
Astrophys Space Sci         (2019) 364:185 
https://doi.org/10.1007/s10509-019-3669-y

REVIEW ARTICLE

Particle acceleration in interstellar shocks
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Abstract This review presents the fundamentals of the par-
ticle acceleration processes active in interstellar medium
(ISM), which are essentially based on the so-called Fermi
mechanism theory. More specifically, the review presents
here in more details the first order Fermi acceleration
process—also known as diffusive shock acceleration (DSA)
mechanism. In this case, acceleration is induced by the in-
terstellar (IS) shock waves. These IS shocks are mainly as-
sociated with emission nebulae (H II regions, planetary neb-
ulae and supernova remnants). Among all types of emission
nebulae, the strongest shocks are associated with supernova
remnants (SNRs). Due to this fact they also provide the most
efficient manner to accelerate ISM particles to become high
energy particles, i.e. cosmic-rays (CRs). The review there-
fore focuses on the particle acceleration at the strong shock
waves of supernova remnants.

Keywords Acceleration mechanisms · Supernova remnants

1 Introduction

Enrico Fermi suggested in his seminal paper (Fermi 1949)
an elegant way of acceleration of charged particles to the
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energies of most Galactic cosmic-rays. He derived that the
energy gain in a collision between a particle and the mag-
netic field perturbation is ∝ (u/c)2. Here u represents the
speed of the magnetic field perturbation, and c the speed of
high-energy particle. In the interstellar conditions, the ac-
celeration process suggested by Fermi is actually not very
efficient, as u/c is already a small value quantity, for non-
relativistic shocks, which is then squared. On the other hand,
the fact that particles can gain energy in collisions with
the moving magnetic field irregularities (so-called magnetic
mirrors) served as a fundamental starting point for all later
acceleration theories seeking to explain CR creation in ISM.
Approximately three decades later, this original mechanism
of particle acceleration became known as the so-called sec-
ond order Fermi acceleration mechanism, because a new
theory started developing—the first order Fermi accelera-
tion or diffusive shock acceleration theory. Actually, in DSA
acceleration model, the gain of particle energy through re-
peated shock crossings by successive head-on interaction
with up and downstream disturbances, is ∝ u/c (e.g. Bell
1978a). In that sense, shock waves in ISM transform part of
the bulk kinetic energy into thermal energy, but also in the
CR acceleration.

As we will see, collisionless shock waves are crucial phe-
nomena for particle acceleration in ISM. The formation of
such a shock wave in magnetized IS plasma, the charged
particle acceleration and the magnetic field amplification
are coupled processes. We can simply say that, on micro-
scopic level, a shock is formed when the charged parti-
cles are reflected by an electromagnetic barrier. The ordi-
nary collisions between particles are not frequent enough as
in ordinary hydrodynamical shocks (actual dissipation can-
not be established by a simple particle-particle interaction).
However, we note that various processes, like resonant mi-
croinstabilities, which actually trigger collisionless shock-
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formation and evolution are still not fully understood (see
e.g. Zeković 2019). The various shock waves in ISM are
mainly associated with the known emission nebulae. There
are generally three basic types of emission nebulae: H II

regions, planetary nebulae (PNe) and supernova remnants
(SNRs). In H II regions around young, massive and hot stars,
the existence of shocks can be expected in weak (isother-
mal, radiative) form. Even though PNe are essentially H II

regions, they have two associated shock waves: inner one
which is strong (adiabatic, non-radiative), and outer one
which is weak (isothermal or radiative shock). Supernova
remnants in the first two phases of evolution (free expansion
and Sedov phases) have strong, non-radiative shock waves.
In the third, isothermal phase of evolution, these previously
strong shock waves rapidly lose kinetic energy and become
weaker, radiative shocks. We expect particle acceleration at
all kinds of collisionless shocks, strong or weak, but effi-
cient acceleration should be expected only at strong shocks
of supernova remnants. In addition, the inferred Galactic
cosmic-ray energy density (order of 1 eV cm−3), combined
with the estimated time of the average CR existence in
our galaxy, requires a Galactic CR production with a to-
tal power of about 1041 erg s−1 (Ginzburg and Syrovatskii
1967). With the mean supernova (SN) explosion energy of
around 1051 erg and an inferred Galactic SN rate of sev-
eral events per century, SNe and their remnants are the most
probable sources known to be able to provide such a power.
The inner shocks of PNe are strong, but corresponding shock
speeds are significantly lower than those of young SNRs.
Additionally PNe are short living objects with significantly
lower energy contents. However, we can expect particle ac-
celeration in PN shocks, but at this moment we do not have
observational evidence for creation of high energy particles
in PNe—this can be the subject of future research.

In this review, we present the details of DSA theory.
In fact, we start with the basic particle acceleration model
given by famous Enrico Fermi (Sect. 2.1), and then con-
tinue with the elaboration of the so-called microscopic and
macroscopic approaches to the test-particle DSA mecha-
nism (Sects. 2.2 and 2.3). In addition, we discuss the con-
sequences of the CR back-reaction through the non-linear
DSA (Sect. 2.4). Finally, we emphasize the most important
observational signatures which confirm DSA mechanism in
SNRs (Sect. 3).

2 Fermi acceleration

2.1 The original Fermi approach

In this subsection we present the original Fermi (1949) ap-
proach. Let us assume a moving magnetic perturbation of
ISM (e.g. a magnetized cloud) along the x-axis, moving
with speed u in the fixed reference frame of the observer. Let

us also consider a particle with speed v also in the reference
frame of observer; u and v are speeds of a moving magnetic
perturbation and a particle, respectively, before collision. In
the beginning, we consider the case where the test-particle
moves in a direction opposite to the motion of magnetized
cloud, and has initial energy E = mc2 +E, where E is the to-
tal energy, m is the particle rest mass, c is the speed of light,
and E is the particle kinetic energy. We assume that particle
is gyrating in a low-density medium with a turbulent mag-
netic field. When it collides with the cloud, a charged parti-
cle is reflected by the so-called magnetic mirror and comes
back with the same pitch angle θ and the direction of mo-
tion of its guiding center being inverted. Applying the rela-
tivistic transformations between a ‘laboratory’ (observer’s)
reference frame at rest and the moving (primed) reference
frame of the cloud, the energy and the momentum of the
particle before collision are respectively:

E ′ = γu(E + upx), p′
x = γu

(
px + uE/c2),

γu = 1/

√
1 − u2/c2.

(1)

The collision between particle and a magnetized cloud is
elastic, and in ‘primed’ reference frame the total energy
of the test charged particle does not change after collision
(E ′

before coll. = E ′
after coll.). Also, the intensity of the particle

momentum stays constant after collision in ‘primed’ refer-
ence frame, but with opposite sign, i.e. p′

x will be trans-
formed to −p′

x after collision. We can move back to the
observer’s reference frame by using similar reasoning, as u

and v vectors are oriented in the same direction after colli-
sion (E ′ = γu(E − upx), p′

x = γu(uE/c2 − px)). We change
p′

x into −p′
x to account for the inversion of the direction of

propagation of the particle, and obtain:

Eafter coll. = γu

(
E ′ + up′

x

) = γ 2
u

(
E + 2upx + u2E/c2), (2)

i.e., since (by using p = γmv and E = γmc2), px/E =
pcosθ/E = v cos θ/c2,

Eafter coll.

E = 1 + 2(u/c)(v/c) cos θ + (u/c)2

1 − (u/c)2

≈ 1 + 2(u/c)(v/c) cos θ + 2(u/c)2. (3)

The resulting expression in Eq. (3) is obtained under par-
ticular approximation (1 − (u/c)2)−1 ≈ 1 + (u/c)2 and by
neglecting all terms in which u/c appears with the power
≥3.

The probabilities of head-on and head-tail collisions are
proportional to the intensity of relative velocities of ap-
proach of the particle and the cloud, i.e. v + u cos θ and
v − u cos θ in the direction of the test-particle trajectory,
respectively (for cos θ > 0). Assuming high energy test-
particle, for v ≈ c and 0 < θ < π we can write this prob-
ability as proportional to 1 + (u/c) cos θ , and average the
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second term in Eq. (3) to obtain (Longair 2011):

〈
2u

c
cos θ

〉
= 2u

c

∫ 1
−1 μ(1 + (u/c)μ)dμ
∫ 1
−1(1 + (u/c)μ)dμ

= 2

3

(
u

c

)2

,

μ = cos θ, (4)

i.e.

