednostavnije rešenje, i ono vodi ka talasićima. Za bazisnu funkciju $h_n(x)$ izabrao je karakterističnu funkciju diadskog intervala $I_n = [2^{-j}k, 2^{-j}(k+1)), n = 2^j + k$, koja je jednaka jedan na tom intervalu i nula inače (slika 1.1). Aproksimacija funkcije f(x) parcijalnom sumom pomenutog reda nije ništa drugo nego dobro poznata aproksimacija neprekidne funkcije deo po deo konstantom, pri čemu su koeficijenti aproksimacije (f, h_n) srednje vrednosti funkcije f(x) na odgovarajućim diadskim intervalima. Haar-ova aproksimacija pogodna je za funkcije koje su samo neprekidne, čak samo integrabilne sa kvadratom na intervalu [0, 1], ili, opštije, funkcije čiji je indeks regularnosti blizak nuli.

Slika 1.2: Schauder-ov razvoj

Faber i Schauder (1920) su zamenili Haar-ove funkcije $h_n(x)$ njihovim primitivnim funkcijama, krov funkcijama (slika 1.2),

$$\Delta_n(x) = \Delta(2^j x - k), \qquad n = 2^j + k, \quad j \ge 0, \quad 0 \le k < 2^j.$$

gde je

$$\Delta(x) = \begin{cases} 2x, & x \in [0, 1/2] \\ 2(1-x), & x \in [1/2, 1] \\ 0, & x \notin [0, 1] \end{cases}$$

Dodajmo još funkcije 1 i x i dobijamo Schauder-ov bazis

1,
$$x$$
, $\Delta_1(x)$, ..., $\Delta_n(x)$,...

u prostoru neprekidnih funkcija na intervalu [0, 1]. Svaka neprekidna funkcija na tom intervalu može se predstaviti redom

$$f(x) = a + bx + \sum_{n=1}^{\infty} \alpha_n \Delta_n(x),$$

pri čemu je a = f(0), b = f(1) - f(0) (jer je $\Delta_n(0) = \Delta_n(1) = 0$ za n > 0), a koeficijenti α_n su određeni vrednostima funkcije u diadskim tačkama

$$\alpha_n = f((k+1/2)2^{-j}) - \frac{1}{2}(f(k2^{-j}) + f((k+1)2^{-j})), \quad n = 2^j + k.$$

Korišćenjem Schauder-ovog bazisa Paul Levy (1930) je analizirao multifraktalnu strukturu Braun-ovog kretanja, i dobio bolje rezultate u proučavanju svojstava lokalne regularnosti u odnosu na rezultate dobijene pomoću Fourier-ovog bazisa. Schauder-ov bazis ostvaruje ideju multirezolucijske analize kroz preslikavanje $x \to 2^j x - k$, što se ne može postići trigonometrijskim funkcijama, a što omogućava analizu složenih detalja.

Pola veka kasnije, osamdesetih godina, talasići ponovo bivaju otkrivani, mada su se matematičari sve vreme njima bavili, kao "atom dekompozicijom", da bi omogućili direktan i jednostavan pristup različitim funkcionalnim prostorima. Kroz ceo taj period (1909–1980) bilo je malo saradnje, posebno sa fizičarima i istraživačima u oblasti obrade signala, te su ovi ponovo otkrivali i konstruisali talasiće. Danas granice između matematičkog pristupa i pristupa sa stanovišta obrade signala i slike postepeno nestaju. Upravo ta veza je dovela do ogromnog napretka u ovoj oblasti i talasića Ingrid Daubechies, kao novih specijalnih funkcija.

Prvi put naziv *talasić* (engl. *wavelet*) u njegovom sadašnjem značenju upotrebili su Grossmann, fizičar, i Morlet, inženjer, ([14]) početkom osamdesetih godina prošlog veka. Na osnovu fizičke intuicije definisali su talasiće u kontekstu kvantne fizike. Baveći se obradom digitalnih signala Stephane Mallat ([16]) je dao novi doprinos teoriji talasića povezujući pojmove filtri sa ogledalskom simetrijom (engl. mirror filters), piramidalni algoritam i ortonormirani bazis talasića. Yves Meyer ([18]) je konstruisao neprekidno diferencijabilni talasić, čiji je nedostatak što nema kompaktan nosač (konačan domen na kome je različit od nule). Konačno, Ingrid Daubechies ([7]) je uspela da upotpuni Haar-ov rad konstrukcijom različitih familija ortonormiranih bazisa talasića.

Za svaki ceo broj rDaubechies je konstruisala ortonormirani bazis u prostoru \mathcal{L}_2 oblika

$$2^{j/2}\psi_r(2^jx-k), \qquad j, \, k \in \mathcal{Z},$$

određen funkcijom $\psi_r(x)$ koja ima sledeće osobine:

- 1. Kompaktan nosač funkcije $\psi_r(x)$ je interval [0, 2r 1].
- 2. Funkcija $\psi_r(x)$ ima r momenata jednakih nuli,

$$\int_{-\infty}^{\infty} \psi_r(x) \, dx = \dots = \int_{-\infty}^{\infty} x^{r-1} \psi_r(x) \, dx = 0.$$

3. Funkcija $\psi_r(x)$ ima γr neprekidnih izvoda, pri čemu je $\gamma \approx 0.2$.

Haar-ov sistem funkcija je Daubechies familija talasića za r = 1. Daubechies talasići omogućavaju mnogo efikasniju analizu ili sintezu glatke funkcije ukoliko je r veće. Naime, ako funkcija koja se analizira ima m neprekidnih izvoda, gde je $0 \leq m \leq r$, koeficijenti $b_{j,k}$ u razvoju po Daubechies bazisu su reda veličine $2^{-(m+1/2)j}$, a ako je m > r, koeficijenti $b_{j,k}$ su reda veličine $2^{-(r+1/2)j}$. To znači da su za regularnu funkciju vrednosti koeficijenata za veće r mnogo manje nego u slučaju, na primer, korišćenja Haar-ovog sistema, kada su ovi koeficijenti reda $2^{-3j/2}$. Ova osobina je osnov za kompresiju podataka, koja se sastoji u zanemarivanju malih koeficijenata (manjih po apsolutnoj vrednosti od nekog zadatog praga), što omogućava pamćenje podataka ili funkcije pomoću minimalnog skupa preostalih koeficijenata. Svojstvo je lokalno, jer Daubechies talasići imaju kompaktan nosač. Sinteza pomoću Daubechies talasića višeg reda takođe daje bolje rezultate nego sinteza Haar-ovim sistemom, jer se pri korišćenju Haar-ovog sistema glatka funkcija aproksimira prekidnom funkcijom. Opširnije o Daubechies talasićima (i filtrima) biće reči u §4.5.

Ono što je vazno istaći jeste da, za razliku od Fourier-ove analize koja se zasniva na jednom skupu funkcija (trigonometrijskim funkcijama), reprezentacija talasićima je moguća po beskonačno mnogo različitih bazisa. Familije talasića se razlikuju po tome koliko kompaktno su bazisne funkcije lokalizovane u prostoru i koliko su glatke. Optimalni izbor bazisa, tj. reprezentacije, zavisi od svojstava koja u posmatranom problemu želimo da analiziramo. Izabrani bazis sadrži u tom smislu bitne informacije o funkciji ili signalu.

Glava 2

Transformacija

Svaka reprezentacija čini eksplicitnom neku informaciju na račun drugih, koje su prikrivene i teško ih je uočiti. Transformacija iz jednog oblika u drugi, tj. predstavljanje po različitim bazisima, vrši se radi uočavanja nekih osobina elementa čiju reprezentaciju pišemo. Naš cilj je dobijanje optimalne reprezentacije, pri čemu je optimalnost uslovljena informacijom koju želimo da dobijemo.

PRIMER 1. Arapski, rimski i binarni numerički sistemi su formalni sistemi za predstavljanje brojeva. Arapska reprezentacija se sastoji od niza simbola izabranih iz skupa $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ i pravilo za konstrukciju opisa datog celog broja n je da se n razloži na zbir umnožaka stepena broja 10. U arapskoj numeričkoj reprezentaciji lako je otkriti da li je broj stepen broja 10, ali je teško otkriti da li je stepen broja 2. Za to je pogodnija binarna reprezentacija. Od dobijene informacije u mnogome zavisi koliko je lako uraditi različite stvari sa njom. Lako je sabirati, oduzimati pa čak i množiti brojeve predstavljene arapskom ili binarnom reprezentacijom, ali nije lako izvršiti ove operacije, posebno množenje, sa rimskim brojevima.

2.1 Srednjekvadratna aproksimacija

U ovoj knjizi ćemo se baviti različitim reprezentacijama funkcija iz prostora \mathcal{L}_2 . Hilbert-ov prostor $\mathcal{L}_2(p; a, b)$ je prostor funkcija integrabilnih sa kvadratom na odsečku [a, b],

$$\mathcal{L}_2(p; a, b) = \left\{ f \left| \int_a^b p(x) \left[f(x) \right]^2 dx < \infty \right\}.$$

Funkcija p(x) naziva se težinskom funkcijom. Definisana je na odsečku [a, b] i zadovoljava uslov p(x) > 0 skoro svuda, može biti jednaka nuli samo na skupu mere nula. Oznaka $\mathcal{L}_2(a, b)$ će se koristiti kada je težinska funkcija $p(x) \equiv 1$. Broj

1 /0

$$||f|| = \left(\int_{a}^{b} p(x) [f(x)]^{2} dx\right)^{1/2}$$

se često naziva energijskom normom funkcije f(x). Stoga možemo reći da je \mathcal{L}_2 prostor funkcija koje imaju konačnu energiju. Ova norma je indukovana skalarnim proizvodom

(1)
$$(f, g) = \int_{a}^{b} p(x)f(x)\overline{g(x)} \, dx, \qquad ||f||^{2} = (f, f),$$

gde g(x) predstavlja funkciju konjugovano-kompleksnu funkciji g(x).

Najbolja srednjekvadratna aproksimacija za funkciju $f \in \mathcal{L}_2(p; a, b)$ u potprostoru $\mathcal{H} \subset \mathcal{L}_2(p; a, b)$, određenom linearno nezavisnim funkcijama $g_k(x) \in \mathcal{L}_2(p; a, b)$, $k = 0, \ldots, n$, je generalisani polinom

(2)
$$Q_n^{\circ}(x) = c_0^{\circ} g_0(x) + \dots + c_n^{\circ} g_n(x),$$

koji najmanje odstupa od funkcije f(x) u smislu energijske norme,

$$\|f - Q_n^{\circ}\| = \inf_{Q_n \in \mathcal{H}} \|f - Q_n\| = \inf_{Q_n \in \mathcal{H}} \left(\int_a^b p \, (f - Q_n)^2 \, dx \right)^{1/2}.$$

Dakle, $Q_n^{\circ}(x)$ je ona funkcija iz skupa dopustivih funkcija $Q_n(x) = \sum_{k=0}^n c_k g_k(x)$ kojom se postiže minimalno odstupanje u srednjem, tj. u nekom smislu minimalna veličina površine koju obrazuju funkcije f(x) i $Q_n(x)$ i prave x = a i x = b, dok u pojedinim tačkama intervala odstupanje funkcije $Q_n^{\circ}(x)$ od f(x) može biti veliko. Pomoću funkcije p(x) postiže se različiti kvalitet aproksimacije u različitim delovima intervala. Naime, u tačkama intervala u kojima je p(x) veće, razlika $f(x) - Q_n^{\circ}(x)$ je množena većim koeficijentom, te sa većom težinom ove tačke učestvuju u minimizaciji. Iz tog razloga je funkcija p(x) nazvana težinskom.

Slika 2.1: Srednjekvadratna aproksimacija za različite težinske funkcije

2.1. SREDNJEKVADRATNA APROKSIMACIJA

PRIMER 2. Na slici 2.1 prikazani su polinomi najbolje srednjekvadratne aproksimacije devetog stepena (puna linija) funkcije $f(x) = 1/(1 + 25x^2)$ (isprekidana linija) za težinsku funkciju $p(x) \equiv 1$ (a), i $p(x) = e^{10x}$ (b).

Svaki Hilbert-ov prostor je strogo normiran linearni prostor,

$$\|f+g\| = \|f\| + \|g\| \qquad \Longleftrightarrow \qquad g = \lambda f, \quad \lambda \in \mathcal{R},$$

te najbolja aproksimacija $Q_n^{\circ}(x)$ uvek postoji i jedinstveno je određena.

Napomenimo da su u knjizi korišćene uobičajene oznake: \mathcal{Z} je skup celih, \mathcal{R} skup realnih, a \mathcal{C} skup kompleksnih brojeva.

LEMA 1. $Q_n^{\circ}(x)$ je najbolja aproksimacija funkcije $f(x) \in \mathcal{L}_2(p; a, b)$ u potprostoru \mathcal{H} ako i samo ako je $(f - Q_n^{\circ}, Q_n) = 0$ za svaku funkciju $Q_n \in \mathcal{H}$.

Dokazi prethodnih tvrđenja mogu se naći u [23].

Lemom 1 se tvrdi da $Q_n^{\circ}(x)$ predstavlja ortogonalnu projekciju funkcije f(x)na potprostor \mathcal{H} , pa se u uslovu ortogonalnosti proizvoljna funkcija $Q_n(x)$ može zameniti bazisnim funkcijama ovog potprostora $g_j(x), j = 0, \ldots, n$,

$$(f - Q_n^\circ, g_j) = 0, \quad j = 0, \dots, n.$$

Odavde, pak, sledi da se koeficijenti u reprezentaciji (2) nalaze kao rešenja sistema linearnih jednačina

(3)
$$\sum_{k=0}^{n} c_k^{\circ}(g_k, g_j) = (f, g_j) \qquad j = 0, \dots, n.$$

Determinanta matrice sistema (3) je Gramm-ova determinanta

$$G(g_1,\ldots,g_n) = \det((g_k,g_j))$$

i različita je od nule jer smo pretpostavili da su funkcije $g_k(x), \ k = 0, ..., n$, linearno nezavisne.

Kako je sistem (3) sve lošije uslovljen što je dimenzija sistema veća, poželjno je koristiti ortonormirane sisteme funkcija. Bazis $\{g_k\}_{k=0}^n$ konačno-dimenzionog prostora naziva se *ortonormirani bazis* ukoliko bazisne funkcije zadovoljavaju uslove (slika 2.2(a))

$$(g_k, g_j) = \delta(k-j) = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases}$$
 $k, j = 0, \dots, n.$

Tada je matrica sistema (3) jedinična matrica, i njegova rešenja su Fourier-ovi koeficijenti funkcije f(x) po ortonormiranom sistemu funkcija $\{g_k(x)\}_{k=0}^n$,

(4)
$$c_k^{\circ} = (f, g_k), \qquad k = 0, \dots, n.$$

Najbolja aproksimacija po ortonormiranom bazisu data je izrazom

$$Q_n^{\circ}(x) = \sum_{k=0}^n (f, g_k) g_k(x).$$

Kada je $n = \infty$, a prebrojiv ortonormirani sistem funkcija $\{g_k(x)\}_{k=0}^{\infty}$ potpun (ne postoji ni jedan drugi element prostora koji je različit od nule i ortogonalan je na svim elementima sistema), funkcija f(x) je predstavljena svojim Fourier-ovim redom,

(5)
$$f(x) = \sum_{k=0}^{\infty} (f, g_k) g_k(x),$$

pri čemu red konvergira ka funkciji f(x) u \mathcal{L}_2 normi jer ([23])

LEMA 2. U Hilbert-ovom prostoru Fourier-ov red proizvoljnog elementa po potpunom ortonormiranom sistemu elemenata konvergira ka tom elementu.

Posledica ove leme je Parseval-ova jednakost, kojom se izražava jednakost energijskih normi funkcije f(x) i vektora njenih Fourier-ovih koeficijenata (4),

(6)
$$||f||^2 = \sum_{k=0}^{\infty} |(f, g_k)|^2.$$

Generalisana Parseval-ova jednakost glasi

$$(f,h) = \sum_{k=0}^{\infty} (f, g_k)^* (h, g_k).$$

Slika 2.2: Bazisi u \mathcal{R}^2

U daljem tekstu biće nam potrebni i sledeći pojmovi o bazisima:

Biortogonalni bazisisu dva kompletna skupa linearno nezavisnih elemenata $\{g_k\}$ i $\{\gamma_k\}$ Hilbert-ovog prostora takvi da je (slika 2.2(b))

(7)
$$(g_k, \gamma_j) = \delta(k-j)$$

Parseval-ova jednakost za biortogonalne bazise ima oblik

$$||f||^2 = \sum_k (f, g_k)^* (f, \gamma_k),$$

2.1. SREDNJEKVADRATNA APROKSIMACIJA

a generalisana Parseval-ova jednakost glasi

$$(f,h) = \sum_{k} (f, g_k)^* (h, \gamma_k) = \sum_{k} (f, \gamma_k)^* (h, g_k).$$

Riesz-ov bazis (stabilan bazis) je prebrojiv podskup elemenata $\{g_k\}$ Hilbert-ovog prostora koji zadovoljava uslov da se svaki element f tog prostora može jednoznačno predstaviti u obliku sume $f = \sum_k c_k g_k(x)$, pri čemu postoje pozitivne konstante A i B takve da je

(8)
$$A\|f\|^2 \le \sum_k |c_k|^2 \le B\|f\|^2, \quad 0 < A \le B < \infty.$$

U konačno dimenzionom prostoru svaki bazis je Riesz-ov bazis. Ortonormirani bazis je Riesz-ov bazis sa konstantama A = B = 1. Bazis 1, x, x^2, \ldots nije Riesz-ov bazis u $\mathcal{L}_2(0, 1)$, jer je konstanta A = 0. Skalarni proizvodi $(x^k, x^l) = 1/(k + l + 1)$ su elementi loše uslovljene Hilbert-ove matrice, pa beskonačno dimenziona Hilbert-ova matrica nije pozitivno definitna.

Okvir (engl. frame) je kompletan, ali preodređen skup elemenata $\{g_k\}$ Hilbert-ovog prostora (elementi su linearno zavisni, slika 2.2(c)), i

$$A\|f\|^{2} \leq \sum_{k} |(f, g_{k})|^{2} \leq B\|f\|^{2}, \quad 0 < A, B < \infty$$

Okvir je *tesan* ako je zadovoljen uslov

$$\sum_{k} |(f, g_k)|^2 = A ||f||^2, \quad \text{te je} \quad f(x) = A^{-1} \sum_{k} (f, g_k) g_k(x).$$

Ova reprezentacija nije jednoznačna, jer joj se može dodati izraz $\sum_k \beta_k g_k(x) = 0$, koji je posledica linearne zavisnosti elemenata okvira.

Vratimo se Fourier-ovom redu (5) funkcije f(x). Za određene oblike težinske funkcije p(x) ortonormirani sistemi funkcija su poznati ([1]):

- Sistem Legendre-ovih polinoma ortogonalni su na intervalu [-1,1] u odnosu na težinsku funkciju $p(x) \equiv 1$;
- Sistem Čebišev-ljevih polinoma prve vrste ortogonalni su na intervalu [-1,1] u odnosu na težinsku funkciju $p(x) = 1/\sqrt{1-x^2}$;
- Sistem Hermite-ovih polinoma ortogonalni su na intervalu $[-\infty, \infty]$ u odnosu na težinsku funkciju $p(x) = e^{-x^2}$;
- Sistem trigonometrijskih funkcija ortogonalne su na intervalu $[-\pi, \pi]$ u odnosu na težinsku funkciju $p(x) \equiv 1$, i drugi.

2.2 Fourier-ova transformacija

U uvodu je pomenuto da je Fourier otkrio da se superpozicijom sinusa i kosinusa mogu predstaviti druge funkcije,

(9)
$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$

Zbog ortogonalnosti sistema funkcija

1, $\sin x$, $\cos x$, $\sin 2x$, $\cos 2x$,..., $\sin nx$, $\cos nx$,...,

matrica sistema (3) po koeficijentima razvoja (9) je dijagonalna, te se ovi određuju po formulama

(10)
$$a_{k} = \frac{(f, \cos kx)}{(\cos kx, \cos kx)} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx \qquad k = 0, \dots, n,$$
$$b_{k} = \frac{(f, \sin kx)}{(\sin kx, \sin kx)} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx \qquad k = 1, \dots, n.$$

Dakle, svaku dovoljno glatku periodičnu funkciju moguće je predstaviti njenim trigonometrijskim Fourier-ovim redom (9), odnosno prikazati je kao linearnu kombinaciju sinusoida sin kx i cos kx, k = 1, 2, ..., čija je frekvencija (učestanost) oscilovanja na intervalu dužine 2π jednaka k. Konstantni član $\frac{a_0}{2}$ je srednja vrednost funkcije f(x) na intervalu $(-\pi, \pi)$,

$$f_{sr} = \frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx,$$

a ostali sabirci u redu (9) osciluju oko nule i suma im je $f - f_{sr}$. Predstavljanje funkcije u frekvencijskom domenu naziva se Fourier-ova ili harmonijska analiza.

Zamenom u redu (9) funkcija $\sin kx$ i $\cos kx$ funkcijama kompleksne promenljive

$$\sin kx = \frac{1}{2i} \left(e^{ikx} - e^{-ikx} \right), \qquad \cos kx = \frac{1}{2} \left(e^{ikx} + e^{-ikx} \right),$$

(imaginarna jedinica $\imath=\sqrt{-1})$ dobija se zapis Fourier-ovog reda u kompleksnom obliku

(11)
$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}.$$

Sistem funkcija $\{e^{ikx}\}_k$ je potpun ortogonalni sistem funkcija na intervalu $[-\pi, \pi]$,

$$(e^{ikx}, e^{ilx}) = \int_{-\pi}^{\pi} e^{ikx} e^{-ilx} \, dx = \begin{cases} 0, & \text{za } k \neq l, \\ 2\pi, & \text{za } k = l, \end{cases}$$

2.2. FOURIER-OVA TRANSFORMACIJA

te su Fourier-ovi koeficijenti u reprezentaciji (11) jednaki

(12)
$$c_k = \frac{\left(f, e^{ikx}\right)}{\left(e^{ikx}, e^{ikx}\right)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx, \qquad k = 0, \pm 1, \dots,$$

a red (11), na osnovu leme 2, konvergira u \mathcal{L}_2 normi ka funkciji f(x) kojoj je pridružen. Niz koeficijenata $\{c_k\}$ predstavlja *spektar* funkcije f(x), te se Fourierova analiza često naziva i *spektralna analiza*. Prema Parseval-ovoj jednakosti (6) energijske norme funkcije i njenog spektra su jednake,

$$||f||^2 = \sum_{k=-\infty}^{\infty} |c_k|^2.$$

Osim u spektralnoj analizi, reprezentacija (11) se često koristi i u drugim primenama zbog dobrih osobina funkcija e^{ikx} . Naime, ove funkcije su sopstvene funkcije operatora diferenciranja i operatora konačnih razlika,

$$\frac{d}{dx}e^{\imath kx} = \imath k e^{\imath kx}, \qquad \Delta e^{\imath kx} = \left(\frac{e^{\imath kh} - 1}{h}\right) e^{\imath kx}.$$

Stoga se, korišćenjem reprezentacije (11), problem opisan diferencijalnom ili diferencnom jednačinom može svesti na problem opisan algebarskom jednačinom.

Red (11), sa koeficijentima datim izrazom (12), je pridružen 2π -periodičnoj funkciji f(x). Da bi se dobile odgovarajuće formule za funkciju periodičnu na intervalu dužine T, u formuli (12) uvedimo smenu $x = \frac{2\pi}{T}t$,

$$c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f\left(\frac{2\pi}{T}t\right) e^{-ik\frac{2\pi}{T}t} dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{-i\omega t} dt,$$

gde je $f_T(t) \equiv f\left(\frac{2\pi}{T}t\right)$ periodična funkcija sa periodom T i $\omega = k\frac{2\pi}{T}$. Uvođenjem navedene smene i oznake $\Delta \omega = \frac{2\pi}{T}$ u izraz (11), dobijamo Fourier-ov red za funkciju $f_T(t)$,

(13)
$$f_T(t) = \sum_{k=-\infty}^{\infty} c_k e^{i\omega t} = \sum_{k=-\infty}^{\infty} \frac{1}{T} e^{i\omega t} \left(\int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(\tau) e^{-i\omega\tau} d\tau \right).$$

Kada $T \to \infty$ funkcija $f_T(t)$ teži neperiodičnoj funkciji $F(t) = \lim_{T\to\infty} f_T(t)$, a suma u drugoj jednakosti izraza (13) teži integralu po ω , jer $\frac{1}{T} = \frac{\Delta \omega}{2\pi} \to 0$ kada $T \to \infty$. Izraz (13) u graničnom slučaju glasi

(14)
$$F(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{i\omega t} \left(\int_{-\infty}^{\infty} F(\tau) e^{-i\omega\tau} d\tau \right).$$

Izraz u zagradi u relaciji (14) naziva se Fourier-ovom transformacijom funkcije F(x) i funkcija je frekvencije ω ,

(15)
$$\hat{F}(\omega) = \int_{-\infty}^{\infty} F(x) e^{-i\omega x} dx,$$

a izraz (14), kada se (15) uzme u obzir, je inverzna Fourier-ova transformacija kojom se funkcija $\hat{F}(\omega)$ transformiše natrag u funkciju F(x),

(16)
$$F(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{F}(\omega) e^{i\omega x} d\omega.$$

Parseval-ova jednakost (6), koja govori o očuvanju energijske norme pri Fourierovoj transformaciji, važi i u ovom graničnom slučaju. Da bismo je dokazali, definišimo pojam *konvolucije funkcija*.

DEFINICIJA 1. Konvolucija $f\ast g$ funkcija
 fig je funkcija promenljive xkoja je defini
sana integralom

(17)
$$(f * g)(x) = \int_{-\infty}^{\infty} f(t) g(x - t) dt.$$

PRIMER 3. Konvolucija karakteristične funkcije $\aleph_{(0,1)}(x)$ intervala (0,1)i neprekidne funkcije f(x) je srednja vrednost neprekidne funkcije na intervalu (x-1,x). Zaista, kako je funkcija $\aleph_{(0,1)}(x) = 1$ samo kada je $0 \leq x < 1$, a za ostale vrednosti argumenta jednaka nuli, to je

$$(\aleph_{(0,1)} * f)(x) = \int_{-\infty}^{\infty} \aleph_{(0,1)}(t) f(x-t) \, dt = \int_{0}^{1} f(x-t) \, dt = \int_{x-1}^{x} f(t) \, dt.$$

Ako je $g(x) = e^{i\omega x}$, konvolucija je, prema (15) jednaka

$$(f*g)(x) = \int_{-\infty}^{\infty} f(t)e^{i\omega(x-t)} dt = e^{i\omega x} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = \hat{f}(\omega)e^{i\omega x}.$$

To znači da su kompleksne eksponencijalne funkcije $e^{i\omega x}$ sopstvene funkcije i operatora konvolucije, što dopunjuje spisak dobrih osobina ovih funkcija. Odgovarajuća sopstvena vrednost je Fourier-ova transformacija $\hat{f}(\omega)$ za datu frekvenciju ω .

TEOREMA 1. (KONVOLUCIONA TEOREMA) Fourier-ova transformacija konvolucije dve funkcije jednaka je proizvodu njihovih Fourier-ovih transformacija,

(18)
$$(\widehat{f*g})(\omega) = \widehat{f}(\omega)\,\widehat{g}(\omega).$$

Dokaz: Tvrđenje sledi na osnovu definicija (15) i (17),

$$\widehat{(f * g)}(\omega) = \int_{-\infty}^{\infty} (f * g)(x)e^{-i\omega x} dx = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t)g(x-t) dt\right)e^{-i\omega x} dx$$
$$= \int_{-\infty}^{\infty} f(t) \left(\int_{-\infty}^{\infty} g(x-t)e^{-i\omega x} dx\right) dt$$
$$= \int_{-\infty}^{\infty} f(t) \left(\int_{-\infty}^{\infty} g(u)e^{-i\omega(u+t)} du\right) dt$$
$$= \left(\int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt\right) \left(\int_{-\infty}^{\infty} g(u)e^{-i\omega u} du\right) = \widehat{f}(\omega) \widehat{g}(\omega)$$

2.2. FOURIER-OVA TRANSFORMACIJA

Nasuprot konvolucionoj teoremi, *modulaciona teorema* izražava Fourier-ovu transformaciju proizvoda dve funkcije kao konvoluciju njihovih Fourier-ovih transformacija,

$$\widehat{(f g)}(\omega) = \frac{1}{2\pi} \, (\hat{f} * \hat{g})(\omega).$$

Modulacija je translacija u frekvencijskom domenu.

Dokažimo sada Parseval-ovu jednakost za Fourier-ovu transformaciju.

TEOREMA 2. Parseval-ova jednakost za funkciju f(x) i njenu Fourier-ovu transformaciju $\hat{f}(\omega)$ glasi

(19)
$$\int_{-\infty}^{\infty} |f(x)|^2 \, dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 \, d\omega$$

Dokaz: Fourier-ova transformacija funkcije $g(x) = \overline{f}(-x)$ jednaka je

$$\hat{g}(\omega) = \int_{-\infty}^{\infty} \overline{f}(-x)e^{-\imath\omega x} \, dx = \int_{-\infty}^{\infty} \overline{f}(x)e^{\imath\omega x} \, dx = \overline{\int_{-\infty}^{\infty} f(x)e^{-\imath\omega x} \, dx} = \overline{\hat{f}}(\omega),$$

a konvolucija (17), za pomenuti izbor funkcije g(x), u tački x = 0, glasi

(20)
$$(f * g)(0) = \int_{-\infty}^{\infty} f(t) g(-t) dt = \int_{-\infty}^{\infty} f(t) \overline{f}(t) dt = ||f||^2.$$

Sa druge strane, inverzna Fourier-ova transformacija (16) konvolucije (18) data je izrazom

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) \,\hat{g}(\omega) e^{i\omega x} \, d\omega,$$

što u tački x = 0 daje drugi izraz za (20),

$$(f*g)(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) \,\hat{g}(\omega) e^0 \,d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) \,\overline{\hat{f}}(\omega) \,d\omega = \frac{1}{2\pi} \|\hat{f}\|^2.$$

Izjednačavanjem poslednjeg izraza sa (20) dobijamo Parseval-ovu jednakost (19).

Uopštenje Parseval-ove jednakosti (19) za Fourier-ovu transformaciju iskazuje jednakost skalarnih proizvoda u vremenskom i frekvencijskom domenu ([31]),

(21)
$$(f, g) = \frac{1}{2\pi} (\hat{f}, \hat{g}), \quad \text{tj.} \quad \int_{-\infty}^{\infty} f(x)\overline{g}(x) \, dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega)\overline{\hat{g}}(\omega) \, d\omega.$$

Saglasno uvedenim pojmovima za Fourier-ovu (15) i inverznu Fourier-ovu transformaciju (16), Fourier-ov red (11) možemo smatrati diskretnom varijantom inverzne Fourier-ove transformacije: frekvencija je diskretna, $\omega = k$, pa je $\hat{f}(\omega) \sim c_k$.

U praksi je često i promenljiva x diskretna. Naime, funkcija f(x) nije data za svako x već samo za diskretne vrednosti nezavisno promenljive x = n, u obliku

niza f(n). U slučaju da je x diskretna veličina, govorimo o Diskretnoj Fourier-ovoj transformaciji (ω neprekidno) i Diskretnom Fourier-ovom redu (i ω diskretno).

Rezimirajući sve što je rečeno, zaključujemo da možemo razlikovati sledeće oblike Fourier-ove analize

(a) Fourier-ova transformacija (CTFT= Continuous Time Fourier Transformation)

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx, \qquad Fourier-ova \ transformacija$$
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega)e^{i\omega x} d\omega, \qquad Inverzna \ Fourier-ova \ transformacija$$

(b) Fourier-ov red (CTFS=Continuous Time Fourier Series) za periodičnu funkciju f(x + T) = f(x)

$$\hat{f}(k) = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-ik\omega_0 x} dx$$
$$\mu_0 = \frac{2\pi}{T}$$
$$f(x) = \sum_{k=-\infty}^{\infty} \hat{f}(k) e^{ik\omega_0 x}$$

(c) Diskretna po vremenu Fourier-ova transformacija (DTFT= Discrete Time Fourier Transformation)

$$\hat{f}(\omega) = \sum_{n=-\infty}^{\infty} f(n)e^{-i\omega n},$$
$$f(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{f}(\omega)e^{i\omega n} d\omega.$$

(d) Diskretan po vremenu Fourier-ov red (DTFS=Discrete Time Fourier Series) za periodičan niz $f(n) = f(n + lN), l \in \mathbb{Z}$

$$\hat{f}(k) = \sum_{n=0}^{N-1} f(n) (W_N)^{-nk}, \quad k \in \mathcal{Z},$$

$$f(n) = \frac{1}{N} \sum_{k=0}^{N-1} \hat{f}(k) (W_N)^{nk}, \quad n \in \mathcal{Z},$$

Terminom Diskretna Fourier-ova Transformacija (DFT) naziva se transformacija jednog perioda periodične funkcije diskretnog argumenta, i definisana je poslednjim formulama (d) za $0 \le k, n \le N - 1$.

Zašto je uopšte potrebno vršiti neku od navedenih transformacija funkcije? U realnim problemima funkcijom se zapisuje signal – bilo koja fizička veličina koja se menja u vremenu, prostoru ili po nekoj drugoj nezavisnoj promenljivoj. Ako signal zavisi od vremena, njegov grafik će biti predstavljen u koordinatnom sistemu vreme-amplituda, gde x-osa označava vreme, a y-osa amplitudu, tj. vrednost predstavljene

2.2. FOURIER-OVA TRANSFORMACIJA

fizičke veličine u datom vremenskom trenutku. Međutim, često se najvažnije informacije kriju u frekvencijskom sadržaju koji je predstavljen frekvencijskim spektrom (koeficijentima Fourier-ovog reda) signala. Intuitivno nam je jasno da je frekvencija povezana sa brzinom promene nečega – ako se nešto brzo menja, kažemo da je visoke frekvencije, a ako se menja sporo, kažemo da je niske frekvencije. Fourier-ovom transformacijom se dobija frekvencijski sadržaj signala, tj. dobija se reprezentacija u koordinatnom sistemu frekvencija-amplituda. Grafik Fourier-ove transformacije pokazuje sa kojim intenzitetom se svaka frekvencija pojavljuje u frekvencijskom spektru signala.

PRIMER 4. U medicini je poznat ECG (Electro Cardio Graphy) signal, koji registruje električnu aktivnost srca. Klasičan zapis je u vremenskom domenu, ali se sve više koriste novi kompjuterski ECG rekorderi koji mogu da daju informacije i o frekvencijskom sadržaju signala, i na osnovu kojih se lakše uočavaju neke patološke promene na srcu.

Da zaključimo, Fourier-ova transformacija se koristi radi dobijanja frekvencijske reprezentacije funkcije ili signala, što za neke probleme predstavlja važnu informaciju. Za druge probleme je pogodniji neki drugi vid reprezentacije određene veličine.

Uopšte, transformacijom se u suštini meri sličnost neke funkcije f(x) sa datom funkcijom g(x). U kontinualnom slučaju, mera sličnosti funkcija f(x) i g(x) na intervalu I je skalarni proizvod $(f,g) = \int_I f(x)g(x) dx$; što je skalarni proizvod veći, podudaranje je veće. Obično transformacijom ocenjujemo sličnost izabrane funkcije sa celom klasom funkcija koje zavise od jednog ili više parametara, kao što je frekvencija ω u Fourier-ovoj transformaciji, koji mogu da se menjaju kontinualno ili diskretno. Pomenutu klasu funkcija nazivamo bazis (ili okvir), i cilj je da izaberemo bazis kojim ćemo predstaviti našu funkciju tako da reprezentacija daje informacije o nama bitnim osobinama funkcije.

Pored već pomenute Fourier-ove transformacije u matematici i tehnici su poznate i druge transformacije, svaka sa svojim prednostima i nedostacima, pa time i sa odgovarajućim primenama.

PRIMER 5. *Laplace-ova transformacija* je uopštenje Fourier-ove transformacije na kompleksnu ravan

$$\hat{f}(s) = \int_{-\infty}^{\infty} f(x)e^{-sx} dx, \qquad s = \sigma + i\omega,$$

što se može posmatrati kao Fourier-ova transformacija funkcije $f(x) e^{-\sigma x}$. *z-transformacija* je uopštenje diskretne po argumentu Fourier-ove transformacije na kompleksnu ravan,

$$\hat{f}(z) = \sum_{n=-\infty}^{\infty} f(n) \, z^{-n}, \qquad z \in \mathcal{C}.$$

Na jediničnom krugu $z = e^{i\omega}$ svodi se na diskretnu po argumentu Fourier-ovu transformaciju, a za $z = \rho e^{i\omega}$ predstavlja diskretnu po vremenu Fourier-ovu transformaciju niza $f(n) \rho^{-n}$.

Saglasno klasifikaciji koja je već uvedena u Fourier-ovoj analizi, i u opštem slučaju razvoj dobijen integraljenjem naziva se transformacija, a sumiranjem red. To vodi ka četiri moguće kombinacije – neprekidan/diskretan argument i integral/suma razvoj, koje su za slučaj ortonormiranog bazisa $\{\psi(x,\omega)\}$ date formulama:

(a) Neprekidna po argumentu transformacija

$$f(x) = \int \hat{f}(\omega)\psi(x,\omega) \, d\omega, \qquad \hat{f}(\omega) = \int f(x)\overline{\psi}(x,\omega) \, dx.$$

(b) Neprekidan po argumentu red

$$f(x) = \sum_{k} \hat{f}(k)\psi(x,k)$$
 $\hat{f}(k) = \int f(x)\overline{\psi}(x,k) \, dx.$

(c) Diskretna po argumentu transformacija

$$f(n) = \int \hat{f}(\omega)\psi(n,\omega) \, d\omega \qquad \hat{f}(\omega) = \sum_{n} f(n)\overline{\psi}(n,\omega).$$

(d) Diskretan po argumentu red

$$f(n) = \sum_{k} \hat{f}(k)\psi(n,k)$$
 $\hat{f}(k) = \sum_{n} f(n)\overline{\psi}(n,k).$

2.3 Kratkotrajna Fourier-ova transformacija

U Fourier-ovoj reprezentaciji nije moguće lokalizovati (vremenski ograničiti, ako x predstavlja vreme) pojavu nekog harmonika u složenoj funkciji, jer su trigonometrijske funkcije različite od nule na celoj realnoj pravoj. Interferencijom sa drugim harmonicima poništava se efekat neke frekvencije u određenom delu domena. Na primer, ako se u muzičkoj temi nota *la* pojavi u ograničenom vremenskom intervalu, pri harmonijskoj analizi muzičkog signala će se pojaviti odgovarajući harmonik sa određenom amplitudom i fazom, ali ne lokalizovan u vremenu. Da li se ova nota čuje ili ne podešava se interferencijom pomoću bliskih harmonika. Dakle, matematički zapis teme Fourier-ovom reprezentacijom je korektan, ali se odgovarajući harmonik pojavljuje u harmonijskoj analizi i u trenucima kada fizički nije prisutan u signalu.

Stoga se javlja potreba za vremensko-frekvencijskom reprezentacijom funkcije, koja je posebno izražena u slučaju funkcija sa oštrim pikovima ili diskontinuitetima. Fourier-ova analiza je nepodesna za predstavljanje takvih funkcija, jer daje globalnu reprezentaciju funkcije po vremenu, a lokalnu po frekvencijama. Kratak impuls ima polako opadajuće Fourier-ove koeficijente, te tačnost aproksimacije (rekonstrukcija) jako mnogo zavisi od broja harmonika. PRIMER 6. Dirac-ova funkcija $\delta(x)$ je generalisana funkcija koja se definiše svojim dejstvom na druge funkcije. Njom se predstavlja vrednost neke funkcije u tački (impuls),

$$f(a) = \int_{-\infty}^{\infty} f(x)\delta(x-a) \, dx.$$

Može se definisati i pomoću karakterističnih funkcija $\aleph_{\varepsilon}(x)$ intervala dužine ε , kada dužina intervala teži nuli,

$$\aleph_{\varepsilon}(x) = \begin{cases} 1, & 0 \leq x < \varepsilon \\ 0, & \text{inače} \end{cases}, \qquad \delta(x) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \,\aleph_{\varepsilon}(x) & \text{i} \quad \int_{-\infty}^{\infty} \delta(x) \, dx = 1. \end{cases}$$

Fourier-ov red (11) Dirac-ove funkcije na odsečku $[-\pi,\pi]$ glasi

$$\delta(x) \sim \frac{1}{2\pi} \left(1 + e^{-ix} + e^{ix} + e^{-2ix} + e^{2ix} + \cdots \right)$$
$$= \frac{1}{2\pi} \left(1 + 2\cos x + 2\cos 2x + \cdots \right),$$

jer je, prema (12),

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \delta(x) e^{-\imath kx} \, dx = \frac{1}{2\pi}, \qquad k = 0, \pm 1, \dots.$$

Dirac-ova funkcija $\delta(x)$ ima Fourier-ove koeficijente $c_k = (2\pi)^{-1}$ za svako k i oni ne teže nuli kada $k \to \infty$. Red $\sum_k |c_k|$ divergira, a Fourier-ov red u slabom smislu konvergira. Sabirci poništavaju jedan drugog za svako x osim u tački x = 0, gde se sabirci superponiraju, što se može zaključiti na osnovu ponašanja niza parcijalnih suma Fourier-ovog reda

$$S_N(x) = \frac{1}{2\pi} \frac{\sin\left(N + \frac{1}{2}\right)x}{\sin\frac{1}{2}x}, \qquad S_N(0) = \frac{2N+1}{2\pi}.$$

Možemo zaključiti da Fourier-ova transformacija daje spektralni sadržaj funkcije, ali je njen nedostatak što ne daje informaciju kada se u vremenu neka spektralna komponenta pojavljuje, a kada nestaje. Stoga je pogodna za analizu stacionarnih funkcija, tj. onih čije spektralne komponente neograničeno traju. Za analizu nestacionarnih funkcija Fourier-ova transformacija je pogodna samo onda kada nam je bitan frekvencijski sadržaj funkcije, a ne i dužina trajanja pojedinih harmonika.

PRIMER 7. Uporedimo Fourier-ove transformacije stacionarne funkcije

$$f_1(x) = \cos(2\pi * 10 * x) + \cos(2\pi * 25 * x) + \cos(2\pi * 50 * x) + \cos(2\pi * 100 * x)$$

i nestacionarne funkcije

$$f_2(x) = \begin{cases} \cos(2\pi * 10 * x), & 0 < x < 300\\ \cos(2\pi * 25 * x), & 300 < x < 600\\ \cos(2\pi * 50 * x), & 600 < x < 800\\ \cos(2\pi * 100 * x), & 800 < x < 1000 \end{cases}$$

Slika 2.3: Fourier-ova analiza stacionarne i nestacionarne funkcije

Prva funkcija ima četiri frekvencijske komponente sve vreme, dok druga ima iste četiri frekvencijske komponente ali u različitim vremenskim intervalima. Spektri ovih funkcija su sličnog oblika (slika 2.3), osim što se kao posledica diskontinuiteta frekvencije javljaju male oscilacije u spektru druge funkcije. Dakle, na osnovu Fourier-ove transformacije teško je uočiti razliku ovih, inače vrlo različitih, funkcija.

Za razlaganje, analizu i interpretaciju nestacionarnih funkcija potrebna je vremensko-frekvencijska reprezentacija koja će dati informaciju o tome kako se spektralni sadržaj funkcije menja sa vremenom. Da bismo Fourier-ovom transformacijom izvršili frekvencijsku analizu nestacionarne funkcije, možemo domen funkcije podeliti na male vremenske intervale, i pretpostaviti da je u svakom od njih ona stacionarna. To je ideja koja leži u osnovi Kratkotrajne Fourier-ove transformacije (STFT = Short Time Fourier Transformation). Što je interval uži, bolja je vremenska a lošija frekvencijska rezolucija (primer 6); i obrnuto, beskonačna dužina intervala odgovara standardnoj Fourier-ovoj transformaciji, koja daje savršenu frekvencijsku rezoluciju. Segmentiranje funkcije vrši se pomoću prozorske funkcije, čija se širina određuje prema dužini intervala na kome je funkcija skoro stacionarna. Najjednostavnija prozorska funkcija je karakteristična funkcija intervala $\aleph_{(a,b)}(x)$ (definisana u primeru 3). Zbog prekidnosti karakteristične funkcije, ovo nije najbolji izbor; bolji izbor je, na primer, Gauss-ovo zvono $e^{-ax^2/2}$, gde *a* određuje širinu intervala.

STFT funkcije računa se kao Fourier-ova transformacija proizvoda prozorske funkcije i date funkcije. Očigledno je da je ova transformacija funkcija frekvencije, ali i vremena koje određuje poziciju prozorske funkcije. Ako sa w(x) označimo prozorsku funkciju, kratkotrajna Fourier-ova transformacija funkcije f(x), označena sa $STFT_f(\omega, \tau)$, jednaka je

$$STFT_f(\omega, \tau) = \int_{-\infty}^{\infty} f(x)\overline{w}(x-\tau)e^{-i\omega x} dx$$

Njom se meri sličnost između funkcije sa jedne strane i pomeraja i modulacije (pomeraj po frekvenciji) prozorske funkcije sa druge strane,

$$STFT_f(\omega,\tau) = (f(x), g_{\omega,\tau}(x)), \qquad g_{\omega,\tau}(x) = w(x-\tau)e^{i\omega x}.$$

2.3. KRATKOTRAJNA FOURIER-OVA TRANSFORMACIJA

Kao što je već napomenuto, što je vremenski interval kraći, to je frekvencijski opseg širi, i obrnuto. Ekstremni slučajevi su funkcija $\sin(x)$, koja predstavlja jednu frekvenciju u beskonačnom vremenskom intervalu, i funkcija $\delta(x)$, koja predstavlja beskonačno mnogo frekvencija u jednom vremenskom trenutku (primer 6). To znači da ne možemo odrediti koja frekvencija postoji u datom momentu, već samo koji frekvencijski opsezi postoje u određenim vremenskim intervalima, što je posledica sledećeg tvrđenja

PRINCIP NEODREĐENOSTI. ([5]) Ako funkcija f(x) opada brže od $1/\sqrt{|x|}$ kada $x \to \pm \infty$, tada je

$$\Delta_x \, \Delta_\omega \ge \frac{1}{2}$$

gde je

(22)
$$\Delta_x = \sqrt{\frac{\int_{-\infty}^{\infty} (x - x^*)^2 |f(x)|^2 dx}{\int_{-\infty}^{\infty} |f(x)|^2 dx}}, \qquad x^* = \frac{\int_{-\infty}^{\infty} x |f(x)|^2 dx}{\int_{-\infty}^{\infty} |f(x)|^2 dx},$$
$$\Delta_\omega = \sqrt{\frac{\int_{-\infty}^{\infty} (\omega - \omega^*)^2 |\hat{f}(\omega)|^2 d\omega}{\int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 d\omega}}, \qquad \omega^* = \frac{\int_{-\infty}^{\infty} \omega |\hat{f}(\omega)|^2 d\omega}{\int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 d\omega}.$$

Jednakost važi samo za Gauss-ove funkcije $f(x) = \sqrt{\frac{a}{2\pi}} e^{-ax^2/2}$.

Veličina x^* je centar, a Δ_x radius funkcije f(x), a ω^* centar i Δ_ω radius funkcije $\hat{f}(\omega)$. Ako su Δ_x i Δ_ω konačne veličine, funkcija f(x) definiše vremenskofrekvencijski prozor (Heisenberg-ova kutija) čija je površina, prema navedenom principu, ograničena sa donje strane. Znači da se ne može postići proizvoljno velika rezolucija (malo Δ) i u vremenskom i u frekvencijskom domenu. To se može i ovako formulisati: nemoguće je dobiti vremensku i frekvencijsku informaciju o funkciji u izabranoj tački vremensko-frekvencijske ravni. Najviše što možemo saznati je koje spektralne komponente postoje u bilo kom datom vremenskom intervalu.

Princip neodređenosti ukazuje da je vrlo bitno kako se funkcija deli po vremenskim intervalima da bi se analizirala. Nedostatak Kratkotrajne Fourier-ove transformacije je upravo to što su vremenski intervali jednaki, što znači da je rezolucija za svako x ista. Promenljiva vremenska rezolucija bi trebalo da omogući da se više frekvencije prikažu sa boljom vremenskom rezolucijom, a niže frekvencije prikažu sa boljom frekvencijskom rezolucijom. To se može postići definisanjem bazisnih funkcija koje su međusobno povezane elementarnim transformacijama: translacija, modulacija i skaliranje. Translacija je pomeraj po vremenu $f(x - \tau)$, a modulacija je pomeraj po frekvenciji i postiže se množenjem funkcije f(x) funkcijom $e^{i\omega_0 x}$. Skaliranjem f(x/a), a > 0, menja se frekvencija. Veće a (a >> 1) odgovara dugim bazisnim funkcijama kojima će u analizi biti opisane duge i sporo promenljive komponente funkcije. Malo a (0 < a < 1) definiše kratke bazisne funkcije koje će opisivati kratke promene.

Slika 2.4: Vremensko-frekvencijska lokalizacija funkcije

U Fourier-ovoj analizi koriste se proizvoljno skalirane funkcije $e^{i\omega x}$ za frekvencijsku lokalizaciju, ali one nisu vremenski lokalizovane. Potrebno je konstruisati bazisne funkcije čija je skala proporcionalna njihovom trajanju. Postoje razni načini da se definiše lokalizacija određene funkcije. Na primer, mogu se definisati intervali I_x i I_{ω} koji sadrže 90% energije vremenskog i frekvencijskog domena funkcije, i koji su centrirani oko maksimalnih vrednosti veličina $|f(x)|^2$ i $|f(\omega)|^2$. Time je definisan pravougaonik **f** u vremensko-frekvencijskom domenu (slika 2.4).

Slika 2.5: Efekat translacije i modulacije (a), i skaliranja (b)

Analizirajmo sada kakav efekat pomenute transformacije proizvode na pravougaonik **f**. Translacija u vremenu za τ proizvodi pomeranje pravougaonika (položaj **f**' na slici 2.5(a)) za τ duž vremenske ose (horizontalno). Slično, modulacija za $e^{i\omega_0 x}$ pomera pravougaonik (položaj **f**'' na slici 2.5(a)) duž frekvencijske ose (vertikalno) za ω_0 . Za razliku od ovih transformacija pri kojima pravougaonik ne menja oblik već samo položaj, skaliranje za a, ili f'(x) = f(x/a) (slika 2.5(b)) menja i položaj i dimenzije pravougaonika $I'_x = a I_x$ i $I'_{\omega} = \frac{1}{a} I_{\omega}$, na osnovu svojstva skaliranja Fourier-ove transformacije.

Bazisne funkcije definisane primenom pomenutih transformacija na jednu funkciju su *talasići*.

2.4 Transformacija talasićima

Dennis Gabor je 1946. godine prvi definisao vremensko-frekvencijske funkcije, tzv. Gabor-ove talasiće ([11]). Njegova ideja je bila da talas, čiji je matematički zapis $\cos(\omega t + \varphi)$, izdeli na segmente i zatim zadrži samo jedan od njih. Dakle, Gabor-ov talasić sadrži tri informacije: početak, kraj i frekvencijski sadržaj između. Teškoće su se pojavile kada je trebalo primeniti ovu transformaciju na funkciju diskretnog argumenta.

Talasić (engl. wavelet) je funkcija talasne prirode sa kompaktnim nosačem. Nazvana je talas zbog oscilatorne prirode, a mali zbog konačnog domena na kome je različita od nule (kompaktnog nosača). Skaliranja i translacije osnovnog talasića $\psi(x)$ ("majke") definišu bazis talasića,

$$\psi_{a,b}(x) = \frac{1}{\sqrt{a}} \psi\left(\frac{x-b}{a}\right), \qquad a > 0.$$

Odgovarajućim izborom parametara skaliranja a i translacije b mogu se predstaviti mali delovi komplikovane forme sa većom vremenskom rezolucijom (zumiranje oštrih, kratkotrajnih pikova), dok se glatki delovi mogu predstaviti sa manjom rezolucijom, što je posledica dobre osobine talasića da su bazisne funkcije vremenski ograničenog trajanja. Međutim, time smo izgubili važno svojstvo Fourier-ovih bazisnih funkcija $e^{i\omega x}$ da su sopstvene funkcije operatora diferenciranja. Talasići nisu sopstvene funkcije operatora $\partial/\partial x$, frekvencije su pomešane, što znači da u odnosu na bazis talasića diferencijalni operator nije dijagonalan. Nije moguće dijagonalizovati operator i po vremenu i po frekvencijama, što je posledica već pomenutog Principa neodređenosti (§2.3).

Transformacija talasićima (CWT = Continuous Wavelet Transformation) je alat kojim se razlažu podaci, funkcije ili operatori na različite frekvencijske komponente, i zatim se svaka komponenta analizira sa rezolucijom koja odgovara njenoj skali. Definisana je skalarnim proizvodom funkcije i bazisnog talasića,

(23)
$$CWT_f(a,b) = (f, \psi_{a,b}) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(x) \,\overline{\psi}\left(\frac{x-b}{a}\right) dx.$$

Važi Parseval-ova jednakost

$$CWT_f(a,b) = (f, \psi_{a,b}) = \frac{1}{2\pi} (\hat{f}, \hat{\psi}_{a,b}),$$

gde je Fourier-ova transformacija bazisnog talasića

$$\hat{\psi}_{a,b}(\omega) = \sqrt{a} e^{-i\omega b} \hat{\psi}(a\omega).$$

 $CWT_f(a, b)$ je funkcija skale *a* i položaja *b* i pokazuje koliko su blisko korelirani talasić i funkcija u vremenskom intervalu koji određuje nosač talasića. Transformacijom talasićima meri se sličnost frekvencijskog sadržaja funkcije i bazisnog talasića $\psi_{a,b}(x)$ u vremensko-frekvencijskom domenu

$$\left[b+a\left(x^*-\Delta_x\right), b+a\left(x^*+\Delta_x\right)\right] \times \left[\frac{1}{a}\left(\omega^*-\Delta_\omega\right), \frac{1}{a}\left(\omega^*+\Delta_\omega\right)\right],$$

određenom veličinama (22).

Inverzna transformacija talasićima

$$f(x) = \frac{1}{C_{\psi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} CWT_f(a, b)\psi_{a,b}(x) \frac{da \, db}{a^2}$$

postoji ako je ispunjen uslov dopustivosti ([26])

(24)
$$C_{\psi} = \int_{-\infty}^{\infty} \frac{|\hat{\psi}(\omega)|^2}{\omega} d\omega < \infty.$$

Iz uslova (24) sledi da mora biti

(25)
$$\hat{\psi}(0) = \int_{-\infty}^{\infty} \psi(x) \, dx = 0,$$

što ima za posledicu oscilatornu prirodu funkcije $\psi(x)$. Iz (24), takođe, sledi da ova funkcija ne mora biti jednaka nuli van konačnog intervala, ali mora dovoljno brzo težiti nuli kada $|x| \to \infty$. Tako dolazimo do uopštenja pojma talasić. Osnovni talasić $\psi(x)$ može biti proizvoljno izabran, uz uslov da mu je srednja vrednost nula *i da dovoljno brzo opada u beskonačnosti*, što su onda osobine i bazisnih talasića $\psi_{a,b}(x)$. To je upravo jedna od suštinskih razlika između transformacije talasićima i Fourier-ove ili neke druge od pomenutih transformacija: dok su u ostalim transformacijama bazisi jednoznačno određeni, bazisi talasića nisu eksplicitno zadati. Teorija se bavi samo opštim svojstvima talasića i transformacijom pomoću njih, i definiše okvire unutar kojih svako može odrediti talasić prema svojim željama i potrebama.

Pri tome, bazis je definisan samo jednom funkcijom. Talasićima se vremenska analiza vrši pomoću kompresovanih, visoko-frekvencijskih verzija osnovnog talasića, pošto se na maloj skali dobro uočavaju brzo promenljivi detalji. Frekvencijska analiza se vrši pomoću razvučenih nisko-frekvencijsih verzija istog talasića, jer je velika skala zadovoljavajuća za praćenje sporih promena. Upravo ove osobine čine talasiće idealnim alatom za analizu nestacionarnih funkcija. Transformacija talasićima daje odličnu vremensku rezoluciju visoko-frekvencijskih komponenti i frekvencijsku (skalnu) rezoluciju nisko-frekvencijskih komponenti.

Slika 2.6 šematski upoređuje u prethodnom tekstu opisane transformacije jednostavne funkcije, koja se sastoji od sinusnog talasa i impulsa u trenutku t_0 (slika 2.6(a)). Poželjno je imati razvoj koji obuhvata i izolovani impuls (Dirac-ova funkcija po vremenu) i izolovanu frekventnu komponentu (Dirac-ova funkcija po frekvenciji).

