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ABSTRACT

In this paper, we present new empirical radio surface-brightness-to-diameter (Σ–D) relations for supernova remnants
(SNRs) in our Galaxy. We also present new theoretical derivations of the Σ–D relation based on equipartition or
on a constant ratio between cosmic rays and magnetic field energy. A new calibration sample of 60 Galactic SNRs
with independently determined distances is created. Instead of (standard) vertical regression, used in previous
papers, different fitting procedures are applied to the calibration sample in the log Σ– log D plane. Non-standard
regressions are used to satisfy the requirement that values of parameters obtained from the fitting of Σ–D and
D–Σ relations should be invariant within estimated uncertainties. We impose symmetry between Σ–D and D–Σ
due to the existence of large scatter in both D and Σ. Using four fitting methods that treat Σ and D symmetrically,
different Σ–D slopes β are obtained for the calibration sample. Monte Carlo simulations verify that the slopes of the
empirical Σ–D relation should be determined by using orthogonal regression because of its good performance in
data sets with severe scatter. The slope derived here (β = 4.8) is significantly steeper than those derived in previous
studies. This new slope is closer to the updated theoretically predicted surface-brightness–diameter slope in the
radio range of the Sedov phase. We also analyze the empirical Σ–D relations for SNRs in a dense environment of
molecular clouds and for SNRs evolving in the lower-density interstellar medium. Applying new empirical relations
to estimate distances of Galactic SNRs results in a dramatically changed distance scale.
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1. INTRODUCTION

Supernova remnants (SNRs) are the main sources of kinetic
energy and heat for the interstellar medium (ISM). They also
contribute to the acceleration of cosmic rays (CRs). The total
number of Galactic SNRs is predicted to be between 1000
and 10,000 (Berkhuijsen 1984; Li et al. 1991; Tammann et al.
1994). Assuming a typical evolution timescale (∼105 yr) of
SNRs before they merge with the ISM and an event rate of two
supernovae (SNe) per century in the Milky Way (Dragicevich
et al. 1999), ∼2000 SNRs are expected in our Galaxy. However,
just 274 SNRs have been identified in our Galaxy from their
emission line spectra and radio and X-ray radiation (Green
2009). Such a great deficit points to the selection effects in
past surveys. All known SNRs are sources of radio-synchrotron
emission.

SNRs were often discovered in radio surveys of the Galactic
plane. Because of the surface-brightness limit of previous
surveys, more faint or confused SNRs await discovery. The
dominant selection effects are those that are applicable at radio
wavelengths. To put it simply, three selection effects apply
to the identification of Galactic SNRs (e.g., Green 1991):
(1) difficulty in identifying faint remnants, (2) difficulty in
identifying small angular size remnants, and (3) the absence
of uniform coverage of the sky. Additionally, Malmquist bias5

is severe in the Galactic samples, making them incomplete. In
the case of extragalactic SNRs, the selection effects are different
(see Urošević et al. 2005).

The important and very difficult task of determining distances
to Galactic SNRs is often based on observations in the radio do-

5 The volume selection effect: brighter objects are favored in flux density
limited surveys.

main. It is possible to determine direct distances from historical
records of SNe; proper motions and radial velocities; kinematic
observations; coincidences with H i, H ii, and molecular clouds;
and OB associations and pulsars (Green 1984). Where direct
distance determination is not possible, estimates can be made
for shell SNRs using the radio surface-brightness–diameter rela-
tionship (Σ–D). The mean surface brightness at a specific radio
frequency, Σν , is a distance-independent parameter and is an im-
portant characteristic of an SNR (Shklovsky 1960a). The radio
surface brightness at frequency ν to diameter relation for SNRs
has been written in general form as

Σν(D) = AD−β, (1)

where A depends on the properties of the SN explosion and ISM,
such as the SN energy of explosion, the mass of the ejected
matter, the density of the ISM, the magnetic field strength,
etc., while β is thought to be independent of these properties
(Arbutina & Urošević 2005). For empirical relations, parameters
A and β are obtained by fitting the data for a sample of SNRs of
known distances.

According to the existing convention, SNRs are classified
into three basic types: shell remnants, plerionic or filled-
center remnants, and composite remnants. Allakhverdiyev et al.
(1983a, 1983b, 1986a, 1986b) showed that the Σ–D relation
is only applicable to shell-type SNRs. However, it can also be
used for composite remnants if we separate the flux from the
surrounding shell and the central regions.

The first theoretical Σ–D relation was derived by Shklovsky
(1960a). He was also the first to propose the use of this
relation as a method for determining SNR distances (Shklovsky
1960b). An updated theoretical derivation of this relation for
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shell-like SNRs was made by Berezhko & Völk (2004). The
first empirical relations were derived by Poveda & Woltjer
(1968), Milne (1970, 1979), Clark & Caswell (1976), and
many other authors. An important Galactic relation frequently
used in the last decade was derived by Case & Bhattacharya
(1998, hereafter CB98). The updated Galactic Σ–D relation
was derived by Guseinov et al. (2003), Xu et al. (2005), and
Stupar et al. (2007). More than five decades after the first
published study of the relation, it continues to evolve both in
theoretical and empirical aspects. A detailed review of Galactic
and extragalactic empirical Σ–D relations was presented by
Urošević (2002).

Although many authors have improved the theoretical and
empirical Σ–D relations, there are still some doubts about
when this relation should be applied to determine distances to
individual remnants. Green (1984) presented a critical analysis,
noting that remnants with reliable distances have widespread
intrinsic properties leading to significant dispersion in the
Σ–D diagram. One of the main problems is the high level of
uncertainty for independently determined distances of SNRs,
which are used for Σ–D calibration. Also, a variety of selection
effects may be present in the data samples of both Galactic
and extragalactic SNRs. Arbutina et al. (2004) concluded that
evolutionary paths may differ from remnant to remnant because
of the potentially wide range of intrinsic properties of SN
explosions (and progenitor stars) and the ISM into which they
expand. Arbutina & Urošević (2005) showed that different Σ–D
relations can be constructed for two different samples, remnants
in a dense environment of molecular clouds and SNRs evolving
in ISM of lower density.