〈�E/E〉 = 8

3

(
u

c

)2

, (5)

where we present the expression for the particle kinetic en-
ergy E increment, under assumption of negligible rest en-
ergy in comparison to total energy of accelerated particles.

Under the starting assumption that a high energy test-
particle has the same direction as a moving magnetic pertur-
bation (head-tail, rear-on or overtaking collision), transfor-
mations between ‘primed’ and observer’s reference frames
for the total energy and momentum of the particle are in-
verted (with respect to the cases before and after collision).
In the case before collision for the transformation into the
‘primed’ frame we use E ′ = γu(E − upx), p′

x = γu(uE/

c2 − px). In the case after collision for the return into the
observer’s reference frame, we have:

Eafter coll. = γu

(
E ′ + up′

x

) = γ 2
u

(
E − 2upx + u2E/c2). (6)

Due to this, the analogue expression to Eq. (3), for the case
of overtaking collision is:

Eafter coll.

E ≈ 1 − 2(u/c)(v/c) cos θ + 2(u/c)2, (7)

which after the same procedure applied previously for head-
on collision and assuming that the probability of head-
tail collision is proportional to 1 − (u/c) cos θ gives again
〈�E/E〉 = 8/3(u/c)2.

As we can see from previously given equations, in the
original version of the Fermi acceleration theory (Fermi
1949) + and − signs in front of the linear term (u/c) cor-
respond, respectively, to the head-on (approaching) or head-
tail (receding) motion of the magnetic mirror, and hence to
a gain or a loss of energy. As a result, this linear term dis-
appears from the corresponding equations. Since the direct
collisions (head-on) are statistically more numerous than the
overtaking ones (for the same reason that car windscreens
get wetter than rear windows), there is a net energy gain for
the charged particle, whose energy increases continuously
due to the numerous accumulated collisions, and this gain
is represented by the second order dependence (u/c)2 that
survived in Eq. (5).

2.2 DSA—microscopic approach

In the interstellar conditions, the original mechanism pro-
posed by Enrico Fermi is not very efficient and we should

try to establish a model in which only head-on collisions ex-
ist. It means that the linear term u/c (Eqs. (3) and (7)) does
not vanish. A modern version of the first order Fermi accel-
eration (DSA theory) was developed independently by Ax-
ford et al. (1977), Krymsky (1977), Bell (1978a) and Bland-
ford and Ostriker (1978). There were two approaches to the
problem: macroscopic (e.g. Blandford and Ostriker 1978)
and microscopic (Bell 1978a). In the rest of this subsection
we will follow the derivation by Bell (1978a).

Let us start with consideration of a strong shock wave
moving through the surrounding medium with speed vs in
the observer’s (rest) frame (Fig. 1a). In the moving frame
which is connected to the shock (Fig. 1b), the upstream gas
flows through the shock front with speed u1 = |vs|. We as-
sume that the shock surface is orthogonal to the magnetic
field lines B (i.e. parallel MHD shock wave). The equation
of continuity (mass conservation) requires ρ1u1 = ρ2u2 and
the so-called Rankine-Hugoniot relations give us ρ2/ρ1 =
u1/u2 = R = (γ + 1)/(γ − 1), where γ is the ratio of spe-
cific heats of the gas. The compression ratio R equals 4 in
the case of the strongest shocks.

Let us assume the existence of high-energy particles in
the upstream region (ahead of the shock front) whose dis-
tribution function is isotropic in the frame of reference in
which the gas is at rest (Fig. 1c). This reference frame is
equivalent to the observer’s (rest) frame. These so-called
test-particles cross the shock front and so encounter gas be-
hind the shock traveling at the speed 3/4vs if the shock
is very strong. They are scattered by the magnetic irregu-
larities in the downstream region (behind the shock front)
and they receive a small amount of energy �E/E ∼ vs/c.
Their distribution function is also isotropized—their veloc-
ity distribution is now isotropic in the reference frame in
which the downstream gas is at rest, and they are ready to
move back to the upstream region. Now, we consider the
opposite process when high-energy test-particle recross the
shock front, from the downstream to the upstream region
(Fig. 1d). Due to that, when test particles cross the shock
front from downstream to upstream, they encounter the up-
stream gas moving at speed 3/4vs and are again able to re-
ceive a small amount of energy. Actually, in the upstream
region they are scattered back by the Alfvén waves excited
by the energetic particles themselves, as they move at super-
Alfvénic velocities and attempt to escape from the shock.
As a result, particles can recross the shock front again. In
each shock recrossing, after collisions with downstream and
upstream magnetic mirrors, they receive a small amount of
energy—there are no collisions in which a particle loses en-
ergy.

After this more qualitative explanation, we move on to
a more detailed theory of DSA (see Bell 1978a; Lequeux
2005; Longair 2011; Arbutina 2017). We consider the exis-
tence of test-particles and introduce their so-called phase-
space distribution function, in particular its isotropic part
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Fig. 1 Diffuse shock
acceleration of high energy
particles in the vicinity of a
strong shock wave. Adapted
from Longair (2011)

f (x,p, t). These charged particles are injected into the pla-
nar, one-dimensional MHD shock, parallel or nearly par-
allel (with shock velocity directed along the x-axis prac-
tically aligned with mean (galactic) magnetic field) with
speed much higher than that of the shock, v 	 vs. In these
collisionless shocks, the average, homogeneous magnetic
field plays essentially no role, while fluctuations in that
average field play an important role as scattering centers
in the downstream region. In fact, we consider collision-
less shock waves as ordinary hydrodynamic shocks that
propagate through the homogeneous magnetized plasma,
as well as additional scattering centers. We choose a ref-
erence frame in which the shock is stationary (Fig. 1b).
The gas flows from upstream, (x < 0) with speed u1 =
|vs|, to downstream where u2 < |vs|. In that sense, we
are dealing with diffusion in a fluid moving with differ-
ent velocities on either side of the shock. Diffusion in a
fluid is introduced by diffusion-advection equation near a
discontinuity (Drury 1983; Blandford and Eichler 1987),
which represents general kinetic equation for cosmic-rays
(Skilling 1971, 1975), sometimes called Parker’s transport
equation because it was derived for the first time in Parker
(1965):

∂f

∂t
+u

∂f

∂x
= ∂

∂x

[
D(x,p)

∂f

∂x

]
+ 1

3

∂u

∂x
p

∂f

∂p
+Q(x,p), (8)

where

D(x,p) = λv

3
(9)

is the diffusion coefficient in the x direction for particles
with speed v. The mean free path of particles (λ) is assumed
to be λ∼rg ,

rg = p⊥
eB

A

Z
, (10)

where rg is the gyro-radius of charged particle with the
atomic mass number A, the charge number Z in the mag-
netic field B . Here the elementary charge is given by the
symbol e and the perpendicular component of momen-
tum p⊥. The last term in Eq. (8) describes injection and
we assume δ-function for injection at the shock.

Equations (9) and (10) actually assume standard isotropic
Bohm diffusion. It is important to note that the Bohm limit
for the parallel diffusion coefficient was derived in Shalchi
(2009) and tested numerically by Hussein and Shalchi
(2014).