Slika 2.6: Reprezentacije nestacionarne funkcije

Prva dva razvoja (slike 2.6 (b) i (c)) izoluju vremenski i frekvencijski impuls redom, ali ne oba istovremeno. Slika (b) predstavlja identičku transformaciju, tj. razvoj je upravo sin $x + \delta(x - t_0)$, što znači da je za svako x ista frekvencija jer se ne uočava promena frekvencije u jednoj tački. Vrednost u tački t_0 je pojačana, jer je u njoj funkcija beskonačno velika. Slika (c) predstavlja reprezentaciju date funkcije u frekvencijskom domenu. Fourierov red za funkciju $\delta(x)$ sadrži sve frekvencije sa istim koeficijentom $(1/2\pi)$, s tim što je pojačan (jer je veći) koeficijent uz osnovni harmonik sin x.

Lokalni po vremenu Fourier-ov red (slika 2.6(d)) čini kompromis lociranjem oba impulsa do određenog nivoa. Vremenska skala je izdeljena na vremenske intervale jednake dužine, čime je definisana Kratkotrajna Fourier-ova transformacija. Za svaki interval je data frekvencijska slika, i ona je u svim intervalima ista osim u onom kome pripada tačka t_0 u kojoj je definisan Dirac-ov impuls. U tom intervalu su zastupljene sve frekvencije, a ne samo osnovna.

Diskretan po vremenu red talasića (slika 2.6(e)) daje bolju lokalizaciju vremenskog impulsa, ne zanemarujući frekvencijsku lokalizaciju. Što je bolja lokalizacija po vremenu, lošija je po frekvencijama. Širi i niži pravougaonici predstavljaju nisko-frekvencijske komponente koje duže traju, a uži i viši visoko-frekvencijske komponente koje traju kratko. U okolini t_0 javljaju se visoko-frekvencijske kratke komponente. Za veće frekvencije širina pravougaonika postaje manja, tj. vremenska rezolucija postaje bolja, a visina pravougaonika se povećava, što znači da je frekvencijska rezolucija lošija. Pri tome, bez obzira na dimenzije pravougaonika, njihove površine su jednake. Za jedan talasić ova površina je konstantna, a dimenzije pravougaonika se menjaju. To je upravo efekat transformacije talasićima. Površinu pravougaonika ne možemo smanjiti koliko god hoćemo pogodnim izborom talasića, jer prema Principu neodređenosti ova površina ne može biti manja od $2\sqrt{2\pi}$. ([21])

Neprekidna transformacija talasićima (CWT) nije od veće praktične koristi, jer se računa korelacija funkcije i talasića koji se kontinualno translira i kontinualno skalira (parametri a i b su neprekidne veličine). Ovako skalirani talasići ne čine ortogonalni bazis. Mnogi od izračunatih koeficijenata talasića su suvišni, i ima ih beskonačno mnogo. Stoga se vrši diskretizacija – vreme-skala ravan pokriva se mrežom i u čvorovima mreže (za dato b i a) izračunava se CWT. Može se izabrati ravnomerna mreža, ali to nije najbolji izbor. Pri većim skalama a (manjim frekvencijama) korak po vremenu se može povećati (tj. smanjiti broj tačaka), saglasno Nyquist-ovom pravilu. Ovo pravilo kaže da ako u vreme-skala ravni treba da bude N_1 tačaka na skali a_1 , onda je dovoljno imati N_2 tačaka na skali a_2 , gde je

(26)
$$a_1 N_1 = a_2 N_2, \quad \text{ili} \quad \frac{N_1}{\omega_1} = \frac{N_2}{\omega_2}.$$

Očigledno, $a_1 < a_2$ povlači da je $N_2 < N_1$. Frekvencija ω jednaka je recipročnoj vrednosti skale, $\omega = 1/a$. Za niže frekvencije može se smanjiti broj tačaka, što značajno smanjuje obim računanja.

Brzi algoritmi se konstruišu korišćenjem diskretnih talasića. Diskretni talasići su obično deo po deo neprekidne funkcije koje se ne mogu kontinualno skalirati i

translirati, već samo u diskretnim koracima,

$$\psi_{j,k}(x) = \frac{1}{\sqrt{a_0^j}} \psi(\frac{x - kb_0 a_0^j}{a_0^j}).$$

j i k su celi brojevi, a $a_0 > 1$ je fiksirani korak skaliranja. Obično se bira da je $a_0 = 2$, tako da je podela na frekvencijskoj osi diadska. To je prirodan izbor za računare, ljudsko uho i muziku, na primer. Za faktor translacije obično se bira $b_0 = 1$, tako da je podela na vremenskoj osi na izabranoj skali ravnomerna,

$$\psi_{jk}(x) = 2^{-j/2}\psi(2^{-j}x-k), \quad \text{i} \quad \psi_{jk}(x) \neq 0 \text{ za } x \in [2^{j}k, 2^{j}(k+1)].$$

Prvo se parametar skaliranja a diskretizuje na logaritamskoj skali. Zatim se vremenski parametar b diskretizuje u zavisnosti od parametra skaliranja, tj. različiti broj tačaka se koristi na različitim skalama, saglasno Nyquist-ovom pravilu (26).

Objasnimo detaljnije opisani postupak. Svakoj tački vremensko-frekvencijske ravni pridružuje se jedna vrednost CWT koeficijenta, te njih ima neprebrojivo mnogo. Vršimo diskretizaciju definisanjem mreže. Prvo se diskretizuje parametar skaliranja, tako što se biraju celobrojne tačke na logaritamskoj skala-osi log a. Osnova logaritma zavisi od korisnika, a najčešće se, zbog pogodnosti, koristi osnova 2. Ako je osnova logaritma 2, skale za koje će se izračunavati transformacija su 2, 4, 8, 16, 32,..., a ako je, na primer, osnova logaritma 3, skale za koje će se izračunavati transformacija su 3, 9, 27, 81,.... Zatim se vrši ravnomerna diskretizacija vremenske ose, čiji korak zavisi od primenjene diskretizacije skalaose. Ako je izabran logaritam za osnovu 2, tj. diskretne vrednosti parametra skaliranja se menjaju za faktor 2, broj tačaka po vremenskoj osi se redukuje za faktor 2 na narednoj skali (korak se udvostručuje). Na primer, ako je na skali a = 2uzeto 32 ekvidistantnih tačaka na vremenskoj osi, onda je na sledećoj skali a = 4broj tačaka po vremenskoj osi redukovan za 2, tj. uzeto je 16 ekvidistantnih tačaka (slika 2.7). I tako dalje.

Slika 2.7: Diadska mreža tačaka

Treba napomenuti da je diskretizacija proizvoljna (bez ograničenja broja tačaka po skalama) ako nas interesuje samo analiza funkcije. Ako se ne zahteva sinteza

funkcije, čak ni Nyquist-ovo pravilo (26) ne mora biti zadovoljeno. Ograničenja u diskretizaciji i broju tačaka postaju bitna ako se zahteva rekonstrukcija funkcije. Nyquist-ov broj tačaka je minimalni broj tačaka koji garantuje mogućnost rekonstrukcije neprekidne funkcije. Potreban i dovoljan uslov da se kontinualna funkcija može rekonstruisati na osnovu svog niza CWT koeficijenata je da je energija koeficijenata talasića ograničena sa donje i gornje strane, tj. da talasići čine Riesz-ov bazis (8) ([5]). Niz talasića $\{\psi_{j,k}\}$ treba da čini bazis, ortogonalan ili biortogonalan, ili okvir (§2.1). Kako nije lako naći ortogonalni ili biortogonalni bazis talasića, koriste se okviri jer ih je mnogo lakše konstruisati, iako ovaj izbor nije optimalan.

I sa diskretnim talasićima još uvek nam je potrebno beskonačno mnogo skaliranja i translacija da bismo izračunali transformaciju talasićima. Ako je funkcija vremenski ograničena, onda je i broj translacija ograničen. Ostaje pitanje skaliranja – koliko je skala potrebno za analizu funkcije? Uvođenjem u reprezentaciju funkcije skaliranja, koja zamenjuje sve talasiće počev od neke skale J, beskonačan broj talasića u aproksimaciji se zamenjuje sa konačno mnogo talasića i funkcija skaliranja (form. (3.24)). Zamena preostalih talasića sa konačno mnogo funkcija skaliranja može dovesti do gubitka korisnih informacija, ali ne i do greške u reprezentaciji funkcije.

Korišćenje diskretnih talasića, koji se dobijaju diskretizacijom parametara skaliranja i translacije, nije diskretna transformacija talasićima. I dalje se koeficijenti $CWT_f(a,b)$ određuju integralima (23), a funkcija f(x) se predstavlja redom, kao zbir proizvoda koeficijenata i odgovarajućih talasića (§2.2, oblik transformacije (b)). O diskretnoj transformaciji talasićima biće više reči u §6.3.

Zadaci

1. Koji stepen broja $\frac{1}{k}$ određuje brzinu opadanja Fourier-ovih koeficijenata c_k funkcija

(a) f(x) = x, (b) g(x) = |x|, (c) $h(x) = x^2$,

periodičnih na intervalu $[-\pi,\pi]$? Na osnovu toga odrediti u svakom od primera vrstu konvergencije Fourier-ovog reda (uniformna ili slaba).

2. Pokazati da funkcija $f(x) = (1 - \beta e^{-\imath x})^{-1}$ i signal $\mathbf{f} = (1, \beta, \beta^2, ...)$ imaju jednake energije.

3. Odrediti Fourier-ovu transformaciju diskretnog signala $s(n) = \alpha^{|n|}, |\alpha| < 1.$

Glava 3

Multirezolucija

Transformacija talasićima, definisana u prethodnom poglavlju, zasniva se na predstavljanju komponenti neke funkcije na različitim skalama, tj. sa različitom rezolucijom. Ideja tzv. multirezolucije se može objasniti na primeru kartografije. Geografske karte sadrže različite informacije na različitim skalama. Detalji se ne mogu naći na globalnoj mapi. Kartografi su izvršili standardizaciju geografskih podataka, tako što su ih podelili u nezavisne kategorije koje odgovaraju različitim skalama – naselje, regija, država, kontinent, zemaljska kugla. Ove kategorije nisu potpuno nezavisne, i važnije karakteristike koje postoje na datoj skali ponavljaju se na sledećoj, većoj skali. Stoga je dovoljno odrediti veze među informacijama datim na dve susedne skale (koje naselje pripada kom regionu, koji region pripada kojoj državi, itd.), što se može predstaviti šemom u obliku drveta. U kartografiji stablo je mapa sveta, a idući prema granama, grančicama i lišću dolazimo do uzastopnih mapa koje pokrivaju manje oblasti i daju više detalja, koji se ne pojavljuju na višim nivoima.

3.1 Multirezolucijska analiza

Ova ideja multirezolucije koristi se i u reprezentaciji funkcija iz prostora \mathcal{L}_2 .

DEFINICIJA 1. Multirezolucijska analiza je dekompozicija Hilbert-ovog prostora $\mathcal{L}_2(R)$ na niz zatvorenih potprostora $\{\mathcal{V}_j\}_{j\in \mathbb{Z}}$ takvih da je

(1)
$$\cdots \subset \mathcal{V}_2 \subset \mathcal{V}_1 \subset \mathcal{V}_0 \subset \mathcal{V}_{-1} \subset \mathcal{V}_{-2} \subset \cdots$$

(2)
$$\cap_{j \in Z} \mathcal{V}_j = \{0\}, \quad \overline{\bigcup_{j \in Z} \mathcal{V}_j} = \mathcal{L}_2(R)$$

(3)
$$\forall f \in \mathcal{L}_2(R) \ i \ \forall j \in Z, \qquad f(x) \in \mathcal{V}_j \iff f(2x) \in \mathcal{V}_{j-1}$$

(4)
$$\forall f \in \mathcal{L}_2(R) \ i \ \forall k \in \mathbb{Z}, \qquad f(x) \in \mathcal{V}_0 \iff f(x-k) \in \mathcal{V}_0$$

(5) $\exists \varphi \in \mathcal{V}_0$ tako da je $\{\varphi(x-k)\}_{k \in \mathbb{Z}}$ Riesz-ov bazis potprostora \mathcal{V}_0 .

Specijalno, u osobini (5) bazis se može izabrati tako da bude ortonormirani bazis prostora \mathcal{V}_0 .

Dakle, svaki aproksimacioni prostor \mathcal{V}_j , $j \in Z$, je skalirana verzija osnovnog prostora \mathcal{V}_0 , dobijena binarnim skaliranjem (za faktor 2^j), širenjem ili skupljanjem, zavisno od znaka j, prostora \mathcal{V}_0 . Prostor \mathcal{V}_j , koji ima rezoluciju 2^{-j} , sadrži dva puta finije detalje od onih koje sadrži njegov prethodnik na aproksimacionoj skali \mathcal{V}_{j+1} . Kada $j \to -\infty$ aproksimacija postaje reprezentacija jer \mathcal{V}_j teži $\mathcal{L}_2(R)$. Osnovni prostor \mathcal{V}_0 generisan je jednom funkcijom $\varphi \in \mathcal{L}_2(R)$, koja se naziva funkcija skaliranja, jer bazis prostora \mathcal{V}_0 , prema (5), obrazuju funkcija $\varphi(x)$ i njene translacije $\varphi(x - k), k \in Z$. Uopšte, ako funkciju $\varphi(x)$ skaliranu j puta i transliranu za koznačimo sa

$$\varphi_{j,k}(x) = 2^{-j/2} \varphi(2^{-j}x - k), \qquad j,k \in \mathbb{Z},$$

Riesz-ov bazis prostora \mathcal{V}_j je skup funkcija $\{\varphi_{j,k}(x)\}, k \in \mathbb{Z}.$

Ponovimo još jednom (§2.3) kakvo je dejstvo elementarnih transformacija skaliranje i translacija na funkciju, s obzirom da su ove operacije osnov za definisanje multirezolucije (osobine (3) i (4)). *Dilatacija* je skaliranje funkcije f(x) za faktor skaliranja 2^{j} i zapisuje se kao $f(x/2^{j})$. Ima za posledicu "širenje" (j > 0) ili "skupljanje" (j < 0) funkcije. Slika 3.1 prikazuje efekat dilatacije funkcija sin x i talasića $\psi(x)$.

Slika 3.1: Diadska dilatacija sinusne funkcije i Db2 talasića

Translacija je pomeranje funkcije f(x) za k, zapisuje se sa f(x - k) i ima za posledicu kašnjenje (k < 0) ili ubrzavanje (k > 0) funkcije. Funkcija $\varphi_{j,k}(x) = 2^{-j/2}\varphi(2^{-j}(x - k2^j))$ je translirana za $k2^j$, što nazivamo diadskom translacijom.

Slika 3.2: Translacija Db2 talasića

Prelazeći sa prostora \mathcal{V}_{j-1} na prostor \mathcal{V}_j gube se neki detalji zbog smanjenja rezolucije. Kako $\mathcal{V}_j \subset \mathcal{V}_{j-1}$, izgubljeni detalji su sačuvani u ortogonalnom komplementu potprostora \mathcal{V}_j u odnosu na prostor \mathcal{V}_{j-1} . Ovaj ortogonalni komplement se naziva *prostor talasića*, i označićemo ga sa \mathcal{W}_j na skali *j*. Stoga je

(6)
$$\mathcal{V}_{i-1} = \mathcal{V}_i \oplus \mathcal{W}_i$$

gde \oplus označava ortogonalnu sumu. Iz veze (6) sledi važno svojstvo multirezolucije:

Prostori talasića W_j su razlike aproksimacionih prostora V_j .

Aproksimacioni prostori \mathcal{V}_j su sume prostora talasića \mathcal{W}_j .

Objasnimo ovo drugo tvrđenje. Na osnovu (6) za proizvoljno J je

$$\mathcal{V}_J \oplus \mathcal{W}_J = \mathcal{V}_{J-1}, \qquad \mathcal{V}_{J-1} \oplus \mathcal{W}_{J-1} = \mathcal{V}_{J-2}.$$

Zamenom prve u drugoj relaciji, predstavljamo prostor \mathcal{V}_{J-2} kao sumu tri uzajamno ortogonalna potprostora

$$\mathcal{V}_J \oplus \mathcal{W}_J \oplus \mathcal{W}_{J-1} = \mathcal{V}_{J-2}$$

Daljim razlaganjem aproksimacionih prostora po istom algoritmu, dolazimo do prostora \mathcal{V}_{j-1} ,

(7)
$$\mathcal{V}_J \oplus \mathcal{W}_J \oplus \mathcal{W}_{J-1} \oplus \cdots \oplus \mathcal{W}_j = \mathcal{V}_{j-1}, \quad J > j.$$

Svi prostori $\mathcal{W}_k, k \geq j$, su otogonalni na prostor \mathcal{W}_{j-1} , jer je ovaj ortogonalan na prostor \mathcal{V}_{j-1} koji ih sadrži. Dakle, posledica relacije (7) je uzajamna ortogonalnost prostora \mathcal{W}_j ,

(8)
$$\mathcal{W}_k \perp \mathcal{W}_j, \qquad k, j \in Z, \quad k \neq j$$

Uslov kompletnosti (2), kao granični slučaj relacije (7), daje razlaganja prostora $\mathcal{L}_2(R)$. Kada $j \to -\infty$ imamo dekompoziciju,

(9)
$$\mathcal{L}_2(R) = \mathcal{V}_J \oplus \sum_{j=-\infty}^J \mathcal{W}_j,$$

i drugu, kada $J \to \infty,$

(10)
$$\mathcal{L}_2(R) = \sum_{j=-\infty}^{\infty} \mathcal{W}_j.$$

Slično aproksimacionim prostorima \mathcal{V}_j , prostori talasića \mathcal{W}_j generisani su skaliranjem i diadskim translacijama druge funkcije $\psi(x) \in \mathcal{L}_2(R)$, koja se naziva osnovni talasić ("majka"), u tom smislu da je

$$\mathcal{W}_j = \overline{\{\psi_{j,k} \in \mathcal{L}_2 \mid k \in Z\}}, \qquad \psi_{j,k}(x) = 2^{-j/2} \psi(2^{-j}x - k), \quad j \in Z.$$

Pri tome jedna funkcija, funkcija skaliranja $\varphi(x)$, generiše bazise svakog od navedenih prostora. Naime, potprostori \mathcal{V}_0 i \mathcal{W}_0 su sadržani u prostoru \mathcal{V}_{-1} (rel. (6) za j = 0), pa i funkcije $\varphi(x) \in \mathcal{V}_0$ i $\psi(x) \in \mathcal{W}_0$ pripadaju prostoru \mathcal{V}_{-1} . Stoga se mogu predstaviti bazisnim funkcija tog prostora $\varphi_{-1,k}(x) = \sqrt{2}\varphi(2x-k)$. Odgovarajuće reprezentacije nazivaju se *dilataciona jednačina*

(11)
$$\varphi(x) = \sum_{k} c(k)\sqrt{2}\varphi(2x-k)$$

i jednačina talasića

(12)
$$\psi(x) = \sum_{k} d(k)\sqrt{2}\varphi(2x-k).$$

Dilataciona jednačina (11) je jednačina sa dve skale, jer sadrži vrednosti funkcije u tačkama x i 2x. Ovim jednačinama su osnovne funkcije $\varphi(x)$ i $\psi(x)$ prikazane u finijem prostoru \mathcal{V}_{-1} , tj. prostoru sa finijom skalom $\Delta x = 2^{-1}$, u odnosu na skalu $\Delta x = 1$ prostora \mathcal{V}_0 i \mathcal{W}_0 .

Jasno je da jednačina (11) ima beskonačno mnogo rešenja – ako je $\varphi(x)$ rešenje jednačine, onda je i funkcija $c \varphi(x)$, gde je c proizvoljna konstanta, takođe rešenje. Da bi rešenje, ako postoji, bilo jedinstveno određeno, zahteva se da rešenje bude normirano, tj. da je njegova srednja vrednost jednaka jedan,

(13)
$$\int_{-\infty}^{\infty} \varphi(x) \, dx = 1.$$

Podsećamo da je srednja vrednost talasića jednaka nuli (form. (2.25)), što određuje njegovu oscilatornu prirodu.

Integraljenjem jednačine (11), uzimajući u obzir uslov (13),

$$1 = \int \varphi(x) \, dx = \sum_k c(k)\sqrt{2} \int \varphi(2x-k) \, dx = \frac{1}{\sqrt{2}} \sum_k c(k),$$

dobijamo sledeći uslov po koeficijentima dilatacione jednačine c(k):

(14)
$$\sum_{k} c(k) = \sqrt{2}.$$

Očigledno je da je funkcija skaliranja $\varphi(x)$, kao rešenje dilatacione jednačine (11), određena koeficijentima c(k) jednačine. Razvoju teorije talasića je doprinelo upravo uočavanje veze koeficijenata c(k) sa filtrima – linearnim operatorima koji se primenjuju u obradi signala. Željena svojstva filtara (a time i talasića) postižu se odgovarajućim izborom koeficijenata, o čemu će biti reči kasnije.

3.2. MULTIREZOLUCIJSKI RAZVOJ FUNKCIJE

Multirezolucija se može definisati sledećim algoritmom: polazeći od koeficijenata c(k), koji zadovoljavaju određena svojstva, rešava se dilataciona jednačina (11) po funkciji skaliranja $\varphi(x)$, čime je određen bazis { $\varphi_{j,k}(x)$ } aproksimacionih prostora \mathcal{V}_j . Zatim se izborom koeficijenata d(k) (koji, kako ćemo videti kasnije, nije uvek nezavisan od izbora koeficijenata c(k)) izrazom (12) definiše osnovni talasić $\psi(x)$, čime je određen bazis { $\psi_{j,k}(x)$ } prostora talasića \mathcal{W}_j . Dilatacijom i translacijom ovi prostori se automatski uvećavaju, kompletiraju i povezuju:

$$f(x) \in \mathcal{V}_j \longrightarrow f(x), f(2x), f(x-k), f(2x-k) \in \mathcal{V}_{j-1}.$$

Zaista, ako je $f(x) \in \mathcal{V}_0$, tada $f(2x) \in \mathcal{V}_{-1}$, a takođe i $f(2x-k) \in \mathcal{V}_{-1}$. Na osnovu indukcije sledi da je $f(2^j x) \in \mathcal{V}_{-j}$ i, takođe, $f(2^j x - k) \in \mathcal{V}_{-j}$. Time su dilatacija i translacija ugrađene u prostore \mathcal{V}_j . Zbog translacije domen je cela realna prava $-\infty < x < \infty$, osim za periodične funkcije. Dilatacija i translacija deluju na celoj realnoj osi i mogu biti analizirane pomoću Fourier-ove transformacije.

Poslednji uslov (5) u multirezoluciji odnosi se na bazis – postoji $\varphi(x)$ tako da je $\{\varphi(x-k)\}_k$ ortonormirani bazis prostora \mathcal{V}_0 . Tada je $\{\sqrt{2}\varphi(2x-k)\}_k$ ortonormirani bazis prostora \mathcal{V}_{-1} , i, uopšte, $\{2^{-j/2}\varphi(2^{-j}x-k)\}_k$ ortonormirani bazis prostora \mathcal{V}_j .

Rezimirajmo – multirezolucija se karakteriše sledećim svojstvima:

kompletnost	$\mathcal{V}_j \subset \mathcal{V}_{j-1},$	$\cap \mathcal{V}_j = \{$	$0\}, \overline{\cup \mathcal{V}_j} = \mathcal{L}_2$
invarijantnost po dilataciji	$f(x) \in \mathcal{V}_j$	\iff	$f(2x) \in \mathcal{V}_{j-1}$
invarijantnost po translaciji	$f(x) \in \mathcal{V}_j$	\iff	$f(x-k) \in \mathcal{V}_j$
bazis invarijantan po translaciji	\mathcal{V}_0 ima ort (Riesz-ov	onormirar) bazis { φ	ili, bar, stabilan $(x-k)$.

Jednodimenzioni koncept multirezolucijske analize se može uopštiti na višedimenzione prostore.

3.2 Multirezolucijski razvoj funkcije

Dekompozicija prostora funkcija $\mathcal{L}_2(R)$ na multirezolucijske potprostore (form. (9) i (10)) ima za posledicu mogućnost razlaganja proizvoljne funkcije $f(x) \in \mathcal{L}_2(R)$, tako da postoji komponenta funkcije f(x) u svakom od ovih potprostora. Te komponente, projekcije na potprostore, sadrže sve finije i finije detalje funkcije f(x), jer se ova razlaže po skalama $\Delta x = \ldots, 2, 1, 1/2, \ldots, 1/2^j, \ldots$

Za svaki prostor \mathcal{V}_j može se, ako $\{\varphi_{j,k}(x)\}_{k\in\mathbb{Z}}$ čine ortonormirani sistem funkcija, definisati operator projektovanja, saglasno form. (2.5),

(15)
$$f_j(x) = \sum_{k \in \mathbb{Z}} (f, \varphi_{j,k}) \varphi_{j,k}(x),$$

gde je sa $f_j(x)$ označena projekcija funkcije $f \in \mathcal{L}_2(R)$ na prostor \mathcal{V}_j , i (f,g) je skalarni proizvod (2.1). U odnosu na prethodni nivo rezolucije (j-1) ovako određena aproksimacija funkcije izgubila je neke fine detalje funkcije, koji mogu biti predstavljeni operatorom projektovanja na komplementarni prostor talasića \mathcal{W}_j ,

(16)
$$\Delta f_j(x) = \sum_{k \in \mathbb{Z}} (f, \psi_{j,k}) \psi_{j,k}(x).$$

Koeficijent $(f, \psi_{j,k})$ sadrži informaciju o funkciji u okolini tačke $x = 2^{j}k$, $\omega = 2^{-j}$ vremensko-frekvencijske ravni. Izgubljeni detalji mogu biti rekonstruisani u aproksimacionom prostoru na prethodnom nivou na osnovu veze (6),

(17)
$$f_{j-1}(x) = f_j(x) + \Delta f_j(x).$$

Svaka funkcija $f_{j-1}(x) \in \mathcal{V}_{j-1}$ je zbir dve uzajamno ortogonalne funkcije, $f_j(x)$ iz \mathcal{V}_j i $\Delta f_j(x)$ iz \mathcal{W}_j . Prostor \mathcal{W}_j sadrži novu informaciju $\Delta f_j(x) = f_{j-1}(x) - f_j(x)$, detalj na nivou j. Funkcije iz prostora \mathcal{V}_{j-1} mogu se, saglasno razlaganju (7), predstaviti zbirom

$$f_{j-1}(x) = f_J + (f_{J-1} - f_J) + (f_{J-2} - f_{J-1}) + \dots + (f_{j-1} - f_j)$$

= $f_J(x) + \Delta f_J(x) + \Delta f_{J-1}(x) + \dots + \Delta f_j(x),$

što predstavlja multirezolucijsku reprezentaciju ("zumiranje") funkcije f_{j-1} . Ortogonalnost prostora \mathcal{W}_j i \mathcal{V}_j je poželjna, ali nije neophodna. Ako prostori \mathcal{V}_j i \mathcal{W}_j nisu ortogonalni, i dalje svaka funkcija $f_{j-1} \in \mathcal{V}_{j-1}$ ima jedinstveno razlaganje oblika $f_j + \Delta f_j$. Ovaj zaključak se koristi kod tzv. biortogonalnih talasića, gde su prostori talasića \mathcal{W}_j ortogonalni na neke druge aproksimacione prostore $\tilde{\mathcal{V}}_j$.

U graničnom slučaju, na osnovu uslova kompletnosti multirezolucije (2), sledi da $f_j(x) \to f(x)$ kada $j \to -\infty$ (u srednjem). Posledice razlaganja (9) i (10) su reprezentacije funkcije

(18)
$$f(x) = f_J(x) + \sum_{j=-\infty}^J \Delta f_j(x), \qquad f(x) = \sum_{j=-\infty}^\infty \Delta f_j(x).$$

Sume (18) predstavljaju *multirezolucijske razvoje* funkcije f(x), jer sadrže bazisne funkcije različitih nivoa rezolucije. Uzimajući u obzir izraze (15) i (16), jasno je da se multirezolucijski razvoj karakteriše sa dva tipa indeksa, indeksom skaliranja (rezolucije) j i indeksom translacije k. Prva suma sadrži i funkciju skaliranja, a druga samo talasiće ali na svim, pa i vrlo velikim skalama $\Delta x = 2^j, j \to \infty$. Izborom najgrublje skale J beskonačni niz prostora $\mathcal{W}_j, j = J + 1, \ldots$, zamenjen je prostorom \mathcal{V}_J , saglasno vezama (7) i (2). Možemo zaključiti da bazis prostora \mathcal{L}_2 čine funkcije skaliranja na izabranom nivou J i talasići na nivoima $j \leq J$, ali i samo talasići na svim nivoima rezolucije.

Razvoj samo po talasićima često ne daje efikasnu aproksimaciju funkcije f(x), mnogo je bolje koristiti reprezentaciju koja sadrži i funkciju skaliranja (leva suma u (18)). Da bi se razumeo ovaj paradoks, podsetimo da je $\varphi(x)$ nisko-frekvencijska funkcija srednje vrednosti jedan (uslov (13)), dok je $\psi(x)$ oscilatorna funkcija

32

3.2. MULTIREZOLUCIJSKI RAZVOJ FUNKCIJE

srednje vrednosti nula (form. (2.25)). Aproksimacija samo talasićima ne može dati zadovoljavajuću aproksimaciju funkcije koja ima nisko-frekvencijske spektralne komponente, jer je funkcija skaliranja ta koja na najgrubljem rezolucijskom nivou dodaje izgubljeni nisko-frekvencijski sadržaj funkcije.

Talasići se uobičajeno konstruišu tako da su im i momenti do nekog reda jednaki nuli,

(19)
$$\int_{-\infty}^{\infty} x^{l} \psi(x) \, dx = 0, \qquad l = 0, 1, \dots, r-1.$$

Broj momenata koji iščezavaju r određuje širinu sloja oko nulte frekvencije u kome je Fourier-ova transformacija talasića jednaka nuli. Osobina talasića da ima iščezavajuće momente do nekog reda čini ga vrlo pogodnim za numeričko modelovanje. Da bismo analizirali ovaj efekat, posmatrajmo multirezolucijski razvoj funkcije f(x),

(20)
$$f(x) = \sum_{k \in \mathbb{Z}} a_{J,k} \varphi_{J,k}(x) + \sum_{j=-\infty}^{J} \sum_{k \in \mathbb{Z}} b_{j,k} \psi_{j,k}(x).$$

Koeficijenti u razvoju (20) su, na osnovu (15), (16) i (18), Fourier-ovi koeficijenti po ortonormiranom sistemu,

(21)
$$a_{J,k} = (f, \varphi_{J,k}) = \int_{\mathcal{D}_{\varphi_{j,k}}} f(x) \overline{\varphi}_{J,k}(x) dx,$$
$$b_{j,k} = (f, \psi_{j,k}) = \int_{\mathcal{D}_{\psi_{j,k}}} f(x) \overline{\psi}_{j,k}(x) dx,$$

gde je $\mathcal{D}_{\bullet_{j,k}}$ domen (kompaktan nosač) odgovarajuće bazisne funkcije. Pretpostavimo da je f(x) dovoljno glatka funkcija na domenu talasića, tako da se može predstaviti Taylor-ovim polinomom

(22)
$$f(x) = \sum_{l} \alpha_{l} (x - x_{i})^{l}$$

gde je $x_i = 2^j (i + 1/2)$ centar bazisnog talasića. Na osnovu (22) drugi od integrala (21) svodi se na

(23)
$$b_{j,k} = \sum_{l} \alpha_l \int_{\mathcal{D}_{\psi_{j,k}}} (x - x_i)^l \overline{\psi}_{j,k}(x) \, dx,$$

i zanemarljivo je mali ili nula ako važi (19). Što funkcija f(x) sporije osciluje na domenu talasića, to su manji koeficijenti $\alpha_l \sim f^{(l)}(x_i)$ uz više stepene u Taylorovom razvoju (22) i, stoga brže iščezavaju koeficijenti talasića $b_{j,k}$. Nasuprot tome, koeficijenti talasića će imati relativno velike vrednosti u oblastima gde se f(x) brzo menja ili ima prekide. Dakle, funkcije skaliranja (prostori \mathcal{V}_j) daju informacije o funkciji f(x) u srednjem smislu, a talasići (prostori \mathcal{W}_j) registruju promene funkcije f(x) koje su zanemarene usrednjavanjem. U praksi se funkcija približno predstavlja svojom grubom aproksimacijom na izabranom nivou rezolucije J i detaljima na konačno mnogo nivoa rezolucije j. Širina spektra funkcije skaliranja (broj koeficijenata $a_{J,k}$) je važan parametar u dizajniranju transformacije talasićima. Što je spektar uži, veći je broj koeficijenata talasića, a time imamo i više informacija o detaljima. Ne umanjujući opštost, uzmimo da je $1 \leq j \leq J$, te je aproksimacija funkcije f(x) u prostoru \mathcal{V}_0

(24)
$$f(x) \approx f_0(x) = \sum_{k \in \mathbb{Z}} a_{J,k} \varphi_{J,k}(x) + \sum_{j=1}^J \sum_{k \in \mathbb{Z}} b_{j,k} \psi_{j,k}(x).$$

Greška aproksimacije, s obzirom na (18), jednaka je

$$\varepsilon_0(f) = f - f_0 = \sum_{j=-\infty}^0 \Delta f_j.$$

U primenama prostor \mathcal{V}_0 je konačno dimenzioni prostor. Ako je funkcija data konačnim brojem svojih vrednosti, maksimalni broj nivoa rezolucije je određen ovim brojem – ako je funkcija predstavljena sa svojih 2^J vrednosti, maksimalni mogući broj nivoa rezolucije je J.

PRIMER 1. Neka je \mathcal{V}_j prostor sa bazisom $\{e^{ikx}\}_{-j}^j$. Projekcija funkcije f(x) na prostor \mathcal{V}_j je parcijalna suma njenog Fourier-ovog reda (form. (2.11)),

$$f_j(x) = \sum_{|k| \le j} c_k e^{ikx} \qquad (\text{deo } f(x) \text{ u } \mathcal{V}_j).$$

Bazisne funkcije su ortogonalne, te je kvadrat norme funkcije $f_j(x)$, prema Parsevalovoj jednakosti (form. (2.6)), srazmeran sumi $|c_k|^2$ po nižim frekvencijama $|k| \leq j$. Norma greške $f(x) - f_j(x)$ je određena sumom koeficijenata po višim frekvencijama |k| > j, koja teži nuli kada $j \to \infty$. Stoga je niz prostora \mathcal{V}_j kompletan u prostoru 2π -periodičnih funkcija $\mathcal{L}_2(-\pi, \pi)$.

Dodavanjem funkciji $f_j(x) = c_{-j}e^{-\imath jx} + \cdots + c_je^{\imath jx}$ iz prostora \mathcal{V}_j dva sabirka $c_{-(j+1)}e^{-\imath(j+1)x} + c_{j+1}e^{\imath(j+1)x}$ definiše se sledeća aproksimacija $f_{j+1}(x)$ u prostoru \mathcal{V}_{j+1} . Nova informacija je

$$\Delta f_j(x) = c_{-(j+1)}e^{-i(j+1)x} + c_{j+1}e^{i(j+1)x}.$$

Prostor \mathcal{W}_j sadrži harmonike reda (j + 1). Oni su, zbog ortogonalnosti sistema funkcija $\{e^{ikx}\}$, ortogonalni na sve članove sume za $k \leq j$. Međutim, ovo nije primer multirezolucije, jer prostori \mathcal{V}_j ne zadovljavaju dilatacioni uslov (3) multirezolucije, $f_j(2x) \notin \mathcal{V}_{j+1}$. U multirezoluciji frekvencije moraju da se udvostručuju. Suma f_j mora da se završava sa frekvencijom 2^j umesto j. U tom slučaju Δf_j sadrži sve frekvencije između 2^j i 2^{j+1} ,

$$f_j(x) = \sum_{|k| \le 2^j} c_k e^{ikx}, \qquad \Delta f_j(x) = \sum_{2^j < |k| \le 2^{j+1}} c_k e^{ikx}.$$

3.3. KONSTRUKCIJA MULTIREZOLUCIJE

To je suština multirezolucije – prostori \mathcal{V}_j i \mathcal{W}_j imaju, grubo rečeno, istu dimenziju. Multirezolucija se ostvaruje dekompozicijom Fourier-ovog reda na oktave, a ne na pojedinačne sabirke, jer se multirezolucijom frekvencije dele u grupe oktava, od ω do 2ω , a ne u ravnomerne grupe od ω do $\omega + \Delta \omega$. Kompresija grafika funkcije f(x)u vremenskom domenu, tj. zamena f(x) sa f(2x), ima za posledicu širenje njene Fourier-ove transformacije sa $\hat{f}(\omega)$ na $\frac{1}{2}\hat{f}(\frac{\omega}{2})$. Kada se vreme reskalira za dva, frekvencije se pomeraju naviše za oktavu. Tako se duže vreme pridružuje nižim frekvencijama, a kratko vreme višim frekvencijama.

U kontinualnom slučaju, kada funkcija f(x) sadrži sve frekvencije, njena projekcija na prostor \mathcal{V}_j u ovom primeru bila bi

$$f_j(x) = \frac{1}{2\pi} \int_{|\omega| \le 2^j} \hat{f}(\omega) e^{i\omega x} \, d\omega.$$

3.3 Konstrukcija multirezolucije

Multirezolucija se može konstruisati

- 1. zadavanjem aproksimacionog prostora \mathcal{V}_j ,
- 2. zadavanjem funkcije skaliranja $\varphi(x)$,
- 3. zadavanjem koeficijenata c(k) dilatacione jednačine.

U praksi, možemo konstruisati prostore \mathcal{V}_j i formirati njihove razlike, ili konstruisati prostore \mathcal{W}_j i formirati njihove sume. Ako se multirezolucija definiše zadavanjem bazisnih funkcija, uobičajeno je da se zada funkcija skaliranja $\varphi(x)$ (a ne talasić), čije translacije $\varphi(x - k)$ definišu prostor \mathcal{V}_0 . Reskaliranjem za faktor 2^j definišemo prostore \mathcal{V}_j . Prostori talasića \mathcal{W}_j su razlike prostora \mathcal{V}_{j-1} i \mathcal{V}_j . Ako multirezoluciju zadamo putem koeficijenata dilatacione jednačine, rešavanjem ove dobijamo funkciju skaliranja, a pomoću nje na već opisani način prostore.

Navedimo nekoliko primera multirezolucije.

PRIMER 2. Deo po deo konstantne funkcije. Prostor \mathcal{V}_0 se sastoji od svih funkcija iz \mathcal{L}_2 koje su konstantne na jediničnim intervalima $n \leq x < n+1$. Te funkcije su određene svojim vrednostima f(n) u svim celobrojnim tačkama x = n,

f(x) = f([x]), $[x] \stackrel{\text{def}}{=}$ celobrojni deo od x.

Funkcija $f(2x) \in \mathcal{V}_{-1}$ je konstanta na polovinama intervala. Funkcije iz \mathcal{V}_j su konstante na intervalima dužine 2^j . Prostori se povećavaju sa smanjenjem j, jer svaka funkcija koja je konstanta na diadskim intervalima $[2^j n, 2^j (n+1)]$ konstanta je i na polovinama tih intervala, $\mathcal{V}_j \subset \mathcal{V}_{j-1}$. Ovi prostori su invarijantni u odnosu na translaciju – translacija funkcije deo po deo konstanta je i dalje deo po deo

konstanta. U koraku od j ka (j-1) reskalira se promenljiva x za dva i formira prostor \mathcal{V}_{j-1} . Najjednostavniji bazis ovih prostora, već u uvodu pomenuti Haar-ov bazis, definiše karakteristična funkcija intervala [0, 1],

$$\varphi(x) = \begin{cases} 1, & 0 \le x < 1\\ 0, & x \notin [0, 1) \end{cases}$$

koju ćemo nazvati *četvrtka.* Ona je ortogonalna u odnosu na svoje translacije. Svaka funkcija u prostoru \mathcal{V}_0 je linearna kombinacija četvrtki, te se može prikazati u obliku $f_0(x) = \sum_n f(n)\varphi(x-n)$ (slika 3.3).

Slika 3.3: Prostor funkcija koje su deo po deo konstanta

Koeficijenti dilatacione jednačine (11) su $c(0) = c(1) = 1/\sqrt{2}$, a ostali koeficijenti su nula, te je jednačina

Slika 3.4: Dilataciona jednačina četvrtke

PRIMER 3. Neprekidne deo po deo linearne funkcije. Neka je osnovni prostor \mathcal{V}_0 sada prostor funkcija f(x) koje su linearne između svakog para vrednosti f(n) i f(n+1). I ove funkcije su invarijantne u odnosu na:

translaciju – ako je f(x) deo po deo linearna, onda je takva i f(x - k), i dilataciju – ako je f(x) linearna na jediničnim intervalima, onda je f(2x) linearna na polovinama tih intervala.

Bazis se može definisati translacijama $\varphi(x-k)$ krov funkcije (linearni splajn)

$$\varphi(x) = \begin{cases} x, & 0 \le x \le 1\\ 2 - x, & 1 \le x \le 2\\ 0, & x \notin [0, 2] \end{cases}$$

Slika 3.5: Prostor neprekidnih i deo po deo linearnih funkcija

Svaka funkcija $f_0(x) \in \mathcal{V}_0$ može se predstaviti zbirom $\sum f(n+1)\varphi(x-n)$ (slika 3.5). Proizvod $\varphi(x)\varphi(x-1)$ je pozitivan na intervalu [1,2] na kome se kompaktni nosači ove dve funkcije preklapaju, te njihov skalarni proizvod nije nula. Stoga funkcija $\varphi(x)$ nije ortogonalna na susedne krov funkcije $\varphi(x \pm 1)$, što znači da bazis krov funkcija nije ortogonalan. Krov funkcije se koriste u konstrukciji biortogonalnih talasića.

Koeficijenti dilatacione jednačine različiti od nula jesu $c(0)=c(2)=1/(2\sqrt{2})$ i $c(1)=1/\sqrt{2},$ i jednačina (11) glasi

Slika 3.6: Dilataciona jednačina krov funkcije

PRIMER 4. Prekidne deo po deo linearne funkcije. Neka je \mathcal{V}_0 prostor linearnih funkcija koje mogu imati skok u celobrojnim tačkama $x = n, n \in \mathbb{Z}$, tj. mogu biti različite vrednosti $f(n_-)$, kada se tački približavamo sa leva, i $f(n_+)$, kada se tački približavamo sa desna. Tom prostoru pripadaju i četvrtka i krov funkcija (iz primera 2 i 3). Očigledno je da su prostori \mathcal{V}_j invarijantni u odnosu na translaciju i skaliranje. Ako je f(x) linearna funkcija između celih brojeva u kojima ima skok, ona je linearna i između polovina celih brojeva.

Slika 3.7: Bazisne funkcije prostora prekidnih deo po deo linearnih funkcija

Kako postoje dva stepena slobode u svakoj celobrojnoj tački, vrednosti $f(n_{-})$ i $f(n_{+})$, potrebne su dve funkcije skaliranja $\varphi_1(x)$ i $\varphi_2(x)$ za konstrukciju bazisa invarijantnog u odnosu na translaciju. Obe mogu imati kompaktan nosač na jediničnom intervalu i mogu biti ortogonalne (slika 3.7):

$$\varphi_1(x) = 1 =$$
četvrtka, $\varphi_2(x) = 1 - 2x =$ prava, $x \in [0, 1].$

Unija $\{\varphi_1(x-k)\}$ i $\{\varphi_2(x-k)\}$ predstavlja ortonormirani bazis koji ilustruje ideju koja je u osnovi *multitalasića* (multiwavelets). Uobičajena dilataciona jednačina po funkciji skaliranja $\varphi(x)$ postaje vektorska jednačina po $\varphi_1(x)$ i $\varphi_2(x)$. Koeficijenti c(k) u jednačini su matrice dimenzije 2 × 2. U obradi signala multitalasićima odgovaraju multifiltri.

PRIMER 5. Kubni splajnovi. Prostor \mathcal{V}_0 sastoji se od kubnih splajnova – funkcija f(x) koje su deo po deo kubni polinomi na intervalima dužine jedan, pri čemu su f(x), f'(x) i f''(x) neprekidne funkcije. Treći izvod f'''(x) može imati skok u celobrojnim tačkama x = n, pa su kubni polinomi različiti na susednim intervalima. Biće zadovoljen uslov invarijantnosti u odnosu na translaciju i skaliranje ukoliko prostor \mathcal{V}_{-1} sadrži kubne splajnove na poluintervalima. Taj uslov je zadovoljen na osnovu opšteg pravila – aproksimacioni potprostori na regularnim mrežama automatski zadovoljavaju uslove multirezolucije.

Kubni splajn sa najmanjim nosačem je *B-splajn* (slika 3.8). Njegov nosač sastoji se od četiri jedinična intervala, $0 \le x \le 4$.

$$\varphi(x) = \begin{cases} \frac{1}{6}x^3, & x \in [0,1] \\ -\frac{1}{2}(x-1)^3 + \frac{1}{2}(x-1)^2 + \frac{1}{2}(x-1) + \frac{1}{6}, & x \in [1,2] \\ \frac{1}{2}(x-2)^3 - (x-2)^2 + \frac{2}{3}, & x \in [2,3] \\ -\frac{1}{6}(x-3)^3 + \frac{1}{2}(x-3)^2 - \frac{1}{2}(x-3) + \frac{1}{6}, & x \in [3,4] \end{cases}$$

Slika 3.8: Kubni B-splajn

Bazis B-splajnova nije ortogonalan. Po analogiji sa krov funkcijama, koje predstavljaju linearne splajnove (primer 3), bazisni kubni splajnovi $\varphi(x - k)$ ne mogu imati kompaktan nosač ako se zahteva ortogonalnost bazisa.

Koeficijenti dilatacione jednačine (11), čije rešenje je B-splajn, jednaki su binomnim koeficijentima 1, 4, 6, 4, 1 pomnoženim faktorom $1/(8\sqrt{2})$, kako bi bio zadovoljen uslov (14). Ove funkcije se koriste u konstrukciji biortogonalnih talasića.

Slika 3.9: Daubechies funkcija skaliranja

PRIMER 6. Daubechies funkcija. U ovom primeru nismo pošli od prostora \mathcal{V}_0 , već od koeficijenata dilatacione jednačine (11)

$$(c(0), c(1), c(2), c(3)) = (1 + \sqrt{3}, 3 + \sqrt{3}, 3 - \sqrt{3}, 1 - \sqrt{3})/4\sqrt{2},$$

čije rešenje je tzv. Daubechies funkcija $\varphi(x)$, prikazana na slici 3.9 ([8]).

Funkcije $\varphi(x-k)$ obrazuju ortonormirani bazis prostora \mathcal{V}_0 . Ingrid Daubechies je osamdesetih godina prošlog veka otkrila celu klasu ortonormiranih bazisa povezujući teoriju talasića sa obradom signala. O tome će biti reči u poglavlju 4.

3.4 Ortogonalnost funkcije skaliranja i talasića

Prethodni primeri ukazuju da je dužina kompaktnog nosača funkcije skaliranja, izražena brojem jediničnih intervala, određena brojem nenula koeficijenata dilatacione jednačine: 2 koeficijenta – dužina je jedan, 3 koeficijenta – dužina je dva, 4 koeficijenta – dužina je tri, 5 koeficijenata – dužina je četiri. Ako je N koeficijenata različito od nule, $c(0), \ldots, c(N-1)$, konačan nosač funkcije $\varphi(x)$ je interval [0, N-1], tj. $\varphi(x)$ je nula van intervala $0 \le x \le N-1$. To se nikada ne događa kod jednostruko skalirane diferencne ili diferencijalne (homogene) jednačine. Njihova rešenja su kombinacije funkcija λ^k ili $e^{\lambda x}$ (gde su λ koreni odgovarajuće karakteristične jednačine), a samo u specijalnom slučaju su nula. Kompaktni nosač funkcije $\varphi(x)$ potiče od dve skale u dilatacionoj jednačini. U opštem slučaju, ako dilataciona jednačina ima beskonačno mnogo koeficijenata c(k), funkcija skaliranja $\varphi(x)$ ima beskonačan nosač.

TEOREMA 1. Funkcija skaliranja $\varphi(x)$, koja je rešenje dilatacione jednačine (11), ima kompaktan nosač na intervalu [0, N-1].

Dokaz: Pretpostavimo da znamo da je nosač konačan interval [a, b]. Tada je za $\varphi(2x)$ nosač interval [a/2, b/2]. Za transliranu funkciju $\varphi(2x - k)$ nosač je interval [(a + k)/2, (b + k)/2]. Indeks k uzima vrednosti od nule do N - 1, tako da desna strana dilatacione jednačine ima nosač u granicama a/2 i (b + N - 1)/2. Poredeći sa levom stranom jednačine imamo da je

$$[a, b] = \left[\frac{a}{2}, \frac{b+N-1}{2}\right],$$
 te je $a = 0, b = N-1.$

Polazna pretpostavka da je nosač konačan interval sledi iz kaskadnog algoritma za rešavanje dilatacione jednačine. To je iterativni algoritam kojim se funkcija skaliranja $\varphi(x)$, pod određenim uslovima, izračunava kao granična funkcija niza funkcija $\varphi^{(i)}(x)$,

(25)
$$\varphi^{(i+1)}(x) = \sum_{k=0}^{N-1} c(k)\sqrt{2}\varphi^{(i)}(2x-k), \quad i = 0, 1, \dots$$

Detaljnije će kaskadni algoritam biti izložen u sledećem odeljku. Početna aproksimacija $\varphi^{(0)}(x)$ je četvrtka i njen nosač je interval [0, 1]. Kada se ona zameni u desnoj strani izraza (25), dobija se funkcija $\varphi^{(1)}(x)$ koja, prema prethodnoj analizi (za a = 0, b = 1) ima nosač [0, $(1 + N_1)/2$], gde je $N_1 = N - 1$. Slično, $\varphi^{(2)}(x)$ je nula van intervala [0, $(1 + 3N_1)/4$] ($a = 0, b = (1 + N_1)/2$). Funkcija $\varphi^{(i)}(x)$ će biti nula van intervala [0, $(1 + (2^i - 1)N_1)/2^i$], te će granična funkcija biti nula van intervala [0, N_1] \equiv [0, N - 1].

Analogno sledi da je dužina kompaktnog nosača talasića određena brojem nenula koeficijenata d(k) jednačine talasića (12).

Sledeća teorema formuliše uslove pod kojima funkcija skaliranja i njom određen talasić generišu ortonormirani bazis prostora \mathcal{L}_2 .

TEOREMA 2. Pretpostavimo da kaskadni algoritam (25) konvergira, $\varphi^{(i)}(x) \to \varphi(x)$ uniformno po x. Ako koeficijenti c(k) i d(k) zadovoljavaju uslove ortogonalnosti dvostrukog pomeraja

(26)
$$\sum c(k)c(k-2m) = \delta(m),$$
$$\sum d(k)d(k-2m) = \delta(m),$$
$$\sum c(k)d(k-2m) = 0,$$

što je moguće samo ako je

(27)
$$d(k) = (-1)^k c(N-1-k), \quad k = 0, \dots, N-1, \quad N \text{ parno},$$

onda:

(i) translacije funkcije skaliranja $\varphi(x-k)$ su uzajamno ortogonalne,

$$\int_{-\infty}^{\infty} \varphi(x-n)\varphi(x-m)\,dx = \delta(n-m);$$

(ii) funkcije skaliranja su ortogonalne na talasiće,

$$\int_{-\infty}^{\infty} \varphi(x-n)\psi(x-m)\,dx = 0;$$

(iii) talasići $\psi_{jk}(x) = 2^{-j/2}\psi(2^{-j}x-k), j, k \in \mathbb{Z}$, obrazuju ortonormirani sistem,

$$\int_{-\infty}^{\infty} \psi_{jk}(x)\psi_{JK}(x) \, dx = \delta(j-J)\delta(k-K).$$

Dokaz: (i) Dokaz ćemo izvesti matematičkom indukcijom. Četvrtka je ortogonalna u odnosu na translaciju, što znači da funkcije $\varphi^{(0)}(x-n)$ čine ortonormirani sistem funkcija (jer im se nosači ne preklapaju). Dalje, ako funkcije $\varphi^{(i)}(x-n)$ čine ortonormirani sistem funkcija, i sledeća iteracija $\varphi^{(i+1)}(x-n)$, na osnovu prve od pretpostavki (26), čini ortonormirani sistem funkcija, jer je

$$\begin{split} &\int_{-\infty}^{\infty} \varphi^{(i+1)}(x-n)\varphi^{(i+1)}(x-m) \, dx \\ &= \int \left(\sqrt{2}\sum_{k} c(k)\varphi^{(i)} \left(2(x-n)-k\right)\right) \left(\sqrt{2}\sum_{l} c(l)\varphi^{(i)} \left(2(x-m)-l\right)\right) \, dx \\ &= 2\int \left(\sum_{k} c(k)\varphi^{(i)}(2x-2n-k)\right) \left(\sum_{l_{1}} c(l_{1}-2(m-n))\varphi^{(i)}(2x-2n-l_{1})\right) \, dx \\ &= \sum_{k}\sum_{l_{1}} c(k)c(l_{1}-2(m-n)) \int \varphi^{(i)}(2(x-n)-k) \, \varphi^{(i)}(2(x-n)-l_{1}) \, d(2x) \\ &= \sum_{k} c(k)c(k-2(m-n)) = \delta(m-n), \end{split}$$

gde je uvedena smena $l_1 = l - 2(n - m)$. U slučaju konvergencije kaskadnog algoritma i granična funkcija $\varphi(x)$ biće ortogonalna u odnosu na translacije.

(ii) Slično kao u (i), na osnovu jednačina (11)
i(12)i treće od pretpostavki (26), sledi da je

$$\begin{split} &\int_{-\infty}^{\infty} \varphi(x-n)\psi(x-m) \, dx \\ &= \int \bigg(\sqrt{2} \sum_{k} c(k)\varphi\big(2(x-n)-k\big) \bigg) \bigg(\sqrt{2} \sum_{l} d(l)\varphi\big(2(x-m)-l\big) \bigg) \, dx \\ &= 2 \int \bigg(\sum_{k} c(k)\varphi(2x-2n-k) \bigg) \bigg(\sum_{l_1} d(l_1-2(m-n))\varphi(2x-2n-l_1) \bigg) \, dx \\ &= \sum_{k} \sum_{l_1} c(k)d(l_1-2(m-n)) \int \varphi(2(x-n)-k) \, \varphi(2(x-n)-l_1) \, d(2x) \\ &= \sum_{k} c(k)d(k-2(m-n)) = 0. \end{split}$$

41

(iii) Ortogonalnost talasića na istom nivou rezolucije (za isto j) sledi iz jednačine (12), ortonormiranosti funkcije skaliranja u odnosu na svoje translacije i druge od pretpostavki (26),

$$\int_{-\infty}^{\infty} \psi(x-n)\psi(x-m) dx$$

= $\int \left(\sqrt{2}\sum_{k} d(k)\varphi(2(x-n)-k)\right) \left(\sqrt{2}\sum_{l} d(l)\varphi(2(x-m)-l)\right) dx$
= $\sum_{k} d(k)d(k-2(m-n)) = \delta(m-n).$

Ortogonalnost talasića na različitim nivoima rezolucije (za različito j) sledi neposredno iz uzajamne ortogonalnosti prostora \mathcal{W}_j , relacija (8).

Ortogonalnost talasića potiče od ortogonalnosti filtara definisanih koeficijentima c(k), o čemu će biti reči u narednom poglavlju. Za razliku od talasića, funkcije skaliranja na različitim rezolucijskim nivoima (za različito j) nisu ortogonalne. Ako je funkcija skaliranja ortogonalna u odnosu na svoje translacije, koeficijenti dilatacione jednačine c(k) su Fourier-ovi koeficijenti (form. (2.4)) funkcije skaliranja $\varphi(x)$ po ortonormiranom bazisu { $\varphi_{-1,k}(x)$ },

$$c(k) = (\varphi_{0,k}, \varphi_{-1,k}) = \int_{-\infty}^{\infty} \varphi(x) \sqrt{2} \varphi(2x-k) \, dx,$$

i oni nisu jednaki nuli za svako k.

U sledećem odeljku ćemo izložiti neke algoritme kojima se za zadate vrednosti koeficijenata c(k) funkcija skaliranja može odrediti.