A similar relation can also be used for composite SNRs, but
few of those remnants have known distances, and it is difficult
to obtain a Σ–D relation for them. The Σ–D relation is often the
only method for distance determination for shell SNRs. Despite
the inherent uncertainties and assumptions of this method,
we suggest that the often-used Σ–D relation by CB98 should be
updated because of the significant increase in the number of SNR
calibrators. Additionally, different fitting procedures have to be
used for establishing proper Σ–D calibration; we emphasize that
in all previous papers the standard fitting procedure, based on
vertical (parallel to y-axes) χ2 regression, was being used to
derive empirical Σ–D relations for the Galactic SNR samples
(e.g., Poveda & Woltjer 1968; Clark & Caswell 1976; Milne
1979; CB98; Guseinov et al. 2003; Xu et al. 2005). In this
paper, we select calibrators from Green’s SNR catalog (Green
2009) based on literature up to the end of 2008.6

The Σ–D relation has two particular uses: the derivation
of diameters (and hence distances) and the parameterization
of the relationship between surface brightness and diameter
for comparison with models and theories. For the former,
the measured value of Σ is used to predict D, and for this
case a least-squares fit minimizing the deviations in log D
should be used. However, Urošević et al. (2010) suggested
the use of the orthogonal regression fitting procedure for
obtaining the empirical Σ–D relation, instead of the classical
vertical regression. Isobe et al. (1990) show that regression in
astrophysical applications is more complex than most realize
and give alternatives to ordinary vertical regression. In our paper,
following the conclusions of Isobe et al. (1990), Green (2005),
and Urošević et al. (2010), we test four different linear regression

6 A Catalogue of Galactic Supernova Remnants (2009 March version),
Astrophysics Group, Cavendish Laboratory, Cambridge, United Kingdom
(also available on the Web at http://www.mrao.cam.ac.uk/surveys/snrs/).

methods (including already mentioned orthogonal regression)
that treat variables Σ and D symmetrically. Symmetry between
Σ–D and D–Σ is also required due to the existence of large
scatter in both D and Σ axes. Therefore, the values of parameters
obtained by fitting Σ–D and D–Σ relations have to agree within
estimated uncertainties.

This paper also considers possible dependence of radio
luminosity on the linear diameter (L–D dependence). This
criterion, established by Arbutina et al. (2004), is as follows:
if the L–D relation is obtained then the Σ–D relation follows
and it may be used for the estimation of SNR distances.

In Section 2, we present a new theoretical derivation of
the Σ–D relation based on equipartition between CRs and
magnetic field energy.7 The equations derived here describe
three consecutive phases of the adiabatic (Sedov) phase of
evolution of non-thermal radiation from SNRs. In Section 3,
using the 274 SNRs in Green’s present catalog (2009 March
version), we construct a calibration sample containing 60
Galactic shell remnants with distance estimates and use it to
derive Σ–D relation. Monte Carlo simulations are performed in
Section 4 to estimate the influence of data scatter on the Σ–D
and L–D slopes. In this section, we also derive the empirical
Galactic Σ–D relation of the calibration sample containing 60
SNRs. In Section 5, we apply our Galactic Σ–D relation to
obtain the distances of two newly discovered large and faint
SNRs, G25.1−2.3 and G178.2−4.2. In Section 6, we present
Σ–D relations of a subsample of 28 Galactic SNRs evolving
in dense environments and a subsample only 5 Galactic SNRs
evolving in low density. In Section 7, we briefly review selection
effects that influence Galactic samples of SNRs severely. The
conclusions of this paper are presented in the last section.

2. A THEORETICAL INTERPRETATION
OF THE Σ–D RELATION

A slightly different theoretical interpretation of the Σ–D rela-
tion is presented for non-thermal radiation from SNRs. This
model is based on equipartition introduced by Reynolds &
Chevalier (1981). Equipartition is a useful tool for estimating
magnetic field strength and the energy contained in the magnetic
field and CR particles using only the radio-synchrotron emis-
sion of a source. Details of equipartition and revised equipar-
tition calculations for radio sources in general are available in
Pacholczyk (1970) and Govoni & Feretti (2004), and Beck &
Krause (2005), respectively. Arbutina et al. (2012) introduced
new modifications in equipartition calculation. They integrated
over momentum to obtain energy densities of particles so there
is no need to either introduce a break in the energy spectrum or
take into account different ion species.

The total energy density of CRs can be written as the sum of
two components (Arbutina et al. 2012): energy of electrons (εe)
and ions (εion):

εCR = εe + εion ≈ κKe(mec
2)2−γ

×
[

1∑
i Ziνi

(
mp

me

)2−γ

·
(

2mpc
2Einj

E2
inj + 2mec2Einj

)(γ−1)/2

·
Γ

(
3−γ

2

)
Γ

(
γ−2

2

)
2
√

π (γ − 1)

∑
i

A
(3−γ )/2
i νi

]
, (2)

7 By “equipartition” we do not assume that the energies are necessarily equal
or nearly equal, but rather that the energy ratio is constant during evolution.
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where γ is the energy spectral index (2 < γ < 3), Einj is
the injection energy of particles, me and mp are electron and
proton masses, νi = ni/n are ion abundances, Ai and Zi are
mass and charge numbers of elements, and Ke is the constant
in the power-law energy distribution for electrons. κ is a slowly
varying function (if Einj is not very high; see Figure 2 in Arbutina
et al. 2012) that incorporates the ratio between electron and ion
energy (the latter of which should be dominant). Here, the term
“total energy density” implies that we take into account all CR
species (e.g., electrons, protons, α-particles, and heavier ions)
inside the SNR, which have been injected into the acceleration
process. We neglect energy losses.

We assume that an isotropic power-law distribution of ultra-
relativistic electrons is created at the shock wave (Bell 1978):

N (E)dE = KeE
−γ dE. (3)

For a given element of gas, Ke evolves behind the shock
wave as a result of the conservation of energy. The flux
density of synchrotron radiation of ultrarelativistic electrons,
obtained from Pacholczyk (1970) after substituting the emission
coefficient εν with flux density Sν , is

Sν ∝ KeB
1+αV ν−α W m−2 Hz−1, (4)

where B is the magnetic field strength, V is the volume, ν is the
frequency, and α is the synchrotron spectral index defined as
α = (γ − 1)/2. Here, we use the flux density defined as

Sν = Lν

4πd2
= ενV

d2
= 4π

3
ενf θ3d, (5)

where Lν is the radio luminosity, f is the volume filling factor
of radio emission, d is the distance, and θ = R/d is the angular
radius. Then, we obtain the Σ–D relation

Σν = AD−β = Lν

π2D2
∝ SνD

−2 W m−2 Hz−1 sr−1. (6)

Σν represents surface brightness defined as Σν = Sν/Ω, where
Ω (in steradians) is the solid angle of the radio source.