Under the assumption of stationarity we have ∂f /∂t = 0
and ∂u/∂t = 0 outside the shock. Additionally we assume
constant downstream velocity (∂u/∂x = 0). Due to these
simplifications, the diffusion-advection equation for parti-
cles which enter the downstream region (Eq. (8)) becomes:

u2
∂f

∂x
− ∂

∂x

[
D(x,p)

∂f

∂x

]
= 0. (11)

The general solution of this partial differential equation, ob-
tained by double integration over x, is:

f (x,p) = A(p) + B(p) exp

(∫
u2

D(x′,p)
dx′

)
, (12)

where A and B are the integration constants. The diffusion
coefficient D(x′,p) takes finite values, while x extends to
infinity. Due to this the second term diverges, unless B = 0.
A physical solution therefore requires that f (x,p) = A(p)

i.e. it is a function of momentum only. The flow of par-
ticles far away from the shock into the downstream re-
gion, i.e. the current density of particles that escape from
the shock far downstream is u2n(x,p) − D(x,p)(∂n/∂x),
which is equal to u2n(0,p), where the number density of
particles n = ∫ ∞

0 4πp2f (p)dp, is defined for isotropic dis-
tribution. The flux density, i.e. the rate at which particles are
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crossing and recrossing the shock is:
∫ ∫

f vxp
′2dp′dΩ

=
∫ ∞

0
2πv

(
p′)f

(
p′)p′2dp′

∫ π/2

0
cos θ sin θdθ (13)

= 1

2
vn

∫ 1

0
μdμ = 1

4
vn(0,p), (14)

where dΩ is the elementary solid angle, μ = cos θ and we
assume f (p′) = n

4πp2 δ(p − p′). We use the well-known be-

havior of the δ-function f (x) = ∫
f (x′)δ(x′ − x)dx′. Fi-

nally, we obtain the escape probability in the form:

η = u2n(0,p)

1
4vn(0,p)

= 4
u2

v
. (15)

For relativistic particles (v ≈ c) and non-relativistic shock
waves, this probability is rather low.

Now we focus to the reference frames in which DSA
mechanism can be analytically described. We can define a
rest frame attached to the magnetic mirror which is in the
downstream region of a shock wave. This magnetic mirror
has velocity u1 − u2 relative to the reference frame of up-
stream isotropically distributed particles (see Fig. 1c). On
the other hand, in the upstream region we can define an-
other magnetic mirror with the same velocity u1 − u2 (this
is velocity in the reference frame connected to downstream
isotropically distributed particles (Fig. 1d)). The upstream
magnetic mirror is at rest in the upstream fluid (observer’s)
reference frame. Due to this we define another rest reference
frame to the upstream magnetic mirror. These two rest refer-
ence frames tied to both magnetic mirrors are necessary for
the next derivation. When a test-particle with injection en-
ergy E0 in the fixed, upstream fluid (observer’s) reference
frame goes from upstream (region 1) to downstream (re-
gion 2), its energy (according to Eq. (2), E′ = γu(E +upx))
is:

Edown.mirror
1 ≈ E0

[
1 + (u1 − u2)

v11 cos θ11

c2

]
, (16)

with γu ≈ 1 (because of (u1 − u2)
2/c2 � 1) for non-

relativistic shocks; here Edown.mirror
1 represents the test-

particle energy in the rest reference frame of downstream
magnetic mirror. When the same particle comes back to re-
gion 1, its energy in the rest frame of the upstream magnetic
mirror is:

E
up.mirror
1

E0
≈

[
1 + (u1 − u2)

v11 cos θ11

c2

]

×
[

1 + (u1 − u2)
v12 cos θ12

c2

]
, (17)

where first index in v and θ denotes cycle number, while
second index denotes passing from region 1 to region 2 (in-
dex 1) and from region 2 to region 1 (index 2). Equation (17)
represents a starting expression for the acceleration of test-
particle by the DSA mechanism and it is analogue to Eq. (3).
Here, v12 and θ12 are assumed to be in the upstream mir-
ror reference frame as it is presented by Bell (1978a)—we
do not use these quantities in the downstream mirror refer-
ence frame (as in Lequeux 2005). For averaging per angle
θ , the necessary condition is that angles θ11 and θ12 should
be expressed in the same reference frame (we chose it to
be the upstream mirror frame). Equation (17) has different
form in Bell (1978a)—the reason for that is opposite direc-
tion of measuring θ . We assume here the direction as given
in Lequeux (2005). The sign ≈ instead equality in Eq. (17)
is a result of transformation from the downstream to the
upstream mirror frame (pup.mirror

x = γu1−u2(p
down.mirror
x +

(u1 − u2)E
down.mirror
1 /c2)), and by using approximation

γu1−u2 = (1−((u1 −u2)/c)
2)−1/2 ≈ 1+1/2((u1 −u2)/c)

2,
where finally we have term v12 cos θ12/c

2.
We emphasize again that our test-particle is already

highly energized (v ≈ c) at the injection. Due to this, by
using vk1/c ≈ 1 and vk2/c ≈ 1 which provide that the test-
particle gets the same portion of energy in every interaction
with magnetic mirrors, the energy of test-particle after l cy-
cles is:

El

E0
=

l∏

k=1

E
up.mirror
k

E0
=

(
E

up.mirror
1

E0

)l

, (18)

where

E
up.mirror
k

E0
= 1

E0

[
1 + (u1 − u2)

cos θk1

c

]

×
[

1 + (u1 − u2)
cos θk2

c

]
, (19)

i.e.

ln

(
El

E0

)
= l ln

(
E

up.mirror
1

E0

)
. (20)

For a significant energy increase, l must be at least of the
order of c/(u1 − u2). The distribution of ln(El/E0) will
be strongly concentrated around the mean, so we can treat
all particles completing l cycles as having their energy in-
creased by the same amount, and by using Eq. (19) with
E

up.mirror
k

E0
= E

up.mirror
1

E0
, we obtain:

ln

(
El

E0

)
= l

[〈
ln

(
1 + u1 − u2

c
cos θk1

)〉

+
〈
ln

(
1 + u1 − u2

c
cos θk2

)〉]
. (21)
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After the expansion of logarithm function in power series
we find:

ln

(
El

E0

)
≈ l

u1 − u2

c

[〈cos θk1〉 + 〈cos θk2〉
]
. (22)

The number of particles that cross the shock between an-
gles θ and θ + dθ is proportional to 2πsin θcos θdθ . After
averaging over angles from 0 to π/2 we have:

〈cos θk1〉 = 〈cos θk2〉 =
∫ 1

0 μ2dμ
∫ 1

0 μdμ
= 2

3
. (23)

Finally,

ln

(
El

E0

)
= 4

3
l
u1 − u2

c
. (24)

The probability of completing at least l cycles and reach-
ing energy E ≥ El is given by:

Pl = N(E ≥ El)

No

= ζ l, ζ = 1 − η, (25)

where ζ is the probability of staying in the acceleration pro-
cess after one cycle and N0 is the initial number of particles.
Each particle has the same energy E0 at the injection. The
number of particles that reached E ≥ El is designated by
N(E ≥ El). Using Eqs. (15) and (25) leads to:

lnPl = l ln

(
1 − 4u2

c

)
≈ −l

4u2

c
= − 3u2

u1 − u2
ln

(
El

E0

)
.

(26)

By combining Eqs. (24) and (26) we have:

N(E ≥ El) = No

(
El

E0

)1−Γ

=
∫ ∞

El

N(E)dE,

Γ = R + 2

R − 1
, R = u1

u2
. (27)

At the end, the differential particle energy spectrum has a
form:

N(E) = KE−Γ , (28)

where K is constant. In the case of strong shocks, the com-
pression R = 4, so the energy index Γ = 2. We emphasize
here that Eq. (28) is derived by using the assumption that ap-
proximately all N0 particles at the beginning of the acceler-
ation process become cosmic-rays. It means that all of them
reach energy El . The main reason for the validity of this
assumption is based on the starting assumption that all N0

particles are highly energized at the injection i.e. v/c ≈ 1,
which provides ζ ≈ 1. Due to this, in the limiting situation
the integration in Eq. (27) can be from E0 to ∞.