3.5 Rešavanje dilatacione jednačine

Izuzev u trivijalnim slučajevima, kao što su primeri 2, 3 i 5, funkcija skaliranja, kao rešenje dilatacione jednačine (11), ne može se odrediti u analitičkom obliku. Primer za to je Daubechies funkcija skaliranja iz primera 6. Ona se, u opštem slučaju, računa iterativnim algoritmima, kojima se nalaze vrednosti funkcije na proizvoljno gustom skupu diadskih tačaka. Svakako da je onda i njoj pridružen talasić, određen jednačinom talasića (12), zadat na proizvoljno gustom skupu diadskih tačaka. To, međutim, ne umanjuje mogućnost aproksimacije ovim funkcijama, jer postoje vrlo efikasni diskretni algoritmi tipa FFT-a, o čemu će biti reči u poglavlju 6.

Vratimo se sada iterativnim algoritmima za rešavanje dilatacione jednačine (11).

Kaskadni algoritam je definisan u prethodnom odeljku izrazom (25), i korišćen u dokazu nekih osobina funkcije skaliranja. Naziva se i nisko-frekvencijska iteracija za rešavanje dilatacione jednačine. Algoritam se primenjuje na funkcije neprekidnog

argumenta. Funkcije $\varphi^{(i)}(x)$ su deo po deo konstanta, i konstantni delovi postaju to kraći što je indeks iteracije *i* veći (dužina konstantnog dela je 2^{-i}). Ako niz $\{\varphi^{(i)}(x)\}_{i=0}^{\infty}$ konvergira na odgovarajući način ka granici $\varphi(x)$, granična funkcija je rešenje dilatacione jednačine.

U opštem slučaju konvergencija može biti *slaba* ili *jaka*. Pod slabom konvergencijom podrazumevamo konvergenciju u srednjem – funkcije $\varphi^{(i)}(x)$ mogu oscilovati sve brže i brže, a da integral funkcije $\varphi^{(i)}(x)$ konvergira ka integralu funkcije $\varphi(x)$ na svakom konačnom intervalu [0, T] (integracija kontroliše oscilacije). Pri jakoj konvergenciji (uniformnoj), koju mi pretpostavljamo, $\varphi^{(i)}(x)$ teži ka $\varphi(x)$ u svakoj tački.

PRIMER 7. Četvrtka je fiksna tačka iterativnog algoritma definisanog koeficijentima $c(0) = c(1) = 1/\sqrt{2}$, jer se već u prvoj iteraciji dobija upravo četvrtka,

$$\varphi^{(1)}(x) = \varphi^{(0)}(2x) + \varphi^{(0)}(2x-1) \equiv \varphi^{(0)}(x).$$

PRIMER 8. Poznato nam je već da je krov funkcija rešenje dilatacione jednačine sa koeficijentima $c(0) = c(2) = 1/(2\sqrt{2})$ i $c(1) = 1/\sqrt{2}$ (primer 3). Polazeći od četvrtke, rekurentna formula

$$\varphi^{(1)}(x) = \frac{1}{2}\varphi^{(0)}(2x) + \varphi^{(0)}(2x-1) + \frac{1}{2}\varphi^{(0)}(2x-2)$$

definiše funkciju $\varphi^{(1)}(x)$ koja se sastoji od tri četvrtke dužine polovine celobrojnog intervala. U sledećoj iteraciji se dobija funkcija $\varphi^{(2)}(x)$ koja se sastoji od sedam četvrtki, svaka je definisana na jednoj četvrtini celobrojnog intervala, itd. (slika 3.10)

Slika 3.10: Krov funkcija kao granica kaskadnog algoritma

Skaliranje onemogućava da kompaktan nosač pređe u beskonačan domen, tako da je granični interval [0, 2]. Očigledno je da niz funkcija $\varphi^{(i)}(x)$ teži ka krov funkciji kada $i \to \infty$.

Na isti način bi se izborom koeficijenata $1/(8\sqrt{2})$, $4/(8\sqrt{2})$, $6/(8\sqrt{2})$, $4/(8\sqrt{2})$, $1/(8\sqrt{2})$ kao granična funkcija niza funkcija određenog formulom (25) dobio kubni B-splajn (primer 5), a pri izboru koeficijenata $(1 + \sqrt{3})/(4\sqrt{2})$, $(3 + \sqrt{3})/(4\sqrt{2})$, $(3 - \sqrt{3})/(4\sqrt{2})$ i $(1 - \sqrt{3})/(4\sqrt{2})$ Daubechies funkcija skaliranja (primer 6).

Kao početna aproksimacija u kaskadnom algoritmu izabrana je četvrtka zbog njene ortogonalnosti u odnosu na translaciju. I drugačiji izbor početne funkcije će, pri jakoj konvergenciji, dati niz funkcija koji konvergira ka istoj fiksnoj tački $\varphi(x)$, ili funkciji $c\varphi(x)$, c = const. Bolja početna aproksimacija $\varphi^{(0)}(x)$ od četvrtke je funkcija koja je deo po deo konstanta na svakom od intervala $n \leq x < n + 1$, pri čemu je vrednost te konstante na pomenutom intervalu jednaka tačnoj vrednosti funkcije skaliranja $\varphi(n)$. Ove vrednosti se mogu odrediti algoritmom zasnovanom na rekurziji, koji će biti objašnjen na kraju ovog odeljka.

Algoritam zasnovan na Fourier-ovoj transformaciji. Uvođenjem u dilatacionu jednačinu (11) smene $c(k) = \sqrt{2} h(k)$, ona postaje

(28)
$$\varphi(x) = 2 \sum_{k=0}^{N-1} h(k)\varphi(2x-k), \qquad \sum_{k=0}^{N-1} h(k) = 1,$$

pri čemu je uslov koji koeficijenti h(k) treba da zadovoljavaju posledica uslova (14).

TEOREMA 3. Fourier-ova transformacija $\hat{\varphi}(\omega)$ funkcije skaliranja $\varphi(x)$ je

(29)
$$\hat{\varphi}(\omega) = \prod_{j=1}^{\infty} \hat{h}\left(\frac{\omega}{2^j}\right),$$

ukoliko beskonačni proizvod konvergira. Funkcija

(30)
$$\hat{h}(\omega) = \sum_{k=0}^{N-1} h(k) e^{-\imath \omega k}$$

naziva se u teoriji signala frekvencijski odziv filtra definisanog koeficijentima h(k).

Dokaz: Da bismo prešli u frekvencijski domen, jednačinu (28) pomnožimo sa $e^{-\imath\omega x}$ i integralimo pox,

$$\int_{-\infty}^{\infty} \varphi(x) e^{-i\omega x} \, dx = 2 \sum_{k=0}^{N-1} h(k) \int_{-\infty}^{\infty} \varphi(2x-k) e^{-i\omega x} \, dx.$$

Leva strana je Fourier-ova transformacija funkcije skaliranja $\hat{\varphi}(\omega)$ (form. (2.15)). U integralu na desnoj strani smenom u = 2x - k dobija se izraz

$$2\int_{-\infty}^{\infty}\varphi(2x-k)e^{-\imath\omega x}\,dx = \int_{-\infty}^{\infty}\varphi(u)e^{-\imath\omega(u+k)/2}\,du = e^{-\imath\omega k/2}\hat{\varphi}\big(\frac{\omega}{2}\big),$$

te je dilataciona jednačina u frekvencijskom domenu

(31)
$$\hat{\varphi}(\omega) = \left(\sum_{k=0}^{N-1} h(k)e^{-i\omega k/2}\right)\hat{\varphi}\left(\frac{\omega}{2}\right) = \hat{h}\left(\frac{\omega}{2}\right)\hat{\varphi}\left(\frac{\omega}{2}\right).$$

Uzastopnom primenom veze (31) n puta dobija se izraz

(32)
$$\hat{\varphi}(\omega) = \hat{h}\left(\frac{\omega}{2}\right) \hat{h}\left(\frac{\omega}{4}\right) \cdots \hat{h}\left(\frac{\omega}{2^n}\right) \hat{\varphi}\left(\frac{\omega}{2^n}\right) \longrightarrow \hat{\varphi}(\omega) = \prod_{j=1}^{\infty} \hat{h}\left(\frac{\omega}{2^j}\right),$$

zato što je $\hat{\varphi}(0) = \int \varphi(x) \, dx = 1$ (uslov (13)).

44

LEMA 1. Potreban i dovoljan uslov da beskonačni proizvod $\prod_{j=1}^{\infty} \hat{h}(\frac{\omega}{2^j})$ konvergira jeste da činilac $\hat{h}(\omega/2^j) \to 1$ kada $j \to \infty$, tj. da je $\hat{h}(0) = 1$.

Dokaz: Na osnovu teoreme o srednjoj vrednosti i razvoja funkcije $e^{|\boldsymbol{x}|}$ dobija se ocena

$$|\hat{h}(\omega)| = |1 + \hat{h}(\omega) - \hat{h}(0)| \le 1 + A|\omega| \le e^{A|\omega|}, \qquad A = \max|\hat{h}'(\omega)|,$$

te je

$$|\hat{\varphi}(\omega)| = |\hat{h}\left(\frac{\omega}{2}\right)| |\hat{h}\left(\frac{\omega}{4}\right)| \dots \leq e^{A|\omega|/2} e^{A|\omega|/4} \dots = e^{A|\omega|\sum_{j=1}^{\infty} 2^{-j}} = e^{A|\omega|}.$$

Ako je $\hat{h}(0) = 1$, zbog 2π -periodičnosti funkcije $\hat{h}(\omega)$ važi da je

$$\hat{h}(2\pi) = \hat{h}(4\pi) = \dots = \hat{h}(2^k\pi) = \dots = 1,$$

te na osnovu (31) sledi

$$\hat{\varphi}(2\pi) = \hat{\varphi}(4\pi) = \hat{\varphi}(8\pi) = \cdots$$

Ako je još $\hat{h}(\pi) = 0$, onda su sve ove vrednosti jednake nuli, jer je

$$\hat{\varphi}(2\pi) = \hat{h}(\pi)\,\hat{\varphi}(\pi) = 0.$$

Šta više, ako je $\omega = \pi$ nula reda r funkcije $\hat{h}(\omega)$, tj. ako je $\hat{h}^{(m)}(\pi) = 0$, $m = 0, \ldots, r-1$, Fourier-ova transformacija funkcije skaliranja $\hat{\varphi}(\omega)$ ima nule reda ru svim tačkama $\omega = 2n\pi$, $n = 1, 2, 3, \ldots$ Naime, za $\omega = 2\pi$ prvi činilac u proizvodu (32) je $\hat{h}(\pi)$, za $\omega = 4\pi$ drugi je $\hat{h}(\pi)$, za $\omega = 6\pi$ prvi činilac je zbog periodičnosti $\hat{h}(3\pi) = \hat{h}(\pi)$, itd. Dakle, nule funkcije $\hat{\varphi}$ su tačke $\omega = 2n\pi$, $n = 1, 2, \ldots$, ako je $\hat{h}(\pi) = 0$. Nule m-tog izvoda funkcije $\hat{\varphi}(\omega)$ određene su nulama do m-tog izvoda funkcije $\hat{h}(\omega)$. Zato što je $\hat{h}^{(m)}(\pi) = 0$, $m = 0, 1, \ldots, r-1$, rekurentnim postupkom analogno prethodnom, izvodimo zaključak da u tačkama $\omega = 2n\pi$, $n = 1, 2, \ldots$, funkcija $\hat{\varphi}(\omega)$ ima nule reda r.

Uslov $\hat{h}(\pi) = 0$ je prirodan zahtev da bi funkcija $\hat{\varphi}(\omega)$ opadala, a $\varphi(x)$ bila "odgovarajuća" funkcija.

PRIMER 9. Koeficijentima h(0) = h(1) = 1/2 je određena četvrtka. Frekvencijski odziv (30) je $\hat{h}(\omega) = (1 + e^{-i\omega})/2$. Proizvod prvih *n* činilaca u izrazu (29) glasi

(33)
$$\hat{h}^{(n)}(\omega) = \frac{1}{2^n} \left(1 + e^{-i\omega/2}\right) \left(1 + e^{-i\omega/4}\right) \cdots \left(1 + e^{-i\omega/2^n}\right)$$
$$= \frac{1}{2^n} \sum_{k=0}^{2^n - 1} e^{-i\omega k/2^n} = \frac{1 - e^{-i\omega}}{2^n (1 - e^{-i\omega/2^n})},$$

pri čemu je gornja granica sume određena poslednjim sabirkom

$$e^{-\iota\omega/2}e^{-\iota\omega/2^2}\cdots e^{-\iota\omega/2^n} = e^{-\iota\omega(\frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n})} = e^{-\iota\omega\frac{2^n - 1}{2^n}} = \left(e^{-\iota\omega/2^n}\right)^{2^n - 1}$$

Ocenjujemo ponašanje imenioca u izrazu (33), koristeći oznaku $\theta = \omega/2^n$,

$$2^{n}(1-e^{-i\theta}) = 2^{n}(1-(1-i\theta+\cdots)) = 2^{n}i\theta+\cdots \qquad \underset{n\to\infty}{\longrightarrow} \qquad i\omega.$$

Stoga se granična vrednost proizvoda (33) svodi na

$$\hat{\varphi}(\omega) = \lim_{n \to \infty} \hat{h}^{(n)}(\omega) = \prod_{j=1}^{\infty} \left(\frac{1}{2} + \frac{1}{2} e^{-i\omega/2^j} \right) = \frac{1}{i\omega} \left(1 - e^{-i\omega} \right) = \int_0^1 e^{-i\omega x} \, dx,$$

što predstavlja Fourier-ovu transformaciju četvrtke. (Videti i zadatak 4.)

PRIMER 10. Za h(0) = 1 i h(k) = 0, $k \neq 0$ je $\hat{h}(\omega) \equiv 1$, te je $\hat{\varphi}(\omega) \equiv 1$ Fourier-ova transformacija Dirac-ove δ -funkcije (primer 2.6). Dilataciona jednačina, čije rešenje je δ -funkcija, je $\delta(x) = 2\delta(2x)$.

PRIMER 11. Kvadriranjem Fourier-ove transformacije četvrtke dobija se Fourierova transformacija krov funkcije, tj. linearnog splajna (zadatak 5), a ponovnim kvadriranjem Fourier-ova transformacija kubnog B-splajna. Ovo je posledica konvolucione teoreme (form. (2.18)) i činjenice da je linearni splajn konvolucija dve četvrtke, a B-splajn konvolucija četiri četvrtke. Više o splajnovima biće reči u §7.4.

Uslov ortogonalnosti funkcije skaliranja i njenih translacija u frekvencijskom domenu daje sledeća teorema.

TEOREMA 4. Ako Fourierova transformacija funkcije skaliranja $\varphi(x)$ zadovoljava uslov

(34)
$$\sum_{n=-\infty}^{\infty} |\hat{\varphi}(\omega+2n\pi)|^2 = 1.$$

onda je sistem funkcija $\{\varphi(x-k)\}_k$ ortonormirani sistem.

Dokaz: Na osnovu u
opštene Parseval-ove jednakosti (2.21), zbog ortogonalnosti sistema funkcija
 $\{\varphi(x-k)\}_k$, sledi da je

$$\delta(k) = \int_{-\infty}^{\infty} \varphi(x)\varphi(x-k) \, dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{\varphi}(\omega)|^2 e^{ik\omega} \, d\omega$$
$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left(\int_{2n\pi}^{2(n+1)\pi} |\hat{\varphi}(\omega)|^2 e^{ik\omega} \, d\omega \right).$$

Translacijom svakog od interval
a $[2n\pi,\,2(n+1)\pi]$ u osnovni interval $[0,2\pi]$ uslov postaje

$$\delta(k) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left(\int_0^{2\pi} |\hat{\varphi}(\omega + 2n\pi)|^2 e^{ik(\omega + 2n\pi)} \, d\omega \right)$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=-\infty}^{\infty} |\hat{\varphi}(\omega + 2n\pi)|^2 \right) e^{ik\omega} \, d\omega,$$

što za k = 0 glasi

$$\frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=-\infty}^\infty |\hat{\varphi}(\omega+2n\pi)|^2 \right) \, d\omega = 1.$$

Iz poslednjeg izraza neposredno sledi relacija (34).

Algoritam zasnovan na rekurziji. Pretpostavimo da je funkcija $\varphi(x)$ zadata u celobrojnim tačkama x = k. Rekurzijom (28) definisane su vrednosti funkcije $\varphi(x)$ u polovinama celih brojeva. Koristeći dobijene vrednosti na isti način određujemo vrednosti funkcije $\varphi(x)$ u četvrtinama celih brojeva, i uopšte u tačkama $x = k/2^j$. Ostaje još da se odrede vrednosti funkcije skaliranja u celobrojnim tačkama.

Dilataciona jednačina (28) sa beskonačno mnogo koeficijenata može se zapisati u vektorskom obliku,

$$\Phi_{\infty}(x) = M \Phi_{\infty}(2x), \qquad -\infty < x < \infty.$$

Vektor $\mathbf{\Phi}_{\infty}(x) = [\dots, \varphi(x), \varphi(x+1), \varphi(x+2), \dots]^{\top}$ i matrica

(35)
$$M = 2 \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & h(0) & 0 & 0 & 0 & 0 & \cdots \\ \cdots & h(2) & h(1) & h(0) & 0 & 0 & \cdots \\ \cdots & h(4) & h(3) & h(2) & h(1) & h(0) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

su beskonačnih dimenzija. U matrici M sve vrste sadrže redom koeficijente h(k), tako što su ovi u svakoj narednoj vrsti pomereni za dve kolone, što je posledica argumenta 2x - k.

TEOREMA 5. Vektorski oblik dilatacione jednačine (28) sa N sabiraka glasi

(36)
$$\mathbf{\Phi}(x) = M_0 \,\mathbf{\Phi}(2x) + M_1 \,\mathbf{\Phi}(2x-1).$$

Komponente vektora $\mathbf{\Phi}(x)$ su nula ako je argument van intervala [0,1). Matrice M_0 i M_1 su blok-matrice dimenzije $(N-1) \times (N-1)$ matrice M sa elementima

$$M_0(i,j) = M(i,j) = 2h(2i-j),$$
 $M_1(i,j) = M(i,j-1) = 2h(2i-j+1)$

Dokaz se može naći u [26].

Ako matrica M_0 ima sopstvenu vrednost $\lambda = 1$, stavljajući x = 0 u jednačinu (36), nalazimo da je $\mathbf{\Phi}(0) = [\varphi(0), \varphi(1), \dots, \varphi(N-2)]^{\top}$ odgovarajući sopstveni vektor. Na primer, za N = 6, u tački x = 0 jednačina (36) se svodi na

$$\boldsymbol{\Phi}(0) = \begin{pmatrix} \varphi(0) \\ \varphi(1) \\ \varphi(2) \\ \varphi(3) \\ \varphi(4) \end{pmatrix} = 2 \begin{pmatrix} h(0) & 0 & 0 & 0 & 0 \\ h(2) & h(1) & h(0) & 0 & 0 \\ h(4) & h(3) & h(2) & h(1) & h(0) \\ 0 & h(5) & h(4) & h(3) & h(2) \\ 0 & 0 & 0 & h(5) & h(4) \end{pmatrix} \begin{pmatrix} \varphi(0) \\ \varphi(1) \\ \varphi(2) \\ \varphi(3) \\ \varphi(4) \end{pmatrix} = M_0 \, \boldsymbol{\Phi}(0).$$

Kada se odrede vrednosti funkcije skaliranja u celobrojnim tačkama, vrednosti $\varphi(x)$ u polovinama celih brojeva se dobijaju množenjem ovog vektora matricom M_1 , što takođe sledi iz (36) za x = 1/2,

$$\boldsymbol{\Phi} \Big(\frac{1}{2} \Big) = \begin{pmatrix} \varphi(1/2) \\ \varphi(3/2) \\ \varphi(5/2) \\ \varphi(7/2) \\ \varphi(9/2) \end{pmatrix} = 2 \begin{pmatrix} h(1) & h(0) & 0 & 0 & 0 \\ h(3) & h(2) & h(1) & h(0) & 0 \\ h(5) & h(4) & h(3) & h(2) & h(1) \\ 0 & 0 & h(5) & h(4) & h(3) \\ 0 & 0 & 0 & 0 & h(5) \end{pmatrix} \begin{pmatrix} \varphi(0) \\ \varphi(1) \\ \varphi(2) \\ \varphi(3) \\ \varphi(4) \end{pmatrix} = M_1 \, \boldsymbol{\Phi}(0).$$

Dakle, prvi korak rekurzivnog algoritma za rešavanje dilatacione jednačine je

$$\mathbf{\Phi}(0) = M_0 \,\mathbf{\Phi}(0), \qquad \mathbf{\Phi}\left(\frac{1}{2}\right) = M_1 \,\mathbf{\Phi}(0).$$

Dalje se za svako diadsko x vrednosti $\varphi(x)$ dobijaju rekurzijom korišćenjem matrica M_0 ili M_1 i prethodno izračunatih vrednosti,

$$\Phi\left(\frac{1}{4}\right) = M_0 \,\Phi\left(\frac{1}{2}\right), \qquad \Phi\left(\frac{3}{4}\right) = M_1 \,\Phi\left(\frac{1}{2}\right),$$
...

Istaknimo da rekurzivni algoritam ima netrivijalno rešenje ako matrica M_0 ima sopstvenu vrednost $\lambda = 1$, jer tada vektorska jednačina

$$\Phi(0) = M_0 \Phi(0)$$

ima netrivijalno rešenje.

TEOREMA 6. Ako je tačka $\omega = \pi$ nula frekvencijskog odziva filtra (30), $\hat{h}(\pi) = 0$, onda je $\lambda = 1$ sopstvena vrednost matrica M_0 , M_1 i M.

Dokaz: Zbir elemenata u svakoj koloni matrice M_0 jednak je jedan. Naime, kada u (30) uzmemo u obzir da je $\hat{h}(\pi) = 0$ i uslov normiranosti koeficijenata filtra (28), sledi da je

$$h(0) - h(1) + h(2) - \dots = 0$$

$$h(0) + h(1) + h(2) + \dots = 1$$
 te je $2 \sum_{\text{parno } n} h(n) = 2 \sum_{\text{neparno } n} h(n) = 1.$

Matrica čiji je zbir elemenata u svakoj koloni jednak jedan ima sopstvenu vrednost $\lambda = 1$, tj. vektorska jednačina (37) ima netrivijalno rešenje. Zaista, vektor vrste \mathbf{e}^{\top} , čiji su svi elementi jednaki jedan, je levi sopstveni vektor takve matrice jer je

$$(1 \ 1 \ \cdots \ 1) \ M_0 = (1 \ 1 \ \cdots \ 1) \ \text{tj.} \ \mathbf{e}^\top (M_0 - I) = 0.$$

To znači da je matrica $M_0 - I$ singularna, tj. da je $\lambda = 1$ sopstvena vrednost matrice M_0 . Zaključak je, ustvari, posledica osnovne činjenice da kvadratna matrica i njena transponovana imaju jednake determinante, isti rang i iste sopstvene vrednosti.

Jasno je da isti zaključak važi i za matrice M_1 i M.

Napomenimo da je uslov $\hat{h}(\pi)=0$ i potreban uslov za konvergenciju kaskadnog algoritma.

3.5. REŠAVANJE DILATACIONE JEDNAČINE

POSLEDICA 1. Množenjem dilatacione jednačine (36) sa leve strane vektorom \mathbf{e}^{\top} , koristeći dokazane jednakosti $\mathbf{e}^{\top} M_0 = \mathbf{e}^{\top}$ i $\mathbf{e}^{\top} M_1 = \mathbf{e}^{\top}$, dobijamo da je

$$\mathbf{e}^{\top} \mathbf{\Phi}(x) = \mathbf{e}^{\top} \mathbf{\Phi}(2x) + \mathbf{e}^{\top} \mathbf{\Phi}(2x-1).$$

Poslednji izraz je dilataciona jednačina za funkciju $\mathbf{e}^{\top} \Phi(x)$, a njeno rešenje je četvrtka. Stoga važi identitet

(38)
$$\sum_{k} \varphi(x+k) \equiv 1.$$

PRIMER 12. Najjednostavniji slučaj jednačine (28) je za N = 2, tj. kada dilataciona jednačina ima dva koeficijenta. Tada su $M_0 = 2h(0)$ i $M_1 = 2h(1)$ matrice dimenzije jedan, tj. skalari,

$$\varphi(x) = M_0 \varphi(2x) + M_1 \varphi(2x - 1).$$

Rešenje će biti nula van intervala $0 \le x < 1$, a za x = 0 i x = 1/2 imamo da je

$$\varphi(0) = M_0 \varphi(0), \qquad \varphi\left(\frac{1}{2}\right) = M_1 \varphi(0).$$

Dalje stavimo x = 1/4, 3/4, a zatim x = 1/8, 3/8, 5/8, 7/8, i dobijamo

$$\varphi\left(\frac{1}{4}\right) = M_0\varphi\left(\frac{1}{2}\right) \qquad \varphi\left(\frac{3}{4}\right) = M_1\varphi\left(\frac{1}{2}\right)$$
$$\varphi\left(\frac{1}{8}\right) = M_0\varphi\left(\frac{1}{4}\right) \qquad \varphi\left(\frac{5}{8}\right) = M_1\varphi\left(\frac{1}{4}\right) \qquad \varphi\left(\frac{3}{8}\right) = M_0\varphi\left(\frac{3}{4}\right) \qquad \varphi\left(\frac{7}{8}\right) = M_1\varphi\left(\frac{3}{4}\right)$$

Izražavajući sve vrednosti pomoću $\varphi(0)$ imamo, na primer, da je

$$\varphi\left(\frac{3}{8}\right) = M_0 M_1 M_1 \varphi(0)$$
 za $x = \frac{3}{8} \stackrel{\text{binarno}}{=} 0.011$

(jer je $3/8 = 3 \cdot 2^{-3} = 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 0.011$ u binarnom sistemu).

U opštem slučaju, vrednost funkcije skaliranja $\Phi(x)$, koja je rešenje dilatacione jednačine (36), u svakoj diadskoj tački $x = n/2^i$ određena je binarnim zapisom argumenta x; na primer,

$$x = 0.01101 \qquad \Phi(x) = M_0 M_1 M_1 M_0 M_1 \Phi(0)$$

Početni vektor $\Phi(0)$ je rešenje problema sopstvenih vrednosti (37).

PRIMER 13. Koeficijenti $2h(k)=1/2,\,1,\,1/2$ generišu krov funkciju. Problem sopstvenih vrednosti za matricu M_0 dimenzije 2×2 glasi

$$\begin{pmatrix} 1/2 & 0 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} \varphi(0) \\ \varphi(1) \end{pmatrix} = \begin{pmatrix} \varphi(0) \\ \varphi(1) \end{pmatrix} \longrightarrow \begin{array}{c} \varphi(0) = 0 \\ \varphi(1) = 1 \end{array}$$

Suma svih krov funkcija $\varphi(x+k)$ je identički jednaka jedan, što je salasno sa uslovom (38).

PRIMER 14. Daubechies koeficijenti generišu sistem

$$\frac{1}{4} \begin{pmatrix} 1+\sqrt{3} & 0 & 0\\ 3-\sqrt{3} & 3+\sqrt{3} & 1+\sqrt{3}\\ 0 & 1-\sqrt{3} & 3-\sqrt{3} \end{pmatrix} \begin{pmatrix} \varphi(0)\\ \varphi(1)\\ \varphi(2) \end{pmatrix} = \begin{pmatrix} \varphi(0)\\ \varphi(1)\\ \varphi(2) \end{pmatrix} \xrightarrow{} \varphi(0) = 0 \\ \longrightarrow \varphi(1) = (1+\sqrt{3})/2 \\ \varphi(2) = (1-\sqrt{3})/2$$

PRIMER 15. Ako je funkcija skaliranja kubni B-splajn, ona je različita od nule samo na intervalu (0,4). Pišući rekurziju u tačkama 0, 1, 2 i 3, dobija se homogeni sistem jednačina po sopstvenom vektoru $[\varphi(0), \varphi(1), \varphi(2), \varphi(3)]^{\top}$. Sopstvene vrednosti matrice M_0 su 1, $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$.

3.6 Konstrukcija talasića

Prethodni odeljak bio je posvećen nalaženju funkcije skaliranja, a u ovom ćemo se baviti konstrukcijom talasića. Podsetimo se prethodno nekih osobina talasića. Talasić je funkcija talasnog oblika koja ima ograničeno trajanje i čija je srednja vrednost nula. To znači da talasić ima u frekvencijskom domenu odgovarajuću brzinu opadanja, i da je $\hat{\psi}(0) = \int \psi(x) dx = 0$, što je posledica uslova za postojanje inverzne transformacije talasićima (uslov (2.24)). Za razliku od sinusoide, talasići su u opštem slučaju nepravilni i asimetrični (slika 3.11).

Slika 3.11: Sinusoida i talasić

Translacijom i dilatacijom $\psi(2^j x - k)$ osnovnog talasića ("majke") $\psi(x)$, definisanog jednačinom (12), generiše se bazis talasića $\{\psi_{j,k}(x)\}_{j,k}$. Ako osnovni talasić $\psi(x) (\equiv \psi_{0,0}(x))$ počinje u trenutku x = 0, a završava u trenutku x = N - 1, pomereni talasić $\psi_{0,k}$ počinje u trenutku x = k i završava u trenutku x = k + N - 1. Skalirani talasić $\psi_{j,0}$ počinje u trenutku x = 0 i završava u trenutku $x = 2^j(N-1)$. Njegov grafik je skaliran (kompresovan ili razvučen, zavisno od znaka j) za faktor 2^{-j} , a grafik talasića $\psi_{0,k}$ je transliran u desno za k, ako je k > 0,

skaliranje $\psi_{j,0}(x) = 2^{-j/2}\psi(2^{-j}x),$ translacija $\psi_{0,k}(x) = \psi(x-k).$

Bazisni talasić nastaje kompresijom j puta i pomeranjem za k osnovnog talasića,

$$\psi_{j,k}(x) = 2^{-j/2}\psi(2^{-j}x - k).$$

Koeficijent $2^{-j/2}$ je faktor normiranja. Prostor \mathcal{W}_j sadrži funkcije koje su linearne kombinacije talasića $\psi_{ik}(x)$.

Fourier-ova analiza se zasniva na razlaganju funkcije na sinusne talase različitih frekvencija. Slično, analiza talasićima je razlaganje funkcije na pomerene i skalirane verzije osnovnog talasića. Intuitivno je jasno da se funkcije sa oštrim promenama mogu bolje analizirati pomoću nepravilnog talasića, nego pomoću glatke sinusoide.

Kao što je dokazano u teoremi 2, funkcije skaliranja $\varphi_{jk}(x)$ čine ortonormirani sistem na svakoj skali posebno, odnosno za dato j. Ali, nema ortogonalnosti po različitim skalama, funkcija $\varphi(x)$ nije ortogonalna na funkciju $\varphi(2x)$. Ortogonalnost preko skala potiče od potprostora talasića \mathcal{W}_j i njihovih bazisnih funkcija $\psi_{j,k}(x)$.

Talasiće možemo proučavati polazeći od

- 1. prostora \mathcal{W}_j ako su poznati aproksimacioni prostori \mathcal{V}_j , njihove razlike definišu prostore \mathcal{W}_j ;
- 2. $talasića \psi(x)$ osnovni talasić je potrebno translirati i skalirati;
- 3. koeficijenata jednačine talasića d(k) ako su poznati koeficijenti c(k), oni, uzeti u obrnutom poretku i sa alternativnom promenom znaka (form. (27)), definišu d(k). Osnovni talasić $\psi(x)$ je određen jednačinom talasića

$$\psi(x) = \sqrt{2} \sum_{k=0}^{N-1} (-1)^k c(N-1-k)\varphi(2x-k), \qquad N \text{ parno.}$$

Alternativna promena znaka koeficijenata dilatacione jednačine određuje oscilatornu prirodu ove funkcije – odatle naziv talas. Ako je konačan broj koeficijenata c(k) različit od nule, osnovni talasić će imati kompaktan nosač – odatle deminutiv.

PRIMER 16. Prikazaćemo sva tri pristupa na primeru četvrtke.

1. potprostori – Prostor \mathcal{V}_0 sadrži funkcije koje su konstante na jediničnim intervalima, a \mathcal{V}_{-1} konstante na polovinama jediničnih intervala (primer 2). Prostor $\mathcal{W}_0 \subset \mathcal{V}_{-1}$, te su funkcije iz \mathcal{W}_0 jednake konstantama na polovinama intervala. Taj prostor je ortogonalan na \mathcal{V}_0 , jer je $\mathcal{V}_0 \oplus \mathcal{W}_0 = \mathcal{V}_{-1}$, te za proizvoljne funkcije $g \in \mathcal{V}_0$ i $f \in \mathcal{W}_0$ treba da važi

$$(f,g) = \sum_{k} \int_{k}^{k+1} g(x)f(x) \, dx = \sum_{k} g(k) \int_{k}^{k+1} f(x) \, dx = 0.$$

Da bi poslednji uslov važio za proizvoljno g(k), $k = 0, \pm 1, \ldots$, integral nad svakim celim intervalom funkcije iz \mathcal{W}_0 mora biti nula, $\int_k^{k+1} f(x) dx = 0$, $k = 0, \pm 1, \ldots$. Ta činjenica određuje konstrukciju komplementarnog prostora \mathcal{W}_0 ortogonalnog na \mathcal{V}_0 unutar \mathcal{V}_{-1} ,

 $\mathcal{W}_0 = \{ \text{ konstante na poluintervalima uz uslov } f(k) + f(k+1/2) = 0 \}.$

Kombinovanjem jednakih vrednosti za k i k + 1/2 funkcije iz \mathcal{V}_0 sa vrednostima suprotnog znaka za funkciju iz \mathcal{W}_0 dobijamo bilo koju vrednost za funkciju iz \mathcal{V}_{-1} .

2. talasići – Prvi put se talasić pridružen četvrtki pominje u tezi A. Haar-a 1909. godine, pa ga nazivamo Haar-ovim talasićem. Osnovni talasić je funkcija koja se sastoji od pozitivne i negativne polučetvrtke, koje su definisane na prvoj, odnosno drugoj polovini jediničnog intervala (slika 3.13(a)),

$$\psi(x) = \begin{cases} 1, & x \in [0, 1/2) \\ -1, & x \in [1/2, 1) \\ 0, & x \notin [0, 1) \end{cases}$$

Ovaj talasić je ortogonalan na četvrtku $\varphi(x)$. On je ortogonalan i na translacije funkcije $\varphi(x)$, a takođe i na svoje translacije (jer se nosači funkcija $\psi(x)$ i $\psi(x-1)$ ne preklapaju). Šta više, na osnovu multirezolucije sledi da je talasić $\psi(x)$ ortogonalan i na svoje dilatacije, a i na translacije dilatacija,

$$\int_{-\infty}^{\infty} \psi(x)\psi(2^{-j}x-k)\,dx = 0 \qquad \text{osim za} \quad j=k=0.$$

Translacije $\psi(x)$ generišu prostor \mathcal{W}_0 . Translacije funkcije $\psi(2^{-j}x)$ generišu prostor \mathcal{W}_j . Iz kompletnosti sledi da je ortonormirani sistem $\{\psi_{j,k}(x)\}_{j,k}$,

$$\psi_{j,k}(x) = 2^{-j/2} \psi(2^{-j}x - k), \qquad j, k \in \mathbb{Z},$$

bazis u \mathcal{L}_2 . Indeksom *j* definisana je rezolucija bazisnih funkcija. Najbolja srednjekvadratna aproksimacija funkcije f(x) na ovom sistemu funkcija je deo po deo konstanta,

$$Q(x) = \sum_{j,k} (f, \psi_{jk}) \psi_{jk}(x),$$

čije su vrednosti jednake srednjim vrednostima funkcije f(x) na odgovarajućim intervalima. Mala glatkost aproksimacije, zbog prekidnosti bazisnih funkcija, je nedostatak Haar-ovih talasića.

3. koeficijenti $c(0) = c(1) = 1/\sqrt{2}$. Uzimajući ove koeficijente obrnutim redom i sa alternativnom promenom znaka (form. (27)), dobijamo da je $d(0) = 1/\sqrt{2}$ i $d(1) = -1/\sqrt{2}$. Ti koeficijenti definišu jednačinu Haar-ovog talasića

Slika 3.12: Jednačina Haar-ovog talasića

Ovom jednačinom talasić se dobija direktno pomoću funkcije skaliranja – od četvrtke se oduzima translirana četvrtka.

PRIMER 17. (slika 3.13(b)) Neka je funkcija skaliranja Dirac-ova δ -funkcija (primer 10). Prostor \mathcal{V}_0 sadrži linearne kombinacije $\sum a_k \delta(x-k)$ Dirac-ovih funkcija u celobrojnim tačkama. Prostor \mathcal{V}_{-1} , generisan Dirac-ovim funkcijama $\delta(2x-k)$ sadrži impulse u tačkama $x = 0, \pm \frac{1}{2}, \pm 1, \ldots$ Stoga prostor \mathcal{W}_0 sadrži impulse u sredinama celobrojnih intervala x = k + 1/2. Analogno se definišu prostori na drugim skalama. Osnovni talasić je Dirac-ova funkcija u tački $x = 1/2, \psi(x) = \delta(x-1/2)$. Jedini nenula koeficijent je h(0) = 1, pa je dilataciona jednačina za Dirac-ovu funkciju $\delta(x) = 2\delta(2x)$. Jednačina talasića je $\psi(x) = 2\delta(2x-1) = \delta(x-1/2)$, što smo već zaključili analizirajući prostore. Uočimo da uređenje koeficijenata obrnutim redom sa alternativnom promenom znaka podrazumeva pomeranje za neparan broj, zbog dvostruko pomerene ortogonalnosti. Stoga je $d(1) \neq 0$, a d(0) = 0.

PRIMER 18. Pri konstrukciji bazisa talasića obično se zahteva ortogonalnost bazisnih funkcija, koji je važan mada ne i neophodan uslov pri aproksimaciji funkcija. Talasić pridružen krov funkciji (slika 3.13(c)) ne generiše ortogonalni bazis. Uslovi ortogonalnosti (26) ne mogu biti zadovoljeni zbog neparanog broja koeficijenata.

Slika 3.13: Osnovni talasići

PRIMER 19. Daubechies talasić (slika 3.14, desno) je primer konstrukcije talasića zadavanjem koeficijenata filtra c(k). Uzimajući koeficijente iz primera 6 obrnutim redom i sa alternativnom promenom znaka, dobijaju se četiri koeficijenta jednačine talasića d(k),

$$(d(0), d(1), d(2), d(3)) = (c(3), -c(2), c(1), -c(0))$$

= $\frac{1}{4\sqrt{2}} (1 - \sqrt{3}, -(3 - \sqrt{3}), 3 + \sqrt{3}, -(1 + \sqrt{3})).$

Njihova suma je nula, a suma kvadrata jednaka je jedan. Oni su ortogonalni u odnosu na svoj dvostruki pomeraj (uslov (26)), jer su takvi i *c*-ovi. Jednačina talasića određuje Daubechies talasić koji nema eksplicitni zapis. Ortogonalnost funkcija $\psi(x-k)$ i $\varphi(x-k)$ je, prema teoremi 2, posledica ortogonalnosti dvostrukog pomeraja koeficijenata.

Ingrid Daubechies ([8]) je konstruisala celu klasu ortonormiranih bazisa talasića, koristeći analogiju sa maksimalno zaravnjenim filtrima u teoriji signala, o čemu će biti reči u §4.5. Kada se odrede koeficijenti c(k) nekog od ovih filtara, određeni su jednačinom (11) funkcija skaliranja i jednačinom (12) osnovni talasić. Funkcija skaliranja i talasić ne mogu se zapisati u analitičkom obliku, već su definisani samo rekurzijom. Stoga se osobine talasića izražavaju kroz osobine koeficijenata c(k). U opštem slučaju ovi talasići zavise od celog broja $r \ge 1$ koji definiše nosač funkcija $\varphi(x)$ i $\psi(x)$, za $x \in [0, 2r - 1]$ one nisu identički jednake nuli, kao i Hölder-ovu regularnost ovih funkcija – $\varphi(x)$ i $\psi(x)$ pripadaju prostoru C^q , gde je q = q(r) i $\lim_{r \to +\infty} r^{-1}q(r) = \gamma > 0$. Vrednost konstante γ je približno 0.2. To znači, na primer, da ako talasić $\psi(x)$ treba da ima deset neprekidnih izvoda, dužina njegovog nosača mora biti oko sto. Funkcije $\varphi(x)$ i $\psi(x)$ su, redom, "otac" i "majka" talasića koji formiraju ortonormirani bazis. Ako je r = 1, $\varphi(x)$ je četvrtka, a ortonormirani bazis $\{\psi_{jk}\}_{j,k\in\mathbb{Z}}$ je Haar-ov bazis. Za r = 2 funkcija skaliranja i talasić su prikazani na slici 3.14, a za r = 3 na slici 3.15.

Slika 3.14: Db2 (r = 2) funkcija skaliranja i talasić

Slika 3.15: Db3 (r = 3) funkcija skaliranja i talasić

Funkcije $\psi(x)$, koje je za konstrukciju ortonormiranih bazisa koristila Ingrid Daubechies, nazvane su njenim imenom i predstavljaju nove "specijalne funkcije". One su dobijene zahvaljujući posebnim filtrima. Ne bi bilo moguće otkriti Daubechies talasiće direktnim rešavanjem sledećeg problema: za dati broj $r \ge 0$ odrediti funkciju $\psi(x) \in C^r$ takvu da je $\{2^{-j/2}\psi(2^{-j}x-k)\}, j, k \in \mathbb{Z}$, ortonormirani bazis prostora $\mathcal{L}_2(\mathbb{R})$.

Na kraju, izrazimo talasić u frekvencijskom domenu. Fourier-ova transformacija

3.6. KONSTRUKCIJA TALASIĆA

 $\hat{\psi}(\omega)$ ortogonalnog talasića zadovoljava relaciju analognu relaciji (29) za Fourier-ovu transformaciju funkcije skaliranja. Zaista, izraz

$$\hat{\psi}(\omega) = \int_{-\infty}^{\infty} \psi(x) e^{-i\omega x} \, dx = \int_{-\infty}^{\infty} \left(\sqrt{2} \sum_{k=0}^{N-1} d(k)\varphi(2x-k) e^{-i\omega x}\right) \, dx$$

se, na osnovu (27) za ${\cal N}=2r,$ svodi na

$$\hat{\psi}(\omega) = \sqrt{2} \sum_{k=0}^{2r-1} (-1)^k c(2r-1-k) \int_{-\infty}^{\infty} \varphi(2x-k) e^{-i\omega x} dx$$
$$= \sqrt{2} \sum_{k=0}^{2r-1} (-1)^k c(2r-1-k) \frac{1}{2} e^{-i\omega k/2} \hat{\varphi}(\frac{\omega}{2}) = \hat{d}(\frac{\omega}{2}) \hat{\varphi}(\frac{\omega}{2}),$$

gde je uvedena oznaka

$$\hat{d}(\omega) = \frac{1}{\sqrt{2}} \sum_{k=0}^{2r-1} (-1)^k c(2r-1-k) e^{-i\omega k} = \sum_{k=0}^{2r-1} (-1)^k h(2r-1-k) e^{-i\omega k}$$
(39)
$$= \sum_{l=0}^{2r-1} (-1)^{2r-1-l} h(l) e^{-i\omega(2r-1-l)} = -e^{i(1-2r)\omega} \sum_{l=0}^{2r-1} h(l) e^{i\pi l} e^{i\omega l}$$

$$= -e^{i(1-2r)\omega} \sum_{l=0}^{2r-1} h(l) e^{i(\omega+\pi)l} = -e^{i(1-2r)\omega} \overline{\hat{h}(\omega+\pi)}.$$

Konačno, uzimajući u obzir (29), Fourier-ova transformacija ortogonalnog talasića $\psi(x)$, čiji je nosač interval [0, 2r - 1], jednaka je

$$\hat{\psi}(\omega) = \hat{d}\left(\frac{\omega}{2}\right)\hat{\varphi}\left(\frac{\omega}{2}\right) = \hat{d}\left(\frac{\omega}{2}\right)\prod_{j=2}^{\infty}\hat{h}\left(\frac{\omega}{2^j}\right).$$

Zadaci

1. Ako talasić $\psi(x)$ ima jediničnu normu, $\int (\psi(x))^2 dx = 1$, pokazati da funkcija $\psi_{jk}(x) = 2^{j/2} \psi(2^j x - k)$ takođe ima jediničnu normu.

2. Ako je početna aproksimacija kaskadnog algoritma četvrtka na intervalu [0,1] i ako su $h(0), \ldots, h(N)$ koeficijenti dilatacione jednačine, kompaktni nosač aproksimacije $\varphi^{(i)}(x)$ raste do intervala [0, N]. Šta se događa ako je $\varphi^{(0)}(x)$ četvrtka na intervalu [0, 2N]?

3. Neka su koeficijenti filtra h(k) : $\frac{1}{2}$, 0, 0, $\frac{1}{2}$. Polazeći od četvrtke, uraditi dva koraka kaskadnog algoritma i nacrtati grafike funkcija $\varphi^{(1)}(x)$ i $\varphi^{(2)}(x)$. Kako izgleda funkcija $\varphi^{(i)}(x)$ – na kom delu intervala [0,3] je $\varphi^{(i)}(x) = 1$?

4. Frekvencijski odziv Haar-ovog filtra jednak je

$$\hat{h}(\omega) = \frac{1}{2}(1 + e^{-\imath\omega}) = e^{-\imath\omega/2}\cos\frac{\omega}{2}.$$

Koristeći identitet $\sin 2\theta = 2\sin\theta\cos\theta$, dokazati da važi

$$\prod_{j=1}^{\infty} \cos\left(\frac{\omega}{2^j}\right) = \frac{\sin\omega}{\omega},$$

i na osnovu toga dokazati da je Fourier-ova transformacija četvrtke jednaka

$$\prod_{j=1}^{\infty} \hat{h}\left(\frac{\omega}{2^j}\right) = \frac{1}{\imath\omega} \left(1 - e^{-\imath\omega}\right).$$

5. Naći funkciju skaliranja $\varphi(x)$ koja je definisana frekvencijskim odzivom $\hat{h}(\omega) = \frac{1}{4} (1 + e^{-i\omega})^2$, i njenu Fourier-ovu transformaciju $\hat{\varphi}(\omega)$.

6. Korišćenjem kaskadnog algoritma (25), napisati u MatLab-u program za izračunavanje vrednosti funkcije skaliranja i talasića na proizvoljnom skupu diadskih tačaka.

7. Korišćenjem matričnog zapisa dilatacione jednačine i njenih izvoda (form. (36))

$$\mathbf{\Phi}^{(m)}(x) = 2^m M_0 \, \mathbf{\Phi}^{(m)}(2x) + 2^m M_1 \, \mathbf{\Phi}^{(m)}(2x-1),$$

napisati program u MatLab-u za izračunavanje funkcije skaliranja i talasića, ili njihovih izvoda redam,na proizvoljnom skupu diadskih tačaka.

Glava 4

Filtri

U prethodnoj glavi je pomenuto (primer 3.19) da se koeficijenti dilatacione jednačine mogu izabrati kao koeficijenti filtra. Kako sve osobine funkcije skaliranja $\varphi(x)$ i talasića $\psi(x)$ – interval na kome nisu identički jednake nuli, ortogonalnost, glatkost, iščezavajući momenti – proizilaze iz osobina koeficijenata dilatacione jednačine, u ovom poglavlju ćemo ove koeficijente analizirati sa stanovišta filtara. Kako su filtri osnovni alat u obradi signala, počećemo sa definisanjem neophodnih pojmova u ovoj oblasti.

4.1 Signal

U §2.2 signal je definisan kao funkcija koja opisuje neku fizičku veličinu. Diskretni signal je onaj koji je dat za diskretne vrednosti argumenta. Predstavlja niz brojeva dobijenih pomoću odgovarajućeg uređaja. Služi za prenos informacija, koje predstavljaju unapred nepoznatu promenu u odnosu na prethodno stanje. Za razliku od ovog, nazovimo ga jednodimenzionog signala, dvodimenzioni signal je nazvan *slika*. Svuda oko nas su signali koje treba analizirati. Seizmička podrhtavanja, ljudski govor, vibracije motora, medicinski snimci, finansijski podaci, muzika, i mnogi drugi tipovi signala treba da budu efikasno opisani, analizirani, očišćeni od šuma, šifrovani, kompresovani, rekonstruisani, uprošćeni, modelovani, razdvojeni ili locirani. Stoga su osnovni zadaci naučne discipline koja se naziva *obrada signala*: analiza i dijagnostika, kodiranje, kvantizacija i kompresija, prenos i čuvanje, sinteza i rekonstrukcija. Do pre dvadesetak godina osnovni alat u obradi signala je bila Fourier-ova analiza.

Formiranje diskretnog signala, tj. odabiranje, je centralno mesto u obradi signala, jer je to proces diskretizacije kontinualnog vremenskog domena. Nezavisno promenljivu ćemo označavati sa t, imajući u vidu da argument najčešće predstavlja vreme. Potrebno je obezbediti da perioda odabiranja bude dovoljno mala, kako bi se signal ograničene frekvencije mogao tačno rekonstruisati na osnovu svojih zadatih vrednosti. TEOREMA 1. (ODABIRANJA) Ako je f(t) kontinualni signal čiji je frekvencijski opseg ograničen sa $\Omega > 0$, onda je f(t) jednoznačno definisan svojim odbircima učestanosti 2Ω , tj. vrednostima $f(n\pi/\Omega)$, $n = 0, \pm 1, \ldots$ Minimalna frekvencija odabiranja je $\omega_s = 2\Omega$, a maksimalno dopustiva perioda odabiranja je $T = \pi/\Omega$. Signal f(t) može se rekonstruisati interpolacionom formulom

(1)
$$f(t) = \sum_{n=-\infty}^{\infty} f(nT) \operatorname{sinc}_T(t-nT), \quad \operatorname{sinc}_T(t) = \frac{\sin(\pi t/T)}{\pi t/T}.$$

Dokaz se može naći u [8].

Drugim rečima, vremenski kontinualan signal može se potpuno rekonstruisati na osnovu svojih odbiraka ako je učestanost odabiranja bar dva puta veća od najviše učestanosti u spektru signala.

Frekvencijski opseg signala f(t) je domen (kompaktni nosač) njegove Fourierove transformacije $\hat{f}(\omega)$. Funkcija sinc $(t) = \frac{\sin \pi t}{\pi t}$ se naziva Shannon-ova funkcija i predstavlja inverznu Fourier-ovu transformaciju frekvencijske karakteristične funkcije intervala $[-\pi, \pi]$,

$$\aleph_{(-\pi,\pi)}(\omega) = \begin{cases} 1, & \omega \in [-\pi,\pi) \\ 0, & \omega \notin [-\pi,\pi) \end{cases}$$

jer važi

$$\operatorname{sinc}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \aleph_{(-\pi,\pi)}(\omega) e^{i\omega t} \, d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\omega t} \, d\omega = \frac{\sin \pi t}{\pi t}.$$

Treba uočiti da je sinc $_T(nT) = \delta(n)$, tj. da ova funkcija ima interpolaciono svojstvo, jer je jednaka jedan za t = 0 i jednaka nuli u umnošcima od T različitim od nule. Količnik

(2)
$$\frac{1}{T} = \frac{\Omega}{\pi}$$
 je Nyquist – ova brzina

i definiše najveću periodu odabiranja $\Omega T=\pi.$

Slika 4.1: Različita odabiranja signala $\cos \pi t$

4.1. SIGNAL

Slika 4.1 prikazuje različita odabiranja signala $\cos \pi t$, čiji je frekvencijski opseg ograničen sa $\Omega = \pi$. Da li ćemo odabiranjem "uhvatiti" oscilacije ovog signala ili ne zavisi od periode Δt i brzine ω/π odabiranja. Slika (a) predstavlja odabiranje formirano sa Nyquist-ovom (graničnom) brzinom 1 ($\Omega = \pi$ u form.(2)), pa je signal $\cos \pi t$ predstavljen diskretnim signalom $x(n) = \cos n\pi, n = 0, \pm 1, \ldots,$ koji je formiran sa maksimalnom periodom odabiranja $\Delta t = T = 1$. Na slici (b) je predstavljeno odabiranje sa dvostruko manjom periodom $\Delta t = 1/2$, tj. formirano sa dvostruko većom brzinom od Nyquist-ove $\frac{\omega}{\pi} = \frac{1}{\Delta t} = 2$. Na taj način su uzete četiri vrednosti (crne tačke) po oscilaciji. Odgovarajući diskretan signal je $x(n) = \cos \pi n \Delta t = \cos \frac{n\pi}{2}$. Slika (c) predstavlja odabiranje formirano sa brzinom $\frac{\omega}{\pi} = \frac{1}{\Delta t} = \frac{2}{3}$, koja je manja od Nyquist-ove, što dovodi do nedoumice o kom signalu je reč – da li je reč o signalu cos πt (nacrtan punom linijom) ili signalu $\cos \frac{\pi}{3}t$, čiji je frekvencijski opseg $\pi/3$ (nacrtan isprekidanom linijom). Ova pojava se naziva preklapanje spektra (engl. "aliasing"). Manja frekvencija $\frac{\pi}{3}$ preklapa pravu frekvenciju π , jer su odbirci formirani ovom brzinom isti. Svakako da je najbolje odabiranje (a), jer se sa najmanjim brojem diskretnih vrednosti tačno može rekonstruisati signal izrazom (1).

POSLEDICA 1. Ako za frekvenciju signala f(t) važi ograničenje $|\omega| \leq \pi$, tj. $\hat{f}(\omega) \equiv 0$ za $|\omega| > \pi$, sledi da je $\Omega = \pi$, tj. T = 1, te je interpolacionom formulom (1),

(3)
$$f(t) = \sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi (t-n)}{\pi (t-n)},$$

funkcija f(t) tačno određena svojim odbircima f(n).

Vezu diskretnog signala f(n) i Fourier-ove transformacije $\hat{f}(\omega)$ signala f(t) daje

TEOREMA 2. (POISSON-OVA SUMACIONA FORMULA.) Za signal f(t) zadovoljavajuće glatkosti i slabljenja važi da je

$$\sum_{n=-\infty}^{\infty} f(t-nT) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \hat{f}\left(\frac{2\pi k}{T}\right) e^{i2\pi kt/T},$$

što za T = 1 i t = 0 daje izraz

$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{k=-\infty}^{\infty} \hat{f}(2\pi k).$$

Dokaz se može naći u [31].

Parseval-ova jednakost za diskretni signal ima oblik

(4)
$$\|\mathbf{f}\|^2 = \sum_{n=-\infty}^{\infty} |f(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\hat{f}(\omega)|^2 \, d\omega = \|\hat{f}\|^2,$$

što je posledica dualnosti Fourier-ovog reda i diskretne po vremenu Fourier-ove transformacije $(\S 2.2)$.

4.2 Filtar

Filtri služe za izdvajanje iz signala frekvencijskih grupa, tj. svih komponenti čije su frekvencije iz nekog zadatog opsega. Definisani su svojim koeficijentima, koji su nama zanimljivi kao koeficijenti dilatacione jednačine. Stoga ćemo analizom digitalnih filtara doći do uslova koje treba da zadovoljavaju koeficijenti dilatacione jednačine da bi talasići imali željena svojstva.

Vremenski domen. Filtar je linearni operator invarijantan po vremenu. Određen je signalom **h**, čiji elementi $h(0), h(1), h(2), \ldots$ predstavljaju koeficijente filtra. Deluje na ulazni signal $\mathbf{x} = \{x(n)\}$ tako što je izlazni signal $\mathbf{y} = \{y(n)\}$ konvolucija signala **h** i signala **x**,

(5)
$$\mathbf{y} = \mathbf{h} * \mathbf{x}, \qquad y(n) = \sum_{k} h(k)x(n-k)$$

(analogija sa definicijom konvolucije funkcija, form. (2.17)). Ovde je reč o digitalnim a ne analognim filtrima, tako da su koeficijenti filtra h(n) dati za diskretna vremena t = n T. Pretpostavljeno je da je perioda odabiranja T jednaka jedan, pa su ulazi x(n) i izlazi y(n) određeni za vremena $t = 0, \pm 1, \pm 2, \ldots$

PRIMER 1. Konvolucija signala x(0) = 4, x(1) = 2, x(2) = 3 i h(0) = 2, h(1) = 5, h(2) = 1 je signal čiji se elementi mogu računati prema sledećoj šemi:

4	3	2	1	0		n
		3	2	4	=	x
		1	5	2	=	h
		6	4	8		
	15	10	20			
3	2	4				
3	17	20	24	8	=	У

Elementi konvolucije se mogu odrediti i kao koeficijenti polinoma dobijenog množenjem dva polinoma, čiji su koeficijenti elementi signala \mathbf{h} i \mathbf{x} čiju konvoluciju tražimo,

$$H(t) X(t) = (h(0) + h(1)t + h(2)t^{2}) (x(0) + x(1)t + x(2)t^{2})$$

= $h(0)x(0) + (h(1)x(0) + h(0)x(1))t + (h(2)x(0) + h(1)x(1) + h(0)x(2))t^{2}$
+ $(h(2)x(1) + h(1)x(2))t^{3} + h(2)x(2)t^{4}.$
= $8 + 24t + 20t^{2} + 17t^{3} + 3t^{4}.$

Očigledno je da je y(n) upravo koeficijent uz t^n . U opštem slučaju, kada signal **h** ima dimenziju (N + 1), a signal **x** je beskonačan, konvolucija je signal određen koeficijentima proizvoda polinoma i reda,

$$H(t) X(t) = \left(h(0) + h(1)t + \dots + h(N)t^{N}\right) \left(\dots + x(-1)t^{-1} + x(0) + x(1)t + \dots\right)$$

Konvolucija dva signala se može izračunati i množenjem vektora definisanog signalom \mathbf{x} cikličnom (Toeplitzovom) matricom $F = \{h_{i-j}\}$

(6)
$$F = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & h(0) & 0 & 0 & 0 & \cdot \\ \cdot & h(1) & h(0) & 0 & 0 & \cdot \\ \cdot & h(2) & h(1) & h(0) & 0 & \cdot \\ \cdot & h(3) & h(2) & h(1) & h(0) & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix},$$

tako da je

$$y(0) = h(N)x(-N) + \dots + h(1)x(-1) + h(0)x(0)$$

:

$$y(n) = h(N)x(n-N) + \dots + h(1)x(n-1) + h(0)x(n)$$

:

U obradi signala se koriste tzv. kauzalni (uzročni) filtri kod kojih je h(k) = 0 za k < 0. To znači da izlaz ne može zavisiti od budućeg ulaza, jer bi se u suprotnom u komponenti y(n) pojavio sabirak h(k)x(n+|k|), ako je k < 0. Matrica F kauzalnog filtra je donje-trougaona.