Reynolds & Chevalier (1981) assumed a redistribution of
energy between CRs, the magnetic field, and thermal gas behind
shock wave (equipartition between εCR and εB) described as

εCR ≈ εB = 1

2μ0
B2 ∝ ρ0υ

2
s , (7)

where υs is the pre-shock velocity and ρ0 is the pre-shock
ambient density. We introduce the parameter s to allow for an
ambient density profile of the form ρ ∝ R−s , R ∝ tm, and
γ = 2α + 1, where R represents radius (D = 2R) and m is
known as a deceleration parameter (Bandiera & Petruk 2004).
This relation also contains a break, similar to the relation of
Duric & Seaquist (1986).

If we assume low shock velocity (older SNRs) so that
Einj = mpυ

2
s � 2mec

2, i.e., υs � 7000 km s−1, from
Equation (2), we have

Ke ∝ ρ0υ
2
s , (8)

and, after expressing B ∝ (ρ0υ
2
s )1/2 from Equation (7) and

inserting V ∝ D3, with υs = (dR/dt) ∝ mtm−1 ∝ mDm−1/m

we find the relation

Sν ∝ K
γ +5

4
e V ∝ (

ρ0υ
2
s

) γ +5
4 D3 ∝ D

(
2(m−1)

m
−s

)
α+3

2 +3
. (9)

Taking s = 0 and m = 2/5 (Sedov 1959) leads to

Σν ∝ D− 3α+7
2 , (10)

and substituting an average SNR spectral index α = 0.5 gives
β = 17/4 = 4.25 (see Reynolds & Chevalier 1981; Berezhko
& Völk 2004).

Another possibility is Einj � 2mec
2, i.e., υs �

7000 km s−1, which is satisfied for younger remnants. In this
case, following Equation (2), constant Ke in the power-law en-
ergy distribution of electrons has the form

Ke ∝ ρ0υ
2
s E

γ−1
2

inj ∝ ρ0υ
2(α+1)
s , (11)

and therefore the flux density is

Sν ∝ ρ
α+3

2
0 υ3(α+1)

s D3 ∝ D
3(α+1)(m−1)

m
− s(α+3)

2 +3. (12)

Taking s = 0 and m = 2/5 yields

Σν ∝ D− 9α+7
2 , (13)

and substituting α = 0.5 gives β = 23/4 = 5.75.
Berezhko & Völk (2004) applied time-dependent nonlinear

kinetic theory for CR acceleration in SNRs in studying the
properties of the synchrotron emission. In particular, they
applied detailed numerical calculations for deriving the surface-
brightness–diameter (Σ–D) relation for the range of relevant
physical parameters, namely ambient density (nH) and SN
explosion energy (Esn). Berezhko & Völk (2004) derived Σ–D
relations for different phases of SNR evolution.

During the initial part of the free expansion phase, the
expected dependence is

Σν ∝ n
7/4
H D, (14)

which explains well the numerical Σν(D) behavior of small D.
In this region, Σν(D) does not depend on the SN parameters Esn
and Mej (mass of ejected matter), but it does depend on the ISM
density.

During the later part of the free expansion phase, the expected
dependence is

Σν ∝ (Esn/Mej)
7/16n

21/16
H D−5/16. (15)

In the subsequent Sedov8 phase, we have

Σν ∝ E7/14
sn D−17/4, (16)

independent of nH and Mej.
In the late Sedov phase, dependence goes toward

Σν ∝ Esnn
3/4
H D−2. (17)

We note that the phase described by Equation (13), based on
equipartition, represents an additional intermediate phase be-
tween the late free expansion and early Sedov phases introduced
by Berezhko & Völk (2004). Therefore, Equations (13), (16),
and (17) respectively describe three consecutive phases of the
adiabatic (Sedov) phase of evolution of SNRs. SNRs spend most
of their evolution in the Sedov phase, up to almost a million years

8 Also known as Sedov–Taylor phase.
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in a hot ISM (McKee & Ostriker 1977). Usually, pressure effects
are responsible for terminating the Sedov phase earlier.

Based on previous results and assuming that the majority
of SNRs are in the Sedov phase, we expect to obtain Σ–D
slope β in the range of 2–5.75, depending on the evolutionary
stage of the remnants in a sample of shell-type SNRs. Also,
we should expect additional scatter (which does not affect
the slope significantly) in the Σ–D diagram due to different
properties of the SN explosion and ISM, such as the energy of
explosion, the mass of the ejected matter, and the density of
the ISM.

3. CALIBRATION SAMPLE AND NEW Σ–D RELATION

To obtain a reliable empirical Σ–D relation, we used a sam-
ple of shell-type SNRs with independently determined distances
and well-determined angular diameters and flux densities. Vari-
ous methods provide distance estimates to the remnants such as
proper motions; shock and radial velocities; H i absorption and
polarization; association or interaction with H i, H ii, and CO
molecular clouds; X-ray observations; optical extinction; and
low frequency radio absorption. Of the 274 SNRs in Greens’s
present catalog (2009 March version), 84 have independently
determined distances (59 of them classified as shell type, 14
composite, 6 filled center, and 5 unknown type). The flux densi-
ties given in the catalog and the calculated surface brightnesses
in this paper are referenced to 1 GHz.

The surface brightnesses and angular diameters are taken
from Green’s catalog. This catalog was also our primary source
of information about the distances of remnants. Many of the
SNRs from this catalog have more than one distance available.
Following the CB98 approach, we have either chosen the most
recent measurement or used an average of the available estimates
(if the given distance range is narrow enough). We have also
searched the literature for recent papers not included in Green’s
catalog, which provide accurate distances to Galactic shell
remnants. Our Galactic sample of 60 shell remnants with direct
distance estimates, which is used to derive new Σ–D relations,
is listed in Table 1.