As a summary of the microscopic approach of test-
particle DSA presented in this subsection, we emphasize
that the net energy gain in the acceleration process is sub-
stantially higher if there are only direct (head-on) collisions.
It provides that energy increase is �E/E ∝ (u1 − u2)/c

in each collision. As we mentioned earlier, the microscopic
DSA model is based on multiple transition of one charged
particle through the shock discontinuity from upstream to
downstream region and vice-versa. In every passage (head-
on) across the shock, independent from which side of the
shock the passage occurs, the test-particle gains energy. Ow-
ing to this DSA is a more efficient process than original
Fermi 2 mechanism (Eq. (5)), where the overtaken colli-
sions exist. If an astrophysical source is linked to a shock
wave, we can generally expect acceleration of charged par-
ticles from the medium around the shock. Particles such as
protons and other heavier ions can be accelerated very ef-
ficiently to ∼1015 eV by DSA process (see e.g. Bell et al.
2013 and references therein). Of course, electrons can also
be accelerated to the ultra-relativistic energies (∼1012 eV) at
the strong shocks of SNRs, but will suffer more significant
energy losses (see e.g. Blasi 2010). Once again, we empha-
size that the basic assumption of this derivation is that be-
fore the actual start of DSA mechanism the particle has very
high velocity v 	 u. Finally, this theory predicts a power-
law energy spectrum of accelerated particles (Eq. (28)). As
we showed here, this theory also predicts a value of Γ = 2
for accelerated particles at the strong shock waves with the
compression ratio R = u1/u2 = 4. DSA model can be gen-
eralized to include lower starting velocities of test-particles
(Bell 1978b, see also Sect. 2.3.2 in Arbutina 2017) which
will result in a power-law in momentum:

N(p) ∝ p−Γ . (29)

Of course, in any case the initial velocity of the particles
must be larger than that of the shock, i.e. the particles
must be supra-thermal. Another interesting process is the
re-acceleration of CRs which is most commonly assumed
to be a diffusive process in which Galactic CRs are re-
accelerated through the second order Fermi process in the
ISM (e.g. Drury and Strong 2015). However, one can con-
sider the re-acceleration of pre-existing CRs by the shock
through DSA mechanism. In this case the pre-existing CRs
are actually seed particles that are injected in DSA pro-
cess (e.g. see Sect. 2.3.4 in Arbutina 2017). Furthermore,
Caprioli et al. (2018) have shown that the cosmic-ray par-
ticles can be effectively reflected and accelerated regardless
of the shock inclination via the so-called diffusive shock re-
acceleration mechanism. They concluded that re-accelerated
high-energy particles can drive the streaming instability in
the shock upstream and produce effective magnetic field am-
plification. In that case, the injection of thermal particles can
be triggered even at quasi-perpendicular IS shocks. Finally,
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it is also possible to account for the CR back-reaction and
to discuss how the non-linear effects influence simple DSA
theory presented here (e.g. Drury 1983; Malkov and Drury
2001; see also Sect. 2.4 of this review).

2.3 DSA—macroscopic approach

Macroscopic approach to DSA was developed indepen-
dently by Axford et al. (1977), Krymsky (1977) and Bland-
ford and Ostriker (1978) by considering diffusion-advection
equation for CRs. To derive this equation one should start
from collisionless plasma kinetic equation in the following
suitable form:

∂f

∂t
+ ∂

∂x
· (f v) + ∂

∂p
·
(

f
dp
dt

)
= 0, (30)

transform it to a non-inertial wave frame and average over
gyration phase to obtain (see Skilling 1971 and Blandford
and Eichler 1987 for more details):
(

1+ v · w
c2

)
∂f

∂t
+ (v + w) ·∇f − mγ

(
∂w
∂t

+ v · ∇w
)

· ∂f

∂p

≈ ∂f

∂t
+ (μvn + u) · ∇f

−
(

1 − μ2

2
∇ · u + 3μ2 − 1

2
(n · ∇)(n · u)

)
p

∂f

∂p

+ 1 − μ2

2

(
v∇ · n + μ∇ · u − 3μ(n · ∇)(n · u)

) ∂f

∂μ

= ∂

∂μ

(
1 − μ2

2
νc

∂f

∂μ

)
. (31)

In the last equation, after a transformation v → v + w ≈
v + u, distribution function f and momentum p are mea-
sured in the wave frame, while the coordinates x are still
measured in the inertial frame. The wave frame in which
CR particles (mainly protons) scatter elastically of, presum-
ably, Alfvén waves, has the velocity with respect to the in-
ertial frame w = u + vAn ≈ u, where u � c is the speed of
the background plasma, vA is the Alfvén speed and n the
unit vector along the local magnetic field. A consequence of
the transformation is that there is now a collisional, diffu-
sion term on the right-hand side of Eq. (31) due to waves
scattering, but because of the energy conservation, the scat-
tering is only in the pitch angle (μ is the cosine of the pitch
angle), with νc representing collision frequency, related to
the scattering of particles in pitch angle by hydromagnetic
waves—‘collective interactions’, occurring through fluctu-
ating electric and magnetic fields.

The last term of Eq. (31) is the so-called pitch-angle scat-
tering term in the isotropic form. This is the usual assump-
tion that actually means that the pitch-angle scattering co-
efficient is directly proportional to (1 − μ2), in a special

case (see Shalchi et al. 2009 for a thorough derivation). Of
course, this is not necessarily correct, but just an approxima-
tion.

To proceed further we will assume that collision fre-
quency is large and that we can expand distribution function
into series: f = f0 + f1 + f2 + · · · , where fi = O(ν−i

c ).
Equating terms of the same order in Eq. (31) gives us:

∂

∂μ

(
1 − μ2

2
νc

∂f0

∂μ

)
= 0, (32)

∂f0

∂t
+ (μvn + u) · ∇f0

−
(

1 − μ2

2
∇ · u + 3μ2 − 1

2
(n · ∇)(n · u)

)
p

∂f0

∂p

= ∂

∂μ

(
1 − μ2

2
νc

∂f1

∂μ

)
. (33)

Equation (32) tells us simply that the distribution function is
isotropic in zeroth order. Averaging Eq. (33) over μ gives

∂f0

∂t
+ u · ∇f0 − 1

3
∇ · u p

∂f0

∂p
= 0, (34)

while those terms that do not average to zero, with the help
of Eq. (34), give

μvn ·∇f0 +
(

1 − 3μ2

2
∇ ·u − 1 − 3μ2

2
(n ·∇)(n ·u)

)
p

∂f0

∂p

= ∂

∂μ

(
1 − μ2

2
νc

∂f1

∂μ

)
, (35)

or when integrated (Skilling 1971)

νc
∂f1

∂μ
= −vn · ∇f0 − μ

(∇ · u − (n · ∇)(n · u)
)
p

∂f0

∂p
, (36)

i.e.

f1 ≈ f̄1μ, f̄1 = − v

νc
n · ∇f0. (37)

If we now return to the original equation and average it
to obtain expression for f0, more accurate than Eq. (34)

∂f0

∂t
+u ·∇f0 + 1

3
vn ·∇f̄1 − 1

3
∇ ·up

∂f0

∂p
+ 1

3
vf̄1∇ ·n = 0,

(38)

in combination with Eq. (37) we arrive at the so-called
diffusion-advection equation

∂f0

∂t
+ u · ∇f0 = ∇(

Dn(n · ∇)f0
) + 1

3
∇ · up

∂f0

∂p
, (39)
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or in the case of one-dimensional flow with u ‖ n (parallel
shock).

∂f0

∂t
+ u

∂f0

∂x
= ∂

∂x

[
D

∂f0

∂x

]
+ 1

3

∂u

∂x
p

∂f0

∂p
, (40)

where D(x,p) = v2

3νc
is coefficient of diffusion parallel to

the magnetic field lines, in the case of parallel shocks that we
consider here. It has been shown in Caprioli and Spitkovsky
(2014) and Caprioli et al. (2015) that perpendicular and gen-
erally more oblique shocks do not spontaneously accelerate
particles efficiently. The reason for inefficient acceleration
at oblique shocks is that it is more difficult for particles to
pre-accelerate and reach injection energy necessary to enter
into DSA, which is an increasing function of shock incli-
nation, and the fraction of injected ions drops exponentially
for quasi-perpendicular shocks. An exception already men-
tioned may be the re-acceleration of seed particles that are
already present, e.g. galactic CRs, which subsequently also
trigger the injection (see Caprioli et al. 2018).

The general solution of Eq. (40), in the stationary case,
obtained by double integration over x, is (see e.g. Drury
1983):

f0(x,p) = A(p) + B(p) exp

(∫
u(x′)

D(x′,p)
dx′

)
, (41)

where A and B are arbitrary functions. In the case of one-
dimensional fluid flow in the negative direction, encounter-
ing shock at x = 0, the velocity is

u(x) =
{

u1, x < 0
u2, x > 0.