Ako je **h** periodični signal sa periodom N, matrica F je ciklična matrica dimenzije $N \times N$,

(7)
$$F = \begin{pmatrix} h(0) & h(N-1) & h(N-2) & \cdots & h(1) \\ h(1) & h(0) & h(N-1) & \cdots & h(2) \\ h(2) & h(1) & h(0) & \cdots & h(3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h(N-1) & h(N-2) & h(N-3) & \cdots & h(0) \end{pmatrix}$$

Filtar određen signalom **h** možemo zamisliti kao pokretni prozor $\{h(N), \ldots, h(0)\}$ koji klizi duž signala **x**.

Frekvencijski domen. Pokažimo da osobine konvolucije dve funkcije ($\S2.2$) važe i u diskretnom slučaju. Diskretna po vremenu Fourier-ova transformacija konvolucije **y** jednaka je, prema (5),

$$\hat{y}(\omega) = (\widehat{\mathbf{h} * \mathbf{x}})(\omega) = \sum_{n=-\infty}^{\infty} y(n)e^{-in\omega} = \sum_{n} \left(\sum_{k} h(k)x(n-k)\right)e^{-in\omega}$$
$$= \sum_{k} h(k) \left(\sum_{n} x(n-k)e^{-in\omega}\right) = \sum_{k} h(k) \left(\sum_{l} x(l)e^{-i(l+k)\omega}\right)$$
$$= \left(\sum_{k} h(k)e^{-ik\omega}\right) \left(\sum_{l} x(l)e^{-il\omega}\right) = \hat{h}(\omega)\,\hat{x}(\omega).$$

Fourier-ovu transformaciju signala možemo, smenom $z=e^{\imath\omega},$ zapisati u obliku z-transformacije (primer 2.5)

(8)
$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}.$$

Stoga konvoluciona teorema u diskretnom slučaju glasi: Fourier-ova, odnosno z-transformacija konvolucije dva signala jednaka je proizvodu Fourier-ovih, odnosno z-transformacija tih signala,

(9)
$$\hat{y}(\omega) = \hat{h}(\omega) \hat{x}(\omega), \quad \text{ili} \quad Y(z) = H(z) X(z).$$

Ako je $\mathbf{x} = \{e^{in\omega}\}_n$, sledi da je

$$(\mathbf{h} * \mathbf{x})(n) = \sum_{k} h(k) e^{i(n-k)\omega} = e^{in\omega} \sum_{k} h(k) e^{-ik\omega} = e^{in\omega} \hat{h}(\omega),$$

što znači da je za datu frekvenciju ω signal $\{e^{in\omega}\}_n$ sopstveni element, a Fourier-ova transformacija $\hat{h}(\omega)$ sopstvena vrednost operatora konvolucije.

Vratimo se filtru **h**. Funkcija $\hat{h}(\omega)$ je već definisana izrazom (3.30),

(10)
$$\hat{h}(\omega) = \sum_{n} h(n)e^{-\imath n\omega} \quad \text{ili} \quad H(z) = \sum_{n} h(n)z^{-n},$$

i nazvana je frekvencijski odziv filtra. Objasnimo sada njen naziv. Ona predstavlja Fourier-ovu transformaciju odziva filtra na jedinični impuls $\mathbf{x} = \{\dots, 0, 1, 0, \dots\}$ u nultom vremenu $(x(0) = 1, a x(n) = 0, n \neq 0)$. Naime, kako je $\hat{\mathbf{x}}(\omega) = x(0) = 1$, to je $\hat{\mathbf{y}}(\omega) = (\widehat{\mathbf{h} * \mathbf{x}})(\omega) = \hat{h}(\omega)$. Izlazni signal \mathbf{y} je sam filtar \mathbf{h} . Kažemo da koeficijenti filtra predstavljaju *impulsni odziv*, tj. odziv filtra na jedinični impuls.

Navedimo neke osobine Fourier-ove transformacije filtra.

Filtar kašnjenja za k, y(n) = x(n-k),daje izlazni signal čija je Fourier-ova transformacija

(11)
$$Y(z) = \sum_{n} y(n) z^{-n} = \sum_{n} x(n-k) z^{-n} = z^{-k} \sum_{l} x(l) z^{-l} = z^{-k} X(z).$$

(Videti zadatak 5.)

Ako su izlazni signal ${\bf y}$ i ulazni signal ${\bf x}$ povezani linearnom diferenc
nom jednačinom invarijantnom po vremenu,

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k),$$

korišćenjem z-transformacije i svojstva kašnjenja nalazimo da je frekvencijski odziv filtra, kao količnik z-transformacija izlaznog i ulaznog signala, jednak

(12)
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}},$$

jer je

$$\sum_{n} \left(\sum_{k} a_{k} y(n-k) \right) z^{-n} = \sum_{n} \left(\sum_{k} b_{k} x(n-k) \right) z^{-n}$$
$$\sum_{k} a_{k} \left(\sum_{n} y(n-k) z^{-n} \right) = \sum_{k} b_{k} \left(\sum_{n} x(n-k) z^{-n} \right)$$
$$Y(z) \sum_{k} a_{k} z^{-k} = X(z) \sum_{k} b_{k} z^{-k}.$$

Kauzalni filtar, h(n) = 0 za n < 0, sa racionalnom funkcijom frekvencijskog odziva je stabilan ako i samo ako su svi polovi unutar jediničnog kruga (njihovi moduli su manji od jedan).

FIR (finite impulse response) filtar je onaj kome je frekvencijski odziv zadat polinomom ili redom (N = 0 u izrazu (12)). Izlaz zavisi samo od ulaza.

IIR (infinite impulse response) filtar je onaj kome je frekvencijski odziv zadat racionalnom funkcijom (u izrazu (12) je $1 \leq N < \infty$). To znači da trenutni izlaz zavisi i od prethodnih izlaza.

4.3 Nisko-frekvencijski i visoko-frekvencijski filtri

Navešćemo sada primere dva jednostavna filtra.

Filtar za usrednjavanje određuje izlazni signal tako da su mu elementi srednje vrednosti dva uzastopna elementa ulaznog signala \mathbf{x} ,

(13)
$$y(n) = \frac{1}{2}x(n) + \frac{1}{2}x(n-1), \qquad n = \dots - 1, 0, 1, \dots$$

Koeficijenti filtra su h(0) = h(1) = 1/2. Ovaj filtar predstavlja linearni operator invarijantan u vremenu, i kombinacija je dva operatora - identičkog operatora, koji daje izlaz jednak ulazu, i operatora kašnjenja, čiji je izlaz jednak ulazu u prethodnom trenutku (form. (11) za k = 1),

filtar za usrednjavanje
$$=\frac{1}{2}($$
identičnost $)+\frac{1}{2}($ kašnjenje $).$

Beskonačno dimenzionu matricu (6) ovog filtra označimo sa F_0 , tako da se u matričnom obliku (13) može predstaviti na sledeći način

(14)
$$\mathbf{y} = F_0 \mathbf{x}$$
 tj. $\begin{pmatrix} \cdot \\ y(-1) \\ y(0) \\ y(1) \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot & & & 0 \\ 1/2 & 1/2 & & \\ & 1/2 & 1/2 & \\ & & 1/2 & 1/2 \\ 0 & & & \cdot & \cdot \end{pmatrix} \begin{pmatrix} \cdot \\ x(-1) \\ x(0) \\ x(1) \\ \cdot \end{pmatrix}$.

Brojevi na glavnoj dijagonali predstavljaju koeficijent filtra identičnosti, a brojevi na dijagonali ispod glavne predstavljaju koeficijent filtra kašnjenja.

Frekvencijski odziv filtra za usrednjavanje je, prema (10), jednak

(15)
$$\hat{h}_0(\omega) = \frac{1}{2}e^0 + \frac{1}{2}e^{-\imath\omega} = \frac{1}{2}(1 + e^{-\imath\omega}) = \cos\frac{\omega}{2}e^{-\imath\omega/2}$$

Analizirajmo dejstvo ovog filtra na signal \mathbf{x} koji sadrži samo jednu frekvenciju ω ,

$$x(n) = e^{in\omega}, \qquad -\infty < n < \infty$$

Izlazni signal **y** je proizvod frekvencijskog odziva (zavisi od ω) i ulaznog signala **x**,

(16)
$$y(n) = \frac{1}{2}e^{in\omega} + \frac{1}{2}e^{i(n-1)\omega} = \frac{1}{2}(1+e^{-i\omega})e^{in\omega} = \hat{h}_0(\omega)x(n).$$

Za izbor $\omega = 0$ ulazni signal je konstanta, $\mathbf{x}_l = \{\dots, 1, 1, 1, \dots\}$, a frekvencijski odziv filtra $\hat{h}_0(0) = 1$. Na osnovu (16) zaključujemo da filtar za usrednjavanje ne menja konstantni signal. Za niske frekvencije, bliske $\omega = 0$, je $\hat{h}_0(\omega) \approx 1$, pa se ulazni signal neće mnogo promeniti. Za razliku od toga, ako izaberemo $\omega = \pi$, ulazni signal osciluje, $\mathbf{x}_h = \{\dots, 1, -1, 1, -1, 1, \dots\}$, a frekvencijski odziv filtra je $\hat{h}_0(\pi) = 0$. To znači da se ovim filtrom signal maksimalne frekvencije potpuno prigušuje (sve komponente izlaznog signala su nula). Zato što se filtrom za usrednjavanje niske frekvencije uopšte ne menjaju ili se menjaju vrlo malo, a visoke frekvencije jako ili potpuno prigušuju, filtar spada u grupu *nisko-ftekvencijskih filtara*. Ovim filtrima se izdvajaju iz signala harmonici niskih frekvencija.

Filtar za razliku određuje izlazni signal tako da su mu elementi određeni razlikom dva uzastopna elementa ulaznog signala \mathbf{x} ,

(17)
$$y(n) = \frac{1}{2}x(n) - \frac{1}{2}x(n-1), \qquad n = \dots - 1, 0, 1, \dots$$

Koeficijenti filtra su h(0) = 1/2, h(1) = -1/2. Ovaj filtar je takođe kombinacija operatora identičnosti i operatora kašnjenja

filtar za razliku
$$=\frac{1}{2}($$
 identičnost $)-\frac{1}{2}($ kašnjenje $).$

Ako matricu (6) filtra za razliku označimo sa F_1 , konvolucija (17) može se predstaviti u matričnom obliku na sledeći način

(18)
$$\mathbf{y} = F_1 \mathbf{x}$$
 tj. $\begin{pmatrix} \cdot \\ y(-1) \\ y(0) \\ y(1) \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot & & & 0 \\ -1/2 & 1/2 & & \\ & -1/2 & 1/2 & \\ 0 & & & \cdot \end{pmatrix} \begin{pmatrix} \cdot \\ x(-1) \\ x(0) \\ x(1) \\ \cdot \end{pmatrix}$.

Frekvencijski odziv filtra jednak je

(19)
$$\hat{h}_1(\omega) = \frac{1}{2}e^0 - \frac{1}{2}e^{-\imath\omega} = \frac{1}{2}(1 - e^{-\imath\omega}) = \sin\frac{\omega}{2}\imath e^{-\imath\omega/2}.$$
Analizirajmo, kao i ranije, dejstvo ovog filtra na ulazni signal koji sadrži samo jednu frekvenciju, $x(n) = e^{in\omega}$. Element izlaznog signala **y** je

(20)
$$y(n) = \frac{1}{2} e^{i n \omega} - \frac{1}{2} e^{i (n-1)\omega} = \frac{1}{2} (1 - e^{-i \omega}) e^{i n \omega} = \hat{h}_1(\omega) x(n).$$

Kako je $\hat{h}_1(0) = 0$ i $\hat{h}_1(\pi) = 1$, filtar poništava nisko-frekvencijski signal \mathbf{x}_l (za $\omega = 0$), a visoko-frekvencijski signal \mathbf{x}_h (za $\omega = \pi$) ne menja. Pošto se filtrom za razliku niske frekvencije jako ili potpuno prigušuju, a visoke frekvencije uopšte ne menjaju ili se menjaju vrlo malo, filtar spada u grupu visoko-ftekvencijskih filtara. Ovim filtrima se izdvajaju iz signala harmonici visokih frekvencija.

Visoko-frekvencijski filtri vode ka talasićima, a nisko-frekvencijski ka funkcijama skaliranja. Četvrtka je kontinualni analog filtra za usrednjavanje (primer 3.9). Ona izravnava ulaz – konvolucija sa četvrtkom usrednjava u kontinualnom vremenu, kao što to čini filtar za usrednjavanje u diskretnom vremenu

$$\mathbf{h} * \mathbf{x} = \left(\dots, \frac{x(0) + x(-1)}{2}, \frac{x(1) + x(0)}{2}, \dots\right)$$
$$(\varphi * x)(t) = \int_{-\infty}^{\infty} \varphi(t - s)x(s) \, ds = \int_{t-1}^{t} x(s) \, ds = \text{ sredina na pokretnom intervalue}$$

Haar-ov talasić je kontinualni analog filtra za razlike – on izdvaja promene.

I u opštem slučaju, za ulazni signal $x(n) = e^{in\omega}$, koji sadrži samo jednu frekvenciju, izlazni signal je jednak proizvodu frekvencijskog odziva i ulaznog signala,

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k) = \sum_{k=0}^{\infty} h(k)e^{i(n-k)\omega} = \left(\sum_{k=0}^{\infty} h(k)e^{-ik\omega}\right)x(n) = \hat{h}(\omega)x(n).$$

Frekvencijski odziv (10) je očigledno 2π -periodična funkcija, $\hat{h}(\omega + 2\pi) = \hat{h}(\omega)$, te ćemo analizirati frekvencijski odziv filtra samo na osnovnom intervalu $-\pi \leq \omega \leq \pi$. Idealan nisko-frekvencijski filtar je onaj čiji je frekvencijski odziv (slika 4.2, levo)

(21)
$$\hat{h}_0(\omega) = \begin{cases} 1, & 0 \le |\omega| < \pi/2\\ 0, & \pi/2 < |\omega| \le \pi \end{cases}$$

Idealan visoko-frekvencijski filtar je onaj čiji je frekvencijski odziv (slika 4.2, u sredini)

(22)
$$\hat{h}_1(\omega) = \begin{cases} 0, & 0 \le |\omega| < \pi/2\\ 1, & \pi/2 < |\omega| \le \pi \end{cases}$$

Filtar za usrednjavanje i filtar za razliku nisu invertibilni svaki za sebe, jer i jedan i drugi transformišu određeni signal u nulu (prvi \mathbf{x}_h a drugi \mathbf{x}_l), te se ne može rekonstruisati svaki ulazni signal na osnovu izlaznog signala. Iskazano kroz uslov za frekvencijski odziv, filtar nije invertibilan ako je $\hat{h}(\omega) = 0$ za neko ω .

Slika 4.2: Idealni filtri nisko-frekvencijski (a), visoko-frekvencijski (b) i opsežni (c)

Međutim, kao što ćemo videti u daljem tekstu, svaki ulazni signal može se rekonstruisati na osnovu izlaznih signala ako se opisani filtri posmatraju u paru. Visokofrekvencijski filtar za razliku je pridružen nisko-frekvencijskom filtru za usrednjavanje, stoga su oni *filtri sa ogledalskom simetrijom* ili QMF (engl. Quadrature Mirror Filters) – jedan drugome su kao lik u ogledalu. Nisko-frekvencijski filtar usrednjuje i time izravnava neravnine u signalu. Neravnina je visoko-frekvencijska komponenta koju nisko-frekvencijski filtar prigušuje ili uklanja, jer je odziv mali ili nula za frekvencije bliske $\omega = \pi$. Visoko-frekvencijski filtar pojačava razlike. On ističe neravnine u signalu, a prigušuje ili uklanja glatke delove koji predstavljaju nisko-frekvencijske komponente. U ovom slučaju frekvencijski odziv je mali ili nula za frekvencije bliske $\omega = 0$.

Banka filtara je skup filtara. Razlikujemo banku filtara *analize* i banku filtara *sinteze*. Prva razlaže ulazni signal na frekvencijske grupe, a druga od komponenti (signali po frekvencijskim grupama) rekonstruiše polazni signal. Najprostija banka je banka sa dva filtra i naziva se dvokanalna. Dvokanalna banka analize ima jedan nisko-frekvencijski filtar i jedan visoko-frekvencijski filtar. Oni razlažu ulazni signal na dve frekvencijske grupe. Dobijeni podsignali se mogu kompresovati mnogo efikasnije od polaznog signala, i zatim prenositi ili čuvati. Uvek se mogu sjediniti pomoću odgovarajuće banke sinteze. Nije neophodno čuvati sve komponente signala koji su izlaz iz banke analize. Čuvaju se samo parne komponente nisko-frekvencijskog i visoko-frekvencijskog izlaza. Banka koja sadrži M filtara daje na izlazu M signala, i čuva se svaka M-ta komponenta svakog od izlaznih signala. To znači da je ukupna dužina izlaznih signala jednaka dužini ulaznog signala. Posebno je od interesa FIR banka filtara savršene rekonstrukcije, kod koje je izlazni signal iz banke sinteze $\tilde{\mathbf{x}}$ identičan ulaznom signalu \mathbf{x} u banku analize, sa mogućim vremenskim kašnjenjem.

Ilustrujmo prethodni zaključak na dvokanalnoj banci koja se sastoji od niskofrekvencijskog filtra za usrednjavanje i visoko-frekvencijskog filtra za razliku.

PRIMER 2. Primenom na signal x nisko-frekvencijskog filtra za usrednjavanje i

visoko-frekvencijskog filtra za razliku dobijaju se signali

$$F_0 \mathbf{x} = \frac{1}{2} \begin{pmatrix} \vdots \\ x(-1) + x(-2) \\ x(0) + x(-1) \\ x(1) + x(0) \\ \vdots \end{pmatrix} \qquad F_1 \mathbf{x} = \frac{1}{2} \begin{pmatrix} \vdots \\ x(-1) - x(-2) \\ x(0) - x(-1) \\ x(1) - x(0) \\ \vdots \end{pmatrix}.$$

Definišimo operator kompresije sa korakom dva (
 \downarrow 2), koji eliminiše neparne a zadržava parne komponente signala,

$$(\downarrow 2)\mathbf{y} = \{\dots, y(-4), y(-2), y(0), y(2), y(4), \dots\}$$

Primena ovog operatora na signale $F_0 \mathbf{x}$ i $F_1 \mathbf{x}$ daje signale

$$\mathbf{y}_{0} = (\downarrow 2)F_{0}\mathbf{x} = \frac{1}{2} \begin{pmatrix} \vdots \\ x(-2) + x(-3) \\ x(0) + x(-1) \\ x(2) + x(1) \\ \vdots \end{pmatrix} \qquad \mathbf{y}_{1} = (\downarrow 2)F_{1}\mathbf{x} = \frac{1}{2} \begin{pmatrix} \vdots \\ x(-2) - x(-3) \\ x(0) - x(-1) \\ x(2) - x(1) \\ \vdots \end{pmatrix}.$$

Na primer, analiza (dekompozicija) ulaznog signala ${\bf x}$ je

$$\mathbf{x}$$
:
 $\underbrace{37, 35}{12*}$
 $\underbrace{28, 28}{2*}$
 $\underbrace{58, 18}{5*}$
 $\underbrace{21, 15}{2*}$
 $\underbrace{\frac{1}{2}*}{90:}$
 36
 28
 38
 18
 \mathbf{y}_1 :
 1
 0
 20
 3

Očigledno je da se za ove elementarne filtre sinteza (rekonstrukcija) signala \mathbf{x} može ostvariti sabiranjem i oduzimanjem signala \mathbf{y}_0 i \mathbf{y}_1 , što daje parne, odnosno neparne komponente ulaznog signala \mathbf{x} .

U opštem slučaju postupak sinteze, tj. dobijanja polaznog signala \mathbf{x} , realizuje se na sledeći način. Prvo se umetanjem nula na mesto neparnih komponenti signali \mathbf{y}_0 i \mathbf{y}_1 proširuju do pune dužine (jednake dimenziji signala \mathbf{x}),

$$\mathbf{u}_{0} = (\uparrow 2)\mathbf{y}_{0} = \frac{1}{2} \begin{pmatrix} \vdots \\ x(-2) + x(-3) \\ 0 \\ x(0) + x(-1) \\ 0 \\ x(2) + x(1) \\ \vdots \end{pmatrix} \qquad \mathbf{u}_{1} = (\uparrow 2)\mathbf{y}_{1} = \frac{1}{2} \begin{pmatrix} \vdots \\ x(-2) - x(-3) \\ 0 \\ x(0) - x(-1) \\ 0 \\ x(2) - x(1) \\ \vdots \end{pmatrix}.$$

Operator dekompresije sa korakom dva $(\uparrow 2)$ je inverzan operatoru kompresije $(\downarrow 2)$. Sledeći korak u banci sinteze je filtriranje. Vektori \mathbf{u}_0 i \mathbf{u}_1 su ulazi u dva filtra G_0 i G_1 . Filtar G_0 sabira a filtar G_1 oduzima dve uzastopne koordinate ulaznog signala, tako da je $g_0(0) = 1$, $g_0(1) = 1$ i $g_1(0) = -1$, $g_1(1) = 1$ (ostale komponente su im nula),

 $w_0(n) = u_0(n) + u_0(n-1),$ $w_1(n) = -u_1(n) + u_1(n-1).$

Izlazni signali dobijeni pomoću ovih filtara glase

$$\mathbf{w}_{0} = G_{0}\mathbf{u}_{0} = \frac{1}{2} \begin{pmatrix} \vdots \\ x(-2) + x(-3) \\ x(-2) + x(-3) \\ x(0) + x(-1) \\ x(0) + x(-1) \\ x(2) + x(1) \\ \vdots \end{pmatrix} \qquad \mathbf{w}_{1} = G_{1}\mathbf{u}_{1} = \frac{1}{2} \begin{pmatrix} \vdots \\ -x(-2) + x(-3) \\ x(-2) - x(-3) \\ -x(0) + x(-1) \\ x(0) - x(-1) \\ -x(2) + x(1) \\ \vdots \end{pmatrix},$$

i njihovim sabiranjem se dobija polazni signal **x** sa kašnjenjem, jer ulazu x(n) odgovara izlaz x(n-1).

Postupak analize signala se realizuje u dva koraka: filtriranje i kompresija. Oni se mogu objediniti tako što će u matrici filtara biti izostavljene neparne vrste. Tako se za već pomenute elementarne filtre dobijaju pravougaone matrice

(23)
$$L = (\downarrow 2)C = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ & 1/\sqrt{2} & 1/\sqrt{2} \\ & & \ddots \end{pmatrix}, \quad C = \sqrt{2}F_0,$$
$$B = (\downarrow 2)D = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ & -1/\sqrt{2} & 1/\sqrt{2} \\ & & \ddots \end{pmatrix}, \quad D = \sqrt{2}F_1.$$

Matrica L je matrica nisko-frekvencijskog filtra i biće pridružena funkciji skaliranja, a matrica B je matrica visoko-frekvencijskog filtra i biće pridružena talasiću. Množenje koeficijentom $\sqrt{2}$ je izvršeno radi normiranja (form. (3.14)). Kvadratna matrica dobijena nadovezivanjem ove dve matrice je ortogonalna matrica banke analize

$$\binom{L}{B} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & & \\ & 1 & 1 & \\ & & \ddots & \ddots \\ -1 & 1 & & & \\ & & -1 & 1 & \\ & & & \ddots & \ddots \end{pmatrix}.$$

Sinteza signala se realizuje u dve faze - dekompresija i filtriranje. Prva faza je dobijanje signala pune dužine umetanjem nula kao elemenata signala; ako se radi o dekompresiji sa korakom dva, $(\uparrow 2)$, dodaju se nule kao neparni elementi signala (dužina signala se udvostručuje). Zatim se filtriranje vrši filtrima banke sinteze.

Ortogonalne banke filtara se karakterišu ortogonalnim matricama. Inverzna matrica ortogonalne matrice je njoj transponovana matrica, pa je matrica sinteze transponovana matrica matrice analize. Stoga se u procesu analize i sinteze koriste isti filtri.

Banka filtara koju čine nisko-frekvencijski filtar za usrednjavanje i visoko-frekvencijski filtar za razliku je ortogonalna banka filtara, jer je definisana ortogonalnom matricom. Naziva se *Haar-ova banka filtara*. Matrica banke sinteze je transponovana matrici banke analize

$$\begin{pmatrix} L \\ B \end{pmatrix}^{-1} = \begin{pmatrix} L^{\top} & B^{\top} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & \\ 1 & 1 & \\ & 1 & -1 & \\ & 1 & & 1 & \\ & & \ddots & & \ddots \\ & & \ddots & & \ddots \end{pmatrix}.$$

Filtru za usrednjavanje odgovara četvrtka (primer 3.2), a filtru za razliku Haar-ov talasić (primer 3.16).

Operacija kompresije odgovara redukovanju gustine odbiraka, tj. uklanjanju nekih elemenata signala. Na primer, kompresija za dva znači izostavljanje svakog drugog elementa signala. Operacija dekompresije odgovara povećanju gustine odbiraka dodavanjem novih elemenata signalu. Dekompresija za dva znači dodavanje nule ili interpolisane vrednosti između svaka dva elementa signala. Ove operacije predstavljaju multirezoluciju signala i dovode u vezu filtre i talasiće. Naime, izlazni signal $\mathbf{y} = \mathbf{h} * \mathbf{x}$ ima parne elemente

$$y(2n) = \sum_{k} h(k)x(2n-k).$$

Kompresijom za dva, tj. izostavljanjem neparnih elemenata, i prenumeracijom ostalih dobija se izlazni signal $(\downarrow 2)\mathbf{y}$ čiji je *n*-ti element

$$y(2n) \rightarrow y(n) = \sum_{k} h(k)x(2n-k).$$

Ovo je jednačina sa dve skale, kao i dilataciona jednačina (3.11).

Predstavimo operacije kompresije i dekompresije u frekvencijskom domenu.

Kompresija signala x(n) za celobrojni faktor N (zadržava se svaki N-ti element) daje izlazni signal

(24)

$$y(n) = x(nN), \qquad \hat{y}(\omega) = \frac{1}{N} \sum_{k=0}^{N-1} \hat{x} \left(\frac{\omega - 2\pi k}{N}\right),$$
ili, za $W_N = e^{i2\pi/N}$ $Y(z) = \frac{1}{N} \sum_{k=0}^{N-1} X \left(W_N^k z^{1/N}\right).$

Spektar je razvučen za N, a alternativne verzije u umnošcima od 2π su dodate. Nazvane su alternativne, jer su kopije originalnog spektra (razvučenog), ali pomerene u frekvenciji.

Dekompresijaza celobrojni faktorM je obrnuta operacija kompresiji. Novi signal se dobija umetanjem (M-1)nula između uzastopnih elemenata ulaznog signala,

(25)
$$y(n) = \begin{cases} x(n/M), & n = kM, \ k \in \mathcal{Z} \\ 0, & \text{inače} \end{cases} \quad \hat{y}(\omega) = \hat{x}(M\omega)$$
$$\text{ili} \quad Y(z) = X(z^M)$$

Posledica kompresije je kontrakcija spektra M puta. (Videti zadatak 11.)

4.4 Ortogonalni filtri

Razmatraćemo sada opštiji slučaj ortogonalne banke filtara, da bismo zaključili koje su osobine koeficijenata takvih filtara. Želimo da konstruišemo dvokanalnu FIR banku filtara savršene rekonstrukcije, a to znači da izlazni signal iz banke sinteze $\tilde{\mathbf{x}}$ treba da bude jednak ulaznom signalu u banku analize \mathbf{x} .

Matrica F_t banke analize sa kompresijom (u vremenskom domenu) sastoji se od nisko-frekvencijskog dela $L = (\downarrow 2)C$ ispod koga sledi visoko-frekvencijski deo $B = (\downarrow 2)D$ (kao u primeru 2). Beskonačno dimenziona matrica za filtar dužine četiri je oblika

Pomeraj za dva u vrstama, tj. brisanje svake druge vrste, je posledica operacije kompresije za dva.

Ako se u sintezi koriste filtri banke analize, matrica banke sinteze je transponovana matrici banke analize. Kako je operator dekompresije transponovan operatoru kompresije (zadatak 8), to je

$$((\downarrow 2)C)^{\top} = C^{\top}(\uparrow 2), \qquad ((\downarrow 2)D)^{\top} = D^{\top}(\uparrow 2),$$

te matrica banke sinteze ima oblik

$$F_t^{\top} = \begin{pmatrix} C^{\top}(\uparrow 2) & D^{\top}(\uparrow 2) \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ \cdot & c(3) & 0 & \cdot & d(3) & 0 & \cdot \\ \cdot & c(2) & 0 & \cdot & d(2) & 0 & \cdot \\ \cdot & c(1) & c(3) & \cdot & d(1) & d(3) & \cdot \\ \cdot & c(0) & c(2) & \cdot & d(0) & d(2) & \cdot \\ \cdot & 0 & c(1) & \cdot & 0 & d(1) & \cdot \\ \cdot & 0 & c(0) & \cdot & 0 & d(0) & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}.$$

Pomeraj za dva u kolonama, tj. brisanje svake druge kolone, je posledica operacije dekompresije za dva.

Filtriranje i kompresija daju na izlazu iz faze analize dva signala, nisko-frekvencijski de
o \mathbf{y}_l i visoko-frekvencijski de
o \mathbf{y}_h , čiji su elementi

(26)
$$y_l(n) = \sum_k x(k) c(2n-k), \qquad y_h(n) = \sum_k x(k) d(2n-k).$$

Dužina svakog od njih je jednaka polovini dužine ulaznog signala. Rekonstrukcija daje na izlazu iz faze sinteze signal $\tilde{\mathbf{x}}$ polazne dužine, čiji su elementi

(27)
$$\overline{x}(k) = \sum_{n} (y_l(n) c(2n-k) + y_h(n) d(2n-k)).$$

Za savršenu rekonstrukciju potrebno je da filtri sinteze budu vremenski reverzibilni filtrima analize. Izlazni signal iz banke sinteze $\tilde{\mathbf{x}} = F_t^{\top} \mathbf{y}$, gde je $\mathbf{y} = F_t \mathbf{x}$, će biti jednak ulaznom signalu u banku analize \mathbf{x} , ako je matrica F_t ortogonalna, $F_t^{\top} F_t = I$. Ortogonalna banka filtara je banka filtara savršene rekonstrukcije, jer ima ortogonalnu matricu. Kako mora biti i $F_t F_t^{\top} = I$, vektori kolona, odnosno vektori vrsta, matrice F_t čine ortonormirani sistem vektora. Uslov ortogonalnosti, USLOV O

$$F_t^{\top} F_t = I$$
 i $F_t F_t^{\top} = I$.

može se izraziti u formi blok matrica $L = (\downarrow 2)C$ i $B = (\downarrow 2)D$,

$$\begin{pmatrix} L^{\top} & B^{\top} \end{pmatrix} \begin{pmatrix} L \\ B \end{pmatrix} = L^{\top} L + B^{\top} B = I$$
$$\begin{pmatrix} L \\ B \end{pmatrix} \begin{pmatrix} L^{\top} & B^{\top} \end{pmatrix} = \begin{pmatrix} L L^{\top} & L B^{\top} \\ B L^{\top} & B B^{\top} \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$

tj.

$$L L^{\top} = I, \qquad L B^{\top} = 0, \qquad B B^{\top} = I.$$

Izraženo kroz uslove koje elementi matrica L i B treba da zadovoljavaju, dobijaju

se dobro poznati uslovi ortogonalnosti dvostrukog pomeraja (3.26),

$$\sum_{k} c(k)c(k-2n) = \delta(n),$$
$$\sum_{k} c(k)d(k-2n) = 0,$$
$$\sum_{k} d(k)d(k-2n) = \delta(n),$$

koji predstavljaju i uslove ortonormiranosti bazisa funkcije skaliranja i talasića. Kao što je u §3.4 rečeno, ovo svojstvo ne mogu imati filtri neparne dužine. Na primer, pri dužini N = 3 je

$$(c(0), c(1), c(2)) \cdot (0, 0, c(0))^{\top} = c(0)c(2) \neq 0.$$

Ako je dužina filtara N paran broj, uslovi orogonalnosti dvostrukog pomeraja daju vezu između koeficijenata c(k) nisko-frekvencijskog filtra i koeficijenata d(k) visoko-frekvencijskog filtra,

$$d(k) = (-1)^k c(N-1-k), \qquad k = 0, \dots, N-1, \quad N \text{ parno}$$

(poznata veza (3.27) između koeficijenata dilatacione jednačine i jednačine talasića). Matrica analize ortogonalnog filtra dužine četiri ima oblik

U konstrukciji d-ova, za parno N, obrnuti poredak c-ova sa alternativnom promenom znaka obezbeđuje ispunjenost uslova dvostrukog pomeraja

$$-c(3)c(0) + c(2)c(1) - c(1)c(2) + c(0)c(3) = 0$$
$$-c(1)c(0) + c(0)c(1) = 0$$

Da zaključimo, uslov da dvokanalna FIR banka filtara bude banka filtara savršene rekonstrukcije jeste da bude ortogonalna,

USLOV O

(28)
$$\sum_{k} c(k)c(k-2n) = \delta(n), \quad d(k) = (-1)^{k}c(N-1-k), \quad k = 0, \dots, N-1.$$

Ortogonalnost isključuje simetriju koeficijenata. Simetričan ortogonalni FIR filtar može imati samo dva koeficijenta različita od nule, i to je Haar-ov filtar (primer 2).

Nisko-frekvencijski filtar sa koeficijentima c(k) i visoko-frekvencijski filtar sa koeficijentima d(k), oba dužine N, su filtri sa ogledalskom simetrijom ako njihovi koeficijenti zadovoljavaju relacije (28).

4.4. ORTOGONALNI FILTRI

Frekvencijski domen. Analizirajmo sada kako se uslov ortogonalnosti izražava u frekvencijskom domenu. Zapisaćemo frekvencijski odziv filtra (10) pomoću normiranih koeficijenata $c(k) = \sqrt{2} h(k)$,

$$\hat{c}(\omega) = \sum_{k} c(k) e^{-\imath k \omega},$$

ili, u z-domenu,

$$C(z) = \sum_{k} c(k) z^{-k}, \qquad z = e^{i\omega}.$$

Uočimo vezu

$$\hat{c}(\omega + \pi) = \sum c(k)e^{-ik(\omega + \pi)} = \sum c(k)(e^{i\omega}e^{i\pi})^{-k} = \sum c(k)(-e^{i\omega})^{-k} = \sum c(k)(-z)^{-k} = C(-z).$$

Gustina energijskog spektra P(z) je kvadrat modula frekvencijskog odziva filtra,

(29)

$$P(z) = |C(z)|^{2} = C(z)\overline{C(z)} = C(z)C(z^{-1})$$

$$= \left(\sum_{k=0}^{N-1} c(k)z^{-k}\right) \left(\sum_{l=0}^{N-1} c(l)z^{l}\right) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} c(k)c(l)z^{-(k-l)}$$

$$= \sum_{n=-N+1}^{N-1} \left(\sum_{k=0}^{N-1} c(k)c(k-n)\right) z^{-n} = \sum_{n=-N+1}^{N-1} p(n)z^{-n},$$

jer je |z| = 1 i $\overline{z} = z^{-1}$. U slučaju da je filtar ortogonalan, na osnovu (28) sledi

(30)
$$p(2m) = \sum_{k} c(k)c(k-2m) = \begin{cases} 1 & \text{ako je } m = 0 \\ 0 & \text{ako je } m \neq 0 \end{cases}$$

što znači da je P(z) polinom u kome se, osim konstante 1, javljaju samo neparni stepeni po z. Uslov ortogonalnosti u frekvencijskom domenu je, stoga, USLOV O

(31)
$$|C(z)|^2 + |C(-z)|^2 = 2$$
, ili $|\hat{c}(\omega)|^2 + |\hat{c}(\omega + \pi)|^2 = 2$,

tj.

(32)
$$P(z) + P(-z) = 2$$
, ili $\hat{p}(\omega) + \hat{p}(\omega + \pi) = 2$.

Funkcija $\hat{p}(\omega) = |\hat{c}(\omega)|^2$ je jednaka svojoj konjugovano-kompleksnoj funkciji, jer je realna i nenegativna, što, na osnovu (29), povlači da je p(n) = p(-n). Uzimajući u obzir i (30), P(z) se može zapisati i na sledeći način

(33)
$$P(z) = 1 + \sum_{k=1}^{N/2} p(2k-1) \left(z^{-(2k-1)} + z^{2k-1} \right).$$

GLAVA 4. FILTRI

Kako je

$$(z^{-1}+z)^{k} = z^{-k} + z^{k} + \binom{k}{1}(z^{-k+2}+z^{k-2}) + \dots + \binom{k}{(k-1)/2}(z^{-1}+z),$$

svaki od sabiraka u sumi (33) može se predstaviti kao kombinacija neparnih stepena izraza $z^{-1} + z = 2 \cos \omega$. To znači da je gustina energijskog spektra ortogonalnog filtra polinom po neparnim stepenima argumenta $\cos \omega$.

Koeficijenti p(n) su određeni autokorelacijom filtra, $\mathbf{p} = \mathbf{c} * \mathbf{c}^{\top}$,

$$p(n) = \sum_{k} c(k)c(k-n),$$

što predstavlja konvoluciju signala $\mathbf{c} = (c(0), c(1), c(2), ...)$ sa njegovim vremenskim reverzom $\mathbf{c}^T = (..., c(2), c(1), c(0))$. Zamena (-n) sa n u poslednjem izrazu ne menja p, jer je p(n) = p(-n).

Autokorelacioni filtar P(z), koji zadovoljava uslov (32), naziva se poluopsežni (engl. halfband) filtar.

Visoko-frekvencijski odziv $\hat{d}(\omega)$ vodi na sličan način do autokorelacionog filtra $\hat{p}_1(\omega) = |\hat{d}(\omega)|^2$.

PRIMER 3. Poštujući osnovni zahtev da je $P(z) \ge 0$, izaberimo filtar

$$P(z) = 1 + \frac{1}{2}(z^{-1} + z),$$
 tj. $\hat{p}(\omega) = 1 + \cos \omega.$

Kako je $\hat{p}(0) = 2$ i $\hat{p}(\pi) = 0$, uslov (32) je zadovoljen, te je ovaj filtar poluopsežni filtar. U frekvencijskom domenu dat je izrazom

$$\hat{p}(\omega) = \frac{1}{2}(1 + e^{-\imath\omega})(1 + e^{\imath\omega}) = |\hat{c}(\omega)|^2, \quad \text{te je} \quad \hat{c}(\omega) = \frac{1}{\sqrt{2}}(1 + e^{-\imath\omega}).$$

Koeficijenti $c(0) = c(1) = 1/\sqrt{2}$, tj. h(0) = h(1) = 1/2 su koeficijenti poznatog Haar-ovog filtra za usrednjavanje (primer 2).

PRIMER 4. Daubechies filtar D_2 ima gustinu energijskog spektra

$$\hat{p}(\omega) = (1 + \cos \omega)^2 (1 - \frac{1}{2} \cos \omega).$$

Uočimo da ova funkcija ima dvostruku nulu u tački $\omega = \pi$. Kada bismo izostavili drugi činilac u funkciji $\hat{p}(\omega)$, frekvencijski odziv bio bi kvadrat frekvencijskog odziva iz primera 3,

$$\hat{c}(\omega) = \frac{1}{2} + e^{-\imath\omega} + \frac{1}{2}e^{-2\imath\omega}.$$

Koeficijenti $\frac{1}{2}$, 1, $\frac{1}{2}$ generišu u talasićima krov funkciju (linearni splajn). Ali filtar $\hat{p}(\omega) = (1 + \cos \omega)^2$ ne zadovoljava uslov (32), tj. nije poluopsežni filtar, pa nisko-frekvencijski filtar $\hat{c}(\omega)$ ne pripada ortogonalnoj banci filtara. U teoriji talasića smo već konstatovali da krov funkcija nije ortogonalna na svoje translacije (primer 3.3).

4.4. ORTOGONALNI FILTRI

Množenjem sa drugim činiocem (koji je takođe pozitivan) anuli
raju se parni stepeni po $\cos\omega,$

$$\begin{split} \hat{p}(\omega) &= 1 + \frac{3}{2}\cos\omega - \frac{1}{2}\cos^{3}\omega, \quad \text{ ili za } \cos\omega = \frac{1}{2}(z + z^{-1}) \\ P(z) &= -\frac{1}{16}z^{3} + \frac{9}{16}z + 1 + \frac{9}{16}z^{-1} - \frac{1}{16}z^{-3}, \end{split}$$

što daje poluopsežni filtar P(z), tj. nisko-frekvencijski ortogonalni filtar C(z) koga treba odrediti. U opštem slučaju to nije jednostavno. Deo C(z) koji potiče od kvadratnog faktora već znamo, pa ćemo odrediti deo koji potiče od drugog činioca $\hat{q}(\omega) = 1 - \frac{1}{2}\cos\omega$ ili $Q(z) = 1 - (z^{-1} + z)/4$. Treba naći polinom po z koji pomnožen sa sebi konjugovanim polinomom daje Q(z). Uslov

$$1 - \frac{1}{4}(z^{-1} + z) = (b(0) + b(1)z^{-1})(b(0) + b(1)z)$$

daje

$$b(0)^{2} + b(1)^{2} = 1, \qquad \implies \qquad b(0) = (1 + \sqrt{3})/\sqrt{8}, \\ b(0) b(1) = -1/4 \qquad \implies \qquad b(1) = (1 - \sqrt{3})/\sqrt{8}.$$

Stoga je, koristeći rezultat prethodnog primera,

$$C(z) = \frac{1}{2}(1+z^{-1})^2 (b(0) + b(1)z^{-1}),$$

i traženi filtar je

(34)
$$C(z) = \frac{1}{4\sqrt{2}} \left((1+\sqrt{3}) + (3+\sqrt{3})z^{-1} + (3-\sqrt{3})z^{-2} + (1-\sqrt{3})z^{-3} \right).$$

Filtar sa frekvencijskim odzivom (34) je čuveni *Daubechies filtar D*₂ (nazvan po svom tvorcu Ingrid Daubechies). U primeru 3.6 funkcija skaliranja je bila definisana upravo ovim koeficijentima. Frekvencijski odziv C(z) ima dvostruku nulu za z = -1, tj. $\hat{c}(\omega)$ ima dvostruku nulu za $\omega = \pi$. To znači da je funkcija C(z) zaravnjena u tački π , odnosno da talasić ima dva iščezavajuća momenta (§3.5).

Definisanjem nisko-frekvencijskog filtra vezom (28) je definisan i visoko-frekvencijski filtar, koji izgleda kao lik u ogledalu nisko-frekvencijskog filtra - ima višestruku nulu za $\omega = 0$ i višestruku vrednost jedan za $\omega = \pi$. Stoga je dovoljno baviti se samo konstrukcijom nisko-frekvencijskog filtra. Odgovarajući visoko-frekvencijski odziv na slici 4.3 je $|\hat{d}(\omega)|^2 = |\hat{c}(\omega + \pi)|^2$. Zbir ove dve funkcije je konstantan, tako da nema deformacije amplitude. Zaravnjenost oko $\omega = 0$ i $\omega = \pi$ daje veliku tačnost u okolini ovih frekvencija, a manju oko sredine. Što je zaravnjenost veća, filtar je bliži idealnom (slika 4.2). Banka filtara je ortogonalna i daje savršenu rekonstrukciju.

Određivanje spektralnog faktora C(z) iz poluopsežnog filtra koji je predstavljen polinomom $P(z) = |C(z)|^2 = C(z^{-1})C(z)$ je uvek moguće, ali nije jednostavno. Algoritmi su dati u [26].

Slika 4.3: Gustina energijskog spektra maksimalno ravnog filtra

4.5 Daubechies filtri

Ingrid Daubechies je ideju opisanu u primeru 4. uopštila i tako došla do maksimalno ravnih (engl. maxflat) filtara ili Daubechies filtara. Ova familija filtara definiše važnu familiju talasića. Konstrukcija se zasniva na dve ključne osobine:

- 1. Filtri (i talasići) su ortogonalni.
- 2. Frekvencijski odzivi su maksimalno ravni za $\omega = 0$ i $\omega = \pi$.

Ingrid Daubechies je 1988. godine konstruisala familiju FIR filtara sa 2r koeficijenata i sa nulom reda r u tački $\omega = \pi$ ([7]). Odgovarajući talasići imaju kompaktan nosač na intervalu [0, 2r - 1]. Kako r raste, regularnost filtra se povećava, a povećava se i glatkost talasića.

Analizirajmo osobine takvog filtra i njegovih koeficijenata $c(0), \ldots, c(2r-1)$ (za r = 2 to je filtar D_2 analiziran u primeru 4). Filtar je definisan frekvencijskim odzivom $\hat{c}(\omega)$ i gustinom energijskog spektra $\hat{p}(\omega) = |\hat{c}(\omega)|^2$,

$$\hat{c}(\omega) = \sum_{n=0}^{2r-1} c(n)e^{-\imath n\omega}, \qquad \hat{p}(\omega) = \sum_{n=1-2r}^{2r-1} p(n)e^{-\imath n\omega}.$$

Stavljajući N = 2r u izrazu (33), dobijamo zapis gustine energijskog spektra ovog filtra u obliku funkcije po $\cos \omega$,

$$\hat{p}(\omega) = 1 + 2\sum_{k=1}^{r} p(2k-1)\cos\left((2k-1)\omega\right)$$

Dakle, od 2r koeficijenata p(n) funkcije $\hat{p}(\omega)$ (jer je p(n) = p(-n)), njih r je određeno uslovima ortogonalnosti (30) (USLOV O),

$$p(0) = 1,$$
 $p(2) = p(4) = \dots = p(2r - 2) = 0.$

Preostali
h \boldsymbol{r} koeficijenata će biti određeno iz zahteva da fil
tar bude maksimalno ravan,

 $USLOV A_r$: $\hat{c}(\omega)$ ima nulu reda r u tački $\omega = \pi$,

$$\hat{c}(\pi) = \hat{c}'(\pi) = \dots = \hat{c}^{(r-1)}(\pi) = 0.$$

Diferenciranjem funkcije $\hat{c}(\omega)$ k puta dobijamo izraz

$$\hat{c}^{(k)}(\pi) = \sum_{n} c(n)(-in)^{k} e^{-in\pi} = (-i)^{k} \sum_{n} c(n)n^{k}(-1)^{n},$$

te se $\mathit{USLOV}\,A_r$ svodi na ruslova sumiranja koeficijenata

(35)
$$\sum_{n=0}^{2r-1} (-1)^n n^k c(n) = 0, \qquad k = 0, 1, \dots, r-1.$$

Za k = 0, tj. $\hat{c}(\pi) = 0$, relacija (35) ima oblik $\sum_n c(n)(-1)^n = 0$, što znači da je suma koeficijenata sa neparnim indeksom jednaka sumi koeficijenata sa parnim indeksom,

USLOV
$$A_1$$
: $\sum_{\text{neparno } n} c(n) = \sum_{\text{parno } n} c(n).$

Isti uslov, važi i za koeficijente p(n), što sledi na osnovu (29) za N = 2r i $z = e^{i\pi}$,

$$\hat{p}(\pi) = \sum_{n=1-2r}^{2r-1} p(n)e^{-in\pi} = \sum_{n=1-2r}^{2r-1} (-1)^n p(n) = |\hat{c}(\pi)|^2 = 0.$$

Kako je još, na osnovu (30), p(0)=1 jedini od koeficijenata oblikap(2m)koji je različit od nule, sledi da je

$$\sum_{\text{neparno }n} p(n) = \sum_{\text{parno }n} p(n) = p(0) = 1.$$

Iz uslova ortogonalnosti (31), za $\omega = 0$, sledi da je $\hat{c}(0) = \pm \sqrt{2}$. Za nisko-frekvencijske filtre ćemo izabrati znak +, tako da je

(36)
$$\hat{c}(0) = \sum_{n=0}^{2r-1} c(n) = \sqrt{2}.$$

Ovaj uslov je identičan uslovu (3.14), koji je posledica normiranja funkcije skaliranja.

Uslove ortogonalnosti i zaravnjenosti filtra možemo izraziti i preko koeficijenata filtra h(n), uzimajući u obzir vezu $c(n) = \sqrt{2} h(n)$. Uslov (36) postaje

$$\sum_{n=0}^{2r-1} h(n) = 1, \qquad \hat{h}(0) = 1,$$

USLOV O

(37)
$$\sum_{n=0}^{2r-1} h(n)h(n-2k) = \frac{1}{2}\,\delta(k), \qquad |\hat{h}(\omega)|^2 + |\hat{h}(\omega+\pi)|^2 = 1,$$

 $USLOV A_r$

0

(38)
$$\sum_{n=0}^{2r-1} (-1)^n n^k h(n) = 0, \qquad \hat{h}^{(k)}(\pi) = 0, \qquad k = 0, 1, \dots, r-1.$$

Konstrukcija Daubechies filtara. Osim za prvih nekoliko filtara u familiji, ne postoje jednostavne formule za nalaženje koeficijenata c(n).

Zahtev da odziv $\hat{c}(\omega)$ ima nulu reda r u tački π znači da ima činilac $(1 + e^{-i\omega})^r$,

(39)
$$\hat{c}(\omega) = \left(\frac{1+e^{-\iota\omega}}{2}\right)^r \hat{q}(\omega).$$

Ovaj činilac je normiran tako da u tački $\omega = 0$ ima vrednost 1. Drugi činilac, $\hat{q}(\omega)$, je polinom po $z^{-1} = e^{-i\omega}$ stepena (r-1), jer je $\hat{c}(\omega)$ polinom po z^{-1} stepena 2r-1. Kako su USLOVI A_r zadovoljeni pisanjem $\hat{c}(\omega)$ u obliku (39), r koeficijenata polinoma $\hat{q}(\omega)$ će biti određeno na osnovu USLOVA O.

Gustina energijskog spektra filtra definisanog odzivom (39)

$$\hat{p}(\omega) = |\hat{c}(\omega)|^2 = \left(\frac{1+e^{-\imath\omega}}{2}\frac{1+e^{\imath\omega}}{2}\right)^r |\hat{q}(\omega)|^2$$
$$= \left(\frac{1}{4}\left(2+e^{-\imath\omega}+e^{\imath\omega}\right)\right)^r |\hat{q}(\omega)|^2 = \left(\frac{1+\cos\omega}{2}\right)^r |\hat{q}(\omega)|^2$$

ima činilac $(\frac{1+\cos\omega}{2})^r$. Da bismo odredili $\hat{q}(\omega)$ pođimo od polinoma $B_r(y)$ stepena r-1 (sa r koeficijenata), koji je parcijalna suma od r sabiraka binomnog razvoja funkcije $(1-y)^{-r}$,

(40)

$$B_r(y) = 1 + ry + \frac{r(r+1)}{2}y^2 + \dots + \binom{r+k-1}{k}y^k + \dots + \binom{2r-2}{r-1}y^{r-1}$$

= $(1-y)^{-r} + O(y^r).$

Proizvod

(41)
$$\tilde{P}(y) = 2(1-y)^r B_r(y) = 2(1-y)^r ((1-y)^{-r} + O(y^r)) = 2 + O(y^r)$$

je polinom stepena (2r-1) koji na krajevima intervala [0,1] zadovoljava po r uslova

 $\tilde{P}(y)$ i njegovih prvih (r-1) izvoda je nula za y = 0 i y = 1, osim $\tilde{P}(0) = 2$

(uslovi za y = 1 slede iz prve, a uslovi za y = 0 slede iz poslednje jednakosti u (41)). Dakle, ovih 2r uslova potpuno oređuje polinom $\tilde{P}(y)$. Njegovom prvom izvodu, koji

je polinom stepena (2r-2), krajevi 0 i 1 su nule reda (r-1), te on (na osnovu zapisa polinoma pomoću njegovih nula) mora biti oblika

(42)
$$\tilde{P}'(y) = -C y^{r-1} (1-y)^{r-1}$$
 za neko $C = \text{const.}$

Polinom

$$\tilde{P}(1-y) = 2y^r B_r(1-y) = 2y^r \left(y^{-r} + O((1-y)^r)\right) = 2 + O\left((1-y)^r\right)$$

zadovoljava iste uslove na krajevima intervala [0,1]kao i polinom $\tilde{P}(y)$, osim što je u tački nula jednak nuli, a u tački jedan jednak dva. Zbir $\tilde{P}(y) + \tilde{P}(1-y)$ je polinom stepena (2r-1)i jednak je dva na oba kraja intervala [0,1], a prvih (r-1)izvoda su mu jednaki nuli na krajevima ovog intervala, što je moguće samo ako je taj polinom identički jednak konstanti 2 ,

(43)
$$\tilde{P}(y) + \tilde{P}(1-y) \equiv 2$$

(sa 2r uslova interpolacije polinom stepena (2r-1) je jedinstveno određen, a očigledno je da ovaj polinom zadovoljava sve navedene uslove). Odavde sledi da je $\tilde{P}(1/2) = 1$. Smenom

(44)
$$y = \frac{1 - \cos \omega}{2}, \quad \text{tj.} \quad 1 - y = \frac{1 + \cos \omega}{2}$$

interval $y \in [0,1]$ preslikava se u interval $\omega \in [0,\pi]$, a polinom $\hat{p}(\omega) = \tilde{P}(y)$ je upravo tražena gustina energijskog spektra, jer zadovoljava USLOV O i USLOV A_r . Uzimajući u obzir (41), (40) i (44), sledi

TEOREMA 3. Polinom

$$\hat{p}(\omega) = 2\left(\frac{1+\cos\omega}{2}\right)^r \sum_{k=0}^{r-1} \binom{r+k-1}{k} \left(\frac{1-\cos\omega}{2}\right)^k,$$

koji zadovoljava uslov ortogonalnosti (USLOV O) i uslov zaravnjenosti reda r(USLOV A_r), je gustina energijskog spektra poluopsežnog maksimalno zaravnjenog filtra. Meyer-ova forma ovog polinoma određena je integralom funkcije $\hat{p}'(\omega) = -c(\sin \omega)^{2r-1}$ i izborom konstante c tako da bude $\hat{p}(\pi) = 0$, i glasi

$$\hat{p}(\omega) = 2 - c \int_0^\omega (\sin t)^{2r-1} dt.$$

Detalji dokaza se mogu naći u [8].