Part of our Galactic sample contains 33 SNRs, with updated
parameters, which were also used as calibrators by CB98. The
following four SNRs from the CB98 sample were omitted from
our sample. According to Green’s catalog, the shell structure,
as well as the flux density at 1 GHz, of G49.2−0.7 (W51)
is questionable, while G330.0+15.0 (Lupus Loop) does not
have enough accurate measurements of angular diameter and
flux density. Up to now, only a lower limit for the distance
of remnant G304.6+0.1 (Kes 17) has been measured (9.7 kpc
from H i absorption). Foster et al. (2006) showed that OA 184,
previously classified as SNR G166.2+2.5, is actually a Galactic
H ii region energized by O7.5V star BD+41◦1144.

Our Galactic sample also includes five composite SNRs be-
cause (1) they have a pure shell structure in radio regardless
of centrally brightened radio morphology or (2) it was possible
to separate the shell flux density from the pulsar wind nebula
(PWN) flux density. Tam et al. (2002) determined the integrated
flux over various regions in the composite source G11.2−0.3.
From their measurements and integrated flux density measure-
ments of G11.2−0.3 at different frequencies, we estimate the
SNR shell flux density at 1 GHz to be 20.5 Jy (subtracting PWN
flux density, which represents about 3% of the flux density of the
entire source). G93.3+6.9 (DA 530) is a high Galactic latitude
SNR with a well-defined shell-like radio morphology that has
a centrally filled morphology only in X-rays (Jiang et al 2007).

Observed in radio, the composite SNR G189.1+3.0 (IC 443)
consists of two connected, roughly spherical shells of radio-
synchrotron emission that are centered at different locations.
Combining their measurements with existing data, Castelletti
et al. (2011a) estimated that the flux density of the PWN repre-
sents only about 0.1% of the total flux density and therefore we
calculated the SNR shell flux density at 1 GHz to be 164.7 Jy.
Castelletti et al. (2011b) investigated in detail the radio emis-
sion belonging to SNR G338.3−0.0 around the X-ray pulsar
candidate in a search for traces of a PWN, by reprocessing
data corresponding to observations acquired with the Australia
Telescope Compact Array (ATCA).9 No nebular radio emission
has been found to correspond to the X-ray PWN, in spite of
the good quality of their radio images down to low surface-
brightness limits, and therefore the measured flux density in
radio corresponds only to the SNR shell flux density. Based on
the radio images and the comparison of X-ray and IR obser-
vations, Giacani et al. (2011) confirmed that there is no PWN
within composite remnant G344.7−0.1. Also, the same authors
redetermined the distance of this SNR to be (6.3 ± 0.1) kpc on
the basis of H i absorption and emission.

The shell remnant G1.9+0.3 is the youngest known Galactic
SNR with known distance and the only Galactic SNR increasing
in flux. Its estimated age is 156 ± 11 yr (Carlton et al. 2011) and
its distance is about 8.5 kpc. Therefore, this SNR should not be
included in our sample because it is probably still in the phase
of free expansion.

We mentioned in Section 1 that in the past a single linear
regression method was used for the purpose of obtaining the
empirical Σ–D relation: ordinary least-squares regression of
the dependent variable Y against independent variable X, or
OLS(Y |X).10 In OLS(Y |X), the regression line is defined as that
which minimizes the sum of the squares of the Y residuals. Some
applications, however, require using alternatives to OLS(Y |X).
The class of alternatives to OLS(Y |X) used in our paper
was suggested by Isobe et al. (1990) for problems where the
intrinsic scatter of data dominates any errors arising from
the measurement process. This class of methods has also
been proposed in order to avoid specifying “independent” and
“dependent” variables.

The most important purpose of the Σ–D relation is to estimate
diameters (and hence distances) for Galactic SNRs based on
their observed surface brightnesses. Green (2005) also stated an
important issue related to the Σ–D fits, even when disregarding
problems with the selection effects. Namely, he pointed out
that the measured value of Σ is used to predict D, and that
a least-squares fit minimizing the deviations in log D should
be used to that effect. This, however, has not been done thus
far, and fits minimizing the deviations in log Σ have been used
instead. He also mentioned that a fit to data that treats Σ and
D symmetrically is appropriate if a Σ ∝ Dn relation is used to
describe the relationship between Σ and D and, by extension,
the radio evolution of SNRs.

Four methods that treat the variables symmetrically have
been suggested by Isobe et al. (1990). One is the line that
bisects the OLS(Y |X) and the inverse OLS(X|Y ) lines, called the
“OLS bisector” or “double regression,” which has been applied
in characterization of the Tully–Fisher and Faber–Jackson
relations to estimate galaxy distances (Rubin et al. 1980;
Lynden-Bell et al. 1988; Pierce & Tully 1988). The second

9 The ATCA is an array of six 22 m antennas used for radio astronomy.
10 Notation introduced by Isobe et al. (1990).

4



The Astrophysical Journal Supplement Series, 204:4 (16pp), 2013 January Pavlović et al.

Table 1
Shell SNRs with Known Distancesa

Catalog Name Other Name Surface Brightness Distance Diameter Reference
(W m−2 Hz−1 sr−1) (kpc) (pc)