(42)

D(x′,p) being finite when x goes to infinity, implying that
in order for the distribution function to remain finite down-
stream, it must be f0(x,p) = F(p), and we suppose that it
tends to some given distribution far upstream f0(x,p) →
A(p), i.e.

f0(x,p) =
{

A(p) + B(p) exp(
∫ 3u1

λv
dx′), x < 0

F(p), x ≥ 0,
(43)

where D(x,p) = v2

3νc
= λv

3 , λ being the mean free path. We
assumed that the complete distribution function in the dif-
fusion approximation, can be given as the sum of isotropic
part f0 and the anisotropic part proportional to the gradient
of f0,

f (x,p) = f0(x,p) − μλ
∂f0(x,p)

∂x
, (44)

so that

f (x,p) =
{

A + B − μ 3u1
v

B, x = 0−
F, x = 0+.

(45)

In each of the distribution functions, upstream and down-
stream, p (but not x) is measured in to local fluid frame.
Even though the distribution function is invariant, we still
need to make transformations of momenta p → p(1 − μu

v
),

and isotropic parts f0 → f0 −μu
v
p

∂f0
∂p

to move to the shock
frame:

f (x,p) =
{

A + B − μ(u1
v

p( ∂A
∂p

+ ∂B
∂p

)+ 3u1
v

B), x = 0−

F − μu2
v

p ∂F
∂p

, x = 0+.

(46)

Assuming that the distribution is continuous across the
shock, we get the matching conditions:

A + B = F, (47)

u1p

(
∂A

∂p
+ ∂B

∂p

)
+ 3u1B = u2p

∂F

∂p
. (48)

Eliminating B from the last two equations and reintroducing
shock compression ratio R = u1/u2, we obtain

(R − 1)p
∂F

∂p
= 3R(A − F), (49)

i.e.

F(p) = k1p
−3R/(R−1)

∫ p

0
p′3R/(R−1)−1A

(
p′)dp′

+ k2p
−3R/(R−1). (50)

If A = 0, we get the distribution function

F(p) ∝ p−Γ −2, (51)

i.e. the number density N(p) ∝ p−Γ , Γ = R+2
R−1 , same as

in the microscopic approach. But whatever the distribution
A(p) far upstream is, provided that it is softer than a power-
law spectrum with a slope Γ + 2, the downstream spectrum
at high momenta will always asymptotically tend to a power-
law p−Γ −2 (Drury 1983).

2.4 Non-linear DSA

In the test-particle approach or linear DSA it is assumed that
the pressure of high-energy particles is small, so that their
presence does not modify the shock structure. If this is not
the case, then we are talking about CR back-reaction or non-
linear DSA (NLDSA; see e.g. Drury 1983; Berezhko and
Ellison 1999; Malkov and Drury 2001, Blasi 2002a, 2002b).
Schematic view of a modified in comparison to unmodified
shock is presented in Fig. 2. Because of the presence of CR
particles ahead of the shock, the density, pressure and ve-
locity gradients will form upstream in the so-called shock
precursor. The jump in these quantities is still present at the
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Fig. 2 Schematic view of a modified shock. Adapted from Reynolds
(2008)

so-called subshock, but the total compression is now larger
than the compression at the subshock Rtot > Rsub.

CRs modify the shock structure, but the shock modifica-
tion then changes the distribution of CR particles, produc-
ing the concave-up spectrum. This can be understood qual-
itatively by noting that lower-energy CRs will only experi-
ence the jump at the subshock and have power-law index
Γ ≈ (Rsub + 2)/(Rsub − 1), while higher-energy particles
will sample a broader portion of the precursor’s velocity pro-
file and experience larger compression, thus having flatter
effective power-law index (Berezhko and Ellison 1999).

To show this quantitatively, we will present a semi-
analytical model of non-linear DSA given by Blasi (2002a,
2002b) (see also Blasi 2004; Blasi et al. 2005, 2007; Am-
ato and Blasi 2005; Ferrand 2010 and Pavlović 2018). We
will assume that we measure everything in the shock frame
and that the problem is stationary and one-dimensional. The
diffusion-advection equation is then

∂

∂x

[
D(x,p)

∂

∂x
f (x,p)

]
− u

∂f (x,p)

∂x
+ 1

3

du

dx
p

∂f (x,p)

∂p

+ Q(x,p) = 0, (52)

where Q(x,p) is the so-called injection term, assumed to
be in the form Q(x,p) = Q0(p)δ(x), where δ(x) is Dirac’s
delta function. We saw earlier that momenta in diffusion-
advection equation are actually measured in the fluid frame,
but if the particles are energetic enough, our choice of the
shock frame will not matter much. Particles of a certain mo-
mentum p will then diffuse upstream (x < 0) to some dis-
tance

xp = D(p)

up

, (53)

where up is some average fluid velocity that will be more
precisely defined later. We implicitly assume that the dif-
fusion coefficient is an increasing function of momentum
(e.g. linear, D(p) ∝ p, in the case of Bohm diffusion). The

pressure of CR particles will slow down the fluid in the pre-
cursor, so that its velocity will change from u0 far upstream,
to u1 immediately ahead of the subshock after which it will
drop sharply further to u2 downstream.

The first step that we must take is to integrate Eq. (52)
across the subshock (from x = 0− to x = 0+, in Fig. 2 these
points are marked with 1 and 2, respectively):

[
D

∂f

∂x

]

2
−

[
D

∂f

∂x

]

1
+ 1

3
p

df0

dp
(u2 −u1)+Q0(p) = 0, (54)

where we have assumed continuity of the distribution func-
tion f2 − f1 = 0, i.e. f0 = f1 = f2. By assuming a constant
distribution function in downstream region (Blasi 2002a;
Reynolds 2008), that is [D ∂f

∂x
]2 = 0, the last equation be-

comes:
[
D

∂f

∂x

]

1
= 1

3
p

df0

dp
(u2 − u1) + Q0(p). (55)

The next step is to perform integration of Eq. (52) again,
but now from x = −∞ to x = 0−. By using Eq. (55) and
applying partial integration

∫ 0−

−∞
u

∂f

∂x
dx = [uf ]0−

−∞ −
∫ 0−

−∞
f

du

dx
dx,

we get:

1

3
p

df0

dp
(u2 − u1) − u1f0 + Q0(p) +

∫ 0−

−∞
f

du

dx
dx

+ 1

3

∫ 0−

−∞
du

dx
p

∂f

∂p
dx = 0. (56)

We shall now define

up = u1 − 1

f0

∫ 0−

−∞
du

dx
f (x,p)dx, (57)

that represents an average fluid velocity experienced by par-
ticles with momentum p while diffusing upstream. As al-
ready mentioned, assuming that D(p) is increasing function
of momentum, particles of momentum p will reach only
to some xp and thus sample only a part of the precursor’s
velocity profile. Hence up can be interpreted physically as
some typical fluid velocity at position xp . The last term on
the left-hand side of Eq. (56) can be transformed to

1

3

∫ 0−

−∞
du

dx
p

∂f

∂p
dx = 1

3
p

d

dp

∫ 0−

−∞
f

du

dx
dx,

so that Eq. (56) becomes:

1

3
p

df0

dp
(u2 − up) − f0

(
up + 1

3
p

dup

dp

)
+ Q0(p) = 0, (58)
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where we used

p
d

dp

∫ 0−

−∞
du

dx
f dx = p

(
df0

dp
(u1 − up) − f0

dup

dp

)
,

which follows from the definition of up . Equation (58) rep-
resents an ordinary linear differential equation for f0(p)

when up is known and can be integrated to give:

f0(p) =
∫ p

p0

dp̄

p̄

3Q0(p̄)

up̄ − u2

· exp

{
−

∫ p

p̄

dp′

p′
3

up′ − u2

[
up′ + 1

3
p′ dup′

dp′

]}

= 3Rsub

Rsub − 1

ηn1

4πp3
inj

· exp

{
−

∫ p

pinj

dp′

p′
3

up′ − u2

[
up′ + 1

3
p′ dup′

dp′

]}
.

(59)

In the above equation we have assumed monochromatic in-
jection of particles with momentum pinj: Q0(p) =
ηn1u1

4πp2
inj

δ(p − pinj), where n1 is gas number density im-

mediately upstream (x = 0−) and η is the injection ef-
ficiency giving the percentage of particles encountering
the shock that are injected into the acceleration process.
We have n1 = n0Rtot/Rsub = n0Rprec, where n0 is ambi-
ent density, Rsub = u1/u2 is the compression at the sub-
shock, Rtot = u0/u2 is the total shock compression and
Rprec = u0/u1 = Rtot/Rsub is the compression in the precur-
sor. While in the case of unmodified strong adiabatic shock
Rankine-Hugoniot jump conditions give R = 4, here usually
Rsub < 4 and Rtot > 4.