Veza Daubechies i Meyer-ove forme je direktna, jer je, prema (42) i (44),

$$\begin{split} \hat{p}'(\omega)d\omega &= \tilde{P}'(y)\,dy = -Cy^{r-1}(1-y)^{r-1}dy\\ &= -C\left(\frac{1-\cos\omega}{2}\right)^{r-1}\left(\frac{1+\cos\omega}{2}\right)^{r-1}\frac{\sin\omega}{2}\,d\omega\\ &= -C\left(\frac{1-\cos^2\omega}{4}\right)^{r-1}\frac{\sin\omega}{2}\,d\omega = -c(\sin\omega)^{2r-1}\,d\omega. \end{split}$$

Za r = 1, 2, 3, Daubechies i Meyer-ove forme su redom

$$\hat{p}(\omega) = 1 + \cos \omega = 2 - \int_0^\omega \sin t \, dt$$
$$\hat{p}(\omega) = (1 + \cos \omega)^2 (1 - \frac{1}{2} \cos \omega) = 2 - \frac{3}{2} \int_0^\omega \sin^3 t \, dt$$
$$\hat{p}(\omega) = (1 + \cos \omega)^3 (1 - \frac{9}{8} \cos \omega + \frac{3}{8} \cos^2 \omega) = 2 - \frac{15}{4} \int_0^\omega \sin^5 t \, dt$$

Relacija (43), kada zamenimo y sa ω , predstavlja svojstvo ortogonalnosti (32) poluopsežnog filtra, tj. USLOV O. Iz Meyer-ove forme je očigledno da je $\hat{p}(\omega)$ poluopsežni filtar, jer izraz

$$-c\int (\sin\omega)^{2r-1} d\omega = c\int (1-\cos^2\omega)^{r-1} d(\cos\omega)$$

sadrži samo neparne stepene po $\cos \omega$. Iz Meyer-ove forme je, takođe, jasno da $\hat{p}(\omega)$ monotono opada od $\hat{p}(0) = 2$ do $\hat{p}(\pi) = 0$, jer je $\hat{p}'(\omega) = -c(\sin \omega)^{2p-1} \leq 0$ za $\omega \in [0, \pi]$ (c > 0).

Prelaz od niskih ka visokim frekvencijama je sve oštriji što je r veće. Nagib u središnjoj tački $\omega = \pi/2$ je $\hat{p}'(\pi/2) = -c$, a $c \approx \sqrt{r}$ kada $r \to \infty$. Cilj je upravo konstruisati filtre sa što oštrijom granicom između nisko-frekvencijske i visoko-frekvencijske grupe. Idealni filtri definisani su izrazima (21) i (22).

Prelaskom sa promenljiv
e ω na promenljivu zdobijamo izraz

$$P(z) = 2\left(\frac{1+z}{2}\right)^r \left(\frac{1+z^{-1}}{2}\right)^r \sum_{k=0}^{r-1} \binom{r+k-1}{k} \left(\frac{1-z}{2}\right)^k \left(\frac{1-z^{-1}}{2}\right)^k$$

jer je

$$\frac{1\pm\cos\omega}{2} = \frac{1}{2}\left(1\pm\frac{z+z^{-1}}{2}\right) = \frac{1\pm z\pm z^{-1}+zz^{-1}}{4}$$
$$= \frac{(1\pm z)(1\pm z^{-1})}{4} = \frac{1\pm z}{2}\frac{1\pm z^{-1}}{2}.$$

To znači da je P(z) polinom stepena 2(2r-1) po z, što je saglasno zaključku da je C(z) polinom stepena (2r-1) po z. Pri tome, (2r-1) nula polinoma P(z) su i nule polinoma C(z) i određuju ovaj polinom. Tačka z = -1 je nula reda r, a ostalih (r-1) nula su kompleksne vrednosti. Preostalih (2r-1) nula polinoma P(z) su nule polinoma $C(z^{-1})$, pri čemu mora biti z^{-1} nula polinoma $C(z^{-1})$ ako je z nula polinoma C(z). Kako je

(45)
$$\frac{1}{2}(z+z^{-1}) = \cos\omega = 1-2y,$$

z je rešenje kvadratne jednačine, što znači da svakoj vrednosti y odgovaraju dve vrednosti z. Jedna vrednost z je unutar jediničnog kruga, a druga, koja je jednaka 1/z, je van tog kruga. Krajnje tačke z = 1 ($\omega = 0$) i z = -1 ($\omega = \pi$) su dvostruki koreni odgovarajućih jednačina. r nula u tački y = 1 (tj. $\omega = \pi$) postaje 2r nula

za z = -1. Polovina od njih su nule funkcije C(z), a druga polovina nule funkcije $C(z^{-1})$. Kompleksne nule drugog faktora $B_r(y)$, kojih ima (r-1), određuju 2(r-1) nula polinoma P(z). Jedna polovina od ovih nula su i nule odziva C(z). Da bi filtar C(z) imao minimalnu fazu, izabraćemo tih (r-1) nula unutar ili na krugu |z| = 1. Druga polovina nula (one koje su na jediničnom krugu ili van njega) su nule drugog činioca $C(z^{-1})$ polinoma P(z).

Stoga se frekvencijski odziv C(z) Daubechies filtra računa u dva koraka:

- 1. Odredi se (r-1) nula polinoma $B_r(y)$ i zatim rešavanjem kvadratne jednačine (45) nađe (r-1) rešenja z za koje je |z| < 1.
- 2. Uzme se u obzir nula reda r u tački z = -1.

Tako se dobija (2r-1) nula polinoma C(z), čime je on određen do na konstantu. Konstanta se određuje iz uslova (36).

PRIMER 5. Za r = 2 dobijamo Daubechies D_2 filtar o kome je bilo reči u primeru 4. Izvedimo ga sada opisanim algoritmom. Za r = 2 je $B_2(y) = 1 + 2y$. Nuli y = -1/2 odgovaraju koreni $z_{1/2} = 2 \pm \sqrt{3}$ kvadratne jednačine (45). Koren sa manjim modulom, $z = 2 - \sqrt{3}$, i dvostruki koren z = -1 predstavljaju tri (2r - 1 za r = 2) nule frekvencijskog odziva C(z), tako da je

$$C(z) = \alpha (1 + z^{-1})^2 (1 - (2 - \sqrt{3})z^{-1})$$

= $((1 + \sqrt{3}) + (3 + \sqrt{3})z^{-1} + (3 - \sqrt{3})z^{-2} + (1 - \sqrt{3})z^{-3})/4\sqrt{2},$

što je saglasno sa (34). Ko
eficijent α je određen uslovom $\hat{c}(0)=\sqrt{2}.$

4.6 Osobine filtra važne za talasiće

Upoređujući poglavlja 3 i 4, možemo zaključiti da postoji analogija između filtara (diskretno vreme) i talasića (kontinualno vreme):

Diskretno vreme	Kontinualno vreme
filtar	multirezolucija
kompresija $\omega \to \omega/2$	reskaliranje $x\to 2x$
nisko-frekvencijski filtar	usrednjenje sa $\varphi(x)$
visoko-frekvencijski filtar	detaljizacija sa $\psi(x)$
ortogonalne matrice	ortogonalni bazisi
izlaz banke analize	koeficijenti razvoja po talasićima
izlaz banke sinteze	razvoj po talasićima
proizvod matrica filtara	brza transformacija talasićima

Četiri svojstva filtara igraju centralnu ulogu u teoriji talasića.

USLOV PR Savršena rekonstrukcija (engl. perfect reconstruction) Banka sinteze invertuje banku analize sa k kašnjenja,

(46)
$$F_0(z)\overline{H}_0(z) + F_1(z)\overline{H}_1(z) = 2z^{-k}$$
$$F_0(z)\overline{H}_0(-z) + F_1(z)\overline{H}_1(-z) = 0.$$

 $H_0(z)$ je nisko-frekvencijski, a $H_1(z)$ visoko-frekvencijski filtar banke analize, i $F_0(z)$ je nisko-frekvencijski, a $F_1(z)$ visoko-frekvencijski filtar banke sinteze.

Uslovi (46) za frekvencijske odzive filtara dobijaju se na sledeći način. U fazi analize razlažemo ulazni signal na dve komponente. Kada (u z-domenu) nisko-frekvencijskim filtrom $H_0(z)$ delujemo na ulazni signal X(z) dobijamo izlazni signal $\overline{H}_0(z)X(z)$. Kompresija za dva, prema (24), proizvodi signal sa odzivom

$$(\downarrow 2) \left(\overline{H}_0(z) X(z) \right) = \frac{1}{2} \left(\overline{H}_0(z^{1/2}) X(z^{1/2}) + \overline{H}_0(-z^{1/2}) X(-z^{1/2}) \right).$$

Analogno, delovanjem visoko-frekvencijskim filtrom $H_1(z)$ na ulazni signal X(z), posle kompresije za dva, dobijamo drugu komponentu ulaznog signala

$$(\downarrow 2) \left(\overline{H}_1(z)X(z)\right) = \frac{1}{2} \left(\overline{H}_1(z^{1/2})X(z^{1/2}) + \overline{H}_1(-z^{1/2})X(-z^{1/2})\right).$$

U fazi sinteze želimo da rekonstruisani signal bude identičan polaznom signalu, sa dopuštenim kašnjenjem za k. Na osnovu (11) sledi da proces sinteze treba na izlazu da proizvede signal $z^{-k}X(z)$. Prvo vršimo dekompresiju za dva niskofrekvencijske i visoko-frekvencijske komponente signala, što prema (25) daje signale

$$(\uparrow 2) \left(\frac{1}{2} (\overline{H}_0(z^{1/2}) X(z^{1/2}) + \overline{H}_0(-z^{1/2}) X(-z^{1/2})) \right) = \frac{1}{2} (\overline{H}_0(z) X(z) + \overline{H}_0(-z) X(-z)), (\uparrow 2) \left(\frac{1}{2} (\overline{H}_1(z^{1/2}) X(z^{1/2}) + \overline{H}_1(-z^{1/2}) X(-z^{1/2})) \right) = \frac{1}{2} (\overline{H}_1(z) X(z) + \overline{H}_1(-z) X(-z)).$$

Primenom filtra sinteze, nisko-frekvencijskog F_0 na prvi i visoko-frekvencijskog F_1 na drugi signal, dobijaju se signali

nisko-frekvencijski izlaz =
$$\frac{1}{2}F_0(z)\left(\overline{H}_0(z)X(z) + \overline{H}_0(-z)X(-z)\right)$$

visoko-frekvencijski izlaz = $\frac{1}{2}F_1(z)\left(\overline{H}_1(z)X(z) + \overline{H}_1(-z)X(-z)\right)$,

čija je suma izlazni signal iz filtra sinteze. Pri savršenoj rekonstrukciji izlazni signal mora biti identičan ulaznom signalu sa eventualnim kašnjenjem za k,

$$\frac{1}{2} \left(F_0(z)\overline{H}_0(z) + F_1(z)\overline{H}_1(z) \right) X(z) + \frac{1}{2} \left(F_0(z)\overline{H}_0(-z) + F_1(z)\overline{H}_1(-z) \right) X(-z) = z^{-k} X(z),$$

odakle sledi (46). U teoriji talasića ovi uslovi, ukoliko se razlikuju filtri analize i sinteze, vode ka biortogonalnim talasićima.

USLOV O Ortogonalnost

Ovo je poseban slučaj savršene rekonstrukcije, kada su filtri banke analize i banke sinteze identični. Banka analize se invertuje svojom transponovanom bankom, tj. bankom koja je definisana matricom transponovanom matrici banke analize. Za frekvencijske odzive važe veze (formule (37) i (3.39))

$$|H_0(z)|^2 + |H_0(-z)|^2 = 1, \qquad H_1(z) = -z^{1-N}\overline{H_0(-z)},$$

$$F_0(z) \equiv H_0(z), \qquad F_1(z) \equiv H_1(z).$$

Odgovarajući talasići su ortogonalni na sve svoje dilatacije i translacije.

 $USLOV A_r$ Maksimalna zaravnjenost

Frekvencijski odziv filtra ima nulu reda r u tački π ,

$$\hat{h}_0^{(k)}(\pi) = 0, \qquad k = 0, 1, \dots, r-1,$$

što u teoriji talasića proizvodi za dovoljno glatke funkcije tačnost reda r aproksimacije određene funkcijama skaliranja $\varphi(x - k)$, i r iščezavajućih momenata talasića $\psi(x)$. Brzina opadanja koeficijenata razvoja funkcije po talasićima je reda rza glatke funkcije.

USLOV E Uslov po sopstvenim vrednostima matrica filtra

Ovaj uslov nema značaja u teoriji filtara, ali je bitan u teoriji talasića. On garantuje stabilnost bazisa talasića i određuje glatkost talasića. Takođe definiše uslove pod kojima kaskadni algoritam (3.25) konvergira ka funkciji skaliranja $\varphi(x)$. Naime, uočimo da dve vremenske skale x i 2x predstavljaju kontinualnu formu kompresije $(\downarrow 2)$ – umesto $(\downarrow 2)\varphi(n) = \varphi(2n)$ imamo $(\downarrow 2)\varphi(x) = \varphi(2x)$. Stoga kaskadni algoritam predstavlja iterativni postupak definisan matricom $M = (\downarrow 2)2F$, gde je F matrica filtra (6), a M je eksplicitno zadata izrazom (3.35). Funkcija skaliranja $\varphi(x)$ je određena beskonačnim proizvodom ovih matrica.

PRIMER 6. Neka su koeficijenti filtra h(0) = 2/3 i h(1) = 1/3. Kaskadni algoritam, određen ovim filtrom, je definisan rekurentnom formulom

$$\varphi^{(i+1)}(x) = 2 \cdot \frac{2}{3} \varphi^{(i)}(2x) + 2 \cdot \frac{1}{3} \varphi^{(i)}(2x-1), \qquad \varphi^{(0)}(x) = \begin{cases} 1, & x \in [0,1) \\ 0, & x \notin [0,1) \end{cases}.$$

U svakoj iteraciji imamo dva koraka - filtriranje i reskaliranje. Filtriranje ulaza daje $\frac{2}{3}\varphi^{(0)}(x) + \frac{1}{3}\varphi^{(0)}(x-1)$. Reskaliranje od x na 2x kompresuje grafik duž x-ose za faktor 2, te, da bismo zadržali konstantnu površinu, množimo visinu grafika sa 2 (koeficijenti jednačine su 2h(k)).

Na početku (i = 0) filtriranjem i reskaliranjem jedne četvrtke, dobijaju se dva pravougaonika oba širine 1/2 i visine 4/3 i 2/3. Površina dobijene figure, ograničene funkcijom $\varphi^{(1)}(x)$ i x-osom, je takođe jednaka 1. Sada filtriramo i reskaliramo funkciju $\varphi^{(1)}(x)$. Od dva pravougaonika nastaju četiri, svaki širine $\frac{1}{4}$. Prvi od njih

ima visinu $\frac{16}{9}$, jer se visina prethodnog pravougaonika množi sa $\frac{4}{3}$. Očigledno je da ovim filtrom definisan kaskadni algoritam *ne konvergira*, jer $\varphi^{(i)}(0) = (4/3)^i \to \infty$, $i \to \infty$.

Frekvencijski odziv ovog filtra u z-domenu je

$$H(z) = \frac{2}{3} + \frac{1}{3}z^{-1}.$$

Tačka z = -1 (tj. $\omega = \pi$) nije nula frekvencijskog odziva.

Analizirajmo sa stanovišta filtara i kaskadne algoritme u primerima §3.5.

PRIMER 7. (videti primer 3.7) Četvrtka je fiksna tačka kaskadnog algoritma definisanog filtrom za usrednjavanje h(0) = h(1) = 1/2, jer se već u prvoj iteraciji dobija upravo četvrtka,

$$\varphi^{(1)}(x) = \varphi^{(0)}(2x) + \varphi^{(0)}(2x-1) = \varphi^{(0)}(x).$$

Frekvencijski odziv filtra za usrednjavanje je

$$H(z) = \frac{1}{2} + \frac{1}{2}z^{-1},$$

i tačka z=-1(tj. $\omega=\pi)$
 jestenula frekvencijskog odziva. Gustina energijskog spektra

$$P(z) = 2H(z)H(z^{-1}) = \frac{1}{2} + \frac{1}{4}(z + z^{-1})$$

nema parnih stepena pozi $z^{-1},$ osim konstante, pa je filtar poluopsežni. Četvrtka je ortogonalna na svoje translacije.

PRIMER 8. (videti primer 3.8) Filtarh(0)=h(2)=1/4i
 h(1)=1/2 definiše kaskadni algoritam

$$\varphi^{(i+1)}(x) = \frac{1}{2}\varphi^{(i)}(2x) + \varphi^{(i)}(2x-1) + \frac{1}{2}\varphi^{(i)}(2x-2),$$

koji konvergira ka krov funkciji. Frekvencijski odziv filtra

$$H(z) = \frac{1}{4} + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2} = \frac{(1+z)(1+z^{-1})}{4}$$

ima dvostruku nulu u tački z = -1. Filtar nije poluopsežni, jer proizvod $H(z) H(z^{-1})$ sadrži parne stepene z i z^{-1} . Krov funkcija nije ortogonalna u odnosu na svoje translacije.

Navedeni primeri ukazuju kako svojstva frekvencijskog odziva filtra, koji definiše koeficijente dilatacione jednačine, određuju konvergenciju kaskadnog algoritma i osobine njegovog rešenja, ukoliko ono postoji. Možemo zaključiti da je nula u tački $z = -1 (\omega = \pi)$ odziva filtra potreban, ali ne i dovoljan uslov za konvergenciju kaskadnog algoritma – ako odziv nema nulu u tački z = -1 kaskadni algoritam sigurno ne konvergira (primer 6). Slično, činjenica da je filtar poluopsežni ne garantuje ortogonalnost funkcije skaliranja u odnosu na translacije; ali, bez tog svojstva filtra ortogonalnost nije moguća (primer 8). Detaljna analiza konvergencije kaskadnog algoritma je data u narednom poglavlju.

Zadaci

1. Dokazati da su vektori kolona \mathbf{w}_k matrice konjugovane Fourier-ovoj matrici $W = \{w^{jk}\}, j, k = 0, ..., N - 1, i w = e^{i2\pi/N}$, sopstveni vektori ciklične matrice F (form. (7)). Odgovarajuće sopstvene vrednosti λ_k određene su vektorom **h** koji definiše elemente ciklične matrice,

$$F^*\mathbf{w}_k = \lambda_k \mathbf{w}_k, \qquad \lambda_k = \sum_{j=0}^{N-1} h(j) w^{jk}, \quad k = 0, \dots, N-1.$$

2. Pokazati da je koeficijent uz z^{-n} u proizvodu $\left(\sum h(k)z^{-k}\right)\left(\sum x(l)z^{-l}\right)$ element konvolucije $(\mathbf{h} * \mathbf{x})(n)$.

3. Pokazati da konvolucija $(\varphi_1 * \varphi_2)(x)$ zadovoljava dilatacionu jednačinu sa koeficijentima koji su elementi konvolucije signala $\mathbf{h}_1 * \mathbf{h}_2$, ako $\varphi_1(x)$ zadovoljava dilatacionu jednačinu sa koeficijentima $h_1(n)$, a $\varphi_2(x)$ zadovoljava dilatacionu jednačinu sa koeficijentima $h_2(n)$.

4. Odrediti koeficijente h(n) filtra koji za svaki ulazni signal **x** daje izlazni signal **y** čiji su elementi y(n) = x(n+1)? Naći frekvencijski odziv $\hat{h}(\omega)$ tog filtra i pokazati da je $\hat{y}(\omega) = \hat{h}(\omega) \hat{x}(\omega)$.

5. Napisati matricu S koja definiše filtar kašnjenja, $\mathbf{y} = S\mathbf{x}$, čiji su elementi y(n) = x(n-1). Odrediti matricu S^{-1} . Kako izgleda izlazni signal $\mathbf{y} = S^{-1}\mathbf{x}$? Naći frekvencijske odzive filtara koji su definisani matricama S i S^{-1} u frekvencijskom i z-domenu. Uporediti rezultate sa prethodnim zadatkom.

6. Koji je od sledećih filtara invertibilan:

(a) h(0) = 2/3, h(1) = -1/3,

(b)
$$h(0) = 2, \qquad h(2) = 1,$$

(c) h(n) = 1/n! (n = 0, 1, 2, ...).

7. Napisati matricu F i koeficijente h(n) tročlanog filtra za usrednjavanje $\mathbf{y} = F\mathbf{x}$, gde je $y(n) = \frac{1}{3}(x(n)+x(n-1)+x(n-2))$. Pokazati da ovaj filtar nije invertibilan. Naći dva signala \mathbf{x} koji se poništavaju ovim filtrom, $F \mathbf{x} = \mathbf{0}$.

8. Napisati matricu operatora kompresije za dva ($\downarrow 2$), kojom se vrši kompresija signala ($\downarrow 2$)x(n) = x(2n).

Napisati matricu operatora dekompresije za dva (\uparrow 2), transponovanu matrici (\downarrow 2). Da li je proizvod (\uparrow 2) (\downarrow 2) komutativan?

9. Objasniti dejstvo sledećih operatora kompresije i dekompresije na signal x:

- (a) $(\downarrow 2)^2$ i $(\uparrow 2)^2$,
- (b) $(\uparrow 2) (\downarrow 2) (\uparrow 2) (\downarrow 2)$,
- (c) $(\downarrow 3)$, $(\uparrow 3)$ i $(\uparrow 3)(\downarrow 3)$,
- (d) $(\uparrow 3) (\downarrow 2)$ i $(\downarrow 2) (\uparrow 3)$.

10. Kompresijom oscilatornog signala $\mathbf{x} = (\dots, 1, -1, 1, -1, 1, \dots)$ dobija se signal $(\downarrow 2)\mathbf{x} = (\dots, 1, 1, 1, \dots)$. Kako izgleda izlazni signal $(\downarrow 2)S\mathbf{x}$, gde je S filtar kašnjenja Sx(n) = x(n-1)?

11. Kompresijom za tri signala **x** dobijen je signal $\mathbf{v} = (\downarrow 3)\mathbf{x}$, a dekompresijom za tri ovog signala dobijen je signal $\mathbf{u} = (\uparrow 3)\mathbf{v}$. Odrediti signale \mathbf{v} i \mathbf{u} , njihove Fourier-ove transformacije $\hat{v}(\omega)$ i $\hat{u}(\omega)$, vezu $\hat{v}(\omega)$ i $\hat{u}(\omega)$, kao i vezu $\hat{v}(\omega)$ i $\hat{x}(\omega)$.

Korišćenjem dobijenih rezultata pokazati da deljenjem signala na ${\cal M}$ kanala dobijamo signale

$$\mathbf{v} = (\downarrow M)\mathbf{x}, \qquad v(n) = x(Mn),$$
$$\mathbf{u} = (\uparrow M)\mathbf{v} = (\uparrow M)(\downarrow M)\mathbf{x}, \qquad u(n) = \begin{cases} x(n), & n \text{ deljivo sa } M \\ 0, & \text{inače} \end{cases}$$

Fourier-ove transformacije ovih signala su

$$\hat{v}(\omega) = \frac{1}{M} \left(\hat{x}\left(\frac{\omega}{M}\right) + \hat{x}\left(\frac{\omega+2\pi}{M}\right) + \dots + \hat{x}\left(\frac{\omega+(M-1)2\pi}{M}\right) \right)$$
$$\hat{u}(\omega) = \hat{v}(M\omega) = \frac{1}{M} \left(\hat{x}(\omega) + \hat{x}\left(\omega + \frac{2\pi}{M}\right) + \dots + \hat{x}\left(\omega + \frac{(M-1)2\pi}{M}\right) \right)$$

12. Naći nule polinoma $B_3(y)$ (form.(40)) i Daubechies filtar D_3 (r = 3 u §4.5).

Glava 5

Osobine talasića

Sve osobine funkcije skaliranja $\varphi(x)$ i talasića $\psi(x)$ – kao što su interval na kome nisu identički jednaki nuli, ortogonalnost, glatkost, iščezavajući momenti i druge, proizilaze iz osobina koeficijenata dilatacione jednačine i jednačine talasića, tj. iz četiri osobine filtra navedene u §4.6.

Talasići se mogu izraziti pomoću funkcije skaliranja (form. (3.12)), tako da osnovno pitanje, koje se pre svega postavlja, jeste egzistencija funkcije skaliranja, tj. da li dilataciona jednačina ima rešenje čija je energija konačna (rešenje u \mathcal{L}_2)? Zatim, kako konstruisati funkciju skaliranja? Drugim rečima, da li kaskadni algoritam konvergira ka rešenju dilatacione jednačine? Ako rešenje postoji, postavlja se i pitanje glatkosti rešenja, broja iščezavajućih momenata talasića i, konačno, tačnosti aproksimacije određene ovim bazisnim funkcijama.

Tačnost deo po deo polinomijalne aproksimacije splajnovima ili konačnim elementima zavisi od odgovora na sledeće pitanje: do kog stepena (r-1) polinomi 1, x, \ldots, x^{r-1} mogu biti reprodukovani tačno pomoću aproksimacionih funkcija? Kada ovi polinomi pripadaju prostoru aproksimacionih funkcija, greška aproksimacije je reda $(\Delta x)^r$.

Kod nas su aproksimacione funkcije funkcija skaliranja $\varphi(x)$ i njene translacije. Aproksimacija funkcije f(x) u prostoru, na primer, \mathcal{V}_0 je njena projekcija $f_0(x)$ na taj skalirani prostor (form. (3.15) za j = 0),

(1)
$$f_0(x) = \sum_{k=-\infty}^{\infty} a_{0k} \varphi(x-k).$$

Primenom multirezolucije (form. (3.24)), ista aproksimacija se može predstaviti i sumama

(2)
$$f_0(x) = \sum_{k \in \mathbb{Z}} a_{J,k} \varphi_{J,k}(x) + \sum_{j=1}^J \sum_{k \in \mathbb{Z}} b_{j,k} \psi_{j,k}(x).$$

Tako se u aproksimaciji pojavljuju talasići razlaganjem funkcije na nekoliko skala. Multirezolucijom se kombinuju detalji na nivoima od prvog do J-tog i aproksimacija

na nivou J. U praksi se nivo J određuje u zavisnosti od tražene tačnosti i obima računanja. Veća rezolucija zahteva više bazisnih funkcija, a time i više koeficijenata koje treba odrediti. Tačnost zavisi od koeficijenata filtra h(n) i osobina funkcije f(x). Tipičan oblik greške je

$$||f(x) - f_0(x)|| \approx C(\Delta x)^r ||f^{(r)}(x)||$$

Ako je funkcija male glatkosti samo u delu domena, može se lokalno povećati broj nivoa rezolucije u toj oblasti. Osnovna prednost talasića nad Fourier-ovom analizom je upravo mogućnost lokalnog popravljanja aproksimacije. To je osnovna ideja i u metodi konačnih elemenata, a u konačnim razlikama ova ideja se realizuje multigrid algoritmom.

Pokazaćemo da je maksimalna zaravnjenost filtra, USLOV A_r : $\hat{h}(\omega)$ ima nulu reda r za $\omega = \pi$, tj. $\hat{h}^{(m)}(\pi) = 0, m = 0, \dots, r-1,$ osobina koeficijenata filtra koja vodi ka aproksimaciji tačnosti redar,pa otuda i

naziv uslova.

Posledice USLOVA A_r su :

1. Matrica filtra $M = \{2h(2i-j)\}$ ima sopstvene vrednosti 1, $1/2, \ldots, (1/2)^{r-1}$.

2. Polinomi 1, x, \ldots, x^{r-1} su linearne kombinacije translacija $\varphi(x-k)$.

3. Prvih r momenata talasića $\psi(x)$ su nula,

$$\int x^m \psi(x) \, dx = 0, \qquad m = 0, 1, \dots, r - 1.$$

4.

Glatke funkcije mogu biti aproksimirane sa greškom $O((\Delta x)^r)$ kombinacijama funkcije skaliranja $\varphi(x)$ i njenih translacija na svakom nivou j,

$$\|f - \sum_{k} a_{j,k} \varphi_{j,k}(x)\| \le C(\Delta x)^r \|f^{(r)}\|,$$

gde je $\varphi_{j,k}(x) = 2^{-j/2} \varphi(2^{-j}x - k), \quad a_{j,k} = \int f(x) \varphi_{j,k}(x) \, dx \quad i \quad \Delta x = 2^j.$

5. Fourier-ovi koeficijenti glatke funkcije određeni bazisom talasića (koeficijenti talasića) opadaju kao

$$\int f(x)\psi(2^jx)\,dx \le C2^{-jr}.$$

Napomenimo da je, prema §3.5, posledica USLOVA A_r i:

Fourier-ova transformacija funkcije skaliranja $\hat{\varphi}(\omega)$ ima nule reda r u svim tačkama $\omega=2n\pi,\,n=1,2,\ldots.$

5.1 Matrice filtra

Uticaj koeficijenata filtra h(k) na osobine funkcije skaliranja i talasića analiziraćemo kroz svojstva matrica filtra određenih ovim koeficijentima. Njima su definisana dva osnovna linearna operatora u teoriji talasića

(3)
$$M = (\downarrow 2) 2F, \qquad T = (\downarrow 2) 2F F^{\top}.$$

F je matrica filtra (4.6) od koje normiranjem i primenom operatora kompresije $(\downarrow 2)$ nastaje matrica M (form. (3.35)). Ciklična (Toeplitz-ova) matrica $2F F^{\top}$ ima za elemente koeficijente gustine energijskog spektra filtra $\hat{p}(\omega)$ (form. (4.29)). Vrste su dvostruko pomerene takođe operatorom kompresije za dva.

U frekvencijskom domenu efekat ovih operatora dat je izrazima

(4)
$$(\hat{M}f)(\omega) = \hat{h}\left(\frac{\omega}{2}\right)\hat{f}\left(\frac{\omega}{2}\right) + \hat{h}\left(\frac{\omega}{2} + \pi\right)\hat{f}\left(\frac{\omega}{2} + \pi\right)$$

(5)
$$(\hat{Tf})(\omega) = |\hat{h}\left(\frac{\omega}{2}\right)|^2 \hat{f}\left(\frac{\omega}{2}\right) + |\hat{h}\left(\frac{\omega}{2} + \pi\right)|^2 \hat{f}\left(\frac{\omega}{2} + \pi\right).$$

Zaista, Fourier-ova transformacija vektora

$$\begin{split} Mf &= 2 \begin{pmatrix} \cdot & \cdot \\ \cdot & h(0) & 0 & 0 & 0 & 0 & \cdot \\ \cdot & h(2) & h(1) & h(0) & 0 & 0 & \cdot \\ \cdot & h(4) & h(3) & h(2) & h(1) & h(0) & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix} \begin{pmatrix} \cdot \\ f(0) \\ f(1) \\ f(2) \\ \cdot \end{pmatrix} \\ &= \begin{pmatrix} 2\sum_n h(n)f(-n) \\ 2\sum_n h(n)f(2-n) \\ 2\sum_n h(n)f(4-n) \\ \cdot \end{pmatrix}, \end{split}$$

glasi

$$(\hat{M}f)(\omega) = \sum_{m} \left(2\sum_{n} h(n)f(2m-n) \right) e^{-im\omega}.$$

Sa druge strane, desna strana jednakosti (4) može se svesti na isti izraz,

$$\begin{split} \hat{h}\left(\frac{\omega}{2}\right)\hat{f}\left(\frac{\omega}{2}\right) + \hat{h}\left(\frac{\omega}{2} + \pi\right)\hat{f}\left(\frac{\omega}{2} + \pi\right) \\ &= \sum_{n}h(n)e^{-\imath n\omega/2}\sum_{j}f(j)e^{-\imath j\omega/2} + \sum_{n}h(n)e^{-\imath n(\pi+\omega/2)}\sum_{j}f(j)e^{-\imath j(\pi+\omega/2)} \\ &= \sum_{n,j}h(n)f(j)e^{-\imath (n+j)\omega/2} + \sum_{n,j}h(n)f(j)(-1)^{n+j}e^{-\imath (n+j)\omega/2} \\ &= \sum_{l}\left(1 + (-1)^{l}\right)\left(\sum_{n}h(n)f(l-n)\right)e^{-\imath l\omega/2} = \sum_{m}\left(2\sum_{n}h(n)f(2m-n)\right)e^{-\imath m\omega}, \end{split}$$

gde je stavljeno l = 2m = n + j, jer u pretposlednjoj sumi ostaju samo sabirci po parnim indeksima l. Time je izraz (4) dokazan. Analogno se dokazuje izraz (5).

Od osobina matrica M i T zavise odgovori na naša pitanja. Kaskadni algoritam se svodi na iteriranje nisko-frekvencijskog filtra, što je ekvivalentno stepenovanju matrica filtra. Stoga konvergencija zavisi od sopstvenih vrednosti matrica M i T – od matrice M zavisi uniformna, a od matrice T srednjekvadratna konvergencija.

Ideju o uslovima koje bi matrica M trebalo da zadovoljava možemo dobiti sledećom analizom. Dilatacionom jednačinom zapisanom u vektorskom obliku (§3.5)

$$\varphi(x) = 2\sum_{k} h(k)\varphi(2x-k) \quad \Longleftrightarrow \quad \Phi_{\infty}(x) = M \Phi_{\infty}(2x),$$

gde je vektor $\mathbf{\Phi}_{\infty}(x) = (\dots, \varphi(x), \varphi(x+1), \dots)^T$ i matrica M data u (3), za x = 0 definisan je problem sopstvenih vrednosti i vektora matrice M_{N-1} , dimenzije $(N-1) \times (N-1)$. Matrica M_{N-1} je blok matrica matrice M koja odgovara vektoru $\mathbf{\Phi}(0) = (\varphi(0), \varphi(1), \dots, \varphi(N-2))^T$. Ostale komponente vektora $\mathbf{\Phi}_{\infty}(0)$ su nula, te se beskonačno-dimenzioni problem svodi na problem dimenzije (N-1). Vektor $\mathbf{\Phi}(0)$ će biti različit od nule ako je $\lambda = 1$ sopstvena vrednost matrice M_{N-1} . Dalje, ako je $\varphi(x)$ diferencijabilna funkcija, izvodom dilatacione jednačine

$$\varphi'(x) = 4 \sum_{k} h(k) \varphi'(2x - k) \quad \Longleftrightarrow \quad \Phi'_{\infty}(x) = 2M \, \Phi'_{\infty}(2x),$$

za x = 0 ponovo je definisan problem sopstvenih vrednosti i vektora matrice M_{N-1} . Vektor $\Phi'(0)$ će biti različit od nule ako je $\lambda = 1/2$ sopstvena vrednost matrice M_{N-1} . Daljim diferenciranjem (ako je moguće) dobija se niz problema sopstvenih vrednosti za matricu M_{N-1} ,

$$\mathbf{\Phi}^{(m)}(0) = 2^m M_{N-1} \, \mathbf{\Phi}^{(m)}(0), \quad m = 0, 1, 2, \dots$$

tako da ćee vektor $\mathbf{\Phi}^{(m)}(0) = (\varphi^{(m)}(0), \dots, \varphi^{(m)}(N-2))^T$ biti sopstveni vektor matrice M_{N-1} ako ova ima sopstvenu vrednost $\lambda = 1/2^m$, za $m = 0, 1, 2, \dots$ Matrica M_0 , definisana teoremom 3.5, je identična matrici M_{N-1} .

Posledica <u>1</u>. USLOVA A_r da matrice M i M_{N-1} imaju sopstvene vrednosti $\lambda = 1, 1/2, \ldots, (1/2)^{r-1}$, ako i samo ako koeficijenti filtra zadovoljavaju USLOV A_r , sledi iz naredne dve teoreme.

TEOREMA 1. Sledeće tri formulacije USLOVA A_r su ekvivalentne

1. r pravila sumiranja za koeficijente: $\sum_{k=0}^{2r-1} (-1)^k k^m h(k) = 0, m = 0, \dots, r-1.$ 2. r nula u tački $\omega = \pi$: $\hat{h}(\omega) = \left(\frac{1+e^{-i\omega}}{2}\right)^r \hat{q}(\omega)$ ili $H(z) = \left(\frac{1+z^{-1}}{2}\right)^r Q(z).$ 3. r sopstvenih vrednosti 1, $\frac{1}{2}, \dots, \left(\frac{1}{2}\right)^{r-1}$ matrice $M_{N-1} = \{2h(2i-j)\}$:

(6)
$$M_{N-1} \Phi^{(m)}(0) = \left(\frac{1}{2}\right)^m \Phi^{(m)}(0), \qquad m = 0, 1, \dots, r-1.$$

Ekvivalencija prve i druge formulacije je dokazana u §4.5, izrazi (4.38) i (4.39). Ekvivalencija druge i treće formulacije je posledica sledeće teoreme,

TEOREMA 2. Filtru H(z) pridružimo matricu M_s sa sopstvenim vrednostima λ_s i sopstvenim vektorima \mathbf{x}_s . Kada H(z) pomnožimo sa $\frac{1+z^{-1}}{2}$, dobijamo novi filtar čija je matrica M_n za jedan veće dimenzije, i

- a) sopstvene vrednosti λ_n su $\frac{1}{2}\lambda_s$, a dodatna sopstvena vrednost je $\lambda_n = 1$;
- b) sopstveni vektori \mathbf{x}_n imaju koordinate koje su razlike koordinata sopstvenih vektora \mathbf{x}_s ,

$$x_n(k) = x_s(k) - x_s(k-1),$$

a u frekvencijskom domenu veza novih i starih sopstvenih vektora je

$$X_n(z) = (1 - z^{-1}) X_s(z).$$

Levi sopstveni vektor $\mathbf{e}_0^{\top} = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}$ odgovara novoj sopstvenoj vrednosti $\lambda_n = 1$. Desni sopstveni vektor ima komponente koje su vrednosti funkcije skaliranja u celobrojnim tačkama $\varphi(k)$.

Dokaz: Zapišimo u z-domenu jednačinu koja definiše sopstvene vrednosti. Na osnovu (4) ta jednačina ima oblik

$$(\hat{M}\mathbf{x})(\omega) \equiv \hat{h}\left(\frac{\omega}{2}\right)\hat{x}\left(\frac{\omega}{2}\right) + \hat{h}\left(\frac{\omega}{2} + \pi\right)\hat{x}\left(\frac{\omega}{2} + \pi\right) = \lambda\hat{x}(\omega),$$

odakle, uvođenjem smene $e^{-\iota\omega/2} = z$ i uzimajući u obzir da je $e^{-\iota(\pi+\omega/2)} = -z$ i $\hat{x}(\omega/2) = X(z)$, dobijamo jednačinu sopstvenih vrednosti

(7)
$$H(z)X_s(z) + H(-z)X_s(-z) = \lambda X_s(z^2) \iff M_s \mathbf{x}_s = \lambda_s \mathbf{x}_s.$$

Dokaz se zasniva na identitetu $\frac{1+z^{-1}}{2}(1-z^{-1}) = \frac{1}{2}(1-z^{-2})$. Množenje jednačine (7) sa $\frac{1}{2}(1-z^{-2})$ svodi se na množenje H(z) činiocem $\frac{1+z^{-1}}{2}$ i $X_s(z)$ činiocem $(1-z^{-1})$,

$$\frac{1+z^{-1}}{2}H(z)(1-z^{-1})X_s(z) + \frac{1-z^{-1}}{2}H(-z)(1+z^{-1})X_s(-z)$$
$$= \frac{1}{2}\lambda(1-z^{-2})X_s(z^2).$$

Filtru $\frac{1+z^{-1}}{2}H(z)$ odgovara matrica M_n . Poslednja jednačina, uvođenjem oznake $X_n(z) = (1 - z^{-1})X_s(z)$, dobija oblik leve strane ekvivalencije (7) za $X_n(z)$, što znači da je to jednačina sopstvenih vrednosti matrice novog filtra $M_n \mathbf{x}_n = \lambda_n \mathbf{x}_n$.

Prethodne sopstvene vrednosti se množe sa $\frac{1}{2}$, a sopstveni vektori zadovoljavaju tvrđenje teoreme jer važi jednakost

$$\hat{x}_{n}(\omega/2) = X_{n}(z) = (1 - z^{-1})X_{s}(z) = (1 - e^{i\omega/2})\hat{x}_{s}(\omega/2)$$

$$= \sum_{k=0}^{N-1} (1 - e^{i\omega/2})x_{s}(k)e^{-ik\omega/2}$$

$$= \sum_{k=0}^{N-1} x_{s}(k)e^{-ik\omega/2} - \sum_{k=0}^{N-1} x_{s}(k)e^{-i(k-1)\omega/2}$$

$$= \sum_{k=-1}^{N-1} (x_{s}(k) - x_{s}(k+1))e^{-ik\omega/2},$$

pri čemu je definisano da je $x_s(-1)=x_s(N)=0.\,$ Množenjem vektora sa-1dobijamo navedenu vezu.

Poslednji stav u iskazu ove teoreme dokazan je u teoremi 3.6, na kojoj se zasniva rekurzivni algoritam za rešavanje dilatacione jednačine.

Za razmatrani problem važni su i levi sopstveni vektori. Sopstvenim vrednostima 1, $\frac{1}{2}$, $\frac{1}{4}$,..., odgovaraju levi sopstveni vektori koji imaju oblik "diskretnih polinoma". Naime, levi sopstveni vektor koji odgovara sopstvenoj vrednosti $\lambda = 2^{-k}$ je kombinacija vektora vrsta \mathbf{e}_0^{\top} , \mathbf{e}_1^{\top} ,..., \mathbf{e}_k^{\top} , gde je

$$\mathbf{e}_0^{\top} = \begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix}, \quad \mathbf{e}_1^{\top} = \begin{pmatrix} 0 & 1 & \dots & N-2 \end{pmatrix}, \dots \quad \mathbf{e}_k^{\top} = \begin{pmatrix} 0^k & 1^k & \dots & (N-2)^k \end{pmatrix}.$$

Množenje H(z) sa $\frac{1+z^{-1}}{2}$ ima za posledicu da su levi sopstveni vektori matrice M_n određeni levim sopstvenim vektorima matrice M_s . Dok se koordinate desnih sopstvenih vektora dobijaju kao razlike koordinata vektora \mathbf{x}_s , levi sopstveni vektori se dobijaju kao sume. Sumiranje povećava stepen polinoma za jedan. U z-domenu ovo sumiranje odgovara množenju sa $\frac{1}{1-z} = \frac{z^{-1}}{z^{-1}-1}$:

TEOREMA 3. Levi sopstveni vektor \mathbf{y}_n matrice M_n ,

$$\mathbf{y}_n^{\top} M_n = \lambda_n \, \mathbf{y}_n^{\top},$$

koji odgovara sopstvenoj vrednosti $\lambda_n = 1$ uvek je jednak vektoru \mathbf{e}_0^{\top} . Ostali levi sopstveni vektori dobijaju se sabiranjem vektora \mathbf{y}_s i vektora $c\mathbf{e}_0$, što se u z-domenu izražava vezom

$$Y_n(z) = \frac{1}{1-z} Y_s(z) + C E_0(z).$$

Sa $E_0(z)$ je označena z-transformacija vektora \mathbf{e}_0 (form. (4.8)), a c i C su konstante.

Dokaz: Levi sopstveni vektori matrice M su desni sopstveni vektori matrice $M^{\top},$

$$\mathbf{y}^{\top} M = \lambda \, \mathbf{y}^{\top} \iff M^{\top} \mathbf{y} = \lambda \, \mathbf{y}.$$

Prema definiciji (3), vršimo transponovanje operacija kompresije (\downarrow 2) i množenja sa 2H(z). Transponovane operacije su dekompresija (\uparrow 2) i množenje sa $2H(z^{-1})$. Jednačina sopstvenih vrednosti $M_s^{\top} \mathbf{y}_s = \lambda_s \mathbf{y}_s$ ima kao argument z^2 zbog operacije (\uparrow 2) (form. (4.25)),

$$2H(z^{-1})Y_s(z^2) = \lambda_s Y_s(z).$$

Pomnožimo poslednju jednačinu izrazom $\frac{1}{1-z}=\frac{1+z}{1-z^2},$ tako što ćemo pomnožiti $H(z^{-1})$ sa $\frac{1+z}{2}$ i podeliti $Y(z^2)$ sa $1-z^2,$

$$2\frac{1+z}{2}H(z^{-1})\frac{1}{1-z^2}Y_s(z^2) = \frac{1}{2}\lambda_s\frac{1}{1-z}Y_s(z).$$

Dobili smo z-transformaciju vektorske jednačine $M_n^{\top} \mathbf{y}_n = \lambda_n \mathbf{y}_n$, što kompletira dokaz. Stare sopstvene vrednosti su pomnožene sa $\frac{1}{2}$, jer matrice M^{\top} i M imaju jednake sopstvene vrednosti.

5.2 Tačnost aproksimacije

Dokažimo da iz posledice 1. sledi

Posledica 2. USLOVA A_r : Polinomi 1, x, \ldots, x^{r-1} su linearne kombinacije translacija $\varphi(x-k)$.

Za beskonačno dimenzionu matricu ${\cal M}$ važi

TEOREMA 4. Levi sopstveni vektor matrice M,

$$\mathbf{y}_m^\top M = \left(\frac{1}{2}\right)^m \mathbf{y}_m^\top$$

određuje reprezentaciju polinoma x^m funkcijom skaliranja i njenim translacijama $\varphi(x+k),$

(8)
$$\sum_{k} y_m(k)\varphi(x+k) = x^m, \qquad m = 0, 1, \dots, r-1.$$

Dokaz: Treba dokazati da je skalarni proizvod

$$G(x) = \mathbf{y}_m^\top \mathbf{\Phi}_\infty(x) = \sum y_m(k)\varphi(x+k),$$

gde je vektor $\Phi_{\infty}(x)$ rešenje dilatacione jednačine $\Phi_{\infty}(x) = M \Phi_{\infty}(2x)$, jednak umnošku od x^m . Tvrđenje neposredno sledi iz jednakosti

$$G(x) = \mathbf{y}_m^{\top} \mathbf{\Phi}_{\infty}(x) = \mathbf{y}_m^{\top} M \mathbf{\Phi}_{\infty}(2x) = \left(\frac{1}{2}\right)^m \mathbf{y}_m^{\top} \mathbf{\Phi}_{\infty}(2x) = \left(\frac{1}{2}\right)^m G(2x),$$

jer je $G(2x) = 2^m G(x)$ za svako x samo ako je $G(x) = c x^m$.

PRIMEDBA 1. Polinomi $1, \ldots, x^{r-1}$ ne pripadaju prostoru \mathcal{V}_0 , jer imaju beskonačnu energiju $\int_{-\infty}^{\infty} (x^j)^2 dx = \infty$ (nemaju kompaktan nosač). Ipak se mogu na svakom konačnom intervalu tačno predstaviti funkcijom skaliranja i njenim translacijama. Sopstveni vektori **y** imaju beskonačno mnogo komponenti koje su različite od nule a koje množe sve translacije funkcije $\varphi(x)$, tako da kombinacija ostaje polinom za svako x. Stoga prostor \mathcal{V}_0 generisan funkcijama { $\varphi(x-k)$ }, uslovno rečeno, sadrži sve polinome stepena manjeg od r.

Parametar r je bar jednak jedan. Kada razvoj (8) napišemo za levi sopstveni vektor \mathbf{e}_0^{\top} , čije su sve komponente jednake jedan, dobijamo uslov (3.38),

(9)
$$\sum_{k} \varphi(x-k) \equiv 1.$$

Skalarnim množenjem identiteta (9) sa talasićem $\psi(x)$, s obzirom na ortogonalnost funkcije skaliranja i talasića, dolazimo do već poznatog zaključka da je talasić ortogonalan na jedinicu, $\int \psi(x) dx = 0$ (prvi momenat talasića jednak je nuli).

PRIMER 1. Elementarni polinomi 1 i x mogu se predstaviti translacijama krov funkcija (određene filtrom dužine N = 3, pa je matrica M_{N-1} dimenzije dva), ali i pomoću Daubechies funkcije skaliranja definisane filtrom dužine N = 4. Matrica M_3 glasi

$$M_3 = \frac{1}{4} \begin{pmatrix} 1+\sqrt{3} & 0 & 0\\ 3-\sqrt{3} & 3+\sqrt{3} & 1+\sqrt{3}\\ 0 & 1-\sqrt{3} & 3-\sqrt{3} \end{pmatrix}.$$

Samo dve sopstvene vrednosti ove matrice, 1 i 1/2, su stepeni broja dva i njima odgovaraju konstantan i linearan sopstveni vektor, $(c, c+1, c+2)^{\top}$, c = const,

$$\lambda = 1 \qquad \mathbf{y}_{0}^{\top} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$
$$\lambda = \frac{1}{2} \qquad \mathbf{y}_{1}^{\top} = \frac{1}{2} \begin{pmatrix} \sqrt{3} - 3 & \sqrt{3} - 1 & \sqrt{3} + 1 \end{pmatrix}$$
$$\lambda = \frac{1 + \sqrt{3}}{4} \qquad \mathbf{y}_{2}^{\top} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}.$$

Kombinacija $\sum y_1(k)\varphi(x+k)$ jednaka je umnošku od x. Stoga Daubechies prostor \mathcal{V}_0 sadrži funkcije 1 i x. One su ortogonalne na talasiće iz prostora \mathcal{W}_0 , $\int \psi(x) dt = 0$ i $\int x \psi(x) dx = 0$, što znači da Daubechies talasić ima dva momenta jednaka nuli (dva iščezavajuća momenta).

Ako skalarno pomnožimo identitete (8) talasićem $\psi(x)$, zbog ortogonalnosti talasića i funkcije skaliranja, sledi da je

$$\int_{-\infty}^{\infty} x^m \psi(x) \, dx = \int_{-\infty}^{\infty} \sum_k y_m(k) \varphi(x+k) \psi(x) \, dx$$
$$= \sum_k y_m(k) \int_{-\infty}^{\infty} \varphi(x+k) \psi(x) \, dx = 0, \quad m = 0, \dots, r-1.$$

što predstavlj<u>a</u>

Posledicu 3. USLOVA A_r : Prvih r momenata talasića $\psi(x)$ su jednaki nuli,

(10)
$$\int_{-\infty}^{\infty} \psi(x) \, dx = 0, \quad \int_{-\infty}^{\infty} x \psi(x) \, dx = 0, \quad \dots, \quad \int_{-\infty}^{\infty} x^{r-1} \psi(x) \, dx = 0.$$

Ova osobina talasića ima za posledicu da se algebarska funkcija stepena manjeg od r može predstaviti samo funkcijom skaliranja. Detalji su nula, jer su u razvoju (2) svi koeficijenti talasića $b_{jk} = 0$.

Posledice 4. i 5. USLOVA A_r neposredno slede iz mogućnosti lokalnog predstavljanja polinoma $1, \ldots, x^{r-1}$ bazisnim funkcijama $\{\varphi(x-k)\}$. Ako funkcija f(x)nije polinom ali je dovoljno glatka, možemo je na svakom intervalu približno predstaviti Taylor-ovim polinomom stepena r-1. Grešku aproksimacije određuje prvi član Taylor-ovog razvoja koga ne možemo rekonstruisati, što daje izraz $(\Delta x)^r f^{(r)}$ u grešci.

TEOREMA 5. (Posledica 4.) USLOVA A_r) Ako frekvencijski odziv $\hat{h}(\omega)$ ima nulu reda r u tački $\omega = \pi$, svaka funkcija f(x), koja je r puta diferencijabilna, može se aproksimirati sa greškom reda $(\Delta x)^r = 2^{jr}$ svojom projekcijom $f_j(x)$ na prostor \mathcal{V}_j ,

$$||f(x) - f_j(x)|| \le C(\Delta x)^r ||f^{(r)}||$$

tj.

(11)
$$||f(x) - \sum_{k} a_{j,k} 2^{-j/2} \varphi(2^{-j}x - k)|| \le C 2^{jr} ||f^{(r)}||.$$

Ocenu koeficijenata $b_{j,k}$ u reprezentaciji (2) takođe određuje prvi član Taylorovog razvoja koga ne možemo rekonstruisati, jer se prvih r sabiraka anulira na osnovu svojstva (10) da su momenti jednaki nuli.

TEOREMA 6. (Posledica 5.) USLOVA A_r) Ako frekvencijski odziv $\hat{h}(\omega)$ ima nulu reda r u tački $\omega = \pi$ i ako je funkcija f(x) r puta diferencijabilna, njeni koeficijenti talasića opadaju kao 2^{jr} $(j \to -\infty)$,

(12)
$$|b_{jk}| = \left| \int f(x) 2^{-j/2} \psi(2^{-j}x - k) \, dx \right| \le C 2^{jr} \|f^{(r)}\|.$$

Ovi koeficijenti direktno su povezani sa lokalnim svojstvima funkcije f(x). Od broja r zavisi koliko je bazisnih funkcija potrebno za aproksimaciju željene tačnosti. Što je funkcija veće glatkosti i r veće, koeficijenti u razvoju brže teže nuli i potrebno je manje sabiraka za dobru aproksimaciju. Centralni problem je upravo naći pogodan bazis koji daje dobru aproksimaciju sa nekoliko bazisnih funkcija. Ako je funkcija

glatka svugde, Fourier-ov bazis (trigonometrijske funkcije) obično zadovoljava. Ako funkcija ima konačan prekid, Fourier-ovi koeficijenti ne opadaju brže od 1/j (zadatak 2.1). Za deo po deo glatke funkcije bazis talasića je bolji. Koeficijenti će sporije opadati samo oko diskontinuiteta. Bazisom talasića, koji je lokalan, mogu se razdvojiti glatki delovi tako da se u okolini diskontinuiteta koristi finija rezolucija (manja skala). To je upravo suština aproksimacije funkcijama skaliranja i/ili talasićima.

Posledice USLOVA A_r su iskazane redom formulama (6), (8), (10), (11) i (12). Za četvrtku i Haar-ove talasiće je r = 1. Pitanje je izbora parametra r u praksi. Obično je zadovoljavajući zahtev da funkcija $\varphi(x)$ bude dva puta diferencijabilna, a to je za izbor $r \approx 4$. Glatkost funkcije skaliranja zavisi od uslova konvergencije kaskadnog algoritma, s obzirom da u opštem slučaju ova funkcija nije poznata u analitičkom obliku, već je određena graničnom vrednošću kaskadnog algoritma (ako ova postoji).

5.3 Konvergencija kaskadnog algoritma

Egzistencija rešenja dilatacione jednačine i glatkost dobijenog rešenja zavise od osobina matrice T, definisane drugim izrazom u (3). Kao što je napomenuto, ova matrica je pridružena gustini energijskog spektra filtera $\hat{p}(\omega) = 2|\hat{h}(\omega)|^2$ (form. (4.29)). U slučaju ispunjenosti USLOVA A_r , tačka $\omega = \pi$ je nula reda 2r funkcije $\hat{p}(\omega)$. Posledica toga je da su 1, $1/2, \ldots, 1/2^{2r-1}$ prvih 2r sopstvenih vrednosti matrice T. Od osobina ostalih sopstvenih vrednosti ove matrice zavisi konvergencija kaskadnog algoritma i glatkost aproksimacije.

Posledice USLOVA A_r su :

- 6. Kaskadni algoritam konvergira u \mathcal{L}_2 ka funkciji skaliranja $\varphi(x)$ ako sopstvene vrednosti matrice T, koje nisu jednake 2^{-k} , $k = 0, \ldots, 2r - 1$, zadovoljavaju uslov $|\lambda| < 1$.
- 7. Funkcija skaliranja $\varphi(x)$ i talasić $\psi(x)$ imaju s izvoda u \mathcal{L}_2 ako sopstvene vrednosti matrice T, koje nisu jednake 2^{-k} , $k = 0, \ldots, 2r-1$, zadovoljavaju uslov $|\lambda| < 4^{-s}$ (s nije veće od parametra r).

Dokažimo prvo *posledicu* 6. Kaskadni algoritam (3.25) se može zapisati i na sledeći način:

$$\varphi^{(i+1)}(x) = \sum_{k} 2h(k)\varphi^{(i)}(2x-k).$$

Uobičajeni izbor početne aproksimacije je četvrtka $\varphi^{(0)}(x)$. Može se izabrati i neka druga funkcija kao početna aproksimacija, ali ona mora zadovoljavati uslov (9) (koji

četvrtka očigledno zadovoljava), jer je to potreban uslov za konvergenciju kaskadnog algoritma (zadatak 5). Konvergencija zavisi i od koeficijenata jednačine, tj. osobina matrice T, pošto se \mathcal{L}_2 konvergencija kaskadnog algoritma svodi na konvergenciju stepene iterativne metode definisane nizom vektora $\mathbf{a}^{(i)} = \{a^{(i)}(n)\}_n, i = 0, 1, \ldots,$

(13)
$$\mathbf{a}^{(i+1)} = T \mathbf{a}^{(i)}, \qquad a^{(i)}(n) = \left(\varphi^{(i)}(x), \varphi^{(i)}(x+n)\right) = \int \varphi^{(i)}(x)\varphi^{(i)}(x+n) dx,$$

za jednačinu

(14)
$$\mathbf{a} = T\mathbf{a}, \quad \mathbf{a} = \{a(n)\}, \quad a(n) = (\varphi(x), \varphi(x+n)).$$

Zbir elemenata po kolonama matrice

$$T = (\downarrow 2)2F F^{\top} = M F^{\top}$$

jednak je jedan, pa je vektor $\mathbf{e}_0^{\top} = (\dots \ 1 \ 1 \ \dots \ 1 \ \dots)$ levi sopstveni vektor ove matrice,

$$\mathbf{e}_0^\top T = \mathbf{e}_0^\top M F^\top = \mathbf{e}_0^\top F^\top = \mathbf{e}_0^\top,$$

a odgovarajuća sopstvena vrednost je $\lambda = 1$. Ilustrujmo prvo primerima zavisnost konvergencije iterativnog algoritma od veličine sopstvenih vrednosti matrice T.