G4.5+6.8b Kepler, SN1604, 3C358 3.18e-19 6.0 5.2 1
G11.2−0.3 1.93e-19 4.4 5.1 7
G18.8+0.3b Kes 67 2.66e-20 12.0 47.7 2
G21.8−0.6 Kes 69 2.60e-20 5.2 30.3 3
G23.3−0.3 W41 1.45e-20 4.2 33.0 2
G27.4+0.4 Kes 73, 4C−04.71 5.64e-20 8.65 10.1 2
G31.9+0.0b 3C391 1.03e-19 8.5 14.6 2
G33.6+0.1b Kes 79 3.31e-20 7.0 20.4 4
G41.1−0.3 3C397 2.94e-19 10.3 10.0 5
G43.3−0.2b W49B 4.77e-19 10.0 10.1 2
G46.8−0.3b HC30 9.53e-21 7.8 33.7 2
G53.6−2.2b 3C400.2, NRAO 611 1.30e-21 2.8 24.8 2
G54.4−0.3b HC40 2.63e-21 3.3 38.4 6, 7
G55.0+0.3 2.51e-22 14.0 70.5 2
G65.1+0.6 1.84e-22 9.0 175.6 2
G74.0−8.5b Cygnus Loop 8.59e-22 0.54 30.1 8
G78.2+2.1b γ Cygni, DR4 1.34e-20 1.20 20.9 9
G84.2−0.8b 5.17e-21 4.50 23.4 7, 10
G89.0+4.7b HB21 3.07e-21 0.8 24.2 2
G93.3+6.9 DA 530, 4C(T)55.38.1 2.51e-21 2.2 14.9 7
G93.7−0.2 CTB 104A, DA 551 1.53e-21 1.5 34.9 2
G94.0+1.0 3C434.1 2.61e-21 5.2 41.4 2
G96.0+2.0 6.68e-23 4.0 30.3 2
G108.2−0.6 3.19e-22 3.2 57.2 2
G109.1−1.0 CTB 109 4.22e-21 3.2 26.1 11
G111.7−2.1b Cassiopeia A, 3C461 1.64e-17 3.4 4.9 2
G114.3+0.3 1.67e-22 0.7 14.3 2
G116.5+1.1b 3.14e-22 1.6 32.2 2
G116.9+0.2b CTB 1 1.04e-21 1.6 15.8 2
G119.5+10.2b CTA 1 6.69e-22 1.4 36.7 2
G120.1+1.4b Tycho, 3C10, SN1572 1.32e-19 4.0 9.3 12
G127.1+0.5 R5 8.92e-22 1.25 16.4 2
G132.7+1.3b HB3 1.06e-21 2.2 51.2 2
G156.2+5.7b 6.22e-23 1.0 32.0 13
G160.9+2.6b HB9 9.85e-22 0.8 30.2 14
G166.0+4.3b VRO 42.05.01 5.47e-22 4.5 57.4 2
G180.0−1.7 S147 3.02e-22 0.62 32.5 2
G189.1+3.0 IC443, 3C157 1.22E-20 1.5 19.6 7
G205.5+0.5b Monoceros Nebula 4.98e-22 1.2 76.8 2
G260.4−3.4b Puppis A, MSH 08-44 6.52e-21 2.2 35.1 2
G290.1−0.8 MSH 11-61A 2.38e-20 7.0 33.2 2
G292.2−0.5 3.51e-21 8.4 42.3 2
G296.5+10.0b PKS 1209-51/52 1.23e-21 2.1 46.7 15
G296.8−0.3 1156-62 4.84e-21 9.6 46.7 2
G309.8+0.0b 5.39e-21 3.6 22.8 7
G315.4−2.3b RCW 86, MSH 14-63 4.18e-21 2.3 28.1 2
G327.4+0.4 Kes 27 1.02e-20 4.85 29.6 2
G327.6+14.6b SN1006, PKS 1459-41 3.18e-21 2.2 19.2 2
G332.4−0.4b RCW 103 4.21e-20 3.1 9.0 2
G337.0−0.1 CTB 33 1.34e-19 11.0 4.2 2
G337.8−0.1 Kes 41 5.02e-20 11.0 23.5 2
G338.3−0.0 1.57e-20 11.0 25.6 20
G340.6+0.3 2.09e-20 15.0 26.2 2
G344.7−0.1 3.76e-21 6.3 18.3 19
G346.6−0.2 1.88E-20 11.0 25.6 16
G348.5+0.1b CTB 37A 4.82e-20 7.9 34.5 21
G348.5+0.1b CTB 37B 1.35e-20 13.2 65.3 21
G349.7+0.2b 6.02e-19 18.4 12.0 2
G352.7−0.1 1.25e-20 7.5 15.1 4
G359.1−0.5b 3.66e-21 7.6 53.1 17, 18

Notes.
a Direct distance estimates, which can be inferred from proper motions, shock, and radial velocities; H i absorption and polarization; association or interaction
with H i, H ii, and CO molecular clouds; OB associations; pulsars; X-ray observations; optical extinction; and low frequency radio absorption.
b SNRs also belonging to Case & Bhattacharya’s (1998) calibration sample.
References. (1) Chiotellis et al. 2012; (2) Green 2009; (3) Zhou et al. 2009; (4) Giacani et al. 2009; (5) Jiang et al. 2010; (6) Junkes et al. 1992; (7) Case &
Bhattacharya 1998; (8) Blair et al. 2005; (9) Uchiyama et al. 2002; (10) Feldt & Green 1993; (11) Kothes & Foster 2012; (12) Asami Hayato et al. 2010; (13) Xu
et al. 2007; (14) Leahy & Tian 2007; (15) Giacani et al. 2000; (16) Hewitt et al. 2009; (17) Uchida et al. 1992a; (18) Uchida et al. 1992b; (19) Giacani et al. 2011;
(20) Castelletti et al. 2011b; (21) Tian & Leahy 2012.
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Table 2
The Σ–D Fit Parameters for a Calibration Sample of 60 Galactic

SNRs and Different Regression Methods

Fit β Δβ log A Δ log A Average
Fractional Error

OLS(Y |X) 2.2840 0.3282 −17.0028 0.4895 0.824
OLS(X|Y ) 5.0375 0.7465 −13.1820 1.0162 0.469
Orthogonal 4.8161 0.7218 −13.4877 0.9819 0.472
Bisector 3.1741 0.3335 −15.7641 0.4746 0.575
Arithmetic mean 3.7079 0.4282 −15.0209 0.5817 0.522
Geometric mean 3.4178 0.3536 −15.4256 0.4898 0.547

Note. We give β and A in relation Σν = AD−β as well as their errors.

method is the geometric mean of OLS(Y |X) and the OLS(X|Y )
slopes, proposed as the “impartial” regression by Strömberg
(1940) and used in cosmic distance scale applications. It
was also independently derived by statisticians and called
the “reduced major-axis.” The third regression is the line
that minimizes the sum of the squares of the perpendicular
distances between the data points and the line, often called
“orthogonal regression” or “major-axis” regression. Urošević
et al. (2010) applied orthogonal regression, for the first time,
to obtain the empirical relation of SNRs in the starburst galaxy
M82. The fourth method that treats the variables symmetrically
represents the arithmetic mean of the OLS(Y |X) and OLS(X|Y )
slopes (Aaronson et al. 1986). It is easily recognized that
these four techniques, though each is invariant to switching
variables (referred to as the dependent and independent), lead to
completely different regression lines, both mathematically and
in real applications.