Blasi’s model of injection (Blasi et al. 2005) assumes that

pinj = ξpth,2, (60)

where thermal momentum is pth,2 = √
2mpkT2, T2 is down-

stream temperature and ξ is an injection parameter that can
be related to injection efficiency, from now on designated
as η, by requiring continuity of thermal (Maxwell) and non-
thermal distribution downstream at pinj, that is fth(pinj) =
f0(pinj). From this condition one can find:

η = 4

3
√

π
(Rsub − 1)ξ3e−ξ2

, (61)

where factor Rsub − 1 serves as a kind of regulator—
injection is switched off when Rsub → 1 i.e. subshock gets
smoothed.

If we define dimensionless average fluid velocity U(p) =
Up = up/u0, Eq. (59) finally becomes:

f0(p) =
(

3Rsub

RtotU(p) − 1

)
ηn1

4πp3
inj

· exp

{
−

∫ p

pinj

dp′

p′
3RtotU(p′)

RtotU(p′) − 1

}
. (62)

If Up ≡ 1, then Rtot = Rsub = R, and we recover the test-
particle solution f0 ∝ p−3R/(R−1). The non-linearity of the
problem lies in the fact that Up �= const. and generally f0(p)

will depend on velocity profile Up through Eq. (62), but Up

itself will depend on f (p), in a non-linear fashion.
To find Up we will use momentum conservation equa-

tion that relates quantities far upstream (x → −∞) with the
quantities at xp where fluid velocity is up:

ρ0u
2
0 +Pth,0 +PCR,0 +Pw,0 = ρpu2

p +Pth,p +PCR,p +Pw,p.

(63)

In the above equation ρ is the density, Pth the thermal pres-
sure, PCR the non-thermal CR pressure and Pw the pressure
of MHD waves.

In the adiabatic approximation

Pth,p

Pth,0
=

(
ρp

ρ0

)γ

=
(

u0

up

)γ

= U
−γ
p , (64)

where we used mass conservation equation ρ0u0 = ρpup . In
the case of Alfvén heating of plasma Berezhko and Ellison
(1999) suggested a modification to Eq. (64):

Pth,p

Pth,0
= U

−γ
p

[
1 + ζ(γ − 1)

M2
S,0

MA,0

(
1 − U

γ
p

)]
, (65)

where MS,0 = u0
cS,0

is the Mach’s number, cS,0 = √
γPth,0/ρ0

ambient sound speed, MA,0 = u0/υA,0 the Alfvén-Mach
number, with υA,0 being the Alfvén speed. The Alfvén heat-
ing parameter 0 ≤ ζ ≤ 1 was introduced later by Caprioli
et al. (2009). For ζ = 0 we recover Eq. (64), i.e. no Alfvén
heating, while for ζ = 1 there is efficient heating, but then,
as we shall soon see, there is no magnetic field amplification.

Let us just note here that one of the most interesting dis-
coveries, which came out of the magnetic field determina-
tion using X-ray observations of several young SNRs, was
that the magnetic fields in SNRs were typically ∼100 µG,
much larger than might be expected, if they were only
caused by the compression of the IS magnetic field of ∼5 µG
(Vink 2012; Uchiyama et al. 2007). Such high magnetic
fields indicate that some kind of a magnetic field amplifi-
cation mechanism is operating in these young SNRs. Bell
(2004) suggested that magnetic field amplification might be
due to a particular plasma instability induced by the stream-
ing of CR protons away from shocks. Another possibility
is to amplify the field as a result of the turbulence induced
by the cosmic-ray gradient upstream of the shock acting on
an inhomogeneous ambient medium (so-called Drury insta-
bility; Drury and Downes 2012). The effectiveness of such
processes in magnetic field amplification to the level needed
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to accelerate CRs up to the PeV domain is still debated in
the present literature.

For the CR pressure in Eq. (63) we will assume PCR,0 = 0
(no CR particles far upstream) and since only the particles
with momentum ≥ p can reach x = xp , we have:

PCR,p = 4π

3

∫ pmax

p

p3v(p)f0(p)dp

= 4π

3

∫ pmax

p

p4c2
√

m2
pc

4 + p2c2
f0(p)dp, (66)

where v(p) is particle speed and pmax is the maximum mo-
mentum reached by CR particles which depends on the rel-
evant time-scale of acceleration, escape and losses (Blasi
et al. 2007).

Similarly to CR pressure, we will assume that MHD
waves pressure Pw,0 = 0 far upstream. In the precursor,
closer to the subshock, CR themselves will generate mag-
netic turbulence (necessary for their scattering and thus ac-
celeration). This turbulent field will generally have an am-
plitude larger than the regular field B0 and it can be assumed
that this turbulent magnetic field pressure will be some frac-
tion α < 1 of the CR pressure

Pw,p = αPCR,p. (67)

Based on the quasi-linear theory α ∼ υA,0/u0 for the res-
onant streaming instability (Caprioli et al. 2009), while for
the non-resonant instability α ∼ u0/c (Bell 2004). Caprioli
et al. (2009) suggested that

Pw,p

ρ0u
2
0

= 1 − ζ

4MA,0
U

−3/2
p

(
1 − U2

p

)
, (68)

where U
−3/2
p is adiabatic compression of the field, and fac-

tor 1 − ζ account for the Alfvén heating in Eq. (65)—the
wave dumping (and thus the gas heating) must remain rea-
sonably small for the magnetic field to be substantially am-
plified (ζ < 1).

Setting PCR,0, Pw,0 = 0, in Eq. (63), dividing by ρ0u
2
0

and inserting Eqs. (65), (66) and (68), we obtain:

Up + U
−γ
p

γM2
S,0

[
1 + ζ(γ − 1)

M2
S,0

MA,0

(
1 − U

γ
p

)]

+ 4π

3ρ0u
2
0

∫ pmax

p

dpp3v(p)f0(p)

+ 1 − ζ

4MA,0
U

−3/2
p

(
1 − U2

p

) = 1 + 1

γM2
S,0

. (69)

Deriving the last equation with respect to p we get, finally:

dUp

dp

{
1 − U

−(γ+1)
p

M2
S,0

[
1+ ζ(γ −1)

M2
S,0

MA,0

]
− 1 − ζ

8MA,0

U2
p + 3

U
5/2
p

}

= 4π

3ρ0u
2
0

p3υ(p)f0(p). (70)

Now that we have Eqs. (58) and (70), we need to
know all the parameters appearing in them and the bound-
ary conditions. For fixed Mach and Alfvén-Mach numbers
(that is velocity u0 and parameters of the surroundings
ρ0,P0,B0, γ ), η, ζ , pmax, we must find another relation
between Rsub,Rtot,Rprec (knowing that by the definition
Rtot = Rsub · Rprec), and calculate pinj. We shall accomplish
this by considering jump conditions at the subshock. Let us
start with the momentum conservation equation:

ρ1u
2
1 +Pth,1 +PCR,1 +Pw,1 = ρ2u

2
2 +Pth,2 +PCR,2 +Pw,2.

(71)

CR pressure must be continuous across the subshock
PCR,1 = PCR,2, while for the thermal pressure Vainio and
Schlickeiser (1999) derived a modified Rankine-Hugoniot
jump conditions in the presence of plasma’s MHD waves

Pth,2

Pth,1
= (γ + 1)Rsub − (γ − 1)[1 − (Rsub − 1)�]

(γ + 1) − (γ − 1)Rsub
, (72)

where

� = Rsub + 1

Rsub − 1

[Pw]2
1

Pth,1
− 2Rsub

Rsub − 1

[Fw]2
1

Pth,1u1
, (73)

and [Pw]2
1, [Fw]2

1 are jumps in magnetic field pressure and
magnetic energy flux, respectively (we will use notation
[Y ]2

1 = Y2 − Y1). In the case � = 0, we obtain the standard
Rankine-Hugoniot jump condition.