PRIMER 2. Analizirajmo filter **h** dužine N = 3, čiji koeficijenti h(0) = 1, $h(1) = \frac{1}{2}$ i $h(2) = -\frac{1}{2}$ zadovoljavaju USLOV A_1 , da su sume koeficijenata sa parnim i neparnim indeksom jednake $\frac{1}{2}$. Dilataciona jednačina ima oblik

$$\varphi(x) = 2\varphi(2x) + \varphi(2x-1) - \varphi(2x-2).$$

U tački x = 0 vrednost funkcije skaliranja se udvostručuje na svakom koraku kaskadnog algoritma, jer je $\varphi^{(i+1)}(0) = 2\varphi^{(i)}(0)$, što znači da kaskadni algoritam divergira.

Da bismo odredili matricu T, izračunajmo prvo

$$2FF^{\top} = \frac{1}{2} \begin{pmatrix} \cdot & & \\ 1 & 2 & \\ -1 & 1 & 2 \\ & -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} \cdot & 1 & -1 & \\ 2 & 1 & -1 \\ & 2 & 1 \\ & & 2 & 1 \\ & & & 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \\ -2 & 1 & 6 & 1 & -2 \\ & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

Operatorom $(\downarrow 2)$ vrši se dvostruki pomeraj, tj. uklanjaju se neparne vrste, pa je

$$T = (\downarrow 2)2FF^{\top} = \frac{1}{2} \begin{pmatrix} \cdot & & \\ \cdot & 6 & 1 & -2 & \\ & -2 & 1 & 6 & 1 & -2 \\ & & -2 & 1 & 6 \\ & & & & -2 & \cdot \\ & & & & & & \cdot \end{pmatrix}$$

U svim kolonama matrice T zbir elemenata je jednak jedan. Početna funkcija kaskadnog algoritma je četvrtka, te je $\mathbf{a}^{(0)} = (\dots, 0, 1, 0, \dots)^{\top}$. Dalje je

, ,

. .

$$\mathbf{a}^{(1)} = T \, \mathbf{a}^{(0)} = \frac{1}{2} \begin{pmatrix} \cdot \\ 0 \\ -2 \\ 6 \\ -2 \\ 0 \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ 0 \\ -1 \\ 3 \\ -1 \\ 0 \\ \cdot \end{pmatrix}.$$

Filtar je dužine N = 3, te je, na osnovu teoreme 3.1, nosač funkcije skaliranja interval [0,2]. Stoga su svi skalarni proizvodi u (13) jednaki nuli za $|n| \ge 2$. Algoritam (13) definisan je samo centralnom podmatricom T_3 reda 2(N-1) - 1 = 3,

$$\mathbf{a}_{3}^{(2)} = T_{3}\mathbf{a}_{3}^{(1)} = \frac{1}{2} \begin{pmatrix} 1 & -2 & 0\\ 1 & 6 & 1\\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} -1\\ 3\\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -7\\ 16\\ -7 \end{pmatrix}.$$

Očigledno je da brojevi rastu, tj. da kaskadni algoritam divergira. Matrica T ima sopstvenu vrednost $\lambda = 5/2$, koja je veća od jedan.

PRIMER 3. Filtar dužine N = 4 sa koeficijentima $h(0) = \frac{1}{2}$, h(1) = 0, h(2) = 0 i $h(3) = \frac{1}{2}$ zadovoljava USLOV A_1 i ortogonalan je u odnosu na dvostruki pomeraj, jer su vektori

 $\left(\dots \quad 0 \quad 0 \quad \frac{1}{2} \quad 0 \quad 0 \quad \frac{1}{2} \quad 0 \quad \dots\right)^{\top} \quad \mathbf{i} \quad \left(\dots \quad 0 \quad 0 \quad 0 \quad 0 \quad \frac{1}{2} \quad 0 \quad 0 \quad \frac{1}{2} \quad \dots\right)^{\top}$

ortogonalni. Očekivano rešenje dilatacione jednačine

$$\varphi(x) = \varphi(2x) + \varphi(2x - 3), \qquad \text{jeste} \qquad \varphi_{[0,3]}(x) = \begin{cases} 1/3, & 0 \le x < 3\\ 0 & \text{inače} \end{cases}.$$

Međutim, kaskadni algoritam samo slabo konvergira ka funkciji $\varphi_{[0,3]}(x)$.

Slika 5.1: Slaba konvergencija kaskadnog algoritma

Prema slici 5.1, funkcije $\varphi^{(i)}(x)$ nisu ni u jednoj tački jednake 1/3 već su jednake 0 ili 1, ali površina određena ovim funkcijama na svakom intervalu Δx teži $\frac{1}{3}\Delta x$. Brze

5.3. KONVERGENCIJA KASKADNOG ALGORITMA

oscilacije funkcija $\varphi^{(i)}(x)$ su osrednjene integracijom, reč je o slaboj konvergenciji ovih funkcija ka rešenju dilatacione jednačine $\varphi_{[0,3]}(x)$. Atribut "slaba" znači da, za svaku glatku funkciju f(x) konvergira skalarni proizvod, tj. integral,

$$(\varphi^{(i)}(x), f(x)) \to (\varphi_{[0,3]}(x), f(x)), \quad \text{tj.} \quad \lim_{i \to \infty} \int_0^3 \varphi^{(i)}(x) f(x) \, dx = \int_0^3 \frac{1}{3} f(x) \, dx$$

Posledica slabe konvergencije jeste da razvučena četvrtka nije ortogonalna na svoje translacije, dok funkcije $\varphi^{(i)}(x)$ jesu,

$$0 = \left(\varphi^{(i)}(x), \, \varphi^{(i)}(x+n)\right) \not\to \left(\varphi_{[0,3]}(x), \, \varphi_{[0,3]}(x+n)\right).$$

Takođe, na svakom koraku $\varphi^{(i)}(x)$ ima jediničnu energiju, dok je energija granične funkcije $\int (\varphi(x))^2 dx = 1/3.$

Matrica $2FF^{\top}$ ima vrste koje sadrže niz $\frac{1}{2}(1,0,0,2,0,0,1)$. Prilikom formiranja matrice T dvostrukim pomerajem uklanja se svaka druga vrsta. Kako je N = 4 posmatramo samo blok dimenzije 2(N-1) - 1 = 5,

$$T_5 = \frac{1}{2} \begin{pmatrix} 0 & 1 & & \\ 2 & 0 & 0 & 1 & \\ 0 & 0 & 2 & 0 & 0 \\ & 1 & 0 & 0 & 2 \\ & & & 1 & 0 \end{pmatrix}.$$

I ovoj matrici je zbir elemenata u svakoj koloni jednak jedan. Skalarnim proizvodima četvrtke i njenih translacija određen je početni vektor $\mathbf{a}_5^{(0)} = \delta = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \end{pmatrix}^{\top}$. Množenjem sa T_5 dobijamo isti vektor $\mathbf{a}_5^{(1)} = \mathbf{a}_5^{(0)}$. Stoga je i funkcija $\varphi^{(1)}(x)$ takođe ortogonalna na svoje translacije. Uopšte, na svakom koraku je $\mathbf{a}_5^{(i)} = \delta$. Međutim, ovi skalarni proizvodi ne teže skalarnim proizvodima razvučene četvrtke $\varphi_{[0,3]}(x)$ na intervalu $0 \leq x < 3$. Skalarni proizvodi razvučene četvrtke su elementi drugog sopstvenog vektora $\frac{1}{9} \begin{pmatrix} 1 & 2 & 3 & 2 & 1 \end{pmatrix}^{\top}$ koji, kao i vektor δ , takođe odgovara sopstvenoj vrednosti $\lambda = 1$. Naime, matrici T_5 je $\lambda = 1$ dvostruka sopstvena vrednost, a ostale su $-1, -\frac{1}{2}$ i $\frac{1}{2}$. Stoga kaskadni algoritam ne konvergira u svakoj tački, već samo u srednjem ka razvučenoj četvrtki.

PRIMER 4. Koeficijentima $h(0) = \frac{1}{4}, h(1) = \frac{1}{2}$ i $h(2) = \frac{1}{4}$ definisana je dilataciona jednačina krov funkcije. U primeru 3.8 pokazano je da kaskadni algoritam konvergira upravo ka toj funkciji. Matrica $2F F^{\top}$ ima elemente $\frac{1}{8}(1,4,6,4,1)$. Kako je dužina filtra N = 3, dvostrukim pomerajem definišemo matricu

$$T_3 = \frac{1}{8} \begin{pmatrix} 4 & 1 & 0\\ 4 & 6 & 4\\ 0 & 1 & 4 \end{pmatrix},$$

sa sopstvenim vrednostima $\lambda : 1, \frac{1}{2}, \frac{1}{4}$. Polazeći od početne aproksimacije određene četvrtkom $\mathbf{a}_3^{(0)} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^\top$, množenjem sa T_3 dobijaju se, u sledećim koracima

kaskadnog algoritma vektori

$$\mathbf{a}_{3}^{(1)} = \frac{1}{8} \begin{pmatrix} 1 \\ 6 \\ 1 \end{pmatrix} \qquad \mathbf{a}_{3}^{(2)} = \frac{1}{64} \begin{pmatrix} 10 \\ 44 \\ 10 \end{pmatrix} \qquad \cdots \qquad \mathbf{a}_{3} = \frac{1}{6} \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}.$$

 \mathbf{a}_3 je sopstveni vektor matrice T_3 koji odgovara sopstvenoj vrednosti $\lambda = 1$, sa elementima koji su skalarni proizvodi krov funkcije i njenih translacija. Niz funkcija $\varphi^{(i)}(x)$ uniformno (u svakoj tački) konvergira ka krov funkciji.

Primetimo da kaskadni algoritam u primeru 2 divergira, a matrica T ima sopstvenu vrednost $|\lambda| > 1$. U primeru 3. imamo samo slabu konvergenciju algoritma, a matrica T ima dvostruku sopstvenu vrednost $\lambda = 1$, ili više sopstvenih vrednosti sa modulom jednakim jedan. U primeru 4. kaskadni algoritam uniformno konvergira; $\lambda = 1$ je jednostruka sopstvena vrednost, a za sve ostale sopstvene vrednosti važi $|\lambda| < 1$. Uslov za uniformnu konvergenciju je već u §4.6 pomenuti *USLOV E* (eigenvalues), koji treba da zadovoljavaju ostale sopstvene vrednosti matrice T,

$$USLOV E \qquad \qquad |\lambda| < 1.$$

Pri tome, što su ove sopstvene vrednosti manje funkcija skaliranja $\varphi(x)$ je veće glatkosti. Dokažimo ovaj empirijski izveden zaključak o konvergenciji iterativnog algoritma (13). Prvo ćemo dokazati da važi veza (13).

LEMA 1. Rekurentna veza skalarnih proizvoda iteriranih funkcija skaliranja u kaskadnom algoritmu je

$$\mathbf{a}^{(i+1)} = T \, \mathbf{a}^{(i)} = (\downarrow 2) 2F \, F^{\top} \, \mathbf{a}^{(i)}$$

Dokaz: Uvedimo oznake vektora

$$\boldsymbol{\Phi}_{\infty}^{(i)}(x) = \begin{pmatrix} \cdot \\ \varphi^{(i)}(x-1) \\ \varphi^{(i)}(x) \\ \varphi^{(i)}(x+1) \\ \cdot \end{pmatrix}, \qquad \boldsymbol{\Phi}_{\infty}(x) = \begin{pmatrix} \cdot \\ \varphi(x-1) \\ \varphi(x) \\ \varphi(x) \\ \varphi(x+1) \\ \cdot \end{pmatrix}.$$

Vektorski zapis kaskadnog algoritma glasi

$$\mathbf{\Phi}_{\infty}^{(i+1)}(x) = M\mathbf{\Phi}_{\infty}^{(i)}(2x) = (\downarrow 2)2F\mathbf{\Phi}_{\infty}^{(i)}(2x).$$

Dvostruki pomeraj ($\downarrow 2$) je posledica promene skale na 2x. Skalarnim množenjem vektora $\mathbf{\Phi}_{\infty}^{(i+1)}(x)$ njegovom komponentom $\varphi^{(i+1)}(x)$ dobijamo vektor

$$\begin{aligned} \mathbf{a}^{(i+1)} &= \int_{-\infty}^{\infty} \varphi^{(i+1)}(x) \mathbf{\Phi}_{\infty}^{(i+1)}(x) \, dx \\ &= \int_{-\infty}^{\infty} \left(2 \sum_{k} h(k) \varphi^{(i)}(2x-k) \right) \left((\downarrow 2) 2F \mathbf{\Phi}_{\infty}^{(i)}(2x) \right) \, dx \\ &= (\downarrow 2) 2F \left(\sum_{k} h(k) \int_{-\infty}^{\infty} \varphi^{(i)}(u) \, \mathbf{\Phi}_{\infty}^{(i)}(u+k) \, du \right). \end{aligned}$$
5.3. KONVERGENCIJA KASKADNOG ALGORITMA

n-takomponenta vektora $\mathbf{a}^{(i+1)}$ je određena
 (n+k)-tomkomponentom vektora $\mathbf{a}^{(i)},$

$$\int_{-\infty}^{\infty} \varphi^{(i)}(u) \varphi^{(i)}(u+k+n) \, du = \left(S^{-k} \mathbf{a}^{(i)}\right)(n),$$

gde je S^{-k} matrica pomeranja $x(n) \to x(n+k)$, tj. k-ti stepen matrice inverzne matrici S filtra kašnjenja (videti zadatak 4.4). Kako je dalje

$$\sum_{k} h(k)S^{-k} = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & h(0) & 0 & \cdots & 0 & \cdot \\ \cdot & 0 & h(0) & \cdots & 0 & \cdot \\ \vdots & \vdots & \cdot & \cdot & \vdots & \\ \cdot & 0 & 0 & \cdots & h(0) & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix} + \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 0 & h(1) & \cdots & 0 & \cdot \\ \cdot & 0 & 0 & \cdots & h(0) & \cdot \\ \vdots & \vdots & \cdot & \cdot & \vdots & \\ \cdot & 0 & 0 & \cdots & h(n) & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix} + \cdots = F^{\top},$$

to je konačno

$$\mathbf{a}^{(i+1)} = (\downarrow 2)2F F^{\top} \mathbf{a}^{(i)} = T \mathbf{a}^{(i)}.$$

Iz graničnog slučaja prethodne jednakosti (ako proces konvergira) sledi (14), što znači da su skalarni proizvodi a(n) funkcije skaliranja $\varphi(x)$ sa $\varphi(x+n)$ komponente sopstvenog vektora matrice T koji odgovara sopstvenoj vrednosti $\lambda = 1$.

TEOREMA 7. Beskonačna matrica $T = (\downarrow 2)2FF^{\top}$ i njena podmatrica T_{2N-1} uvek imaju $\lambda = 1$ kao sopstvenu vrednost. Stepena iteracija $\mathbf{a}^{(i)} = T\mathbf{a}^{(i-1)} = T^i\mathbf{a}^{(0)}$ konvergira ka sopstvenom vektoru $\mathbf{a} = T\mathbf{a}$ ako i samo ako T_{2N-1} zadovoljava

USLOV E T_{2N-1} ima sve sopstvene vrednosti $|\lambda| < 1$, osim jedne $|\lambda| = 1$.

Dokaz: Razvijmo početni vektor $\mathbf{a}^{(0)}$ stepene iteracije po sopstvenim vektorima \mathbf{v}_k matrice T_{2N-1} ($\mathbf{v}_1 = \mathbf{a}$ prema (14)),

$$\mathbf{a}^{(0)} = \mathbf{a} + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + \cdots$$

Tada, s obzirom da je $\lambda = 1$ sopstvena vrednost koja odgovara sopstvenom vektoru **a**, niz vektora određenih iterativnim algoritmom konvergira ka vektoru **a**,

$$\mathbf{a}^{(i)} = T^i \mathbf{a}^{(0)} = \mathbf{a} + c_2 \lambda_2^i \mathbf{v}_2 + c_3 \lambda_3^i \mathbf{v}_3 + \cdots \xrightarrow[i \to \infty]{i \to \infty} \mathbf{a},$$

jer $\lambda_k^i \to 0$ kada $i \to \infty$ ako je $|\lambda_k| < 1.$

TEOREMA 8. Pretpostavimo da funkcija skaliranja $\varphi(x) \in \mathcal{L}_2$. Kaskadni niz $\varphi^{(i)}(x)$ konvergira ka funkciji skaliranja $\varphi(x)$ u \mathcal{L}_2 normi,

$$\lim_{i \to \infty} \|\varphi^{(i)} - \varphi\|^2 = 0,$$

ako i samo ako T zadovoljava USLOV E.

Dokaz: Grešku i-te aproksimacije možemo predstaviti u obliku

$$\|\varphi^{(i)} - \varphi\|^2 = \|\varphi^{(i)}\|^2 - 2(\varphi^{(i)}, \varphi) + \|\varphi\|^2 = a^{(i)}(0) - 2b^{(i)}(0) + a(0),$$

pri čemu je po definiciji

$$a^{(i)}(0) = \int \varphi^{(i)}(x)\varphi^{(i)}(x+0) \, dx = \|\varphi^{(i)}\|^2,$$
$$a(0) = \int \varphi(x)\varphi(x+0) \, dx = \|\varphi\|^2,$$

a novi skalarni proizvod, koji se ovde javlja, označili smo sa

$$b^{(i)}(k) = \int \varphi^{(i)}(x)\varphi(x+k)\,dx.$$

Na osnovu teoreme 7. sledi konvergencija $a^{(i)}(0) \to a(0)$ kada $i \to \infty$. Pokazaćemo da je $\mathbf{b}^{(i+1)} = T\mathbf{b}^{(i)}$, te da niz vektora $\mathbf{b}^{(i)}$ konvergira ka istom sopstvenom vektoru **a** matrice T. Na taj način $-2b^{(i)}(0) \to -2a(0)$ kada $i \to \infty$, čime je teorema dokazana. Račun sličan onom za niz vektora $\mathbf{a}^{(i)}$, uz podsećanje da vektor $\mathbf{\Phi}_{\infty}(x)$ zadovoljava dilatacionu jednačinu $\mathbf{\Phi}_{\infty}(x) = M\mathbf{\Phi}_{\infty}(2x)$, daje

$$\mathbf{b}^{(i+1)} = \int_{-\infty}^{\infty} \varphi^{(i+1)}(x) \mathbf{\Phi}_{\infty}(x) dx$$

=
$$\int_{-\infty}^{\infty} \left(2\sum_{k} h(k) \varphi^{(i)}(2x-k) \right) \left((\downarrow 2) 2F \mathbf{\Phi}_{\infty}(2x) \right) dx$$

=
$$(\downarrow 2) 2F \left(\sum_{k} h(k) \int_{-\infty}^{\infty} \varphi^{(i)}(u) \mathbf{\Phi}_{\infty}(u+k) du \right) = (\downarrow 2) 2FF^{\top} \mathbf{b}^{(i)} = T\mathbf{b}^{(i)}.$$

Kako je sopstveni vektor određen do na konstantu, dokažimo da je u ovom slučaju granični vektor isti sopstveni vektor **a**. Početni vektor $\mathbf{a}^{(0)}$ zadovoljava uslov

$$\sum_{k} a^{(0)}(k) = \sum_{k} \int_{-\infty}^{\infty} \varphi^{(0)}(x) \varphi^{(0)}(x+k) dx$$
$$= \int_{-\infty}^{\infty} \varphi^{(0)}(x) \left(\sum_{k} \varphi^{(0)}(x+k)\right) dt = \int_{-\infty}^{\infty} \varphi^{(0)}(x) dx = 1.$$

jer je $\sum_k \varphi^{(0)}(x+k) = 1$ uslov pri izboru početne aproksimacije kaskadnog algoritma. Isto važi i za $\mathbf{b}^{(0)}$,

$$\sum_{k} b^{(0)}(k) = \sum_{k} \int_{-\infty}^{\infty} \varphi^{(0)}(x)\varphi(x+k) dx$$
$$= \int_{-\infty}^{\infty} \varphi^{(0)}(x) \left(\sum_{k} \varphi(x+k)\right) dx = \int_{-\infty}^{\infty} \varphi^{(0)}(x) dx = 1,$$

jer je $\sum_k \varphi(x+k) = 1$ (form. (9)). Stoga je, konačno,

$$\lim_{i \to \infty} \|\varphi^{(i)} - \varphi\|^2 = \lim_{i \to \infty} \left(a^{(i)}(0) - 2b^{(i)}(0) + a(0) \right) = a(0) - 2a(0) + a(0) = 0.$$

Prostor \mathcal{L}_2 je kompletan, i egzistencija granične funkcije $\varphi(x)$ sledi iz činjenice da norma $\|\varphi^{(m)} - \varphi^{(n)}\|^2 \to 0$ kada m i n teže ∞ .

Matrica T filtra koji zadovoljava uslove ortogonalnosti dvostrukog pomeraja ne može imati sopstvenu vrednost $|\lambda| > 1$. Norma matrice T jednaka je sup $(|\hat{h}(\omega)|^2 + |\hat{h}(\omega + \pi)|^2) = 1$, a $\{\varphi(t + n)\}$ je ortonormirani bazis, te je $\mathbf{a} = \delta$ (primer 3.).

Interpretacija konvergencije kaskadnog algoritma u frekvencijskom domenu svodi se na algoritam zasnovan na Fourier-ovoj transformaciji (§3.5),

$$\hat{\varphi}^{(i)}(\omega) = \left(\prod_{j=1}^{i} \hat{h}(\omega/2^{j})\right) \hat{\varphi}^{(0)}(\omega/2^{i}) \quad \text{konvergira u } \mathcal{L}_{2} \text{ ka} \quad \hat{\varphi}(\omega) = \prod_{j=1}^{\infty} \hat{h}(\omega/2^{j}).$$

5.4 Glatkost funkcije skaliranja i talasića

Prema dokazanom u §5.3, ako su sopstvene vrednosti matrice T manje od jedan, osim jedne koja je jednaka jedan, granična funkcija kaskadnog algoritma $\varphi(x)$ pripada prostoru \mathcal{L}_2 , što predstavlja minimalnu glatkost. Treba dokazati još

Posledicu 7. USLOVA A_r : Funkcija skaliranja $\varphi(x)$ i talasić $\psi(x)$ imaju s izvoda u \mathcal{L}_2 ako sopstvene vrednosti matrice T, koje nisu jednake 2^{-k} , $k = 0, \ldots, 2r - 1$, zadovoljavaju uslove $|\lambda| < 4^{-s}$ (broj s nije veće od parametra r).

Kako s ne mora biti ceo broj, definišimo izvod funkcije $f(x) \in \mathcal{L}_2$ pomoću njene Fourier-ove transformacije $\hat{f}(\omega)$. Funkcija f(x) ima izvod reda s u \mathcal{L}_2 ako je

(15)
$$\|f^{(s)}\|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\omega|^{2s} |\hat{f}(\omega)|^2 \, d\omega < \infty,$$

što sledi iz Parseval-ove jednakosti (2.19) za energijske (\mathcal{L}_2) norme izvoda reda s funkcije i njene Fourier-ove transformacije (diferenciranje u frekvencijskom domenu

se svodi na množenje činiocem $i\omega$). Ova definicija omogućava da s bude razlomak (i negativan). Ako je m < s < m + 1, gde je m ceo broj, kažemo da f(x) ima glatkost reda s u tački x_0 ako se njen izvod $f^{(m)}$ ponaša kao $|x - x_0|^{s-m}$ lokalno u okolini x_0 . Glatkost funkcije f(x) u domenu je određena najmanjom glatkošću u tačkama domena. Pošto je talasić $\psi(x)$ kombinacija funkcija $\varphi(2x - k)$, dovoljno je analizirati glatkost funkcije skaliranja $\varphi(x)$.

Sledeća teorema govori o posledicama koje nastaju kada se poveća regularnost filtra množenjem njegovog frekventnog odziva H(z)činiocem koji je jednak nuli u tački π , tj. kada se poveća za jedan broj USLOVA A_r .

TEOREMA 9. Množenje frekvencijskog odziva filtra H(z)činiocem $(1+z^{-1})/2$ proizvodi sledeće efekte

1. Sve sopstvene vrednosti matrice T dele se sa 4.

2. Fourier-ova transformacija $\hat{\varphi}(\omega)$ množi se sa $(1 - e^{-i\omega})/i\omega$.

3. Vrši se konvolucija sa četvrtkom funkcije skaliranja $\varphi(x)$ određene polaznim filtrom.

4. Funkcija skaliranja određena novim filtrom $\varphi_n(x)$ ima jedan izvod više od funkcije $\varphi(x)$.

Ako sopstvene vrednosti matrice T, koje nisu stepeni od 2⁻¹, zadovoljavaju uslov $|\lambda| < 4^{-s}$, $\varphi(x)$ i $\psi(x)$ imaju s izvoda u \mathcal{L}_2 . Gornja granica s_{max} brojeva s, kada je $\varphi(x)$ određeno sa $H(z) = \left(\frac{1+z^{-1}}{2}\right)^r Q(z)$, jednaka je

(16)
$$s_{max} = r - \log_4 |\lambda_{max}(T_Q)|, \qquad T_Q = (\downarrow 2) 2F_Q F_Q^\top.$$

Dokaz: Prva tačka tvrđenja sledi na osnovu teoreme 2. Činilac $(1 + z^{-1})/2$ dva puta deli sa dva sopstvene vrednosti matrice T, jer je ova generisana proizvodom $H(z)H(z^{-1})$. Jedno deljenje sa dva odgovara matrici F, a drugo matrici F^{\top} .

Dokažimo drugu tačku tvrđenja. Prema formuli (3.29), funkcija skaliranja definisana novim filtrom u frekvencijskom domenu jednaka je

$$\hat{\varphi}_n(\omega) = \prod_{j=1}^{\infty} \hat{h}_n\left(\frac{\omega}{2^j}\right) = \prod_{j=1}^{\infty} \left(\frac{1}{2} + \frac{1}{2}e^{-\imath\omega/2^j}\right) \hat{h}\left(\frac{\omega}{2^j}\right) = \left(\prod_{j=1}^{\infty} \left(\frac{1}{2} + \frac{1}{2}e^{-\imath\omega/2^j}\right)\right) \hat{\varphi}(\omega).$$

Beskonačni proizvod je izračunat u primeru 3.9, kao Fourier-ova transformacija četvrtke $\varphi_0(x)$, tako da prethodni izraz glasi

(17)
$$\hat{\varphi}_n(\omega) = \frac{1 - e^{-\imath\omega}}{\imath\omega} \hat{\varphi}(\omega) = \hat{\varphi}_0(\omega) \hat{\varphi}(\omega).$$

Treća tačka tvrđenja neposredno sledi iz poslednje veze. Kako je Fourier-ova transformacija konvolucije dve funkcije jednaka proizvodu njihovih Fourier-ovih transformacija (form. (2.18)), sledi da je

$$\varphi_n(x) = (\varphi_0 * \varphi)(x).$$

Četvrtu tačku tvrđenja teoreme dokazuje lema 2, koja sledi. Zaključak je da se glatkost funkcije skaliranja povećava za jedan ako filtar ima jednu nulu više u tački $\omega = \pi$.

LEMA 2. Konvolucija $\varphi_n(x) = (\varphi_0 * \varphi)(x)$ ima (s+1) izvoda ako i samo ako $\varphi(x)$ ima s izvoda.

Dokaz: Prema (17), konvolucija četvrtke i funkcije $\varphi(x)$ u frekvencijskom domenu je množenje $\hat{\varphi}(\omega)$ sa $(1 - e^{-i\omega})/i\omega$. Taj činilac nije po modulu veći od $2/|\omega|$. Koristeći (15) zaključujemo da $\hat{\varphi}_n(\omega)$ opada bar jedan red brže od $\hat{\varphi}(\omega)$,

$$\int_{-\infty}^{\infty} |\omega|^{2(s+1)} |\hat{\varphi}_n(\omega)|^2 \, d\omega \le \int_{-\infty}^{\infty} |\omega|^{2s+2} \left(\frac{2}{|\omega|} |\hat{\varphi}(\omega)|\right)^2 \, d\omega$$
$$\le 4 \int_{-\infty}^{\infty} |\omega|^{2s} |\hat{\varphi}(\omega)|^2 \, d\omega.$$

Poslednji integral je konačan kada φ ima s izvoda. Tada je i prvi integral konačan, pa φ_n ima (s+1) izvoda.

U vremenskom domenu izvod konvolucije $\varphi_n(x) = (\varphi_0 * \varphi)(x)$ je razlika

(18)
$$\varphi'_n(x) = \frac{d}{dx} \int_0^1 \varphi(x-t) \, dt = \int_0^1 \varphi'(x-t) \, dt = \varphi(x) - \varphi(x-1),$$

odakle takođe sledi da funkcija $\varphi_n(x)$ ima jedan izvod više od funkcije $\varphi(x)$, i uniformno (u svim tačkama), kao i u srednjem (u smislu \mathcal{L}_2 norme).

Važi i obrnuto. Ako φ_n ima s + 1 izvoda, onda φ'_n ima s izvoda. Iz (18) sledi da $\varphi(x) - \varphi(x-1)$ ima s izvoda. Primenjujući ovaj zaključak N puta dolazimo do osobine razlike funkcija

$$\varphi(x) - \varphi(x - N) = [\varphi(x) - \varphi(x - 1)] + \dots + [\varphi(x - N + 1) - \varphi(x - N)]$$

da ima s izvoda. Ali funkcije $\varphi(x)$ i $\varphi(x-N)$ imaju disjunktne kompaktne nosače, te funkcija $\varphi(x)$ mora sama imati s izvoda.

TEOREMA 10. Ako $\varphi(x)$ ima s izvoda u \mathcal{L}_2 , važi ocena s < r, gde je r red tačnosti aproksimacije. Ako dopustimo da s ne bude ceo broj, mora biti $s \leq r - 1/2$. Uniformno (u svim tačkama) red glatkosti ne može biti veći od r - 1.

Dokaz: Ako funkcija $\varphi(x) \in \mathcal{L}_2$, frekvencijski odziv odgovarajućeg filtra $\hat{h}(\omega)$ mora imati bar jednu nulu u tački π (USLOV A_0). Analogno, da bi $\varphi^{(s)}(x) \in \mathcal{L}_2$, odziv filtra mora imati nulu bar reda (s+1) u tački π . Stoga je $r \geq s+1$, tj. s < r.

U preciznijoj oceni (16) (videti [26]) matrica F_Q je matrica filtra sa frekvencijskim odzivom Q(z). Glatkost s je uvek manja od tačnosti r (teorema 5), jer je neki od pomenutih činilaca, kojih je r, potreban za ostvarivanje sopstvenih vrednosti oblika 2^{-l} . PRIMER 5. Četvrtka ima s < 1/2 izvoda u \mathcal{L}_2 , jer je

$$\int_{-\infty}^{\infty} |\omega|^{2s} |\hat{\varphi}_0(\omega)|^2 d\omega = \int_{-\infty}^{\infty} |\omega|^{2s} \left| \frac{1 - e^{-\imath\omega}}{\imath\omega} \right|^2 d\omega$$
$$\leq \int_{-\infty}^{\infty} |\omega|^{2s} \frac{4}{|\omega|^2} d\omega = 4 \int_{-\infty}^{\infty} |\omega|^{2s-2} d\omega = \frac{4}{2s-1} |\omega|^{2s-1} \Big|_{-\infty}^{\infty} < \infty.$$

Granična vrednost $s_{max} = 1/2$ se ne dostiže, jer je očigledno da je za tu vrednost parametra s majoranta neograničena. Proverimo ocenu (16) na ovom primeru. Filtar pridružen četvrtki je $H(z) = (1 + z^{-1})/2$, te je $Q(z) \equiv 1$, $F_Q = I$. Matrica $T_Q = (\downarrow 2)2I$ ima maksimalnu sopstvenu vrednost $\lambda_{max} = 2$. Stoga je $s_{max} = 1 - \log_4 2 = 1 - 1/2 = 1/2$, što je saglasno prethodnom zaključku.

Za krov funkciju (splajn reda jedan) je $s_{max} = 3/2$ (zadatak 6), a za Daubechies funkciju Db2 je $s_{max} = 1$. Red tačnosti aproksimacije i jednom i drugom funkcijom je r = 2. Što se tiče uniformne glatkosti, četvrtka je glatkosti nula (jer je prekidna funkcija i nema izvoda u tačkama prekida), splajn reda r - 1 je glatkosti r - 1 (napr. prvi izvod krov funkcije je prekidna funkcija), Daubechies funkcija Db2 je glatkosti 0.55. Uopšte, Daubechies funkcija DbN je određena filtrom dužine 2N i ima dužinu nosača 2N - 1. Red tačnosti aproksimacije je N, a glatkost se takođe povećava sa N, ali samo za 1/2 izvoda svaki put.

Rezimirajmo prethodno izvedene zaključke. Red tačnosti aproksimacije r, određen brojem iščezavajućih momenata talasića, i glatkost s funkcije skaliranja $\varphi(x)$ zavise od sopstvenih vrednosti matrice filtra T_{2r-1} :

- Kaskadna konvergencija zahteva da su sve sopstvene vrednosti $|\lambda| < 1$, osim jedne koja je $\lambda = 1$.
- Aproksimacija reda r zahteva sopstvene vrednosti $\lambda = 1, \frac{1}{2}, \frac{1}{4}, \dots, \left(\frac{1}{2}\right)^{2r-1}$.
- Glatkost s izvoda u \mathcal{L}_2 zahteva da sve preostale sopstvene vrednosti zadovoljavaju uslov $|\lambda| < 4^{-s}$.

Zadaci

- 1. Dati su sledeći filtri:
 - (a) $\mathbf{h} = \frac{1}{4}(1, 2, 1),$
 - (b) $\mathbf{h} = \frac{1}{16}(1, 4, 6, 4, 1),$
 - (c) $\mathbf{h} = \frac{1}{8}(1 \sqrt{3}, 3 \sqrt{3}, 3 + \sqrt{3}, 1 + \sqrt{3}),$
 - (d) $\mathbf{h} = \frac{1}{3}(1, 1, 1).$

- (i) Odrediti red tačnosti aproksimacije r na osnovu pravila sumiranja.
- (ii) Napisati frekvencijske odzive navedenih filtara u obliku $\hat{h}(\omega) = \left(\frac{1+e^{-i\omega}}{2}\right)^r \hat{q}(\omega)$.
- (iii) Naći za navedene filtre sopstvene vrednosti matrica M_{N-1} .
- 2. Označimo sa M_N matricu dimenzije $N \times N$ filtra $H(z) = \left(\frac{1+z^{-1}}{2}\right)^N$.
 - (i) Napisati matricu M_5 i naći desne sopstvene vektore koji odgovaraju sopstvenim vrednostima $\lambda : \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$ pomoću razlika sopstvenih vektora matrice M_4 .
 - (ii) Pokazati da su levi sopstveni vektori matrice M_4 sume levih sopstvenih vektora matrice M_3 i konstantnog vektora (c, c, c, c). Naći pet levih sopstvenih vektora matrice M_5 .

3. Ako koeficijenti h(k) zadovoljavaju uslov ortogonalnosti dvostrukog pomeraja (USLOV O), pokazati da je središnja kolona matrice T koordinatni vektor δ . To je sopstveni vektor matrice T za $\lambda = 1$.

- 4. Nacrtati grafik funkcije $\varphi^{(1)}(x) = \varphi^{(0)}(2x) + \varphi^{(0)}(2x-1)$, ako je
 - (a) $\varphi^{(0)}(x) = \check{c}etvrtka$ na intervalu [1, 2];
 - (b) $\varphi^{(0)}(x) = \text{krov funkcija na intervalu } [0,2];$
 - (c) $\varphi^{(0)}(x) = \text{krov funkcija na intervalu } [0,1].$

Da li konvergira kaskadni algoritam u svakom od navedenih slučajeva? Ako konvergira, odrediti čemu konvergira, a ako ne, objasniti zašto.

5. Dokazati da su funkcije

$$P^{(1)}(x) = \sum_{k} \varphi^{(1)}(x-k)$$
 i $P^{(0)}(2x) = \sum_{k} \varphi^{(0)}(2x-k)$

jednake za bilo koju funkciju $\varphi^{(0)}(x)$ i bilo koji filtar h(k) koji zadovoljava uslov $\hat{h}(\pi) = 0$, tj. da mu je suma parnih koeficijenata jednaka sumi neparnih koeficijenata i jednaka 1/2. Na osnovu toga izvesti zaključak da kaskadni algoritam ne konvergira ukoliko početna aproksimacija $\varphi^{(0)}(x)$ ne zadovoljava uslov

$$P^{(0)}(x) = \sum \varphi^{(0)}(x-n) \equiv 1.$$

6. Za Fourier-ovu transformaciju krov funkcije

$$\hat{\varphi}(\omega) = \left((1 - e^{-\imath\omega})/\imath\omega\right)^2$$

pokazati da je

$$\int |\omega|^{2s} |\hat{\varphi}(\omega)|^2 \, d\omega < \infty \qquad \Longleftrightarrow \qquad s < 3/2.$$

7. Za filtre $\mathbf{h} = \frac{1}{4} [1, 2, 1]$ i $\mathbf{h} = \frac{1}{6} [1, 3, 2]$ naći matricu T i njene sopstvene vrednosti, i odrediti s_{max} .

8. Objasniti zašto je glatkost $\delta\text{-funkcije }s_{max}=-\frac{1}{2}.$

Glava 6

Reprezentacija talasićima

Funkcija skaliranja i talasić se najčešće ne mogu definisati u analitičkom obliku, već samo rekurzijom. Rekurzivna priroda dilatacione jednačine karakteriše i transformaciju talasićima (§2.4). Integrali kojima su definisani skalarni proizvodi se ne računaju, već su koeficijenti u reprezentaciji funkcije na jednom multirezolucijskom nivou određeni istim takvim koeficijentima na susednom multirezolucijskom nivou i koeficijentima dilatacione jednačine (tj. filtra).

U procesu dekompozicije, koji se realizuje direktnom transformacijom, polazi se od 2^J aproksimacionih koeficijenata $a_{0,k}$, $k = 0, 1, \ldots, 2^J - 1$, i dobijaju se koeficijenti razvoja funkcije po bazisu talasića u najviše J koraka. U jednom koraku dekompozicije 2^j aproksimacionih koeficijenata određuje 2^{j-1} novih aproksimacionih koeficijenata i 2^{j-1} koeficijenata talasića. Obrnuti proces je rekonstrukcija funkcije i vrši se inverznom transformacijom talasićima algoritmom sličnim pomenutom. Opisani postupak se efikasno realizuje tzv. piramidalnim algoritmom.

6.1 Piramidalni algoritam

Radi određenosti, ne umanjujući opštost zaključaka, označimo sa \mathcal{V}_0 prostor najveće rezolucije, a sa \mathcal{V}_J , J > 0, prostor najmanje rezolucije u nizu multirezolucijskih prostora (3.1). Funkcija $f_0(x) \in \mathcal{V}_0$ može se predstaviti razvojem (5.1),

$$f_0(x) = \sum_{k \in \mathbb{Z}} a_{0,k} \varphi_{0,k}(x).$$

U procesu dekompozicije cilj nam je da odredimo koeficijente u multirezolucijskoj reprezentaciji te funkcije (5.2),

$$f_0(x) = \sum_{k \in \mathbb{Z}} a_{J,k} \varphi_{J,k}(x) + \sum_{j=1}^J \sum_{k \in \mathbb{Z}} b_{j,k} \psi_{j,k}(x),$$

na osnovu poznatih koeficijenata $a_{0,k}$. Rekonstrukcijom se određuju koeficijenti $a_{0,k}$ na osnovu poznatih koeficijenata $a_{J,k}$ i $b_{j,k}$, $j = J, \ldots, 1$.

Pođimo od dva uzastopna multirezolucijska prostora. Funkcija $f_{-1}(x) \in \mathcal{V}_{-1}(x)$ može se predstaviti kombinacijom bazisnih funkcija $\varphi_{-1,k}(x) = \sqrt{2}\varphi(2x-k)$ prostora \mathcal{V}_{-1} . Multirezolucijom se ovaj prostor razlaže na $\mathcal{V}_{-1} = \mathcal{V}_0 \oplus \mathcal{W}_0$ (form. (3.6)), te se $f_{-1}(x)$ može predstaviti zbirom svojih komponenti u prostorima \mathcal{V}_0 i \mathcal{W}_0 ,

(1)
$$\sum_{k} a_{-1,k} \varphi_{-1,k}(x) = \sum_{k} a_{0,k} \varphi_{0,k}(x) + \sum_{k} b_{0,k} \psi_{0,k}(x) \\ = \sum_{k} a_{0,k} \varphi(x-k) + \sum_{k} b_{0,k} \psi(x-k)$$

Radi jednostavnosti formula pretpostavićemo da su bazisi ortonormirani.

Da bismo našli rekurziju, translirajmo za k promenljivu x u dilatacionoj jednačini (3.11) i jednačini talasića (3.12), i stavimo n = l - 2k,

(2)
$$\varphi(x-k) = \sum_{n} c(n)\sqrt{2}\varphi(2x-2k-n) = \sum_{l} c(l-2k)\varphi_{-1,l}(x),$$

(3)
$$\psi(x-k) = \sum_{n} d(n)\sqrt{2}\varphi(2x-2k-n) = \sum_{l} d(l-2k)\varphi_{-1,l}(x)$$

Jednačine (2) i (3) pomnožimo sa $f_{-1}(x)$ i integralimo po x,

$$\int f_{-1}(x)\varphi_{0,k}(x)\,dx = \int f_{-1}(x)\varphi(x-k)\,dx = \sum_{l} c(l-2k)\int f_{-1}(x)\varphi_{-1,l}(x)\,dx,$$
$$\int f_{-1}(x)\psi_{0,k}(x)\,dx = \int f_{-1}(x)\psi(x-k)\,dx = \sum_{l} d(l-2k)\int f_{-1}(x)\varphi_{-1,l}(x)\,dx.$$

Bazisi su ortonormirani, te su $a_{j,l} = (f_{-1}, \varphi_{j,l}), j = -1, 0, i \ b_{0,l} = (f_{-1}, \psi_{0,l})$ Fourier-ovi koeficijenti funkcije $f_{-1}(x)$. Uvodeći ove oznake u poslednje jednakosti, dobijamo da se koeficijenti izračunavaju rekurzijom

(4)
$$a_{0,k} = \sum_{l} c(l-2k)a_{-1,l}, \quad b_{0,k} = \sum_{l} d(l-2k)a_{-1,l},$$

Izrazimo (4) pomoću matrica banke filtara. Dvostruki pomeraj primenjen na konvoluciju $\sum c(k-l)a_{-1,l}$ daje $\sum c(2k-l)a_{-1,l}$. U formuli (4) indeks koeficijenta filtra je suprotnog znaka. te je rekurzija (4) definisana transponovanom matricom C^{\top} matrice filtra $C = \{c(n)\}$, jer važi

(5)
$$c^{\top}(n) = c(-n), \quad d^{\top}(n) = d(-n),$$

Na primer, za filtar dužine četiri, matrica Ci njoj transponovana matrica glase

$$C = \begin{pmatrix} \cdot & \cdot \\ \cdot & c(0) & 0 & 0 & 0 & 0 & \cdot \\ \cdot & c(1) & c(0) & 0 & 0 & 0 & \cdot \\ \cdot & c(2) & c(1) & c(0) & 0 & 0 & \cdot \\ \cdot & c(3) & c(2) & c(1) & c(0) & 0 & \cdot \\ \cdot & 0 & c(3) & c(2) & c(1) & c(0) & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix} \qquad C = \{c(n)\},$$

$$C^{\top} = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & c(0) & c(1) & c(2) & c(3) & 0 & \cdot \\ \cdot & 0 & c(0) & c(1) & c(2) & c(3) & \cdot \\ \cdot & 0 & 0 & c(0) & c(1) & c(2) & \cdot \\ \cdot & 0 & 0 & 0 & c(0) & c(1) & \cdot \\ \cdot & 0 & 0 & 0 & 0 & c(0) & \cdot \\ \cdot & \cdot \end{pmatrix} \qquad C^{\top} = \{c^{\top}(n)\} = \{c(-n)\}.$$

Očigledno je da je $(\downarrow 2)C^{\top}$ matrica koja definiše prvu od formula (4) (dobijena je brisanjem svake druge vrste matrice C^{\top}). Analogno se zaključuje da matrica $(\downarrow 2)D^{\top}$ definiše drugu od formula (4). Dakle, prelazak sa jednog na drugi nivo multirezolucije predstavlja podopsežno filtriranje pomoću matrica C^{\top} i D^{\top} .

U opštem slučaju rekurzijom, zbog koje je transformacija talasićima brza, u procesu dekompozicije određujemo koeficijente $a_{j,k}$ i $b_{j,k}$ na osnovu poznatih koeficijenata $a_{j-1,k}$. Uočimo analogiju sa filtrima, formula (4.26).

TEOREMA 1. Za funkciju $\sum_{l} a_{j-1,l} \varphi_{j-1,l}(x)$ koja pripada prostoru $\mathcal{V}_{j-1} = \mathcal{V}_{j} \oplus \mathcal{W}_{j}$ Fourier-ovi koeficijenti $a_{j,k}$ i $b_{j,k}$ po novom ortonormiranom bazisu $\{\varphi_{j,k}(x), \psi_{j,k}(x)\}$ računaju se pomoću filtara **c** i **d** rekurzijom

(6)
$$a_{j,k} = \sum_{l} c(l-2k)a_{j-1,l}, \qquad b_{j,k} = \sum_{l} d(l-2k)a_{j-1,l}.$$

Definisanjem vektora koeficijenata $\mathbf{a}_j = \{a_{j,k}\}$ i $\mathbf{b}_j = \{b_{j,k}\}$, piramidalni algoritam analize u vektorskoj notaciji ima oblik

$$\mathbf{a}_j = (\downarrow 2)C^{\top}\mathbf{a}_{j-1}, \qquad \mathbf{b}_j = (\downarrow 2)D^{\top}\mathbf{a}_{j-1},$$

i može se predstaviti šemom

Dokaz: Zaj=0 formula (6) se svodi na (4). U
opštenje za proizvoljnojsledi iz dilatacione jednačine

$$\varphi_{j,k}(x) = 2^{-j/2} \varphi(2^{-j}x - k) = 2^{-j/2} \sum_{n} c(n) \sqrt{2} \varphi(2^{-j+1}x - 2k - n)$$
$$= \sum_{l} c(l - 2k) \varphi_{j-1,l}(x).$$

U jednačini talasića treba koeficijente c(n) zameniti koeficijentima d(n). Skalarni proizvodi ovih jednačina sa f(x) daju rekurzije (6) za koeficijente $a_{j,k}$ i $b_{j,k}$.

U procesu rekonstrukcije sa bazisa $\{\varphi_{j,k}(x), \psi_{j,k}(x)\}$ potrebno je vratiti se natrag na bazis $\{\varphi_{j-1,l}(x)\}$. Pošto su bazisi ortonormirani, matrica filtra je ortogonalna, te je inverzna matrica jednaka transponovanoj. Veza koja sledi je analogna formuli (4.27) za filtre. TEOREMA 2. Fourier-ovi koeficijenti $a_{j-1,l}$ neke funkcije po ortonormiranom bazisu $\{\varphi_{j-1,l}(x)\}$ određeni su Fourier-ovim koeficijentima $a_{j,k}$ i $b_{j,k}$ po ortonormiranom bazisu $\{\varphi_{j,l}(x), \psi_{j,l}(x)\}$ pomoću banke filtara sinteze, koja je u slučaju ortogonalnih filtara identična banci filtara analize,

(7)
$$a_{j-1,l} = \sum_{k} \left(c(l-2k)a_{j,k} + d(l-2k)b_{j,k} \right).$$

Vektorski zapis piramidalnog algoritma sinteze glasi

$$\mathbf{a}_{j-1} = \begin{pmatrix} C & D \end{pmatrix} (\uparrow 2) \begin{pmatrix} \mathbf{a}_j \\ \mathbf{b}_j \end{pmatrix},$$

i može se predstaviti sledećom šemom

Dokaz: Za j = 0 izrazi (1), (2) i (3) daju identitet

$$\sum_{k} a_{-1,k} \varphi_{-1,k}(x) = \sum_{n} a_{0,n} \varphi_{0,n}(x) + \sum_{n} b_{0,n} \psi_{0,n}(x)$$
$$= \sum_{n} a_{0,n} \left(\sum_{l} c(l-2n)\varphi_{-1,l}(x) \right) + \sum_{n} b_{0,n} \left(\sum_{l} d(l-2n)\varphi_{-1,l}(x) \right)$$
$$= \sum_{l} \left(\sum_{n} \left(a_{0,n} c(l-2n) + b_{0,n} d(l-2n) \right) \right) \varphi_{-1,l}(x),$$

odakle tvrđenje očigledno sledi. Za ostale nivoe j dokaz se izvodi analogno.

Dokaz se može izvesti i invertovanjem matričnog zapisa datog u teoremi 1. Naime, kao rešenje sistema linearnih jednačina

$$\begin{pmatrix} \mathbf{a}_j \\ \mathbf{b}_j \end{pmatrix} = (\downarrow 2) \begin{pmatrix} C^\top \\ D^\top \end{pmatrix} \mathbf{a}_{j-1} = (\downarrow 2) \begin{pmatrix} C & D \end{pmatrix}^\top \mathbf{a}_{j-1},$$

direktno se dobija traženi vektor koeficijenata

$$\mathbf{a}_{j-1} = \begin{pmatrix} (\downarrow 2) \begin{pmatrix} C & D \end{pmatrix}^\top \end{pmatrix}^\top \begin{pmatrix} \mathbf{a}_j \\ \mathbf{b}_j \end{pmatrix} = \begin{pmatrix} C & D \end{pmatrix} (\uparrow 2) \begin{pmatrix} \mathbf{a}_j \\ \mathbf{b}_j \end{pmatrix}$$

jer je $(\downarrow 2) \begin{pmatrix} C^\top \\ D^\top \end{pmatrix}$ ortogonalna matrica.

Očigledno je da se transformacija talasićima može predstaviti i množenjem vektora **v** matricom talasića W. Ako se transformacija vrši ortogonalnim talasićima, matrica W je ortogonalna, $W^{-1} = W^T$. Transformacija talasićima WMW^T proizvoljne matrice M je tada unitarna, dakle numerički stabilna, transformacija.

6.2 Početni izbor koeficijenata

Postavlja se pitanje kako odrediti početni niz koeficijenata $\{a_{0k}\}$, tj. vektor $\mathbf{a_0}$, kojim je definisan početni korak u dekompoziciji piramidalnim algoritmom. Ovi koeficijenti su Fourier-ovi koeficijenti funkcije f(x) po ortonormiranom bazisu $\{\varphi(x-k)\}$,

(8)
$$a_{0,k} = \int f(x)\varphi(x-k)\,dx.$$

Ako funkcija $f(x) \in \mathcal{V}_0$, ona se tačno predstavlja razlaganjem

(9)
$$f(x) = \sum_{k} a_{0,k} \varphi(x-k).$$

Ako $f(x) \notin \mathcal{V}_0$, suma (9) predstavlja ortogonalnu projekciju funkcije f(x) na prostor \mathcal{V}_0 .

U slučaju da je funkcija zadata samo na diskretnom skupu tačaka, suma (9) predstavlja reprezentaciju diskretnog signala f(n), te iz (9) sledi da je

(10)
$$f(n) = \sum_{k} a_{0,k} \varphi(n-k).$$

Traženi koeficijenti su u ovom slučaju rešenja sistema linearnih jednačina (10), pri čemu je matrica sistema ciklična matrica sa elementima $\varphi(n-k)$. Nalaženje koeficijenata $a_{0,k}$ naziva se pred-filtriranje.

Aproksimacijom integrala u formuli (8) sumom, pred-filtriranje se svodi na približno izračunavanje traženih koeficijenata konačnom sumom

(11)
$$a_{0,k} \approx \sum_{n} f(n)\varphi(n-k).$$

Da bi se rekonstruisao signal u procesu sinteze mora se izvršiti post-filtriranje (postupak suprotan opisanom) dobijenih koeficijenata $a_{0,k}$.

Grafik funkcije skaliranja i talasića. Najjednostavniji način da se generišu grafik funkcije skaliranja i talasića zasniva se na piramidalnom algoritmu sinteze (7). Ako kaskadni algoritam (form. (3.25))

(12)
$$\varphi^{(i)}(x) = \sum_{k} c(k) \sqrt{2} \varphi^{(i-1)}(2x-k), \quad i = 1, \dots,$$

konvergira, granična funkcija je funkcija skaliranja $\varphi(x)$. Ukoliko za početnu funkciju kaskadnog algoritma uzmemo četvrtku $\varphi_b(x)$, u *i*-toj iteraciji izraz (12) predstavlja aproksimaciju funkcije skaliranja pri rezoluciji 2^{-i} četvrtkama, tj. deo po deo konstantu na diadskim intervalima $[2^{-i}k, 2^{-i}(k+1))$,

(13)
$$\varphi^{(i)}(x) = \sum_{k} a_{-i,k} \varphi_b(2^i x - k).$$

Pri tome su koeficijenti u reprezentaciji (13) jednaki

$$a_{-i,n} = \varphi^{(i)}(n \, 2^{-i})$$
 jer je $\varphi_b(2^i(n \, 2^{-i}) - k) = \delta(n-k).$

Zbog konvergencije kaskadnog algoritma vrednosti $a_{-i,n}$ teže ka tačnim vrednostima funkcije skaliranja $\varphi(x)$ u diadskim tačkama. U aproksimacijama (13) za svako *i* koeficijenti talasića $b_{-i,k}$ su jednaki nuli.

Slika 6.1: Aproksimacije Db2 funkcije skaliranja i talasića (2. i 10. iteracija)

Stoga za generisanje funkcije skaliranja polazimo od koeficijenata $a_{0,n} = \delta(n)$ i $b_{0,n} = 0$. Uzimajući u obzir zaključak da je $b_{-i,n} = 0$ za svako *i*, inverzni piramidalni algoritam (7) direktno daje aproksimacije vrednosti funkcije u diadskim tačkama

$$a_{i-1,n} = \sum_{k} c(n-2k)a_{i,k}, \qquad i = 0, -1, \dots$$

Sa povećanjem broja nivoa rezolucije (indeksa iteracije i) tačke postaju sve gušće, a aproksimacija vrednosti funkcije skaliranja u tim tačkama sve tačnija (slika 6.1).

Ukoliko želimo da generišemo grafik talasića, polazni skup koeficijenata u algoritmu (7) je $a_{0,n} = 0$ i $b_{0,n} = \delta(n)$.

6.3 Diskretna transformacija talasićima

Ako se talasić posmatra kao visoko-frekvencijski filtar a funkcija skaliranja kao nisko-frekvencijski filtar, niz kompresovanih talasića zajedno sa funkcijom skaliranja može se posmatrati kao banka filtara (§4.3). Svaki od talasića pokriva određeni spektralni opseg, a funkcija skaliranja pokriva preostali deo spektra koji obuhvata male frekvencije (velike skale). Stoga u analizi talasićima obično govorimo o aproksimacijama i detaljima. Aproksimacije su nisko-frekvencijske komponente funkcije na velikim skalama, a detalji su visoko-frekvencijske komponente funkcije na malim skalama. Transformaciju funkcije talasićima možemo tumačiti kao prolazak funkcije kroz pomenutu banku filtara. Izlaz su koeficijenti funkcija skaliranja $a_{j,k}$ (aproksimacije) i koeficijenti talasića $b_{j,k}$ (detalji). Analiza signala koja se

vrši propuštanjem signala kroz banku filtara je stara ideja poznata pod nazivom *podopsežno kodiranje* (engl. *subband coding*). Ovu tehniku su za kodiranje govornih signala 1976. godine koristili Crochiere, Weber i Flanagan ([6]).

Diskretna transformacija talasićima (DWT=Discrete Wavelet Transformation) je algoritam kojim se koeficijenti talasića i funkcije skaliranja određuju na diadskim skalama i u diadskim tačkama.

Jedan korak u procesu filtriranja sastoji se u razdvajanju aproksimacije i detalja diskretnog signala, tako da se kao rezultat dobijaju dva signala. Oba signala su dužine polaznog, čime se udvostručuje broj podataka. Kompresijom, odnosno odbacivanjem svakog drugog podatka, polovi se dužina izlaznih signala, tako da je ukupan broj podataka na izlazu jednak broju podataka na ulazu. Dobijena aproksimacija je ulazni signal u sledećem koraku (slika 6.2).