The empirical Σ–D relation depends greatly on the regression
method adopted. The dispersion of the six estimates is consider-
ably larger than the variance of any one estimate (see Table 2).
For problems like these, Isobe et al. (1990) suggest calculating
all six11 regressions and being appropriately cautious regard-
ing the confidence of the inferred conclusion. Accordingly, we
give all mentioned regressions in Figure 1 (except OLS(X|Y ),
which is very close to orthogonal regression) that applied to our
calibration sample of 60 shell SNRs.

Data fitting is performed analytically and by using bootstrap.
The fit parameter values and their errors, presented in Table 2,
were obtained after 106 bootstrap data re-samplings for each
fit. After applying bootstrap, we obtain the distribution of a
selected value for a certain regression procedure and then fit this
dependence in OriginPro 8 with Gauss (normal) distribution,
by using four-parameter fitting without parameter fixing. A
normal distribution is used here as a good approximation to
describe the behavior of bootstrap re-samples. Thus, we get a
mean (expectation) and associated standard deviation for each
parameter.

4. MONTE CARLO SIMULATIONS

4.1. Σ–D Relation

At first glance, an inspection of Figure 1 and Table 2 leads
to the conclusion that the resulting fit parameter values are sig-
nificantly influenced by the type of fitting procedure. This is
mainly due to the large dispersion in the sample of calibrators

11 The sixth regression method, the arithmetic mean of the OLS(Y |X) and
OLS(X|Y ) slopes, was not contained in their paper, but was added in the proof.

Figure 1. Surface brightness vs. diameter Σ–D relation at 1 GHz for shell
SNRs obtained by using the distance calibrators in Table 1. The different
methods for minimizing the distance of the data from a fitted line are presented.
The two solid lines represent OLS(Y |X) (thin line) and orthogonal regression
(thick line). Dashed, dotted, and dash-dotted lines represent the arithmetic and
geometric means of the OLS(Y |X) and OLS(X|Y ) slopes and the OLS bisector,
respectively. OLS(X|Y ) line, with a slope very similar to orthogonal regression,
is omitted to avoid complicating the graph. G1.9 + 0.3, the youngest Galactic
SNR that shows a flux density increasing with time (Green et al. 2008), is also
shown (triangle), but it is not included in the calibration sample because it is still
in the early (rising) free expansion phase of evolution (see Berezhko & Völk
2004).

(low correlation coefficient12r = −0.68). Much of this disper-
sion is due to properties of the SN explosion and ISM, which
may substantially differ from one SNR to another. It has gener-
ally been accepted that the density of the ISM is of significant
importance in the evolution of SNRs; the other parameters are,
in one way or another, connected to the ISM density (Arbutina
& Urošević 2005). SNRs of different types can be found along
more or less parallel tracks in the Σ–D plane. Also, the environ-
ment is probably quite inhomogeneous in the case of a single
SNR, which would add more confusion in statistical studies.
The errors of determined distances and, to a lesser extent, flux
densities of the calibrator sample both directly affect the scatter
in the graph.

Theoretical considerations assume that the Σ–D relation
corresponds to the evolutionary track of a typical SNR.

Even for the Sedov phase, the fit should not necessarily
be assumed to be linear (in log–log space), and Sedov sub-
phases have β slopes from 2 to 5.75 as shown in Section 2. The
previously described effects add an extra scatter in our sample
of calibrators.

Due to the lack of information, it is not possible to separate
all SNRs according to their intrinsic properties, which are
connected with the density of the ISM in which they expand
their evolutionary stage. We therefore expect to obtain an
averaged empirical Σ–D relation that may still be used as a
distance estimator in cases when other existing methods are

12 Pearson product-moment correlation coefficient is calculated using the

following equation: r =
∑n

i=0(xi−x̄)(yi−ȳ)√∑n
i=0(xi−x̄)2

√∑n
i=0(yi−ȳ)2

.
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inapplicable. Errors of distances obtained by this method will
not be negligible but are still acceptable for the above purpose
(the average fractional error of the CB98 relation defined as
f = (dobs − dsd/dobs) was about 40%).

We perform a set of Monte Carlo simulations to estimate
the influence of the scatter of data on the Σ–D slope. We
generate random SNR populations (50–5000 SNRs) according
to artificially chosen Σ–D relations with β slopes 2, 3, 4, 5,
and 6, covering roughly the expected interval of slopes in the
Sedov phase. For each randomly selected value of D from
interval 5 to 150 pc (similar to that of real data), we calculate
surface brightness Σ using the initially proposed relation. Then
we add random “polar” scatter in the created log–log data
set. We add scatter by choosing random angle φ and random
distance r from original point (x, y), after which we perform the
following transformation (x, y) 
−→ (x + r cos φ, y + r sin φ).
For obtaining random angle φ and distance r, respectively, we
use uniform distribution and χ2 distribution with 10 degrees
of freedom (usually labeled as χ2

10), implemented in the GSL13

numerical library for C programming language. We have chosen
this distance distribution to be close to normal distribution,
although additional tests showed that the type of distribution and
number of degrees of freedom (for χ2) does not significantly
affect our later conclusions. The only parameter that we enter
is the distance that occurs most frequently in a generated
distribution of distances (known as the mode in statistics),
which is a direct measure of dispersion from generated artificial
samples (denoted by rmode). Such a mode value ensures that the
artificial distribution is similar to the real distributions for the
60 SNRs sample fitted with six different regression methods
(rmode ≈ 0.5).

We give values of fitted slopes for randomly generated
SNR populations in Figure 2 as a function of sample size
and regression method (orthogonal, arithmetic mean, geometric
mean, bisector, OLS(Y |X) and OLS(X|Y ) regression). Each
figure also contains information about the value of simulated
slope β before performing random scatter on the log–log data
set.

After inspection of graphs in Figure 2, we come to the
conclusion that orthogonal regression gives β slopes that are
closest to the initial slopes of the artificially generated samples.
Also, this type of regression shows significant stability as it
converges to narrow value intervals for larger sample sizes.