Caprioli et al. (2008, 2009) found [Pw]2
1 and [Fw]2

1 for the
MHD waves, by considering their transmission and reflec-
tion: [Pw]2

1 = (R2
sub − 1)Pw,1, [Fw]2

1 = 2(Rsub − 1)Pw,1u1,
which when inserted in Eq. (72) give:

Pth,2

Pth,1
=

(γ + 1)Rsub − (γ − 1)[1 − (Rsub − 1)3 Pw,1
Pth,1

]
(γ + 1) − (γ − 1)Rsub

. (74)

Equation (71), assuming PCR,1 = PCR,2, can be trans-
formed to:

ρ1u
2
1

Pw,1

Rsub − 1

Rsub
+ Pth,1

Pw,1

(
Pth,2

Pth,1
− 1

)
+ R2

sub − 1 = 0. (75)

Let us introduce Mach’s number ahead of the subshock
MS,1 = u1/cS,1, where cS,1 = √

γPth,1/ρ1, that can be re-
lated to MS,0 by using Eq. (65):

M2
S,1

M2
S,0

= ρ1u
2
1

ρ0u
2
0

Pth,0

Pth,1

= R
−γ−1
prec

[
1 + ζ(γ − 1)

M2
S,0

MA,0

(
1 − R

−γ
prec

)]−1

. (76)
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Finally, from Eqs. (74) and (75), after some algebra, we find:

M2
S,1

= 2Rsub

(γ + 1) − (γ − 1)Rsub − 2RsubP
∗
w,1[γ − (γ − 2)Rsub] ,

(77)

where we introduced:

P ∗
w,1 = Pw,1

ρ1u
2
1

= Rprec
Pw,1

ρ0u
2
0

= 1 − ζ

4MA,0
R

5/2
prec

(
1 − R−2

prec

)
. (78)

When we can neglect MHD waves, Pw,1 � 0, Eq. (77) gives
standard Rankine-Hugoniot relation:

M2
S,1 = 2Rsub

(γ + 1) − (γ − 1)Rsub

⇐⇒ Rsub = γ + 1
2

M2
S,1

+ γ − 1
. (79)

If Pw,1 > 0, for fixed Rprec, Eq. (77) is quadratic in Rsub:

2(γ − 2)M2
S,1P

∗
w,1R

2
sub − [

2 + (
γ −1 + 2γP ∗

w,1

)
M2

S,1

]
Rsub

+ M2
S,1(γ + 1) = 0. (80)

Positive root of this equation will give us Rsub as a function
of MS,1 and P ∗

w,1, and consequently the total compression
Rtot.

Finally, we need downstream temperature, in order to cal-
culate pinj. By using ideal fluid equation of state P ∝ ρT

and Eq. (65), we have

T1

T0
= ρ0

ρ1

Pth,1

Pth,0
= R

γ−1
prec

[
1 + ζ(γ − 1)

M2
S,0

MA,0

(
1 − R

−γ
prec

)]
,

(81)

and from Eq. (74)

T2

T1
= ρ1

ρ2

Pth,2

Pth,1

=
(γ + 1)Rsub − (γ − 1)[1 − (Rsub − 1)3 Pw,1

Pth,1
]

[(γ + 1) − (γ − 1)Rsub]Rsub
. (82)

We are now ready for ‘shooting for the solution’ with an
assumed Rprec and the initial conditions

Up(p = pinj) = Up

(
x = 0−) = u1

u0
= 1

Rprec
, (83)

lim
p→pinj

f0(p) = 3Rsub

Rsub − 1

ηn1

4πp3
inj

. (84)

An arbitrarily chosen Rprec will, however, not necessarily
satisfy the boundary condition

Up(p = pmax) = Up(x = −∞) = u0

u0
= 1, (85)

used to end the integration at pmax, so the solution needs to
be found iteratively. To make things simpler, we will intro-
duce dimensionless variables

p

mpc
→ p,

4π

3

m4
pc

5

ρ0u
2
0

f0 → f0,

and solve simultaneously Eqs. (58) and (70) in the form

1

3

(
1

Rtot
− Up

)
p

df0

dp
−

(
Up + 1

3
p

dUp

dp

)
f0 = 0, (86)

dUp

dp

{
1 − U

−(γ+1)
p

M2
S,0

[
1 + ζ(γ −1)

M2
S,0

MA,0

]
− 1 − ζ

8MA,0

U2
p + 3

U
5/2
p

}

= p4f0√
1 + p2

. (87)

In Fig. 3 we give the results for two cases: strongly-
modified shock (ξ = 3.3) and a test-particle case (ξ = 4.3),
as in Caprioli et al. (2010). Other parameters in two cases
are the same: shock velocity u0 = 5000 km/s, ambient den-
sity nH ∼ 0.1 cm−3, temperature T0 = 104 K, magnetic field
B0 = 5.3775 µG, equal Mach and Alfvén-Mach numbers of
135 and Alfvén heating parameter ζ = 0.5. For the case ξ =
3.3, subshock and the total compressions are Rsub = 3.081,
Rtot = 10.236, pinj = 0.01 and pmax = 3.316 ·105, while for
ξ = 4.3, Rsub = 3.999, Rtot = 4.018, pinj = 0.0437, pmax is
the same. For ‘practical’ purposes, e.g. modeling the radio
synchrotron emission of astrophysical sources such as su-
pernova remnants (e.g. Berezhko and Völk 2004; Pavlović
2017; Pavlović et al. 2018), besides proton spectrum it is
also crucial to know electron spectrum. It is usually assumed
that the proton and electron spectra are parallel and that pinj

for protons and electrons are the same (although how this
is accomplished for electrons is still uncertain) in order for
both CR species to cross and recross the subshock (with an
assumed thickness ≈ rg ∝ pth of protons) unaffected. The
only unknown parameter left is then the electron-to-proton
number ratio at high energies Kep, for which in Fig. 3 we
assumed Kep = 1 : 100, in accordance with the observed ra-
tio for Galactic cosmic-rays. The extreme cases presented in
Fig. 3 depict a general behavior—shocks with low ξ � 3.5
have high injection efficiency η and are highly modified,
producing a typical concave-up spectrum; shocks with high
ξ � 4 have low injection efficiency and will produce basi-
cally a test-particle spectrum f0 ∝ p−Γ −2 with Γ ≈ 2. It
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Fig. 3 Proton and electron spectra for injection parameter ξ = 3.3 (left) and ξ = 4.3 (right)

is important to note at the end that these models do not ac-
count for losses and particle escape, since it is assumed that
PCR,0 = 0 far upstream (for alternative see e.g. Caprioli et al.
2010).

3 Observational signatures of particle
acceleration in ISM: a quick overview

Instead of the summary, we present here a quick overview
of the most important observational signatures of particle
acceleration in ISM.

As already seen in the previous sections, DSA can be held
responsible for the production of the non-thermal ensemble
of cosmic-ray particles which in the simplest test-particle
case has a power-law energy distribution. Actually, the par-
ticle energy spectral index, derived from the theory seems
to be in very good accordance with the present observations
of primary CRs of non-solar origin in the vicinity of planet
Earth (Γ ≈ 2.7 up to ∼1015 eV).

Furthermore, the presence of ultra-relativistic charged
particles moving in the external global magnetic field will
generally cause significant production of synchrotron radia-
tion. The history of radio astronomy teaches us that one of
the first detected objects that glow in the radio sky are indeed
SNRs, in particular Cas A remnant (Reber 1944). In fact,
the non-thermal radio-continuum spectra of SNRs, shaped
by the synchrotron emission, unambiguously pointed to the
presence of high-energy charged particles linked to the IS
shock waves. Strictly speaking, however, this only provided
the evidence for electron acceleration, whereas the observed
CR spectrum in the Earth’s neighborhood consists mainly of
protons and other heavy ions. Of course, for massive charges
synchrotron radiation is indeed emitted, but at a much lower

efficiency. As we noted earlier, protons and heavier parti-
cles can be accelerated very efficiently to ∼1015 eV. Elec-
trons can also be accelerated to the ultra-relativistic energies
(∼1012 eV) by DSA mechanism and this lower maximal en-
ergy of electrons comes from the very rapid energy losses in-
duced by the inverse Compton, non-thermal bremsstrahlung
and synchrotron radiation.