Slika 6.2: Diskretna transformacija talasićima (DWT)

Efekat izvršenih transformacija je lošija vremenska, a bolja frekvencijska rezolucija izlaznih signala. Kompresija polovi vremensku rezoluciju, jer sada samo polovina od ukupnog broja uzoraka karakteriše ceo signal. Međutim, dekompozicija udvostručuje frekvencijsku rezoluciju, jer frekvencijski sloj svakog od izlaznih signala obuhvata samo polovinu prethodnog frekvencijskog sloja. Opisani postupak je već pomenuto podopsežno kodiranje, i može se ponoviti radi dalje dekompozicije. Na svakom nivou filtriranje i kompresija će dovesti do polovljenja frekvencijskog sloja (a time i do udvostručavanja frekvencijske rezolucije) i smanjenja broja odbiraka za pola (tj. udvostručavanja vremenskog koraka, a time i do polovljenja vremenske rezolucije). U krajnjem slučaju, ako originalni signal ima dužinu 2^m , DWT ima najviše m koraka tako da se na izlazu dobija aproksimacija kao signal dužine jedan. DWT originalnog signala dobija se povezivanjem svih koeficijenata polazeći od poslednjeg nivoa dekompozicije. To je vektor koga čine izlazni signali $[A_J, D_J, \ldots, D_2, D_1]$. Broj koeficijenata DWT-a jednak je dužini polaznog signala.

Opisanim algoritmom, koji predstavlja suštinu diskretne transformacije talasićima, vrši se analiza, tj. dekompozicija signala. Asembliranje komponenti, da bi se dobio polazni signal bez gubitka informacija, naziva se rekonstrukcija ili sinteza. Matematičke operacije kojima se realizuje sinteza nazivaju se *Inverzna diskretna transformacija talasićima* (IDWT). Analiza talasićima uključuje filtriranje i kompresiju, a proces rekonstrukcije talasićima se sastoji od dekompresije i filtriranja. Neophodno je rekonstruisati aproksimaciju i detalje, pre nego što se oni kombinuju.

- Algoritam dekompozicije DWT počinje sa signalom f, zatim se određuju signali A_1 i D_1 , zatim A_2 i D_2 , itd.
- Algoritam rekonstrukcije IDWT počinje od signala A_J i D_J , na osnovu kojih se izračunava signal A_{J-1} , zatim se signalima A_{J-1} i D_{J-1} određuje signal A_{J-2} , itd.

Brza transformacija talasićima (FWT = Fast Wavelet Transformation). Mallat ([17]) je 1988. godine razvio efikasan postupak za razlaganje signala pomoću filtara na aproksimaciju i detalje, koji se zasniva na matričnoj interpretaciji piramidalnog algoritma (teorema 1). Matrice filtara C^{\top} i D^{\top} se kompresuju brisanjem svake druge vrste, tako da se dobijaju pravougaone matrice $(\downarrow 2)C^{\top}$ i $(\downarrow 2)D^{\top}$ sa dvostruko većim brojem kolona nego vrsta. Spajanjem ovih matrica u jednu kvadratnu matricu (videti §4.4), tako što se ispod matrice $(\downarrow 2)C^{\top}$ nadoveže matrica $(\downarrow 2)D^{\top}$, diskretna transformacija talasićima na jednom koraku realizuje se množenjem ulaznog vektora \mathbf{a}_{i-1} tako dobijenom matricom

(14)
$$\begin{pmatrix} \mathbf{a}_j \\ \mathbf{b}_j \end{pmatrix} = (\downarrow 2) \begin{pmatrix} C^\top \\ D^\top \end{pmatrix} \mathbf{a}_{j-1}.$$

Inverzni algoritam je definisan transponovanom matricom rekurentnom formulom (teorema 2.)

(15)
$$\mathbf{a}_{j-1} = \begin{pmatrix} C & D \end{pmatrix} (\uparrow 2) \begin{pmatrix} \mathbf{a}_j \\ \mathbf{b}_j \end{pmatrix}.$$

FWT algoritam je analogan FFT algoritmu u Fourier-ovoj analizi. Za signal dužine n broj računskih operacija FWT je O(n), dok je kod FFT-a taj broj $O(n \ln n)$. Algoritam je u potpunosti rekurzivan.

PRIMER 1. Ilustrujmo primenu FWT algoritma u analizi signala dužine osam $\mathbf{x} = (37, 35, 28, 28, 58, 18, 21, 15)$, datog u primeru 4.2. Maksimalni broj nivoa razlaganja u ovom slučaju je $J = 3 (2^3 = 8)$. Početni uzorak ćemo označiti kao nulti nivo. Radi jednostavnosti, koristićemo Haar-ov talasić određen četvrtkom, koji je ortogonalan u odnosu na translaciju.

 $Nivo~\theta\colon$ Početna aproksimacija je dati signal,

$$\mathbf{a}_0 = \begin{pmatrix} 37 & 35 & 28 & 28 & 58 & 18 & 21 & 15 \end{pmatrix}^{\top}$$

 $\it Nivo 1:~$ Prema (14), zaj=1,posle prvog koraka FWT dekompozicije

 $Nivo~2\colon$ Ulazni signal je sada aproksimacija određena vektorom \mathbf{a}_1 na prethodnom nivou,

$$2\begin{pmatrix} \frac{32}{28} \\ \frac{4}{10} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \sqrt{2} \begin{pmatrix} 36 \\ 28 \\ 38 \\ 18 \end{pmatrix}$$

što daje aproksimaciju $\mathbf{a}_2 = 2 \begin{pmatrix} 32\\ 28 \end{pmatrix}$ i detalj $\mathbf{b}_2 = 2 \begin{pmatrix} 4\\ 10 \end{pmatrix}$.

 $Nivo~3\colon$ Primena FWT algoritma na aproksimaciju određenu vektorom $\mathbf{a}_2,$

$$2\sqrt{2} \begin{pmatrix} \boxed{30}\\ 2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} 2 \begin{pmatrix} 32\\ 28 \end{pmatrix},$$

na poslednjem mogućem nivou za ovaj obim podataka daje vektore dimenzije jedan, aproksimaciju $\mathbf{a}_3 = 2\sqrt{2} (30)$ i detalj $\mathbf{b}_3 = 2\sqrt{2} (2)$.

Potpuna FW transformacija datog signala kratko se može prikazati šemom:

Niz brojeva ispod linije u šemi (16), određen aproksimacijom na poslednjem nivou i detaljima na svim nivoima redom od poslednjeg do prvog, predstavlja koeficijente talasića signala **x**. Ostali smo dužni da objasnimo zašto su u šemi izostavljeni stepeni broja dva, $2^{j/2}$, koji se javljaju kao množitelji u vektorima \mathbf{a}_j i \mathbf{b}_j . Ovaj činilac se skraćuje sa faktorom normiranja odgovarajuće funkcije skaliranja ili talasića, jer je, prema form. (5.2), reprezentacija signala talasićima

$$\begin{aligned} x(n) &= \sum_{k} a_{J,k} 2^{-J/2} \varphi(2^{-J}n - k) + \sum_{j} \sum_{k} b_{j,k} 2^{-j/2} \psi(2^{-j}n - k) \\ &= \sum_{k} \overline{a}_{J,k} \varphi(2^{-J}n - k) + \sum_{j} \sum_{k} \overline{b}_{j,k} \psi(2^{-j}n - k). \end{aligned}$$

Koeficijenti $\overline{a}_{J,k} = a_{J,k} 2^{-J/2}$ i $\overline{b}_{j,k} = b_{j,k} 2^{-j/2}$ su upravo koeficijenti talasića iz šeme (16). Grafički prikaz aproksimacije i detalja signala **x** dat je na slici 6.3

118

(16)

Slika 6.3: Komponente signala u aproksimacionom prostoru i prostorima talasića

Rekonstrukcija signala \mathbf{x} na osnovu datih vektora \mathbf{a}_3 , \mathbf{b}_3 , \mathbf{b}_2 i \mathbf{b}_1 vrši se piramidalnim algoritmom sinteze, čiji je matrični zapis dat izrazom (15). Zapisaćemo samo poslednji korak rekonstrukcije, s obzirom da je algoritam analogan algoritmu dekompozicije koji je detaljno objašnjen, osim što se u ovom slučaju koriste transponovane matrice,

(37)		(1)	0	0	0	1	0	0	0)		(36)
35		1	0	0	0	-1	0	0	0		28
28		0	1	0	0	0	1	0	0		38
28	_ 1	0	1	0	0	0	-1	0	0	$\sqrt{2}$	18
58	$= \frac{1}{\sqrt{2}}$	0	0	1	0	0	0	1	0	· v 2	1
18		0	0	1	0	0	0	-1	0		0
21		0	0	0	1	0	0	0	1		20
(15)		$\left(0 \right)$	0	0	1	0	0	0	-1/		$\begin{pmatrix} 3 \end{pmatrix}$

Za većinu signala najvažniji deo je nisko-frekvencijski sadržaj. Visoko-frekvencijski sadržaj određuje detalje i nijanse. Uzmimo primer ljudskog glasa. Ako uklonimo visoko-frekvencijske komponente, glas će zvučati drugačije, ali se još uvek može razaznati šta je rečeno. Međutim, ako uklonimo dovoljno nisko-frekvencijskih komponenti, govor postaje nerazumljiv. Diskretnom transformacijom talasićima, pri odgovarajućem izboru filtara C i D, mogu se za detalje b_{jk} na različitim nivoima j dobiti po apsolutnoj vrednosti vrlo mali brojevi ili nula (videti zadatak 1). Tada se kodiranje signala svodi na kodiranje poslednje aproksimacije \mathbf{a}_{Jk} , i onih koeficijenata detalja b_{jk} koji su iznad izabranog praga. Ako se veći broj detalja može zanemariti, s obzirom da poslednja aproksimacija sadrži 2^J (J je broj nivoa dekompozicije) puta manje podataka nego ulazni signal, postiže se pri obradi signala značajna ušteda u vremenu i memorijskom prostoru.

PRIMER 2. Ilustrujmo na jednostavnom signalu iz primera 1. tehniku "odsecanja", tj. zamenimo nulom sve koeficijente talasića koji su određeni šemom (16), a nisu veći od zadatog praga. Za dve vrednosti praga, PR = 2 i PR = 4, rekonstrukcija modifikovanih signala je prikazana na sledećoj šemi:

30 2 4 10	1 0 20 3
$\swarrow PR = 2$	$\searrow PR = 4$
30 0 4 10 0 0 20 3	30 0 0 10 0 0 20 0
30 30 4 10 0 0 20 3	30 30 0 10 0 0 20 0
34 26 40 20 0 0 20 3	30 30 40 20 0 0 20 0
34 34 26 26 60 20 23 17	30 30 30 30 60 20 20 20

Pri pragu PR = 2 dva koeficijenta talasića zamenjeni su nulom, a kako je jedan koeficijent već bio nula, signal se zapisuje sa pet umesto osam podataka. Pri pragu PR = 4 pet koeficijenta talasića postaje nula, te se signal zapisuje samo sa tri podatka. Na slici 6.4 je grafički prikazan efekat "odsecanja" za dve analizirane vrednosti praga.

Očigledno je da se na ovaj način signal izravnava, i to više što je prag veći. Ukoliko nam nije jako važna precizna rekonstrukcija polaznog signala, već nam je mnogo važnija kompresija, izabraćemo veću vrednost praga. Na taj način se radikalno smanjuje broj podataka kojima definišemo signal, na račun kvaliteta rekonstruisanog signala (u smislu njegove bliskosti za polaznim signalom). Što je prag manji, dobijeni signal se manje razlikuje od polaznog, ali je za njegovo pamćenje potreban veći broj podataka.

Problem granice. DWT algoritam se zasniva na jednostavnoj šemi – delovanje operatorima konvolucije i kompresije za dva, te se standardno primenjuje na signal čija je dužina stepen broja dva. Signal koji ne zadovoljava ovaj uslov mora se pre primene DWT algoritma produžiti tako da mu dužina bude stepen broja dva. To se obično radi na jedan od sledeća tri načina: dopunom nulama, periodičnim produženjem, ili simetričnim preslikavanjem graničnih vrednosti (simetrizacija), kao lik u ogledalu. Nedostatak dopunjavanja nulama je pojava veštačkog singulariteta

Slika 6.4: Polazni i kompresovani signali

na granici. Nedostatak simetrizacije je diskontinuitet prvog izvoda na granici, ali je ova metoda u opštem slučaju pogodna pri obradi slike. Prednost periodičnog produženja je ta što nema dodatnih koeficijenata, ali je malo koji signal periodičan.

Diskretna paket analiza talasićima (DWPA = Discrete Wavelet Packet Analysis). Raznovrsnost i efikasnost DWT algoritma može biti značajno povećana korišćenjem njegovog opštijeg oblika, paket analize talasićima. Nasuprot DWT algoritmu, kojim se dekomponuju samo nisko-frekvencijske komponente (aproksimacije), DWPA algoritmom se dekomponuju i visoko-frekvencijske komponente (detalji). Drugim rečima, na svakom koraku se razlažu i nisko-frekvencijski i visoko-frekvencijski slojevi signala.

Zadaci

1. Neka je S(x-1/3) jedinična de
o po deo konstantna funkcija sa skokom u tački $x=1/3,\,{\rm gde}$ je

$$S(x) = \begin{cases} 1, & x > 0, \\ -1, & x < 0. \end{cases}$$

Njeni skalarni proizvodi $a_{j,k}$ sa četvrtkama $\varphi_{j,k}(x)$ će biti nula za oko jednu trećinu od ukupno 2^j četvrtki na intervalu [0, 1]. Koliko će skalarnih proizvoda $b_{j,k}$ ove

funkcije sa Haar-ovim talasićima $\psi_{j,k}(x)$ biti nula?

2. Korišćenjem piramidalnog algoritma za dekompoziciju (6) i rekonstrukciju (7), napisati program u MatLab-u za reprezentaciju i kompresiju signala f(x) funkcijom skaliranja i talasićima, koji su određeni zadatim filtrom.

Pri rekonstrukciji signala konačne dužine, vrednosti potrebne za izračunavanje na granicama signala $f(k), k \in [-K, K]$, odrediti na jedan od sledeća tri načina: (a) Produženjem signala nulama, f(k) = 0, |k| > K.

(b) Periodičnim produženjem signala, $f(k \pm 2K) = f(k)$.

(c) Simetričnim produženjem signala, f(-K-k) = f(-K+k) i f(K+k) = f(K-k)za k = 1, 2, ...

3. Korišćenjem piramidalnog algoritma za dekompoziciju (14) i rekonstrukciju (15), napisati program u MatLab-u za reprezentaciju i kompresiju signala f(x) zadatim filtrom.

4. Korišćenjem piramidalnog algoritma za rekonstrukciju (7), napisati program u MatLab-u za crtanje grafika funkcije skaliranja i talasića koji su određeni izabranim filtrom (videti §6.2).

Glava 7

Primeri talasića

Koje funkcije mogu biti talasići?

Videćemo, na osnovu primera talasića koji će biti navedeni, da se pojam talasića dat u §3.6 može uopštiti. Ako je funkcija $\psi(x)$ neprekidna, ima momente jednake nuli i brzo opada po modulu ka nuli kada $x \to \infty$, ili je nula van nekog konačnog intervala, mogla bi biti talasić. Funkcija $\psi(x)$ će biti nazvana talasić, ako familija dilatacija i translacija te funkcije omogućava da se sve funkcije čija je energija konačna rekonstruišu korišćenjem detalja na svim skalama. Nije neophodno postojanje odgovarajuće funkcije skaliranja $\varphi(x)$. Postoje talasići kojima nije pridružena funkcija skaliranja, na primer Morlet-ov talasić (§7.5).

Osobine koje su bitne pri konstrukciji i izboru talasića su:

- Ograničen nosač talasića $\psi(x)$ i funkcije skaliranja $\varphi(x)$, ili njihovih Fourierovih transformacija $\hat{\psi}(\omega)$ i $\hat{\varphi}(\omega)$, što se može oslabiti zahtevom da te funkcije brzo konvergiraju ka nuli u beskonačnosti, bilo po vremenu ili frekvenciji. Ova osobina određuje vremensku i frekvencijsku lokalizaciju. Talasiću sa ograničenim nosačem je pridružen konačan (FIR) filtar, pa su sume u piramidalnom algoritmu (form. (6.6) i (6.7)) konačne.
- Ortogonalnost (ili biortogonalnost) je poželjna osobina. Posledica ove osobine je jednakost \mathcal{L}_2 normi funkcije i niza njenih koeficijenata u razvoju po talasićima (Parseval-ova jednakost). Dalje, transformacija ortogonalnim talasićima je unitarna, što znači da je numerički stabilna. Računski algoritam je brz i ne zauzima mnogo memorijskog prostora. U ortogonalnoj multirezolucijskoj analizi projekcioni operatori na različite potprostore daju optimalne aproksimacije u smislu \mathcal{L}_2 norme.
- *Simetrija*. Ako su funkcija skaliranja i talasić simetrični, filtri u opštem slučaju imaju linearnu fazu. Ako nisu simetrični, može doći do distorzije faze, što je posebno nepoželjno u obradi zvučnih signala. Ova osobina je korisna i pri obradi slike, kao dvodimenzionog signala. Simetrija isključuje ortogonalnost (osim u slučaju trivijalnog Haar-ovog filtra).

- *Regularnost* je bitna za glatkost rekonstruisane funkcije, signala ili slike. Takođe, veća glatkost obezbeđuje bolju frekvencijsku lokalizaciju filtrima. I u numeričkoj analizi poželjna je glatkost bazisnih funkcija, posebno tamo gde se koriste izvodi.
- *Broj iščezavajućih momenata* talasića i, ako postoje, funkcije skaliranja bitan je pri kompresiji, koja se sastoji u zanemarivanju malih koeficijenata.
- *Broj iščezavajućih momenata dualnog talasića* određuje, u slučaju glatkih funkcija, brzinu konvergencije aproksimacije talasićima.
- *Racionalni koeficijenti*. U računarskim implementacijama korisno je da su koeficijenti filtra racionalni brojevi. Algoritmi su još efikasniji ako su koeficijenti diadski racionalni brojevi, jer se u računaru množenje stepenom broja dva vrši pomeranjem bitova, što je vrlo brza operacija.
- *Analitički izrazi* ne postoje uvek za talasiće i funkciju skaliranja, ali je nekada poželjno imati ih.
- Interpolacija. Ako funkcija skaliranja zadovoljava uslove $\varphi(k) = \delta(k)$, $k \in \mathbb{Z}$, onda je trivijalno naći funkciju iz prostora \mathcal{V}_j koja interpoliše podatke zadate na mreži sa korakom 2^j , jer su koeficijenti jednaki podacima.

Nije moguće konstruisati talasić koji ima sva ova svojstva.

Stoga su konstruisane različite familije talasića, zavisno od toga koje osobine su korisniku bile vaznije. Pođimo od talasića koje smo do sada najčešće pominjali.

7.1 Daubechies talasići

O familiji Daubechies talasića DbN bilo je dosta reči do sada. Nemaju eksplicitan izraz, izuzev Haar-ovog talasića Db1. Određeni su filtrima D_N , za koje zapis gustine energijskog spektra (teorema 4.3) ima oblik

(1)
$$|\hat{c}(\omega)|^2 = 2\left(\sum_{k=0}^{2N-1} h(k)e^{-ik\omega}\right)^2 = \left(\cos^2\frac{\omega}{2}\right)^N Q\left(\sin^2\frac{\omega}{2}\right).$$

Izborom reda N definisani su različiti filtri, a sa njima i različiti talasići tzv. Daubechies familije talasića. Konstrukcija Daubechies filtara objašnjena je u §4.5.

Dužina nosača talasića $\psi(x)$ i funkcije skaliranja $\varphi(x)$ je (2N-1), a broj iščezavajućih momenata talasića $\psi(x)$ je N. Ortogonalni su. Regularnost im se povećava sa redom N, funkcije $\psi(x)$ i $\varphi(x)$ pripadaju klasi $\mathcal{C}^{\mu N}$, gde je $\mu \approx 0.2$ za veliko N. Osim Haar-ovog talasića Db1, ostali nisu simetrični, čak je kod nekih asimetrija jako izražena (slike 3.14 i 3.15). Symlet talasići, SymN. Predstavljaju modifikaciju Daubechies talasića, koja je učinjena da bi se popravila njihova simetrija. Ipak, kako bi se zadržala jednostavnost Daubechies talasića, oni su samo skoro simetrični. Konstruisani su filtrima određenim drugačijim grupisanjem činilaca funkcije (1) u funkcije $\hat{c}(\omega)$ i $\overline{\hat{c}(\omega)}$, u odnosu na izbor koji određuje Daubechies filtar. Naime, u §4.5 je objašnjeno da izborom frekvencijskog odziva $\hat{c}(\omega)$ tako da su mu svi koreni po modulu manji ili jednaki jedan, dobijamo Daubechies filtar D_N minimalne faze, koji određuje Daubechies talasić DbN. Drugačijim izborom dobijamo filtar veće simetrije, koji generiše talasić SymN. Stoga su ostale osobine ovih talasića slične osobinama talasića DbN. Kao što je već napomenuto, ne može se postići potpuna simetrija u okviru ortonormiranog bazisa talasića sa konačnim nosačem, osim Haar-ovog Db1 talasića.

Slika 7.1: Coiflet funkcija skaliranja i talasić

Coiflet talasići, CoifN. Konstruisala ih je Ingrid Daubechies na zahtev svog kolege Ronalda Coifmana, po kome su i dobili ime. Da bi se početni niz koeficijenata (6.8) piramidalnog algoritma što jednostavnije i tačnije računao, korisno je da i momenti funkcije skaliranja što višeg reda budu jednaki nuli. Na taj način, zamenom funkcije f(x) njenim Taylor-ovim razvojem dobija se da je

$$\begin{aligned} a_{j,n} &= \int f(x) 2^{-j/2} \varphi(2^{-j}x - n) \, dx = 2^{-j/2} \int f\left(2^j(t+n)\right) \varphi(t) 2^j \, dt \\ &\approx 2^{j/2} \sum_k \frac{f^{(k)}(2^j n)}{k!} \int t^k \varphi(t) \, dt = 2^{j/2} f(2^j n), \end{aligned}$$

jer je nulti moment funkcije skaliranja $\int \varphi(x) dx = 1$. Greška je to manja što je $\int x^k \varphi(x) dx = 0$ za veće k. Povećanje broja uslova povećava dužinu nosača talasića. Talasić CoifN ima 2N, a odgovarajuća funkcija skaliranja ima 2N - 1 momenata jednakih nuli. Obe funkcije imaju nosač dužine 6N - 1. Manje su asimetrični od talasića DbN. U odnosu na dužinu nosača CoifN je uporediv sa talasićima Db3N i Sym3N, a u odnosu na broj iščezavajućih momenata talasića uporediv je sa Db2N i Sym2N. Koriste se u numeričkoj analizi.

Više o talasićima DbN, SymN i CoifN, kao i vrednosti koeficijenata filtara koji ih definišu, za različito N, može se naći u [8].

7.2 Biortogonalni talasići

Svakome ko se bavi podopsežnim filtrima poznato je da su simetrija i savršena rekonstrukcija protivurečni zahtevi, ukoliko se isti FIR filtri koriste za analizu i sintezu. Ako se odustane od poslednjeg zahteva, simetrija je moguća. Tako dolazimo do simetričnih biortogonalnih bazisa talasića.

Umesto jednog, konstruišu se dva niza multirezolucijskih prostora

$$\mathcal{V}_j + \mathcal{W}_j = \mathcal{V}_{j-1}, \qquad \tilde{\mathcal{V}}_j + \tilde{\mathcal{W}}_j = \tilde{\mathcal{V}}_{j-1}.$$

Sume prostora su direktne (prostori nemaju zajedničkih elemenata), ali u opštem slučaju nisu ortogonalne. Ortogonalnost postoji među prostorima različitih multi-rezolucija

$$\mathcal{V}_i \perp \mathcal{W}_i, \qquad \mathcal{W}_i \perp \mathcal{V}_i$$

Bazisi ovih prostora su biortogonalni.

Interpretirajmo biortogonalnost bazisa preko biortogonalnih filtara. Ako se sa $H_0(z)$ označi nisko-frekvencijski filtar i sa $H_1(z)$ visoko-frekvencijski filtar banke analize, a sa $F_0(z)$ označi nisko-frekvencijski filtar i sa $F_1(z)$ visoko-frekvencijski filtar banke sinteze, uslovi savršene rekonstrukcije glase (form. (4.46)):

(2)
$$F_0(z)\overline{H}_0(z) + F_1(z)\overline{H}_1(z) = 2,$$

(3)
$$F_0(z)\overline{H}_0(-z) + F_1(z)\overline{H}_1(-z) = 0.$$

Odzivi $H_0(z)$, $H_1(z)$, $F_0(z)$ i $F_1(z)$ su polinomi (i sa negativnim stepenima z), jer je reč o FIR filtrima, te iz (2) sledi da $\overline{H}_0(z)$ i $\overline{H}_1(z)$ nemaju zajedničkih nula. Stoga će (3) važiti za svako z samo ako su zadovoljeni uslovi

(4)
$$F_1(z) = p(z)\overline{H}_0(-z) \quad \text{i} \quad F_0(z) = -p(z)\overline{H}_1(-z).$$

Zamena veza (4) u (2) daje jednakost

$$p(z)\left(\overline{H}_0(-z)\,\overline{H}_1(z) - \overline{H}_0(z)\,\overline{H}_1(-z)\right) = 2,$$

koja je moguća samo ako je p(z) polinom oblika $p(z) = cz^k$. Ako se u (4) u polinomu p(z) stavi da su konstante c = 1 i k = -1, dobijaju se veze

(5)
$$H_1(z) = z^{-1}\overline{F}_0(-z), \qquad F_1(z) = z^{-1}\overline{H}_0(-z),$$

koje, kada se uvrste u jednakost dobijenu konjugovanjem uslova (2), daju

(6)
$$H_0(z)\overline{F}_0(z) + H_0(-z)\overline{F}_0(-z) = 2.$$

Predstavljajući polinome $H_i(z)$ i $F_i(z)$, i = 0, 1, u obliku

(7)
$$H_i(z) = \sum_{k=-N_i}^{N_i} h_i(k) z^{-k}, \qquad F_i(z) = \sum_{k=-M_i}^{M_i} f_i(k) z^{-k}, \quad i = 0, 1,$$

u izrazu (6),

$$\sum_{k} \sum_{j} h_0(k) f_0(j) z^{j-k} + \sum_{k} \sum_{j} (-1)^{j-k} h_0(k) f_0(j) z^{j-k} = 2,$$

tj.

$$\sum_{l} \left(\sum_{k} h_0(k) f_0(2l+k) \right) z^{2l} = 1,$$

dobija se uslov ortogonalnosti dvostrukog pomeraja za biortogonalne filtre

(8)
$$\sum_{k} h_0(k) f_0(2l+k) = \delta(k)$$

Zadavanjem nisko-frekvencijskih filtara $H_0(z)$ i $F_0(z)$ vezama (5) određeni su visoko-frekvencijski filtri. Uzimajući u obzir pretpostavljenu simetriju filtara $h_i(k) = h_i(-k)$ i $f_i(k) = f_i(-k)$, kao i pretpostavku da su koeficijenti filtara realni brojevi, dobija se odziv visoko-frekvencijskog filtra analize

$$H_1(z) = z^{-1} \sum_k f_0(k)(-z)^k = \sum_k f_0(k)(-1)^k z^{k-1} = \sum_j f_0(1-j)(-1)^{j+1} z^{-j},$$

i, slično, odziv visoko-frekvencijskog filtra sinteze

$$F_1(z) = z^{-1} \sum_k h_0(k)(-z)^k = \sum_j h_0(1-j)(-1)^{j+1} z^{-j}.$$

Poređenje dobijenih polinoma sa (7) za i = 1, daje veze koeficijenata filtara

(9)
$$h_1(n) = (-1)^{n+1} f_0(1-n), \qquad f_1(n) = (-1)^{n+1} h_0(1-n)$$

Koeficijentima biortogonalnih filtara definisani su biortogonalne funkcije skaliranja i talasići

(10)
$$\varphi(x) = \sum_{k} h_0(k)\varphi(2x-k), \qquad \tilde{\varphi}(x) = 2\sum_{k} f_0(k)\tilde{\varphi}(2x-k),$$
$$\psi(x) = \sum_{k} h_1(k)\varphi(2x-k), \qquad \tilde{\psi}(x) = 2\sum_{k} f_1(k)\tilde{\varphi}(2x-k).$$

Iz uzajamne ortogonalnosti prostora $\mathcal{V}_j \perp \tilde{\mathcal{W}}_j$ i $\tilde{\mathcal{V}}_j \perp \mathcal{W}_j$ i uslova (8) i (9) sledi biortogonalnost bazisa (form. (2.7))

$$(\varphi_{j,k}, \tilde{\psi}_{j,K}) = 0, \qquad (\tilde{\varphi}_{j,k}, \psi_{j,K}) = 0,$$
$$(\psi_{j,k}, \tilde{\psi}_{J,K}) = \delta(j-J)\,\delta(k-K), \qquad (\varphi_{j,k}, \tilde{\varphi}_{j,K}) = \delta(k-K),$$

gde su funkcije dualnog bazisa jednake

$$\tilde{\varphi}_{j,k}(x) = 2^{-j/2} \tilde{\varphi}(2^{-j}x - k), \qquad \tilde{\psi}_{j,k}(x) = 2^{-j/2} \tilde{\psi}(2^{-j}x - k).$$

Posledica biortogonalnosti ova dva sistema funkcija jeste da se proizvoljna funkcija $g(x)\in\mathcal{L}_2(R)$ može predstaviti razvojima

(11)

$$g(x) = \sum_{k} a_{j,k} \tilde{\varphi}_{j,k}(x), \qquad a_{j,k} = \left(g, \varphi_{j,k}\right) = \int g(x)\varphi_{j,k}(x) \, dx,$$

$$g(x) = \sum_{j} \sum_{k} b_{j,k} \tilde{\psi}_{j,k}(x), \qquad b_{j,k} = \left(g, \psi_{j,k}\right) = \int g(x)\psi_{j,k}(x) \, dx.$$

Piramidalni algoritam (6.6) definisan je filtrima analize,

$$a_{j,k} = \sum_{l} h_0(l-2k)a_{j-1,l}, \qquad b_{j,k} = \sum_{l} h_1(l-2k)a_{j-1,l},$$

a inverzni piramidalni algoritam (6.7) definisan je filtrima sinteze,

$$a_{j-1,l} = \sum_{k} \left(f_0(l-2k)a_{j,k} + f_1(l-2k)b_{j,k} \right).$$

Biortogonalni bazisi mogu zameniti uloge, tako da se tilda funkcije koriste u analizi a ove druge u sintezi. Izbor zavisi od regularnosti i broja iščezavajućih momenata jednih i drugih. Ako $\psi_{j,k}$ i $\tilde{\psi}_{j,k}$ obrazuju dualne Riesz-ove bazise talasića sa ograničenim nosačem, tada postoji veza između broja iščezavajućih momenata jedne funkcije i regularnosti druge funkcije ([8]): ako $\tilde{\psi} \in C^m$, tada je

Slika 7.2: Biortogonalne funkcije skaliranja ((a) i (c)) i talasići ((b) i (d))

 $\int x^k \psi(x) dt = 0, k = 0, \dots, m$. Pri tome je bolji izbor sinteza po regularnijim talasićima, u ovom slučaju $\tilde{\psi}(x)$ (kao u (11)), jer je time pored glatkosti aproksimacije obezbeđena i veća kompresija. Zbog (m+1) iščezavajućih momenata talasića $\psi(x)$ kojima su određeni koeficijenti u razvoju, veći broj tih koeficijenata za glatke funkcije g(x) će biti zanemarljivo mali.

Ilustracije radi, na slici 7.2 prikazani su dualna funkcija skaliranja (c) i dualni talasić (d) pridruženi krov funkciji (a) i njoj odgovarajućem talasiću (b). Filtri koji generišu ove funkcije jednaki su

k	-2	-1	0	1	2
$2 \cdot h_0(k)$	0	1	2	1	0
$4 \cdot f_0(k)$	-1	2	6	2	-1
$4 \cdot h_1(k)$	-1	-2	6	-2	-1
$2 \cdot f_1(k)$	0	-1	2	-1	0

Prednost biortogonalnih nad ortonormiranim bazisom je i u mogućnosti konstrukcije simetričnih filtara, a time i simetričnih talasića. To se može postići konstrukcijom interpolacionih funkcija skaliranja ili izborom kardinalnih B-splajnova za funkcije skaliranja, o čemu će biti reči u naredna dva odeljka. Sve funkcije, uključujući i dualne, imaju kompaktne nosače i linearnu fazu. Koeficijenti filtara su diadski racionalni brojevi. To je razlog što u jednačinama (10) normiranje nije vršeno koeficijentom $\sqrt{2}$, već se samo u dualnim jednačinama javlja koeficijent 2. Nedostatak ovih talasića je što su dualne funkcije male glatkosti.

7.3 Interpolacioni talasići

Interpolacioni talasići predstavljaju ekstremni slučaj biortogonalnih talasića, kada su dualna funkcija skaliranja, a time i dualni talasić, predstavljeni kombinacijom Dirac-ovih funkcija. Oni imaju mnoge dobre osobine, kao što su

- simetrija;
- koeficijenti u reprezentaciji funkcijom skaliranja su vrednosti fizičke veličine u diadskim tačkama, pa možemo reći da su identične fizička reprezentacija i reprezentacija funkcijom skaliranja;
- momenti i koeficijenti u reprezentaciji lako se određuju;
- bazisne funkcije mogu se odrediti ne rešavajući problem sopstvenih vrednosti;
- daju tačniju aproksimaciju.

Zbog navedenih osobina posebno su pogodni za modelovanje parcijalnim diferencijalnim jednačinama.

Koncepcijski, to su najjednostavniji talasići. Njihova konstrukcija zasniva se na rekurziji interpolacije, pomoću koje se konstruiše neprekidna funkcija zadata svojim vrednostima u konačno mnogo tačaka.

PRIMER 1. Neka je funkcija y(x) zadata svojim vrednostima y_i u ravnomerno raspoređenim tačkama x_i , $y_i = y(x_i)$, pri čemu ćemo pretpostaviti, ne umanjujući opštost, da su x_i celi brojevi. Ovu mrežu nazovimo

$$nivo 0$$
 $(x_l, y_l), \quad x_l = l \in \mathbb{Z}$

Interpolacionim polinomima stepena (M-1) izračunajmo približne vrednosti funkcije u sredinama celobrojnih intervala. Stepen interpolacionog polinoma treba da bude neparan (a to znači da je M parno), kako bi jednak broj čvorova interpolacije (M/2) bio raspoređen sa obe strane tačke u kojoj računamo interpolisanu vrednost. Ako za interpolaciju koristimo polinom trećeg stepena (M = 4), približna vrednost funkcije $y_{i+3/2}$ u središnjoj tački $x_{i+3/2}$ intervala određenog sa četiri uzastopna čvora interpolacije $x_{i+k}, k = 0, \ldots, 3$, jednaka je ([23])

(12)
$$y(x_{i+3/2}) \approx y_{i+3/2} = \sum_{k=0}^{3} \left(\prod_{\substack{l=0\\l \neq k}}^{3} \frac{x_{i+3/2} - x_{i+l}}{x_{i+k} - x_{i+l}} \right) y_{i+k}$$
$$= -\frac{1}{16} y_i + \frac{9}{16} y_{i+1} + \frac{9}{16} y_{i+2} - \frac{1}{16} y_{i+3}$$

Računajući po istom algoritmu približne vrednosti funkcije u svim sredinama celobrojnih intervala, dobijamo približne vrednosti funkcije y(x) na sledećem nivou,

nivo 1
$$(x_l, y_l), \quad x_l = 2^{-1}l \in \mathcal{Z},$$

koji sadrži dva puta više tačaka od *nivoa 0*. U sledećem koraku polazimo od ovog novog skupa podataka i opisanim algoritmom izračunavamo približne vrednosti funkcije u sredinama novih (tj. četvrtinama polaznih) intervala, što definiše mrežu

$$nivo 2$$
 $(x_l, y_l), \quad x_l = 2^{-2}l \in \mathcal{Z}.$

Očigledno je da svaki sledeći nivo sadrži dvostruko više podataka o funkciji u odnosu na prethodni, što predstavlja multirezoluciju.

Beskonačnim ponavljanjem interpolacije generiše se kvazi neprekidna funkcija, definisana u svim diadskim tačkama $x_l = 2^{-j}l, j \to \infty$. Ova funkcija ima jedinstveno, neprekidno proširenje $\overline{y}(x), x \in \mathcal{R}$ ([10]), čime je definisano preslikavanje početnog skupa podataka u neprekidnu funkciju,

(13)
$$\overline{y}(x) = I_M(\mathbf{y}), \qquad \mathbf{y} = \{y_l\}, \quad l \in \mathcal{Z}.$$

IndeksMje za jedan veći od stepena interpolacionog polinoma korišćenog u rekurziji.

7.3. INTERPOLACIONI TALASIĆI

Interpolaciona funkcija skaliranja $\varphi(x)$ je neprekidno proširenje granične funkcije određene rekurzijom interpolacije, kada su početne vrednosti zadate jediničnim vektorom \mathbf{e}_0 , $(\mathbf{e}_0)_l = \delta(l)$. Za izabrano M je, saglasno sa (13),

$$\varphi(x) = I_M(\mathbf{e_0}).$$

Na osnovu konstrukcije je jasno da je kompaktan nosač funkcije $\varphi(x)$ interval [-(M-1), (M-1)]. Translacija funkcije skaliranja $\varphi(x-k)$ određena je početnim podacima zadatim k-tim jediničnim vektorom na mreži sa korakom jedan,

$$\varphi(x-k) = I_M(\mathbf{e}_k), \qquad (\mathbf{e}_k)_l = \delta(k-l), \quad k, l \in \mathbb{Z}$$

PRIMEDBA 1. Proizvoljan skup podataka $\mathbf{y} = \{y_k\}$ možemo predstaviti linearnom kombinacijom jediničnih vektora, $\mathbf{y} = \sum_k y_k \mathbf{e}_k$. Kako je interpolacija linearan proces, sledi da se granična funkcija $\overline{y}(x)$, definisana podacima \mathbf{y} , može izraziti pomoću interpolacione funkcije skaliranja i njenih translacija,

$$\overline{y}(x) = I_M(\mathbf{y}) = I_M\left(\sum_k y_k \mathbf{e}_k\right) = \sum_k y_k I_M(\mathbf{e}_k) = \sum_k y_k \varphi(x-k).$$

Ako podaci predstavljaju vrednosti funkcije y(x) koja je polinom stepena ne većeg od stepena interpolacionog polinoma korišćenog u algoritmu, ova funkcija će biti tačno rekonstruisana. Svaka glatka funkcija se može lokalno dobro aproksimirati polinomom, te interpolaciona funkcija skaliranja $\varphi(x)$ predstavlja dobar izbor za generisanje familije talasića koja daje aproksimaciju visoke tačnosti.

U rekurziji (13) pošli smo od nivo
a θ , na kome su podaci dati u celobrojnim tačkama. Ako pođemo od nivo
aj na kome su podaci dati u diadskim tačkama
 $x_l = 2^{-j}l$ jediničnim vektorom na tom nivo
u $\mathbf{e_k}^{(j)}$ $((\mathbf{e_k})_l^{(j)} = \delta(k-l)$ na mreži sa korakom
 $2^{-j})$, tj. pođemo od podataka

$$(2^{-j}l, (\mathbf{e}_{\mathbf{k}})_l^{(j)}), \quad l \in \mathcal{Z}$$

preslikavanjem (13) ćemo očigledno opet dobiti funkciju skaliranja, samo kompresovanu za faktor 2^{j} ,

(14)
$$\varphi(2^j x - k) = I_M(\mathbf{e}_{\mathbf{k}}^{(j)}).$$

Zelimo da ustanovimo relaciju između graničnih funkcija koje su određene podacima sa dva uzastopna nivoa, odnosno, da izvedemo dilatacionu jednačinu za interpolacionu funkciju skaliranja.

PRIMER 2. Da bismo lakše došli do tražene veze u opštem slučaju, pogledajmo kako ona izgleda za interpolacioni proces definisan polinomom trećeg stepena, opisan u primeru 1. Polazeći od podataka $\mathbf{e_0}$, interpolaciona formula (12) daje vrednosti funkcije $\varphi(x)$ u sredinama intervala (vrednosti različite od nule dobijaju se za i = -1 i i = 0)

$$\varphi\left(\frac{1}{2}\right) = -\frac{1}{16} (\mathbf{e_0})_{-1} + \frac{9}{16} (\mathbf{e_0})_0 + \frac{9}{16} (\mathbf{e_0})_1 - \frac{1}{16} (\mathbf{e_0})_2$$
$$= -\frac{1}{16} \cdot 0 + \frac{9}{16} \cdot 1 + \frac{9}{16} \cdot 0 - \frac{1}{16} \cdot 0 = \frac{9}{16}$$
$$\varphi\left(\frac{3}{2}\right) = -\frac{1}{16} (\mathbf{e_0})_0 + \frac{9}{16} (\mathbf{e_0})_1 + \frac{9}{16} (\mathbf{e_0})_2 - \frac{1}{16} (\mathbf{e_0})_3$$
$$= -\frac{1}{16} \cdot 1 + \frac{9}{16} \cdot 0 + \frac{9}{16} \cdot 0 - \frac{1}{16} \cdot 0 = -\frac{1}{16}.$$

Uzimajući u obzir simetriju i vrednosti u celobrojnim tačkama koje su date na nivou 0, funkcija $\varphi(x)$ je data na nivou 1 (u tačkama $x_k = k/2$) sledećom tabelom

k	-3	-2	-1	0	1	2	3
$\varphi(k/2)$	-1/16	0	9/16	1	9/16	0	-1/16

Ostale vrednosti su jednake nuli, što potvrđuje raniji zaključak da je nosač kompaktan, a u ovom slučaju jednak je šest osnovnih intervala. Podaci iz tabele mogu se pomoću jediničnih vektora $\mathbf{e_k}^{(1)}$, pridruženih podeli na polovine intervala, zapisati u sledećem obliku

(15)
$$\Phi^{(1)} = -\frac{1}{16} \mathbf{e_{-3}}^{(1)} + \frac{9}{16} \mathbf{e_{-1}}^{(1)} + \mathbf{e_0}^{(1)} + \frac{9}{16} \mathbf{e_1}^{(1)} - \frac{1}{16} \mathbf{e_3}^{(1)}$$

Ovi podaci definišu istu rekurziju kao i vektor $\mathbf{e_0}$, koja vodi ka funkciji skaliranja

(16)
$$I_4(\Phi^{(1)}) = \varphi(x).$$

Zamenom (15) u (16), uzimajući u obzir (14), dobijamo traženu rekurentnu vezu

(17)
$$\varphi(x) = -\frac{1}{16}\varphi(2x+3) + \frac{9}{16}\varphi(2x+1) + \varphi(2x) + \frac{9}{16}\varphi(2x-1) - \frac{1}{16}\varphi(2x-3),$$

koja predstavlja dilatacionu jednačinu za interpolacionu funkciju skaliranja određenu kubnom interpolacijom (M = 4). Očigledno je da su koeficijenti jednačine vrednosti $\varphi(l/2), l \in \mathbb{Z}$, (vidi tabelu), što važi i u opštem slučaju.

Interpolacija reda (M-1) (sa M čvorova interpolacije) definiše funkciju skaliranja koja je rešenje dilatacione jednačine

$$\varphi(x) = \sum_{k=-M+1}^{M-1} \varphi(k/2) \,\varphi(2x-k).$$

Koeficijenti niskofrekventnog filtra analize \mathbf{h}_0 su vrednosti funkcije skaliranja u tačkama nivoa 1, $h_0(k) = \varphi(k/2), \ k = 0, \pm 1, \dots, \pm (M-1).$

Poredeći izraze (12) i (17), vidimo da su koeficijenti filtra ustvari koeficijenti interpolacione formule. Izvedimo izraz za njihovo izračunavanje u opštem slučaju, za interpolaciju sa M čvorova (M parno). Lagrange-ov interpolacioni polinom je

7.3. INTERPOLACIONI TALASIĆI

invarijantan u odnosu na linearnu smenu promenljive $x = \frac{1}{2}(t + M - 1)$ ([23]), kojom se čvorovi $x_k = k, k = 0, \ldots, M-1$, preslikavaju u čvorove $t_k = 2k - (M-1)$,

(18)
$$L(t) = \sum_{k=0}^{M-1} \left(\prod_{\substack{l=0\\l\neq k}}^{M-1} \frac{t-t_l}{t_k - t_l} \right) y_k = \sum_{k=0}^{M-1} c_k(t) y_k$$

Sredina intervala interpolacije se ovom smenom preslikava u tačku t = 0, te su koeficijenti filtra određeni koeficijentima interpolacione formule (18),

$$c_k(0) = \prod_{\substack{l=0\\l\neq k}}^{M-1} \frac{-t_l}{t_k - t_l} = \prod_{\substack{l=0\\l\neq k}}^{M-1} \frac{M - 1 - 2l}{2(k - l)} = \frac{1}{2^{M-1}} \prod_{\substack{l=0\\l\neq k}}^{M-1} \frac{M - 1 - 2l}{k - l},$$

$$k = 0, \dots, M - 1,$$

sledećom vezom

$$h_0(0) = 1,$$
 $\begin{array}{c} h_0(2n) = 0, \quad h_0(2n-1) = c_{M/2-n}, \\ h(-n) = h(n) \end{array}$ $n = 1, \dots, M/2$

Sada određujemo dualnu funkciju skaliranja $\tilde{\varphi}(x)$. Iz uslova biortogonalnosti bazisa određenih funkcijama $\varphi(x)$ i $\tilde{\varphi}(x)$,

$$\int \tilde{\varphi}(x)\varphi(x-n)\,dx = \delta(n),$$

i osobine interpolacione funkcije skaliranja da je $\varphi(n) = \varphi(-n) = \delta(n), n \in \mathbb{Z}$, sledi da je dualna funkcija skaliranja Dirac-ova funkcija (videti primer 2.6),

(19)
$$\int \tilde{\varphi}(x)\varphi(x-n)\,dx = \varphi(-n), \quad \longrightarrow \quad \tilde{\varphi}(x) \equiv \delta(x).$$

Dilataciona jednačina čije rešenje je funkcija $\delta(x)$ data je u primeru 3.10, te je stoga dilataciona jednačina dualne funkcije skaliranja

(20)
$$\tilde{\varphi}(x) = 2\tilde{\varphi}(2x), \qquad x \in \mathcal{R}$$

Iz (20) čitamo da su koeficijenti dualnog nisko-frekvencijskog filtra

$$f_0(0) = 1, \qquad f_0(n) = 0, \quad n \neq 0, \quad n \in \mathcal{Z}.$$

Koeficijenti visoko-frekvencijskih filtara određeni su vezama (9),

$$h_1(1) = f_0(0) = 1,$$
 $h_1(n) = 0,$ $n \neq 1,$
 $f_1(n) = (-1)^{n+1} h_0(1-n)$ $n \in \mathbb{Z}.$

Zamenjujući ove koeficijente u jednačinama (10), dobijamo da je talasić određen interpolacionom funkcijom skaliranja

(21)
$$\psi(x) = \varphi(2x - 1) = \varphi_{1,1}(x)$$
, i, uopšte, $\psi_{j,k}(x) = \varphi_{j+1,2k+1}(x)$.

Dualni talasić određen je koeficijentima visoko-frekvencijskog filtra sinteze $f_1(n)$.

Slika 7.3: Interpolaciona funkcija skaliranja i talasić $\left(M=4\right)$

PRIMER 3. Koeficijenti filtara za interpolacioni talasić izveden u primeru 2. dati su sledećom tabelom

k	-4	-3	-2	-1	0	1	2	3	4
$h_0(k)$	0	-1/16	0	9/16	1	9/16	0	-1/16	0
$f_0(k)$	0	0	0	0	1	0	0	0	0
$h_1(k)$	0	0	0	0	0	1	0	0	0
$f_1(k)$	0	0	1/16	0	-9/16	1	-9/16	0	1/16

Grafici funkcije skaliranja i talasića prikazani su na slici 7.3. Jednačina dualnog talasića je, prema(10),

$$\tilde{\psi}(x) = 2\left(\frac{1}{16}\,\tilde{\varphi}(2x+2) - \frac{9}{16}\,\tilde{\varphi}(2x) + \tilde{\varphi}(2x-1) - \frac{9}{16}\,\tilde{\varphi}(2x-2) + \frac{1}{16}\,\tilde{\varphi}(2x-4)\right),$$

odnosno, uzimajući u obzir (19) i (20),

$$\tilde{\psi}(x) = \frac{1}{16}\,\delta(x+1) - \frac{9}{16}\,\delta(x) + \delta(x-1/2) - \frac{9}{16}\,\delta(x-1) + \frac{1}{16}\,\delta(x-2).$$

Filtri koji definišu interpolacione talasiće za M = 6, 8 i 10 mogu se naći u [12].

7.4 Kardinalni B-splajnovi

Kardinalni B-splajnovi predstavljaju familiju funkcija skaliranja. Kardinalni B-splajn reda 0 je već dobro poznata četvrtka $\varphi_0(x) = \aleph_{[0,1]}(x)$, gde je sa $\aleph_{[0,1]}(x)$ označena karakteristična funkcija intervala [0, 1]. Kardinalni B-splajn $\varphi_N(x)$ reda $N, N \geq 1$, je definisan rekurzivno konvolucijom (form. (2.17))

(22)
$$\varphi_N(x) = (\varphi_{N-1} * \varphi_0)(x)$$

7.4. KARDINALNI B-SPLAJNOVI

Konvolucija po x u vremenskom domenu je ekvivalentna množenju po ω u frekvencijskom domenu (form. (2.18)),

$$\varphi_h(x) = (\varphi_f * \varphi_g)(x), \quad \Longleftrightarrow \quad \hat{\varphi}_h(\omega) = \hat{\varphi}_f(\omega) \, \hat{\varphi}_g(\omega).$$

Kako je Fourier-ova transformacija četvrtke

$$\hat{\varphi}_0(\omega) = \int_0^1 e^{-\imath \omega t} \, dt = \frac{1 - e^{-\imath \omega}}{\imath \omega},$$

Fourier-ova transformacija B-splajna red
a $\left(N-1\right)$ je konvolucija Nčetvrtki, te je jednaka

$$\hat{\varphi}_{N-1}(\omega) = \left(\hat{\varphi}_0(\omega)\right)^N = \left(\frac{1}{\imath\omega}\right)^N (1 - e^{-\imath\omega})^N.$$

Četvrtki je kao funkciji skaliranja pridružen filtar $H(z) = \frac{1}{2} + \frac{1}{2}z^{-1}$. Funkciji $\varphi_1 = \varphi_0 * \varphi_0$ pridružen je filtar $(H(z))^2$. Uopšte, B-splajnu kao funkciji skaliranja $\varphi_{N-1}(x)$ pridružen je filtar $(H(z))^N$.

Koeficijenti filtra splajna reda $\left(N-1\right)$ mogu se, stoga, odrediti na dva načina:

- 1. kao koeficijenti polinoma $\left(\frac{1+z^{-1}}{2}\right)^N,$
- 2. konvolucijom filtara $\underbrace{\left(\frac{1}{2}, \frac{1}{2}\right) * \left(\frac{1}{2}, \frac{1}{2}\right) * \cdots * \left(\frac{1}{2}, \frac{1}{2}\right)}_{\text{N puta}}$.

Ova dva algoritma su ekvivalentna. Svako množenje sa $(1 + z^{-1})/2$ u z-domenu je konvolucija sa filtrom $(\frac{1}{2}, \frac{1}{2})$ u vremenskom domenu. To je posledica opštijeg tvrđenja: funkcija odziva F(z) G(z) i koeficijenti filtra $(\mathbf{f} * \mathbf{g})(n)$ odgovaraju funkciji skaliranja $\varphi_f(x) * \varphi_g(x)$ (zadatak 4.3).

PRIMER 4. Ako su filtri **f** i **g** Haar-ovi filtri sa koeficijentima $(\frac{1}{2}, \frac{1}{2})$, njima određene funkcije skaliranja $\varphi_f(x)$ i $\varphi_g(x)$ su četvrtke. Konvolucija ova dva filtra je filtar **h** sa koeficijentima $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ i proizvodi krov funkciju,

$$\left(\frac{1}{2}, \frac{1}{2}\right) * \left(\frac{1}{2}, \frac{1}{2}\right) = \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right) \text{ jer je } \left(\frac{1+z^{-1}}{2}\right) \left(\frac{1+z^{-1}}{2}\right) = \frac{1+2z^{-1}+z^{-2}}{4}$$

četvrtka * četvrtka = krov funkcija

Prethodni zaključak će nam poslužiti da odredimo dilatacionu jednačinu čije rešenje je splajn funkcija. Kako su koeficijenti filtra

(23)
$$(H(z))^N = (\frac{1+z^{-1}}{2})^N = \sum_{k=0}^N \frac{1}{2^N} \binom{N}{k} z^{-k}$$

binomni koeficijenti podeljeni sa $2^N,$ dilataciona jednačina (3.28), čije rešenje je splajn reda(N-1),glasi

$$\varphi_{N-1}(x) = 2^{1-N} \sum_{k=0}^{N} {N \choose k} \varphi_{N-1}(2x-k)$$

Nisko-frekvencijski prostor \mathcal{V}_0 sadrži sve splajnove reda (N-1) definisane podelom koja je određena jediničnim intervalima. Prostor \mathcal{V}_{-1} je prostor splajnova reda (N-1) definisanih podelom određenom polovinama jediničnih intervala, i uopšte, prostor \mathcal{V}_j sadrži splajnove reda (N-1) određene podelom na jednake intervale dužine 2^j .

Diferenciranjem rekurentne formule (22), kojom se definiše splajn reda za jedan većeg od prethodnog,

$$\varphi_{N-1}(x) = (\varphi_{N-2} * \varphi_0)(x) = \int_{-\infty}^{\infty} \varphi_0(t) \varphi_{N-2}(x-t) \, dt = \int_0^1 \varphi_{N-2}(x-t) \, dt,$$

dobija se rekurentna formula za izračunavanje izvoda splajna

(24)
$$\varphi'_{N-1}(x) = \int_0^1 \varphi'_{N-2}(x-t) \, dt = \varphi_{N-2}(x) - \varphi_{N-2}(x-1)$$

Daljim diferenciranjem (N-1) puta rekurentne veze (24), dobijamo izraze

$$\varphi_{N-1}''(x) = \varphi_{N-2}'(x) - \varphi_{N-2}'(x-1) = \varphi_{N-3}(x) - 2\varphi_{N-3}(x-1) + \varphi_{N-3}(x-2)$$

$$\vdots$$

$$\varphi_{N-1}^{(N-1)}(x) = \sum_{k=0}^{N} (-1)^k \binom{N}{k} \varphi_0(x-k).$$

Prethodne zaključke rezimirajmo sledećom teoremom:

TEOREMA 1. Kardinalni B-splajn $\varphi_{N-1}(x)$ reda N-1, određen konvolucijom N četvrtki, je deo po deo polinom stepena N-1. Konačni prekidi (N-1)-og izvoda u tačkama $x = 0, 1, \ldots, N$, jednaki su binomnim koeficijentima sa alternativnom promenom znaka $(-1)^k \binom{N}{k}$.

PRIMER 5. Ako su koeficijenti filtra **h** jednaki (1/16, 4/16, 6/16, 4/16, 1/16), rešenje dilatacione jednačine $\varphi_3(x)$ je kubni B-splajn (splajn sa ograničenim nosačem dužine četiri jedinična intervala). Frekvencijski odziv filtra je $H(z) = (1+z^{-1})^4/16$, tako da mu je tačka z = -1 nula reda četiri. Filtar je nisko-frekvencijski, a splajn je najveće moguće glatkosti, i ima najveći red tačnosti r = 4 koji je moguć za filtre dužine pet. Ovaj splajn je konvolucija četiri četvrtke,

$$\varphi_3(x) = (\varphi_0 * \varphi_0 * \varphi_0 * \varphi_0)(x)$$

Slika 7.4: Linearni, kvadratni i kubni splajn

Rezultat prve konvolucije je linearni splajn $\varphi_1(x)$ (krov f-ja), druge kvadratni splajn $\varphi_2(x)$ i poslednje kubni splajn $\varphi_3(x)$ (slika 7.4). Oni pripadaju klasama neprekidnih funkcija \mathcal{C}^0 , \mathcal{C}^1 i \mathcal{C}^2 . Četvrti izvod kubnog splajna u generalisanom smislu je suma delta funkcija. Koeficijenti kojima su množene ove delta funkcije su 1, -4, 6, -4, 1 i predstavljaju skokove u trećem izvodu u celobrojnim tačkama nosača. Ovaj binomni šablon se primenjuje za svako N. Prvi izvod krov funkcije $\varphi_1(x)$ ima skokove 1, -2, 1.