This means that orthogonal regression is least sensitive to
the scatter in the Σ–D plane. As mentioned at the beginning of
this section, data dispersion is large in the calibration set that
is used to construct our new empirical Galactic Σ–D relation.
Although Isobe et al. (1990) concluded that the bisector per-
forms significantly better than orthogonal regression, our class
of problems (with large intrinsic scatter and steep slopes) gives
more reliable solutions when solved with orthogonal regression.
The existence of this significant scattering is obvious from the
plots. It occurs as a result of the coupling of several intrinsic
SNR properties related to energy liberated by SN explosions,
the density of surrounding media, and the evolutionary status of
the remnants. The results of our Monte Carlo simulations (see
Figure 2) show that the orthogonal regression gives fitted slopes
that are closest in value to the simulated slopes. Therefore, we
strongly suggest orthogonal regression, instead of the previously
used OLS(Y |X) and other regression types, for obtaining any
kind of empirical Σ–D relation with slopes between 2 and 6. All

13 GNU Scientific Library (GSL), http://www.gnu.org/software/gsl/

previous Galactic empirical relations have slopes in this interval
(see Urošević 2002).

After applying non-weighted orthogonal regression on the
sample containing 60 calibrators from Table 1, we obtain the
relation

Σ1GHz = 3.25+27.94
−2.91 × 10−14D−4.8±0.7 W m−2 Hz−1 sr−1. (18)

The new relation is significantly steeper than those obtained in
earlier studies. The results of our Monte Carlo simulation (see
Figure 2) also give such a steep slope for the examined relation.
Moreover, the orthogonal fit gives steeper slopes than any
other regression, except OLS(X|Y ). Shell SNRs with distances
derived from our Σ–D relation are shown in Table 3. In total,
207 remnants are shown.

Next, we define fractional errors

f =
∣∣∣∣dI − dΣ

dI

∣∣∣∣ (19)

in order to get an estimate of the accuracy of the Σ–D relation
for individual SNR distances and also as an indicator of the
applicability of our relation for distance determination. Here, dI
is the independently determined distance to an SNR and dΣ is the
distance derived from the Σ–D relation. The average fractional
error is f̄ = 0.47 (comparable to that of CB98 f̄ = 0.41,
although we use a significantly larger sample). We also give
average fractional errors for all six regressions in Table 2.

The Monte Carlo simulations presented here show that
orthogonal regression is stabler for larger samples (see Figure 2),
so our calibration data set (60 SNRs) does not represent a proper
sample for obtaining a high accuracy Σ–D relation. A stabler
behavior for larger samples is also the case for the other five
regressions.

4.2. L–D Relation

For a proper Σ–D analysis, the L–D correlation should
be checked. Using appropriate definitions of flux density and
angular diameter, we have the following dependence Σν ∝
LνD

−2. However, the Σ–D relation can be written as

Σν = AD−2+δ, (20)

which allows for a possible dependence of luminosity on the
linear diameter in the form Lν = CDδ , where C is constant.
Radio luminosity as a function of the diameter for the calibrators
in Table 1 is given in Figure 3, and a very low correlation is
evident. As an illustration, orthogonal regression, applied here,
gives L–D a slope of δ ≈ −15.3. However, this value does not
coincide with the value δ = −3 obtained in Equation (20) for
the relation Σ ∝ D−5. Also, CB98 did not find any significant
correlation between luminosity and linear diameter for shell
type alone or for shell + composite-type distance calibrators.
Previous studies of the Σ–D relation indicate that δ ≈ 0, which
leads to a radio luminosity that is independent of diameter and to
the so-called trivial relation, Σ ∝ D−2. If the L–D correlation
does not exist, the trivial Σ ∝ D−2 form should not be used
(Arbutina et al. 2004).

Similar to the previous subsection, we also perform a set of
Monte Carlo simulations to estimate the influence of the severe
scatter of data on the L–D slope. We use a randomly generated
Σ–D sample with added random polar scatter to construct L–D
scatter by applying the luminosity–surface-brightness relation
Lν = π2D2Σν .

7
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Figure 2. Fitted Σ–D slopes vs. sample sizes for six regression types applied on randomly generated SNR samples containing artificial scatter and simulated slopes
β = 2, 3, 4, 5, and 6. This analysis was done to determine which type of regression is the least sensitive to scattering.

(A color version of this figure is available in the online journal.)
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Table 3
Distances to Shell SNRs Calculated from Our Σ–D Relation

Catalog Name Other Name Flux density Diameter Distance
(Jy) (pc) (kpc)

G0.0+0.0 Sgr A East 100.0 8.0 9.3
G0.3+0.0 22.0 18.4 5.8
G1.0−0.1 15.0 17.5 7.5
G1.4−0.1 2.0 28.8 9.9
G1.9+0.3 0.6 17.1 ?a

G3.7−0.2 2.3 30.5 8.5
G3.8+0.3 3.0 33.6 6.4
G4.2−3.5 3.2 39.7 4.9
G4.5+6.8 Kepler, SN1604, 3C358 19.0 11.2 12.9 (6.0)b

G4.8+6.2 3.0 33.6 6.4
G5.2−2.6 2.6 34.6 6.6
G5.5+0.3 5.5 26.4 6.8
G5.9+3.1 3.3 34.4 5.9
G6.1+0.5 4.5 28.5 6.7
G6.4+4.0 1.3 49.6 5.5
G6.5−0.4 27.0 21.6 4.1
G7.0−0.1 2.5 32.4 7.4
G7.2+0.2 2.8 28.9 8.3
G7.7−3.7 1814−24 11.0 28.1 4.4
G8.3−0.0 1.2 23.1 17.7
G8.7−5.0 4.4 36.1 4.8
G8.7−0.1 W30 80.0 25.1 1.9
G8.9+0.4 9.0 30.3 4.3
G9.7−0.0 3.7 28.1 7.5
G9.8+0.6 3.9 27.1 7.8
G9.9−0.8 6.7 24.3 7.0
G10.5−0.0 0.9 27.5 15.8
G11.0−0.0 1.3 31.3 10.8
G11.1−1.0 5.8 27.1 6.3
G11.1−0.7 1.0 31.4 12.3
G11.1+0.1 2.3 29.0 9.1
G11.2−0.3 22.0 12.3 10.5 (4.4)b