The energy spectrum of relativistic electrons which is in
the form of a power-law in test-particle DSA is transformed
in the power-law radio continuum spectrum. The particle en-
ergy index from the energy spectrum of CRs can be trans-
formed in the so-called spectral index of the radio spectrum
α, by the simple linear relation Γ = 2α + 1. A radio con-
tinuum may then be characterized by the power-law form
Sν ∝ ν−α , where Sν is the radio flux density at frequency ν.
It is easy to conclude that the value for spectral index de-
rived directly from test-particle DSA theory is 0.5. As we
know from the observational data, the large majority of radio
spectra of Galactic SNRs have α = 0.5 (more generally be-
tween 0.2 and 0.8; see Green 2017 as well as Urošević 2014,
for more details). This really seems to be an excellent con-
firmation of the theoretical predictions. Furthermore, for a
standard value of the mean Galactic magnetic field strength
(∼5 µG), GeV electrons are responsible for the synchrotron
emission at higher radio-frequencies, and TeV electrons for
X-rays.

X-ray synchrotron emission that is linked to the SNRs is
usually associated with the existence of a pulsar wind neb-
ula (or plerion). Still, over the last several decades the ev-
idence for electron acceleration in SNRs has been signifi-
cantly enhanced by the detection of X-ray synchrotron ra-
diation from the shells of several young remnants (Koyama
et al. 1995). This X-ray synchrotron emission implies that
CR electrons are indeed accelerated up to energies of around
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10 to 100 TeV. Furthermore, such young SNRs generally
have an X-ray synchrotron spectra with rather steep indices
Γ = 2–3.5 which points to a steep underlying electron en-
ergy distribution. Such a detected steepness, on the other
hand, indicates that the synchrotron X-ray emission is in fact
caused by the electrons close to the maximum energy of the
CRs electron energy distribution.

Furthermore, γ -ray observations are a promising way to
study CR acceleration in the SNRs, especially in the TeV
and even PeV range (e.g. Gaggero et al. 2018). We note
here that the γ -rays may not necessarily come from the pul-
sars and pulsar wind nebulae, but from the SNR shells, too.
The Cherenkov γ -ray telescopes (like H.E.S.S., MAGIC
and VERITAS) have detected around 16 TeV sources that
are associated with SNRs, while few tens of firm identifi-
cations at GeV energies are present in the first Fermi cata-
logue of SNRs (Acero et al. 2016). The great importance of
γ -ray astronomy is reflected in the fact that it can give us
a direct view of the CR nuclei, accelerated via DSA. These
cosmic-ray protons and heavy ions produce γ -ray emission
if they collide with the ambient IS atomic nuclei. As a result,
among the other products of such a collision process, neu-
tral pions are created, which then decay in two γ -ray pho-
tons (the so-called hadronic scenario). This allow us to trace
high-energy CRs above GeV energy (see Inoue 2019, and
references therein). However, two other important γ -ray ra-
diation processes originate from CR electrons (the so-called
leptonic scenario). Interactions with background photons re-
sult in the inverse Compton up-scattering, whereas interac-
tions with ions in the SNR result in bremsstrahlung radia-
tion. Usually, inverse Compton scattering is a more domi-
nant leptonic process in young SNRs. However, it is gener-
ally very difficult to distinguish between hadronic and lep-
tonic origin of γ -rays (Sano et al. 2019). The advanced TeV
and other γ -ray telescopes like the Cherenkov Telescope Ar-
ray could in principle help us to infer more on the role of
SNRs in the efficient CR production.

In the case of very young SNRs, i.e. strong collisionless
shocks, we expect that the effects of the non-linear DSA can
cause a slightly concave up synchrotron spectrum (Reynolds
and Ellison 1992; Jones et al. 2003; de Looze et al. 2017).
In fact, from Sect. 2.4, we have learned that a non-linear
DSA theory predicts that the particle energy spectrum steep-
ens at low energies and also flattens at higher energies. This
immediately leads to the curved synchrotron (radio to mi-
crowave continuum) spectrum, that can be crudely modeled
by a pure power-law with a varying spectral index, such
as in the case of famous SNR Cas A (Onić and Urošević
2015). Of course, further observations of the integrated ra-
dio up to microwave continuum of SNRs is of great impor-
tance as any possible deviations from the known theory can
give us new clues about physics of the observed emission.

We need reliable flux density estimates at as many as pos-
sible different continuum frequencies. However, this is con-
nected with serious observational problems, such as trans-
parency issues regarding the Earth’s atmosphere. The new
confirmations of the theoretically predicted radio spectral
features at high radio frequencies could be expected from
future observations by for instance, ALMA (Atacama Large
Millimeter/submillimeter Array) telescope. As a final note,
another consequence of the spectral curvature is that the
actual X-ray synchrotron brightness cannot be just simply
estimated from an extrapolation of the radio synchrotron
spectrum—it should be brighter than the one expected (Vink
et al. 2006; Allen et al. 2008).

Finally, a word of caution regarding the non-linear DSA
theory presented earlier in this paper. Several authors claim
that the concavity of the spectrum contradicts present γ -ray
observations (see e.g. Caprioli 2011). One way of remov-
ing the concavity was found in Ferrand et al. (2014). It was
shown that at perpendicular shocks, the concavity can be
removed by replacing the Bohm diffusion coefficient by a
more realistic form.

Another important question is related to the observational
fact that several young pre-Sedov SNRs exhibit rather steep
(but not curved) radio spectral indices (α > 0.5). Neglect-
ing the non-linear hydrodynamic effects due to the CR pres-
sure in the precursor, Bell et al. (2011) demonstrated that the
oblique-shock effects can produce a steep spectrum if the
high velocity shock of a young SNR has a tendency towards
a quasi-perpendicular configuration. They noted that either
a magnetic field amplification in the precursor due to CR
streaming or expansion into a circumstellar wind support-
ing a Parker spiral may produce a quasi-perpendicular shock
geometry. Bell et al. (2011) also concluded that the Galactic
CR spectrum is most probably formed by a complex mixture
of non-linear, oblique-shock and momentum-dependent CR
escape effects. In the case of large shock inclinations, accel-
eration efficiency decreases and one would expect steeper
spectrum. However, acceleration efficiency for shock incli-
nations greater than 60◦ is found to be decreasing, reach-
ing practically zero percent (see Fig. 3 in Caprioli and
Spitkovsky 2014) and quenching particle acceleration (ex-
cept in the case of diffusive shock re-acceleration mecha-
nism). Spectral steepening in young SNRs has also been
discussed by Bell et al. (2019). They proposed a new pro-
cess in which the loss of CR energy to turbulence and mag-
netic field during the CR acceleration at the non-relativistic
quasi-parallel shocks is responsible for the spectral steepen-
ing. One should bear in mind that such a process is indeed
a non-linear effect in the sense that it depends on the shock
velocity and on non-linear turbulent amplification of mag-
netic field, but it does not depend on the ratio of the CR
pressure to the kinetic pressure at the shock. On the other
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hand, using particular numerical simulation that incorpo-
rates three-dimensional hydrodynamic modeling and non-
linear kinetic theory of CR acceleration in parallel shocks,
taking into account the non-linear back reaction of acceler-
ated particles on the fluid structure, Pavlović (2017) found
that the steep (but not significantly curved) radio spectral
index of the youngest known SNR G1.9+0.3 can be solely
explained by means of the efficient NLDSA. The most prob-
able scenario is the one that incorporates more than one of
the proposed processes that act at the same time.

In addition, a significant contribution of the second or-
der Fermi (or stochastic) acceleration mechanism is usu-
ally proposed to shape the radio-continuum of several evolu-
tionary old Galactic SNRs with spectral indices α less than
0.5 (Schlickeiser and Fürst 1989; Ostrowski 1999). How-
ever, contribution of the secondary electrons left over from
the decay of charged pions (if an SNR is interacting with
a molecular cloud), or just a simple thermal contamination,
or even the intrinsic thermal bremsstrahlung radiation from
the SNRs, etc., can also cause such flat spectral indices as
observed in some, usually evolutionary old SNRs in high
density environment (Uchiyama et al. 2010; Onić 2013).
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