Analizirajmo sada bazis splajnova pomoću koeficijenata pridruženih filtara. Skalarni proizvod splajna sa svojom translacijom jednak je splajnu višeg reda,

$$a(n) = \int_{-\infty}^{\infty} \varphi_{N-1}(x) \varphi_{N-1}(x+n) \, dx = \varphi_{2N-1}(N+n),$$

jer je integral konvolucija N četvrtki sa N novih četvrtki pomerenih za n, a 2N četvrtki generiše splajn reda (2N-1). Vektor **a**, čiji su elementi skalarni proizvodi a(n), rešenje je jednačine **a** = T**a** (form. (5.14)). Operator T određen je proizvodom

$$H_{N-1}(z)H_{N-1}(z^{-1}) = \left(\frac{1+z^{-1}}{2}\right)^N \left(\frac{1+z}{2}\right)^N = z^N \left(\frac{1+z^{-1}}{2}\right)^{2N} = H_{2N-1}(z),$$

gde je $H_{N-1}(z) = \left(\frac{1+z^{-1}}{2}\right)^N$ frekvencijski odziv filtra splajna $\varphi_{N-1}(x)$. Dakle, matrica T za splajn reda (N-1) je identična matrici M za splajn reda (2N-1). Elementi sopstvenog vektora matrice M su vrednosti splajna reda (2N-1) u celobrojnim tačkama. Isti sopstveni vektor, kao sopstveni vektor matrice T, ima za elemente skalarne proizvode splajna reda (N-1). Kako je za sve splajnove $\varphi(x) \ge 0$, svi skalarni proizvodi $a(n) \ge 0$. Zbir skalarnih proizvoda jednak je jedan, jer je zbir vrednosti funkcije skaliranja u celobrojnim tačkama jednak jedan (form. (5.9)). Frekvencijski odziv $H_{N-1}(z)$ ima nulu reda N za z = -1, odnosno ima N nula u tački $\omega = \pi$. Saglasno tome, prema dokazanom u §5.2, polinomi 1, x, x^2, \ldots, x^{N-1} su kombinacije splajnova reda N-1, te je tačnost aproksimacije njima reda N. Talasić, koji je generisan funkcijom skaliranja $\varphi_{N-1}(x)$, će imati N iščezavajućih momenata. Pitanje je koji talasići odgovaraju splajnovima?

Bazis $\{\varphi(x - k)\}$ nije ortogonalan. Talasić pridružen kvadratnom splajnu, određen filtrom **d**, čiji elementi zadovoljavaju relaciju (3.27), predstavljen je na slici 7.5. Krov funkciji i kubnom B-splajnu nije moguće pridružiti talasiće na ovaj

Slika 7.5: Kvadratni splajn i priduženi talasić

način, jer su definisani filtrima neparne dužine (N = 3 za linearni i N = 5 za kubni splajn).

Tražimo talasiće $\psi(x-k)$ koji su ortogonalni na splajn $\varphi(x)$, dakle tražimo da prostor koga oni generišu zadovoljava uslove

$$\mathcal{V}_0 \perp \mathcal{W}_0, \qquad \mathcal{V}_0 \oplus \mathcal{W}_0 = \mathcal{V}_{-1}$$

Tako dolazimo do prostora koji su ortogonalni, a čiji bazisi nisu ortogonalni. Semiortogonalni talasići su bazisne funkcije koje su ortogonalne samo ako pripadaju različitim skalama: $\psi(2^j x - k)$ i $\psi(2^J x - l)$ su ortogonalni ako je $j \neq J$. Ovo je neposredna posledica pretpostavljene ortogonalnosti prostora, jer je \mathcal{W}_j ortogonalno na \mathcal{V}_j , pa time i na sve potprostore $\mathcal{W}_{j+1}, \mathcal{W}_{j+2}, \ldots$, koji su u njemu sadržani. Na istoj skali semiortogonalni talasići nisu u opštem slučaju ortogonalni.

PRIMER 6. Semiortogonalni talasić koji odgovara krov funkciji glasi

$$\psi(x) = \frac{1}{12} \big(\varphi(2x) - 6\varphi(2x-1) + 10\varphi(2x-2) - 6\varphi(2x-3) + \varphi(2x-4) \big).$$

Slika 7.6: Krov funkcija i njoj pridružen semiortogonalni talasić

Ovaj talasić je ortogonalan na sve krov funkcije $\varphi(x-n)$. On nije ortogonalan na sve svoje translacije $\psi(x-n)$, ali jeste ortogonalan na sve talasiće $\psi(2^jx-n)$, $j \neq 0$.

138

Za splajnove, pa dakle i krov funkcije kao linearne splajnove, ne mogu se konstruisati ortonormirani bazisi funkcija skaliranja i talasića koji su uzajamno ortogonalni.

Drugi način prevazilaženja problema ortogonalnosti je konstrukcija biortogonalnih bazisa. Frekvencijski odziv B-splajna reda (N-1) (form. (23) za $z = e^{i\omega}$, bez kašnjenja) jednak je

$$\hat{h}_{N-1}(\omega) = \left(\cos\frac{\omega}{2}\right)^N$$
, za $N = 2l$,

ili

$$\hat{h}_{N-1}(\omega) = e^{-i\omega/2} \left(\cos\frac{\omega}{2}\right)^N$$
, za $N = 2l + 1$,

tako da je B-splajn φ_{N-1} centriran oko nule, odnosno 1/2. Frekvencijski odziv dualnog bazisa, kojim su definisani koeficijenti dualnog filtra, glasi

$$\hat{f}_{N-1}(\omega) = \left(\cos\frac{\omega}{2}\right)^{\tilde{N}} \sum_{m=0}^{l+\tilde{l}-1} \binom{l+\tilde{l}-1-m}{m} \left(\sin^2\frac{\omega}{2}\right)^m, \quad \text{za} \quad \tilde{N} = 2\tilde{l}$$

ili

$$\hat{f}_{N-1}(\omega) = e^{-i\omega/2} \left(\cos\frac{\omega}{2}\right)^{\tilde{N}} \sum_{m=0}^{l+\tilde{l}} \binom{l+\tilde{l}-m}{m} \left(\sin^2\frac{\omega}{2}\right)^m, \quad \text{za} \quad \tilde{N} = 2\tilde{l}+1.$$

Dalje se koristi algoritam opisan u §7.2.

Treći način je da se pomoću bazisa B-splajnova konstruiše ortogonali bazis.

Battle–Lemarie-ovi talasići. ([5]) Konstruišu se ortogonalizacijom bazisa Bsplajnova. Iako B-splajnovi imaju kompaktne nosače, ortogonalizacijom bazisa splajnova dobijaju se funkcije skaliranja sa beskonačnim nosačima. Korišćenjem Fourier-ove transformacije funkcije skaliranja, određuje se talasić i njemu pridruženi filtar. I talasić, kao i funkcija skaliranja, ima beskonačan nosač, ali eksponencijalno opada ka nuli. Talasić pridružen splajnu reda N ima izvode do reda (N-1).

7.5 Nestandardni talasići

Talasići, koji će ukratko biti pomenuti u daljem tekstu, nazvani su nestandardni jer nemaju ograničen nosač u vremenskom domenu. Detaljnije informacije o njima mogu se naći u [8].

Morlet-ov talasić je Gauss-ova funkcija modulisana kompleksnim parametrom,

$$\psi(x) = e^{-\imath ax} e^{-x^2/(2\sigma)},$$

gde je *a* modulacioni parametar, a σ je parametar skaliranja koji određuje širinu prozora. Da bi prvi moment ovog talasića bio približno jednak nuli, $\int \psi(x) dx \approx 0$, potrebno je uzeti da je $a = \pi \sqrt{\frac{2}{\ln 2}} = 5.336$. Iako je Morlet-ov talasić kompleksna funkcija, obično se primenjuje na realan signal. Transformacija ovim talasićem $(f, \psi_{j,k})$ predstavlja se pomoću modula i faze; grafik faze je posebno pogodan za otkrivanje singulariteta.

Meksički šešir (Mexican hat) se definiše kao drugi izvod Gauss-ove funkcije

$$\omega(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/(2\sigma)},$$

što daje

$$\psi(x) = \frac{1}{\sqrt{2\pi}\sigma^3} \left(\frac{x^2}{\sigma^2} - 1\right) e^{-x^2/(2\sigma^2)}$$

Ne postoji funkcija skaliranja.

Shannon-ov talasić ([5]) je konstruisan tako da u frekvencijskom domenu ima kompaktan nosač. Definisan je Shannon-ovom funkcijom ($\S4.1$)

$$\operatorname{sinc}(\pi x) = \frac{\sin\left(\pi x\right)}{\pi x}$$

izrazom

$$\psi(x) = \frac{\sin(2\pi x) - \sin(\pi x)}{\pi x} = 2\operatorname{sinc}(2\pi x) - \operatorname{sinc}(\pi x).$$

Fourier-ova transformacija Shannon-ove funkcije je karakteristična funkcija intervala $[-\pi, \pi]$ (četvrtka po frekvenciji ω),

$$\widehat{\operatorname{sinc}}(\omega) = \aleph_{(-\pi,\pi)}(\omega) = \begin{cases} 1, & \omega \in [-\pi,\pi) \\ 0, & \omega \notin [-\pi,\pi) \end{cases}$$

Kako u opštem slučaju za Fourier-ovu transformaciju funkcije skaliranja važi identitet (form. (3.31))

$$\tilde{\varphi}(\omega) = \hat{h}\left(\frac{\omega}{2}\right)\tilde{\varphi}\left(\frac{\omega}{2}\right),$$

to je Fourier-ova transformacija Shannon-ove funkcije jednaka

$$\aleph_{(-\pi,\pi)}(\omega) = \hat{h}\left(\frac{\omega}{2}\right) \aleph_{(-\pi,\pi)}\left(\frac{\omega}{2}\right) = \hat{h}\left(\frac{\omega}{2}\right) \aleph_{(-2\pi,2\pi)}(\omega).$$

Odatle sledi jednakost

$$\hat{h}\left(\frac{\omega}{2}\right) = \aleph_{(-\pi,\pi)}(\omega),$$

što znači da je frekvencijski odziv odgovarajućeg filtra

$$h(\omega) = \aleph_{(-\pi,\pi)}(2\omega) = \aleph_{(-\pi/2,\pi/2)}(\omega).$$

7.5. NESTANDARDNI TALASIĆI

Razvojem ove funkcije u red oblika (3.30), dolazimo do sledećih izraza za koeficijente filtra

$$h(2k) = \frac{1}{2}\delta(k), \qquad h(2k+1) = \frac{(-1)^k}{(2k+1)\pi}, \qquad k \in \mathbb{Z}.$$

Očigledno je da ovaj talasić nema kompaktan nosač u vremenskom domenu i sporo opada ka nuli.

Meyer-ov talasić. ([5]) Shannon-ovu ideju razvio je Meyer. Definisanjem talasića i funkcije skaliranja u frekvencijskom domenu funkcijama sa ograničenim nosačem ali veće glatkosti, postiže se da funkcija skaliranja i talasić mogu pripadati prostoru \mathcal{C}^{∞} i da opadaju brže od polinoma. I talasić i funkcija skaliranja su konstruisani u frekvencijskom domenu pomoću trigonometrijskih funkcija, ali tako da njihove Fourier-ove transformacije imaju kompaktne nosače,

$$\hat{\psi}(\omega) = \frac{1}{\sqrt{2\pi}} e^{i\omega/2} \begin{cases} \sin\left(\frac{\pi}{2}v\left(\frac{3}{2\pi}|\omega|-1\right)\right) & \frac{2\pi}{3} \le |\omega| \le \frac{4\pi}{3} \\ \cos\left(\frac{\pi}{2}v\left(\frac{3}{4\pi}|\omega|-1\right)\right) & \frac{4\pi}{3} \le |\omega| \le \frac{8\pi}{3} \\ 0 & |\omega| \notin \left[\frac{2\pi}{3}, \frac{8\pi}{3}\right] \end{cases}$$

$$\hat{\varphi}(\omega) = \frac{1}{\sqrt{2\pi}} \begin{cases} 1 & |\omega| \le \frac{2\pi}{3} \\ \cos\left(\frac{\pi}{2}v\left(\frac{3}{2\pi}|\omega| - 1\right)\right) & \frac{2\pi}{3} \le |\omega| \le \frac{4\pi}{3} \\ 0 & |\omega| > \frac{4\pi}{3} \end{cases}$$

gde je, na primer, $v(a) = a^4(35 - 84a + 70a^2 - 20a^3), a \in [0, 1]$. Promenom funkcije v, uz poštovanje određenih zahteva, dobija se familija različitih talasića.

Funkcija skaliranja je simetrična oko tačke 0, a talasić oko tačke 1/2. Funkcija skaliranja i talasić nemaju kompaktne nosače, ali opadaju brže od ma kog "inverznog polinoma",

$$\forall n \in N, \quad \exists C_n \quad \text{tako da je} \quad |\psi(x)| \leq C_n (1+|x|^2)^{-n}.$$

Ovaj talasić je beskonačno diferencijabilna funkcija.

Dvodimenzioni talasići. Za obradu slike, predstavljene funkcijom dve promenljive F(x, y), potrebno je koristiti dvodimenzione talasiće. Jednostavni algoritmi koriste kao dvodimenzionu funkciju skaliranja proizvod dve jednodimenzione funkcije skaliranja $\varphi(x, y) = \varphi(x) \varphi(y)$. Njoj su pridružena tri dvodimenziona talasića: proizvod funkcije skaliranja i talasića $\psi_1(x, y) = \varphi(x) \psi(y)$ za predstavljanje vertikalnih detalja, proizvod talasića i funkcije skaliranja $\psi_2(x, y) = \psi(x) \varphi(y)$ za predstavljanje horizontalnih detalja, i proizvod dva jednodimenziona talasića $\psi_3(x, y) = \psi(x) \psi(y)$ za predstavljanje dijagonalnih detalja. Ortogonalnost ovako definisanog dvodimenziong bazisa talasića je očigledna, ako je jednodimenzioni bazis talasića ortogonalan. Mogu se konstruisati i pravi dvodimenzioni talasići, ali o tome u ovoj knjizi neće biti reči.

osobina	Morl	Mexh	Meyr	Haar	DbN	$\mathbf{Sym}\mathbf{N}$	CoifN	bior
nepotpun	*	*						
beskonač. regularan	*	*	*					
proizvolj. regularan					*	*	*	*
kompaktan nosač, ortogonalan				*	*	*	*	
kompaktan nosač, biortogonalan								*
simetričan	*	*	*	*				*
asimetričan					*			
skoro simetričan						*	*	
proizvoljan broj iščezavaj. momenata					*	*	*	*
iščezavajući momenti φ							*	
postojanje φ			*	*	*	*	*	*
ortogonalna analiza			*	*	*	*	*	
biortogonalna analiza			*	*	*	*	*	*
tačna rekonstrukcija	*	*	*	*	*	*	*	*
FIR filtri				*	*	*	*	*
neprekidna transform.	*	*	*	*	*	*	*	*
diskretna transform.			*	*	*	*	*	*
brzi algoritam				*	*	*	*	*
eksplicitni izraz	*	*		*				samo za splajn.

Tabela: Zbirni pregled familija talasića i njihove osobine

7.6 Talasići druge generacije

Talasići o kojima je do sada bilo reči, koji nastaju translacijama i dilatacijama jedne ili nekoliko osnovnih funkcija, nazivaju se talasićima prve generacije. Kako ove operacije predstavljaju algebarske operacije u frekvencijskom domenu, osnovni alat za njihovu konstrukciju je Fourier-ova transformacija. Postoji niz problema, kao što su problemi definisani na intervalima, krivim linijama, površima ili mnogostrukostima, u kojima nije moguće primeniti Fourier-ovu transformaciju pa, dakle, ni klasične talasiće. Klasični talasići se moraju modifikovati i kada se koriste za rešavanje problema definisanih na neregularnim mrežama ili tamo gde je potrebno koristiti skalarni proizvod sa težinskom funkcijom. Talasići prilagođeni problemima koji ne dopuštaju translaciju i dilataciju nazivaju se *talasići druge generacije*. Koeficijenti filtara pridruženih ovim talasićima mogu zavisiti od nivoa rezolucije. Jasno je da je rad sa promenljivim filtrima mnogo složeniji.

Osnovna ideja transformacije talasićima jeste da se iskoristi korelacija koja postoji u većini signala kako bi se konstruisala dobra aproksimacija sa malo sabiraka. Korelacija je tipično lokalno svojstvo u prostoru (vremenu) i frekvenciji, što znači da su susedni podaci i frekvencije mnogo više korelirani od onih koji su udaljeni jedni od drugih. U transformaciji klasičnim talasićima osnovni alat za prostorno(vremensko)-frekvencijsku lokalizaciju je Fourier-ova transformacija, koja se ne može primeniti na složene geometrije. Lokalizacija se, međutim, može izvršiti i u prostornom domenu, što je suština tzv. "lifting" (engl.) algoritma. Ovaj algoritam je prvenstveno bio razvijen za konstrukciju talasića druge generacije, ali se uspešno primenjuje i za konstrukciju biortogonalnih talasića ([9], [28]).

Lifting, što bismo mogli prevesti kao podizanje ili popravka, uopštava ideju multirezolucije na prostore koji nisu invarijantni u odnosu na translaciju i dilataciju, i tako omogućava korisniku da kreira talasiće prema svojim potrebama i ubrza transformaciju talasićima. Osnovna ideja jeste da se iskoristi korelacija između susednih podataka u signalu. Na koji način se to ostvaruje, ilustrovaćemo na jednostavnom primeru konstrukcije biortogonalnih talasića.

PRIMER 7. Podelimo dati diskretan signal $\mathbf{x} = \{x_k\}_{k \in \mathbb{Z}}$ na dva disjunktna skupa, tako da elementi sa parnim indeksom pripadaju prvom $\mathbf{x}_a = \{x_{2k}\}$, a elementi sa neparnim indeksom drugom skupu $\mathbf{x}_b = \{x_{2k+1}\}$. Ovom transformacijom, koja se obično naziva trivijalna transformacija talasićima, nismo postigli smanjenje broja podataka kojima registrujemo signal, jer podaci u opštem slučaju znatno odstupaju od nule i ne mogu se zanemariti (kompresovati). Pretpostavljajući koreliranost uzastopnih podataka, logično je pretpostaviti da se element signala sa neparnim indeksom može približno izraziti kao aritmetička sredina njemu susednih podataka, tj. elemenata signala sa parnim indeksom. U skupu \mathbf{x}_b , umesto elemenata signala sa neparnim indeksom, pamtićemo odstupanja procena od samih vrednosti,

(25)
$$b_k = x_{2k+1} - \frac{1}{2}(x_{2k} + x_{2k+2}),$$

što odgovara koeficijentima talasića. Oni registruju visoke frekvencije. Ako je signal linearan, svi koeficijenti b_k će biti nula. U opštem slučaju, kako ovi koeficijenti mere odstupanje datog signala od linearnog, može se očekivati da je većina zanemarljivo mala, što već omogućava dobru kompresiju. Podaci iz signala \mathbf{x}_a opisuju niže frekvencije i odgovaraju aproksimaciji. Njih ima dva puta manje u odnosu na broj podataka ulaznog signala. Kako bismo očuvali srednju vrednost signala \mathbf{x}_a na svakom nivou rezolucije nepromenjenu, na svakom nivou ćemo izvršiti popravku tako što ćemo dodati aproksimaciji četvrtinu sume susednih detalja,

$$a_k = x_{2k} + \frac{1}{4}(b_{k-1} + b_k).$$

Srednja vrednost signala je očuvana jer je, prema (25), aproksimacija jednaka

$$a_{k} = x_{2k} + \frac{1}{4} \left(x_{2k-1} - \frac{1}{2} (x_{2k-2} + x_{2k}) + x_{2k+1} - \frac{1}{2} (x_{2k} + x_{2k+2}) \right)$$

= $\frac{3}{4} x_{2k} + \frac{1}{4} (x_{2k-1} + x_{2k+1}) - \frac{1}{8} (x_{2k-2} + x_{2k+2}),$

te je zbir aproksimacija na novom nivou jednak polovini zbira aproksimacija na prethodnom nivou,

$$\sum_{k} a_{k} = \frac{3}{4} \sum_{k} x_{2k} + \frac{1}{4} \sum_{k} (x_{2k-1} + x_{2k+1}) - \frac{1}{8} \sum_{k} (x_{2k-2} + x_{2k+2}) = \frac{1}{2} \sum_{k} x_{k}.$$

(Na novom nivou ima dvostruko manje podataka u odnosu na prethodni nivo.)

Opisani postupak predstavlja jedan korak lifting algoritma, koji na izlazu daje aproksimaciju **a** i detalj **b**. Aproksimacija **a** predstavlja ulazni signal **x** u sledeći korak. Uzastopnom primenom opisanog algoritma na odgovarajući signal **x** (tj. **a**), određen prethodnom iteracijom, dobijamo sve grublje aproksimacije i nove detalje. Rezultat primene lifting algoritma je aproksimacija polaznog signala **x** na poslednjem (najgrubljem) nivou rezolucije $\mathbf{a}^{(J)}$ i detalji na svim nivoima $\mathbf{b}^{(j)}, j = 1, \ldots, J$.

Uopštimo postupak opisan u primeru 7. Jedan korak lifting algoritma sastoji se od tri operacije: podele, procene i popravke.

Podela– Polazni signal ${\bf x}$ se deli na dva disjunkt
na skupa podataka ${\bf x}_a$ i ${\bf x}_b,$

$$\mathbf{x}_a \cup \mathbf{x}_b = \mathbf{x}, \qquad \mathbf{x}_a \cap \mathbf{x}_b = \emptyset.$$

Procena – Podacima iz jednog skupa procenjuju se podaci drugog skupa; na primer, podaci iz skupa \mathbf{x}_b procenjuju se sa $P(\mathbf{x}_a)$, gde je sa P označen operator procene (u primeru 7 operator P je aritmetička sredina). To omogućava da se polazni skup podataka \mathbf{x} zameni podskupom \mathbf{x}_a . U opštem slučaju nije moguće konstruisati operator P tako da tačno određuje skup \mathbf{x}_b na osnovu skupa \mathbf{x}_a , te se odstupanja (detalji) definišu izrazom

$$\mathbf{b} = \mathbf{x}_b - P(\mathbf{x}_a).$$

7.6. TALASIĆI DRUGE GENERACIJE

Podskup **b** ukazuje koliko procena odstupa od tačnih podataka. Za dobro definisan operator P većina elemenata ovog skupa će biti mali brojevi ili nule, što omogućava dobru kompresiju podataka.

Popravka – Neka svojstva polaznog skupa **x** (u primeru 7 to je svojstvo očuvanja srednje vrednosti) zadržava novi, manji, skup podataka posle korekcije izvršene dodavanjem popravke određene detaljima,

$$\mathbf{a} = \mathbf{x}_a + U(\mathbf{b}).$$

U je operator popravke (u primeru 7 operator U je polovina aritmetičke sredine).

Dakle, posle jednog koraka lifting algoritma dobili smo dva signala **a** i **b**, svaki dužine polovine ulaznog signala. **a** je ulazni signal u sledeći korak, a detalji **b** se mogu, pri dobrom izboru operatora procene P, efikasno kompresovati. Opisana procedura ponavlja se u svakom koraku lifting algoritma, što u j-tom koraku daje aproksimaciju $\mathbf{a}^{(j)} = \{a_{j,k}\}_{k \in \mathbb{Z}}$ i detalj $\mathbf{b}^{(j)} = \{b_{j,k}\}_{k \in \mathbb{Z}}$. Algoritam je potpuno analogan piramidalnom algoritmu (§6.1), te su stoga koričćene iste oznake. Inverzna transformacija se, očigledno, realizuje vrlo jednostavno suprotnim računskim operacijama od onih koje se koriste u direktnoj transformaciji (oduzimanjem popravke i dodavanjem procene).

Važna osobina lifting algoritma je da se operacije mogu objediniti, tako da se ovaj algoritam može koristiti za modifikaciju postojećih transformacija talasićima. Ako su H_0 nisko-frekvencijski i H_1 visoko-frekvencijski filtri, a F_0 i F_1 njima dualni filtri (saglasno §7.2), operator procene će modifikovati polazne filtre na sledeći način

(26)
$$\tilde{H}_0 = H_0, \quad \tilde{H}_1 = H_1 - P H_0, \quad \tilde{F}_0 = F_0 + P F_1, \quad \tilde{F}_1 = F_1,$$

a dejstvo operatora popravke na polazne filtre izraženo je vezama

(27)
$$\tilde{H}_0 = H_0 + U H_1, \quad \tilde{H}_1 = H_1, \quad \tilde{F}_0 = F_0, \quad \tilde{F}_1 = F_1 - U F_0.$$

U slučaju kada polazni filtri predstavljaju trivijalne transformacije talasićima (razdvajanje elemenata sa parnim i neparnim indeksima), novi biortogonalni filtri su, na osnovu (26) i (27),

$$\tilde{H}_0 = I + U(I - P), \quad \tilde{H}_1 = I - P, \quad \tilde{F}_0 = I + P, \quad \tilde{F}_1 = I - U(I + P),$$

gde je I identički operator.

PRIMER 8. Povežimo lifting algoritam iz primera 7 sa filtrima i talasićima. Neka je φ krov funkcija, $\varphi(x) = \max\{0, 1 - |x|\}$, pomoću koje ćemo definisati deo po deo linearnu aproksimaciju na svakom nivou rezolucije

(28)
$$A^{(j)}(x) = \sum_{k} a_{j,k} \varphi_{j,k}(x), \qquad \varphi_{j,k}(x) = \varphi(2^{-j}x - k).$$

Razliku aproksimacija na dva susedna nivoa predstavićemo talasićima

(29)
$$A^{(j-1)}(x) - A^{(j)}(x) = \sum_{k} b_{j,k} \psi_{j,k}(x), \qquad \psi_{j,k}(x) = \psi(2^{-j}x - k).$$

Pretpostavićemo da popravka aproksimacije nije vršena, tj. da je $a_{0,k} = a_{-1,2k}$. Radi jednostavnosti formula, izostavili smo koeficijent normiranja $2^{-j/2}$ funkcije skaliranja i talasića, i za osnovnu funkciju skaliranja uzeli krov funkciju simetričnu u odnosu na koordinatni početak. Iz dilatacione jednačine za krov funkciju (primer 3.3 u kome, zbog navedenog izbora osnovne funkcije skaliranja, treba izvršiti translaciju za jedan u levo argumenata na desnoj strani) sledi

$$\varphi(x-k) = \frac{1}{2}\,\varphi(2(x-k)-1) + \varphi(2(x-k)) + \frac{1}{2}\,\varphi(2(x-k)+1).$$

Uzimajući u obzir prethodne napomene, na osnovu (28) i (25) imamo da su detalji

$$\begin{aligned} A^{(-1)}(x) - A^{(0)}(x) &= \sum_{k} a_{-1,k} \varphi(2x-k) - \sum_{k} a_{0,k} \varphi(x-k) \\ &= \sum_{k} a_{-1,2k+1} \varphi(2x-(2k+1)) + \sum_{k} a_{-1,2k} \varphi(2x-2k) \\ &- \sum_{k} a_{-1,2k} \left(\frac{1}{2} \varphi(2x-2k-1) + \varphi(2x-2k) + \frac{1}{2} \varphi(2x-2k+1)\right) \\ &= \sum_{k} \left(a_{-1,2k+1} - \frac{1}{2} (a_{-1,2k} + a_{-1,2k+2}) \right) \varphi(2x-2k-1) \\ &= \sum_{k} b_{0,k} \varphi(2x-2k-1). \end{aligned}$$

Poredeći dobijeni razvoj sa (29) zaključujemo da je talasić, koji se dobija lifting algoritmom bez popravke, jednak funkciji skaliranja na prethodnom, finijem, nivou rezolucije $\psi(x) = \varphi(2x - 1)$. Nulti moment mu nije jednak nuli, jer je definisan funkcijom skaliranja (form. (3.13)).

Popravku izvršimo tako da novi talasić ima dva iščezavajuća momenta,

(30)

$$\Psi(x) = \psi(x) - \frac{1}{4}\varphi(x) - \frac{1}{4}\varphi(x-1)$$

$$= \varphi(2x-1) - \frac{1}{4}\varphi(x) - \frac{1}{4}\varphi(x-1),$$

Zaista, nulti moment talasića $\Psi(x)$ je jednak nuli,

$$\int \Psi(x) \, dx = \int \varphi(2x-1) \, dx - \frac{1}{4} \int \varphi(x) \, dx - \frac{1}{4} \int \varphi(x-1) \, dx$$
$$= \frac{1}{2} \int \varphi(x) \, dx - \frac{1}{4} \int \varphi(x) \, dx - \frac{1}{4} \int \varphi(x) \, dx = 0.$$

Prvi moment novog talasića je jednak nuli zbog simetrije polaznog talasića $\psi(x)$, a time i novog talasića $\Psi(x)$, u odnosu na tačku x = 1/2, i dokazanog iščezavanja

7.6. TALASIĆI DRUGE GENERACIJE

nultog momenta,

$$\int x\Psi(x)\,dx = \int \left(x - \frac{1}{2}\right)\Psi(x)\,dx + \frac{1}{2}\int \Psi(x)\,dx = 0.$$

Jednačina novog talasića, na osnovu veza (10) i (30), glasi

$$\begin{split} \Psi(x) &= \sum_{k} h_1(k)\varphi(2x-k) - \frac{1}{4}\sum_{k} h_0(k)\varphi(2x-k-2) - \frac{1}{4}\sum_{k} h_0(k)\varphi(2x-k) \\ &= \sum_{k} \left(h_1(k) - \frac{1}{4}h_0(k-2) - \frac{1}{4}h_0(k) \right)\varphi(2x-k), \end{split}$$

odakle sledi da su koeficijenti novog visoko-frekvencijskog filtra $\tilde{\mathbf{h}}_1$, kojim je definisan popravljeni talasić $\Psi(x)$,

(31)
$$\tilde{h}_1(k) = h_1(k) - \frac{1}{4}h_0(k-2) - \frac{1}{4}h_0(k).$$

Funkcija skaliranja se u procesu popravke ne menja.

PRIMER 9. Umesto krov funkcije, možemo poći od interpolacione funkcije skaliranja (17). Prema (21), njoj pridruženi talasić je sama funkcija skaliranja na prethodnom nivou (veće) rezolucije, kao i talasić dobijen lifting algoritmom bez popravke u primeru 8. Formulom (30) definisan je popravljeni talasić koji ima dva iščezavajuća momenta.

Talasići iz primera 8 i 9, iako su definisani istim formulama, razlikuju se jer su generisani različitim funkcijama skaliranja – krov funkcijom u primeru 8 i interpolacionom funkcijom trećeg reda u primeru 9.

Sledeća tabela sadrži koeficijente filtara dobijenih posle primene lifting tehnike (popravke (31)) na filtre date u primeru 3.

k	-4	-3	-2	-1	0	1	2	3	4	5
$16 \cdot h_0(k)$	0	-1	0	9	16	9	0	-1	0	0
$64 \cdot \tilde{f}_0(k)$	1	0	-8	16	46	16	-8	0	1	0
$64 \cdot \tilde{h}_1(k)$	0	1	0	-8	-16	46	-16	$^{-8}$	0	1
$16 \cdot \tilde{f}_1(k)$	0	0	1	0	-9	16	-9	0	1	0

Na slici 7.7 (b) prikazan je grafik talasića (30), dobijenog popravkom talasića prikazanog na slici 7.3. Funkcija skaliranja 7.7(c) je dualna funkcija interpolacionoj funkciji skaliranja 7.7(a), a talasić 7.7 (d) je dualan popravljenom talasiću. Grafici dualnih funkcija nisu potpuno odgovarajući. Određeni su, kao i ostali grafici, piramidalnim algoritmom ($\S6.2$) sa izabranom rezolucijom. Međutim, dualne funkcije nisu dovoljno glatke i pikovi rastu (po apsolutnoj vrednosti) sa povećanjem rezolucije.

Slika 7.7: Interpolacione funkcije skaliranja i usavršeni talasići

Popravljeni interpolacioni talasić je najjednostavniji primer talasića druge generacije. Interpolacija se može definisati na složenijim, neravnomernim mrežama, te su ovi talasići primenljivi na složenim geometrijama. Prednost im je i mogućnost dobijanja kompaktnije reprezentacije, jer se bitne osobine modeliranog signala mogu uzeti u obzir pri konstrukciji talasića. Nedostatak im je što su mnogo složeniji za rad, jer koeficijenti filtara u opštem slučaju zavise od položaja tačke i nivoa rezolucije.

7.7 Primene

Talasići su razvijani nezavisno u matematici, kvantnoj fizici, elektrotehnici i seizmičkoj geologiji. Razmena ideja nastalih u ovim oblastima je dovela u poslednjih tridesetak godina do mnogo novih primena talasića – na primer, obrada slike, modelovanje turbulencije, predviđanja zemljotresa, istraživanja udaljenih galaksija ili otkrivanje sličnih ponašanja u vremenskim serijama. U molekularnoj spektroskopiji koriste se za uklanjanje šuma iz detektovanog signala. Koriste se i u muzici za sintetizovanje zvuka, u izučavanju fraktalne strukture objekata, u dinamici fluida, i, uopšte, u svim oblastima gde se susrećemo sa složenom strukturom koja ima višeslojnu rezoluciju.

7.7. PRIMENE

Aproksimacija talasićima je poslednjih decenija pre svega razvijana u cilju obrade signala i slike, kao dvodimenzionog signala ($\S4.1$). Signal može, na primer, predstavljati zapis očitavanja temperature. Govorni signal predstavlja promene pritiska vazduha u zavisnosti od vremena, a složeni grafik te funkcije je "adaptirana kopija" glasa. Signali se javljaju i u telekomunikacijama (telefon i televizija), to su i slike dobijene sa satelita ili medicinski snimci (ehografija, tomografija i nuklearna magnetna rezonanca). Diskretan signal je niz brojeva dobijenih merenjem. Jednodimenzioni signali su po pravilu funkcije vremena. Obrada signala je sve ono što obuhvata analizu i interpretaciju kompleksnih vremenskih serija. Signali treba da se tačno analiziraju, efikasno kodiraju, brzo prenose, i zatim pažljivo rekonstruišu fine oscilacije ili promene ove vremenske funkcije na prijemniku. Kompresija podataka se javlja kao posledica ograničenih kapaciteta kanala za prenos, a takođe i problema u arhiviranju podataka. Operacije dekodiranja, sinteze i rekonstrukcije predstavljaju obrnute operacije kodiranju i kvantizaciji. U slučaju digitalnih signala, na osnovu serije nula i jedinica, koji putuju prenosnim kanalom, potrebno je rekonstruisati signal ili lik. Rekonstrukciju signala upoređuju sa restauracijom starih slika. Treba ukloniti veštačke podatke i greške (šum), a pojačati određene karakteristike signala koje su nestale slabljenjem ili kvarenjem. Talasići imaju vrlo važnu ulogu u obradi signala, bez obzira na njegovo poreklo.

Ilustracije radi, navedimo samo neke primere primene talasića.

Uklanjanje šuma u podacima. Problem je otkriti stvarni signal na osnovu nepotpunih, indirektnih ili podataka sa šumom. Čišćenje signala se sastoji u odbacivanju detalja čiji su koeficijenti talasića ispod nekog praga, tako što se ovi koeficijenti zamenjuju nulama (videti primer 6.2). Zatim se inverznom transformacijom talasićima dobija prečišćeni signal. Tako je Ronald Coifman sa kolegama sa Univerziteta Yale, korišćenjem tehnike koju on naziva adaptirana analiza talasićima, uspeo od šuma da očisti stari snimak na klaviru izvedene Bramsove "Mađarske igre". Originalni snimak sa radija je bio potpuno neprepoznatljiv.

Seizmologija. Vrši se lociranje i predviđanje seizmičkih aktivnosti na osnovu koeficijenata talasića seizmičkog signala. Seizmički signali upozoravaju na mogućnost vibracije tla Zemlje, zemljotresa ili eksplozije. Te vibracije su talasi, koji imaju svoje longitudinalne i transverzalne komponente različite u različitim fazama dolaska zemljotresa. Seizmografom se registruju obe komponente i obrađuju pomoću diskretne vremenske transformacije talasićima (DTWT), što omogućava lociranje seizmičkih aktivnosti. Osnovne funkcije koje se koriste za analizu seizmičkog signala moraju biti dobro definisane u vremenskom i frekvencijskom domenu.

Klimatologija. Na osnovu rezultata merenja temperature na različitim tačkama severne hemisfere u poslednja dva veka, naučnici žele da provere hipotezu da li industrija dovodi do globalnog zagrevanja. Problem predstavljaju značajne prirodne temperaturne fluktuacije koje treba dijagnostikovati i analizirati, a zatim ih obrisati iz registrovanog signala kako bi se došlo do podataka o veštačkom zagrevanju naše planete koje je posledica ljudske aktivnosti.

Numerička simulacija. Postoji razlika u načinu primene talasića u obradi diskretnih i kontinualnih veličina ([27]). U obradi diskretnih signala učestanost odabiranja, a time i najfiniji nivo multirezolucijske analize, su određeni. Štaviše, obično nemamo informacije o glatkosti podataka. Stoga su beskorisne asimptotske procene greške, koje se tipično zasnivaju na glatkosti podataka i činjenici da se može povećati rezolucija. U numeričkoj analizi pokušavamo da rešimo matematički problem koji je formulisan u terminima funkcija neprekidne promenljive (na primer, diferencijalnim jednačinama). Pri tom je poznato da rešenje ima određenu glatkost, te je moguća kontrola rešenja. Talasići su pokazali dobre rezultate i u numeričkom modelovanju kontinualnih veličina, posebno onih koje se karakterišu velikim gradijentima, što je tipično za probleme udarnih talasa i turbulencije.

Bradley i Brislawn iz Los Alamosa laboratorije su primenili talasiće u rešavanju parcijalnih diferencijalnih jednačina, ali na potpuno drugačiji način. Nisu koristili talasiće u rešavanju jednačina, nego su unapredili rad superkompjutera pri simulaciji globalnog modela klime i okeana. Razvili su vektorsku metodu baziranu na talasićima za višedimenzione skupove podataka ovog modela. U ovom slučaju cilj je da se istraživačima grubo ali čitljivo da tumačenje rezultata računanja superkompjutera.

Primena u industriji. Vekovima su prosti zvučni testovi korišćeni za proveru kvaliteta materijala nekog predmeta, na primer udaranje prstom za proveru zrelosti lubenice. U novije vreme, savremena oprema za čitanje zvuka i obradu dobijenog signala koristi se za kontrolu kvaliteta u visoko automatizovanim fabrikama. Na primer, fabrike za proizvodnju kompjuterskih diskova pomoću Fourier-ove transformacije proveravaju neregularnost zvuka koji se dobija pri obrtanju diskova velikom brzinom. Tu tehniku, međutim, nije moguće primeniti na male neperiodične signale, koji se ne mogu obraditi ni Kratkotrajnom Fourier-ovom transformacijom (STFT). Tokom osamdesetih godina jednostavni eksperimenti su pokazali da se ovde može uspešno koristiti analiza talasićima. Za razliku od STFT, analiza talasićima dopušta proizvoljno dobro frekvencijsko i vremensko razlaganje na visokim frekvencijama. To znači da kada se, na primer, signal sastoji od dva praska, oni mogu primenom talasića da se razdvoje ukoliko se koriste dovoljno visoke rezolucije. Analiza talasićima takođe omogućava dobru i stabilnu multirezolucijsku reprezentaciju i efikasna numerička izračunavanja, što nije moguće u Fourier-ovoj analizi.

Ove osobine su navele Hisakazu Kikuchi i njegove kolege da koriste transformacije talasićima za analizu eksplozija u motorima automobila. Eksplozije se pojavljuju zbog greške u kontroli paljenja pri startovanju motora. One stvaraju udarne talase, koji mogu čak i da unište motor. Njihovo otkrivanje i analiza su važni zbog poboljšanja sistema paljenja. Podaci iz akustične vibracione analize (osnovni metod koji se koristi za izučavanje eksplozija) sadrže lažne informacije, kao što je buka koja se stvara pri pokretanju mehaničkih delova. Druga metoda koji se koristi u ovu svrhu, statistička analiza, takođe je nepogodna jer su detonacije nestalne. Transformacijom talasićima zvučnog signala koji se dobija pri paljenju motora se, međutim, dobijaju korisne informacije. Kikuchi je konstruisao brzi procesor za video prikaz podataka dobijenih analizom talasićima. U cilju provere predloženih rešenja, izvedena su dva zanimljiva eksperimenta. U prvom je identifikovano ono za šta se verovalo da su karakteristične komponente zvuka motora. Njihovom sintezom je dobijen zvuk vrlo sličan pravom zvuku motora, što je potvrdilo stručnjacima da su

7.7. PRIMENE

ključne komponente uspešno identifikovane. U drugom eksperimentu su izvršena poređenja mogućnosti analize talasićima i senzora pritiska da otkriju eksplozije. Senzor pritiska, koji beleži podatke o pritisku unutar cilindra motora, bio je najbolje sredstvo za otkrivanje eksplozija. Međutim, njegovo korišćenje u fabrikama je veoma skupo jer ga treba posebno podesiti prema motoru, načinu vožnje (brzini, ubrzanju), vremenskim uslovima itd. Pokazalo se da je analiza talasićima tačnija i efikasnija u otkrivanju eksplozija od senzora pritiska.

Banalniji, ali ne manje važan primer korišćenja analize talasićima u industriji je otkrivanje nepravilnosti rada mešalice za beton. Analizatori zvuka koji se emituje tokom okretanja bureta u cementnoj mešalici mogu da otkriju neke nepravilnosti. Dalje unapređivanje tehnika zasnovanih na talasićima omogućava konstrukciju uređaja za pouzdanu kontrolu kvaliteta.

Primena u medicini. Zbog neprestanih promena koje se odvijaju unutar živih organizama, Kratkotrajna Fourier-ova transformacija nije pogodna za obradu podataka u medicini. Tehnike zasnovane na talasićima su se pokazale mnogo bolje, posebno za obradu akustičnih podataka. Jedna oblast primene, koja obećava, je kompresija elektrokardiograma (EKG) čoveka, što omogućava formiranje EKG baza podataka i prenošenje EKG signala telefonskim linijama. Pri tome je bitna maksimalna efikasnost i minimalna greška. Jedan od kriterijuma efikasnosti kompresije je odnos broja bita originalnog podatka i broja bita kompresovanog podatka (PCD). Jie Chen i njegove kolege sa jednog japanskog univerziteta su predložili algoritam obrade EKG-a baziran na talasićima za koji je PCD između 5.5% i 13.3%. Pri tome je ovaj algoritam brz i jednostavan, a očekuju se dalja poboljšanja. Alternativni prilaz kompresiji EKG podataka, koji koristi višekanalnu analizu, razvili su Makoto Nakashizuka i njegove kolege sa Nigata univerziteta. Pri kompresiji ovim algoritmom zadržavaju se važne osobine EKG signala koje konvencionalne metode transformacije nisu uspele da sačuvaju. Ove osobine su vrlo važne za otkrivanje nepravilnosti u radu srca.

Ehokardiograf je vizuelna tehnika koja koristi ultrazvuk za prenos informacija. Ultrazvuk je akustični talas sa frekvencijom višom od 20kHz. Za potrebe medicine ultrazvučni talas ima frekvenciju oko 2MHz, što omogućava bolju tačnost sa manjom prodornošću. Ultrazvuk prodire kroz nehomogenu sredinu i reflektuje se o granice posmatranih oblasti sa različitim akustičnim impedansama. Ehokardiograf beleži reflektovani zvuk. Pomoću ehokardiografa se može videti građa srca: srčani mišić, unutrašnja i spoljašnja opna, srčana pregrada. Matematičkom obradom dobijenog signala računaju se frekvencija i ubrzanje rada zida šupljina srca (komora i pretkomora), što daje kliničke informacije o radu srca.

Obrada slike vrši se na numeričkoj reprezentaciji slike, a to je matrica vrednosti funkcije f(x, y) na tzv. "sivoj skali" u tačkama dovoljno fine mreže. Kada se slika menja sa vremenom potrebno je analizirati niz slika,što znači da se mora računati sa ogromnim brojem podataka. Stoga je neophodno uočiti zakonitosti i korelacije koje uvek postoje među različitim delovima numeričkih informacija koje predstavljaju sliku.

Katalogizacija otisaka prstiju je jedan od primera uspešne primene talasića. U FBI se nalazi oko 200 miliona kartica sa otiscima prstiju. Svaki otisak prsta se digitalizuje na rezoluciju od 500 pixela po inču sa 256 nivoa skale sivih tonova po pixelu. Stoga jedan otisak zauzima oko 700000 pixela što je približno 0.6Mbyte memorije. Dakle, potrebno je arhivirati veliki broj podataka, ali tako da se omogući brzo pretraživanje. To podrazumeva kompresiju podataka, koja zahteva njihovu prethodnu obradu. FBI je ne tako davno usvojio standard za digitalnu kompresiju slike otiska prsta koji se bazira na talasićima. Kompresija se vrši u odnosu 20:1, a razlike između originalne i dekompresovane slike mogu uočiti samo eksperti.

Proučavanje udaljenih galaksija. A. Bijaoui je koristio talasiće da objasni nastanak i hijerarhijsku organizaciju udaljenih galaksija. Novi teleskopi obezbeđuju digitalizovanu sliku univerzuma sa ogromnim brojem podataka. Analiza talasićima se koristi za obradu tih slika. Određuju se granice objekata, na osnovu kojih se želi doći do trodimenzione organizacije kosmosa.

Kompjuterski vid. U ranim 80-tim David Marr je u MIT-ovoj laboratoriji za veštačku inteligenciju započeo rad na veštačkom vidu robota – "kompjuterskom vidu". Njegova osnovna premisa je da treba proučiti ljudski vid i pomoću uočenih zakonitosti simulirati "kompjuterski vid". Pri tome u ljudskom vidu treba isključiti sve što zavisi od treninga, kulture, navika i drugih stečenih korektora vida, i zadržati samo mehaničke i refleksne karakteristike vida, tj. zadržati se na osnovnom nivou vida. Treba istražiti ona svojstva ljudskog vida koja želimo da podražavaju ili reprodukuju roboti, a to su raspoznavanje kontura objekata, osećaj treće dimenzije, izdvajanje reljefa na osnovu senki i opažanje pokreta. Marr je pretpostavio da je osnovna reprezentacija, koju dobija rožnjača, niz skica određenih na različitim skalama, a te skale čine geometrijsku progresiju. Skice su sastavljene od linija ($f * \psi_{\sigma})(x, y) = 0$, koje predstavljaju čuvene Marrove nulte preseke. Operator * označava konvoluciju, a ψ je Marrov talasić koji je diferencijabilan i može se predstaviti na ma kojoj željenoj skali.

S obzirom da je teorija talasića mlada naučna disciplina, može se očekivati dalja ekspanzija i u teorijskom i u aplikativnom domenu. Ovde su navedene samo neke od brojnih uspešnih primena talasića u različitim oblastima. Više informacija može sa naći na internetu, na nekoj od navedenih web adresa.

Zadaci

1. Napisati program u MatLab-u za reprezentaciju i kompresiju signala f(x) korišćenjem piramidalnog algoritma definisanog biortogonalnim filtrima (§7.2).

2. Napisati program u MatLab-u za izračunavanje koeficijenata interpolacionih biortogonalnih filtara $h_0(n)$, $h_1(n)$, $f_0(n)$, $f_1(n)$, i crtanje interpolacione funkcije skaliranja i njoj pridruženog talasića (§7.3).

7.7. PRIMENE

3. Napisati program u MatLab-u koji će na osnovu lifting algoritma (30) konstruisati različite modifikovane talasiće (za različite izbore funkcije skaliranja $\varphi(x)$). Koristeći piramidalni algoritam za biortogonalne talasiće (§7.2), nacrtati grafik modifikovanog talasića (algoritam opisan u §6.2).

Web adrese

- 1. bigwww.epfl.ch
- 2. www.amara.com/current/wavelet.html
- $3. \ www.amara.com/IEEEwave/IEEEwavelet.html$
- 4. www.cs.ubc.ca/nest/imager/contributions/bobl/wvlt/top.html
- 5. www.cs.dartmouth.edu/ sp/lift
- $6. \ www.gvsu.edu/math/wavelets/tutorials.htm$
- 7. www.math.yale.edu/pub/wavelets/papers/
- 8. www.mathworks.com
- 9. www-stat.stanford.edu/ wavelab/
- 10. www.users.rowan.edu/~rpolikar/WAVELETS/WTtutorial.html
- 11. www.wavelet.org
- 12. www.wolfram.com/

Literatura

- Abramowitz M., Stegun I., Handbook of Mathematical Functions, Dover Publications, New York, 1970.
- [2] Barker V.A., Some Computational Aspects of Wavelets, Informatics and Mathematical Modelling, Technical University of Denmark, 2001.
- [3] Beylkin G., On wavelet-based algorithms for solving differential equations, in Wavelets: Mathematics and applications (Eds. Benedetto and Frazier), CRC, Boca Raton, FL, 449–466, 1994.
- [4] Beylkin G., Coifman R., Rokhlin V., Fast wavelet transforms and numerical algorithms I, Comm. Pure and Appl. Math., 44, 141–183, 1991.
- [5] Chui C., Wavelets: A Mathematical Tool for Signal Analysis, SIAM, Philadelphia, 1997.
- [6] Crochiere R.E., Webber S.A., Flanagan J.L., Digital coding of speech in sub-bands, Bell System Technical Journal, 55, 1069–1085, 1976.
- [7] Daubechies I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, 909–996, 1988.
- [8] Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- [9] Daubechies I., Sweldens W., Factoring wavelet transforms into lifting steps, Electronic, 1–27, 1997.
- [10] Deslauriers G., Dubuc S., Symmetric iterative interpolation processes, Constr. Appr. 5, 49–68, 1989.
- [11] Gabor D., Theory of communication, J. Inst. Electr. Engrg., London, 93, 429–457, 1946.
- [12] Goedecker S., Wavelets and Their Applications for the Solution of Partial Differential Equations in Physics, Presses Polytechniques et Universitaires Romandes, Lausanne, 1998.
- [13] Graps A., An introduction to wavelets, IEEE Comp. Science and Enginneering, 2, 1995.

- [14] Grossmann A., Morlet J., Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math., 15, 723–736, 1984.
- [15] Haar A., Zur theorie der ortogonalen funktionen-systeme, Math.Ann., 69, 331–371., 1910.
- [16] Mallat S., Multiresolution and Wavelets, Ph.D. Thesis, University of Pennsylvania, Philadelphia, 1988.
- [17] Mallat S., A theory of multiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal. and Machine Intel., 11, 674-693, 1989.
- [18] Meyer Y., Ondelettes, Hermann, New York, 1990.
- [19] Meyer Y., Wavelets Algorithms & Applications, SIAM, Philadelphia, 1993.
- [20] Misiti M., Misiti Y., Oppenheim G., Poggi J-M., Wavelet Toolbox (for use with MATLAB, The MathWorks, Inc., Natick, Mass., 1996.
- [21] Polikar R., The Wavelet Tutorial, www.users.rowan.edu/ rpolikar/
- [22] Qian S., Weiss J., Wavelets and the numerical solution of partial differential equations, J.Comp. Physics, 106, 155–175, 1993.
- [23] Radunović D., Numeričke metode, Akademska misao, Beograd, 2004.
- [24] Sabet K., Katehi L., An integral formulation of two- and three-dimensional dielectric structures using orthonormal multiresolution expansions, Int. J. Numerical Modelling, 11, 3–19, 1998.
- [25] Strang G., Wavelets and dilation equations: a brief introduction, SIAM Rew., 31, 614–627, 1989.
- [26] Strang G., Nguyen T., Wavelets and Filter Banks, Wellesley-Cambridge Press, pp. 490, 1996.
- [27] Sweldens W., The Construction and Application of Wavelets in Numerical Analysis, Ph.D. Thesis, 1995.
- [28] Sweldens W., The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal., 3, 186–200, 1996.
- [29] Sweldens W., Piessens R., Asymptotic error expansion of wavelet approximations of smooth functions II, Numer. Math. 68, 377–401, 1994.
- [30] Valens C., A Really Friendly Guide to Wavelets, http://perso.wanadoo.fr/polyvalens/clemens.html, 1999.
- [31] Vetterli M., Kovačević J., Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs, New Jersey, 1995.

Indeks

 $\mathcal{Z}, \mathcal{R}, \mathcal{C}, 7$ Battle-Lemarie-ov talasić, 139 bazis biortogonalni, 8, 127 okvir, 9 ortonormirani, 7 potpun ortonormirani, 8 Riesz-ov, 9, 128 biortogonalni talasić, 32, 37, 126, 139ciklična matrica, 61 Coiflet talasić, 125 Daubechies, 3 filtar, 75, 76 funkcija, 39 talasić, 53, 124 dilatacija, 28 dilataciona jednačina, 30 Fourier-ova transformacija, 44 kaskadni algoritam, 40, 42, 96 rekurzija, 47 Dirac-ova funkcija, 17, 46, 53, 133 dvodimenzioni talasić, 141 energijska norma, 6, 8, 11 filtar, 42, 60 analize, 66 banka, 66, 114 FIR, 63 frekvencijski odziv, 44, 62 gustina energijskog spektra, 73 IIR, 63 interpolacioni, 133

invertibilan, 65

kašnjenja, 62 kauzalni, 61 maksimalno ravan, 76, 88 matrice, 89 nisko-frekvencijski, 64 ortogonalni, 69 poluopsežni, 74 sa ogledalskom simetrijom, 66, 72savršene rekonstrukcije, 66, 70 sinteze, 66 visoko-frekvencijski, 65 za razliku, 64 za usrednjavanje, 63 Fourier, 1 analiza, 10 diskretna transformacija, 14 diskretni red, 14 inverzna transformacija, 12 koeficijenti, 7 kompleksni red, 10 kratkotrajna transformacija, 18 red, 8, 14 transformacija, 11, 14 trigonometrijski red, 10 frekvencija, 10 frekvencijski opseg, 58 funkcija skaliranja, 28 četvrtka, 36, 134 frekvencijski domen, 44 glatkost, 105 grafik, 113 interpolaciona, 131 krov funkcija, 36 ortogonalnost, 40, 46

Gramm-ova determinanta, 7

INDEKS

Haar, 1 banka filtara, 69 talasić, 52 harmonijska analiza, 10 interpolacioni talasić, 129, 133 karakteristična funkcija intervala, 2, 12, 17, 58, 140 kompaktan nosač, 3, 21 konvolucija diskretnih signala, 60 funkcija, 12, 134 teorema, 12, 62 lifting, 143 Meksički šešir, 140 Meyer-ov talasić, 141 modulacija, 13, 19 Morlet-ov talasić, 139 multirezolucija, 27, 31 razvoj, 32 Nyquist brzina, 58 pravilo, 24 operator dekompresije, 68, 70 kompresije, 67, 69 ortogonalnost dvostrukog pomeraja, 40, 72, 127 Parseval-ova jednakost, 8, 13, 21, 59 generalisana, 8 piramidalni algoritam, 109, 128 analiza, 111 sinteza, 112, 128 podopsežno kodiranje, 115 Poisson-ova sumaciona formula, 59 pred-filtriranje, 113 princip neodređenosti, 19 prostor $\mathcal{L}_2[a,b], 5$ aproksimacioni \mathcal{V}_j , 28 strogo normiran, 7

talasića \mathcal{W}_i , 29 red, 16 semiortogonalni talasić, 138 Shannon funkcija, 58 talasić, 140 signal, 14, 57, 149 analiza, 116 dvodimenzioni, 57, 149 obrada, 57 sinteza, 116 skalarni proizvod, 6 skaliranje, 19 sopstvene funkcije diferencijalnog operatora, 11 diferencnog operatora, 11 operatora konvolucije, 12 spektar, 11 spektralna analiza, 11 splajn četvrtka, 36, 134 B-splajn, 38, 134 izvod, 136 krov funkcija, 36, 135 srednjekvadratna aproksimacija, 6 stacionarna funkcija, 17 Symlet talasić, 125 talasić, 3, 21, 30, 50 brza transformacija, 116 diskretna transformacija, 115 diskretni, 24 druge generacije, 143 frekvencijski domen, 54 grafik, 113 inverzna transformacija, 22 jednačina, 30, 51 koeficijenti, 95 moment, 33, 95 multitalasić, 38 ortogonalnost, 41 osobine, 123, 142 paket analiza, 121 prve generacije, 143

158

INDEKS

transformacija, 21 teorema odabiranja, 58 transformacija, 5, 16 z-transformacija, 15, 62 Fourier-ova, 11 kratkotrajna Fourier-ova, 18 Laplace-ova, 15 talasićem, 21, 112, 115 translacija, 19, 28

uslov

 $\begin{array}{c} A_r \text{-aproksimacija reda} r, 77, 83, \\ 88 \\ \text{E-sopstvene vrednosti, 83, 100} \\ \text{O-ortogonalnost, 71-73, 83} \\ \text{PR-savršena rekonstrukcija, 82,} \\ 126 \end{array}$