G11.4−0.1 6.0 21.1 9.1
G11.8−0.2 0.7 24.6 21.1
G12.0−0.1 3.5 22.3 10.9
G12.2+0.3 0.8 27.2 17.0
G12.7−0.0 0.8 28.2 16.1
G13.5+0.2 3.5 18.6 14.3
G14.1−0.1 0.5 29.9 18.7
G14.3+0.1 0.6 26.5 20.4
G15.1−1.6 5.5 35.0 4.5
G15.4+0.1 5.6 27.2 6.4
G15.9+0.2 5.0 19.4 11.3
G16.0−0.5 2.7 29.4 8.3
G16.2−2.7 2.0 35.7 7.2
G16.4−0.5 4.6 27.0 7.2
G17.0−0.0 0.5 28.8 19.8
G17.4−2.3 4.8 34.3 4.9
G17.4−0.1 0.4 32.4 18.6
G17.8−2.6 4.0 35.6 5.1
G18.1−0.1 4.6 22.2 9.6
G18.6−0.2 1.4 25.2 14.4
G18.8+0.3 Kes 67 33.0 18.6 4.7 (12.0)b

G19.1+0.2 10.0 31.1 4.0
G20.4+0.1 3.1 24.1 10.3
G21.0−0.4 1.1 29.6 12.8
G21.5−0.1 0.4 30.1 20.7
G21.8−0.6 Kes 69 69.0 18.6 3.2 (5.2)b

G22.7−0.2 33.0 24.0 3.2
G23.3−0.3 W41 70.0 21.0 2.7 (4.2)b

G24.7−0.6 8.0 25.6 5.9
G27.4+0.0 Kes 73, 4C−04.71 6.0 15.9 13.7 (8.65)b

G28.6−0.1 3.0 27.4 8.7
G29.6+0.1 1.5 23.1 15.9
G30.7+1.0 6.0 31.0 5.1
G31.5−0.6 2.0 36.5 7.0
G31.9+0.0 3C391 24.0 14.1 8.2 (8.5)b

G32.0−4.9 3C396.1 22.0 36.6 2.1

Table 3
(Continued)

Catalog Name Other Name Flux density Diameter Distance
(Jy) (pc) (kpc)

G32.4+0.1 0.2 35.6 20.4
G32.8−0.1 Kes 78 11.0 25.3 5.1
G33.2−0.6 3.5 32.6 6.2
G33.6+0.1 Kes 79, 4C00.70, HC13 22.0 17.7 6.1 (7.0)b

G36.6+2.6 0.7 41.7 9.7
G40.5−0.5 11.0 28.1 4.4
G41.1−0.3 3C397 22.0 11.4 11.7 (10.3)b

G42.8+0.6 3.0 37.8 5.4
G43.3−0.2 W49B 38.0 10.4 10.3 (10.0)b

G43.9+1.6 8.6 44.2 2.5
G45.7−0.4 4.2 34.1 5.3
G46.8−0.3 HC30 14.0 22.8 5.3 (7.8)b

G49.2−0.7 W51 160.0 18.5 2.1
G53.6−2.2 3C400.2, NRAO 611 8.0 34.1 3.9 (2.8)b

G54.4−0.3 HC40 28.0 29.6 2.5 (3.3)b

G55.0+0.3 0.5 47.5 9.4 (14.0)b

G55.7+3.4 1.4 43.3 6.5
G57.2+0.8 4C21.53 1.8 31.6 9.1
G59.5+0.1 3.0 31.2 7.2
G65.1+0.6 5.5 50.6 2.6 (9.0)b

G65.3+5.7 52.0 56.6 0.7
G67.7+1.8 1.0 37.3 9.5
G69.7+1.0 2.0 33.9 7.8
G73.9+0.9 9.0 31.7 4.0
G74.0−8.5 Cygnus Loop 210.0 37.1 0.7 (0.54)b

G78.2+2.1 DR4, gamma Cygni SNR 320.0 21.3 1.2 (1.2)b

G82.2+5.3 W63 120.0 29.0 1.3
G83.0−0.3 1.0 30.2 13.1
G84.2−0.8 11.0 25.8 5.0 (4.5)b

G89.0+4.7 HB21 220.0 28.7 0.9 (0.8)b

G93.3+6.9 DA 530, 4C(T)55.38.1 9.0 30.3 4.5 (2.2)b

G93.7−0.2 CTB 104A, DA 551 65.0 33.0 1.4 (1.5)b

G94.0+1.0 3C434.1 13.0 29.6 3.7 (5.2)b

G96.0+2.0 0.3 62.0 8.2 (4.0)b

G108.2−0.6 8.0 45.3 2.5 (3.2)b

G109.1−1.0 CTB 109 22.0 26.9 3.3 (3.2)b

G111.7−2.1 Cassiopeia A, 3C461 2720.0 5.1 3.5 (3.4)b

G114.3+0.3 5.5 51.6 2.5 (0.7)b

G116.5+1.1 10.0 45.4 2.3 (1.6)b

G116.9+0.2 CTB 1 8.0 35.7 3.6 (1.6)b

G119.5+10.2 CTA 1 36.0 39.0 1.5 (1.4)b

G120.1+1.4 Tycho, 3C10, SN1572 56.0 13.4 5.8 (4.0)b

G126.2+1.6 6.0 50.6 2.5
G127.1+0.5 R5 12.0 36.8 2.8 (1.25)b

G132.7+1.3 HB3 45.0 35.5 1.5 (2.2)b

G156.2+5.7 5.0 62.9 2.0 (1.0)b

G160.9+2.6 HB9 110.0 36.1 1.0 (0.8)b

G166.0+4.3 VRO 42.05.01 7.0 40.6 3.2 (4.5)b

G179.0+2.6 7.0 49.0 2.4
G180.0−1.7 S147 65.0 45.8 0.9 (0.62)b

G182.4+4.3 1.2 61.1 4.2
G189.1+3.0 IC443, 3C157 160.0 21.8 1.7 (1.5)b

G192.8−1.1 PKS 0607+17 20.0 41.4 1.8
G205.5+0.5 Monoceros Nebula 160.0 41.4 0.6 (1.2)b

G206.9+2.3 PKS 0646+06 6.0 43.8 3.1
G260.4−3.4 Puppis A, MSH 08−44 130.0 24.6 1.5 (2.2)b

G261.9+5.5 10.0 34.3 3.4
G266.2−1.2 RX J0852.0−4622 50.0 41.0 1.2
G272.2−3.2 0.4 46.9 10.7
G279.0+1.1 30.0 41.3 1.5
G284.3−1.8 MSH 10−53 11.0 29.1 4.2
G286.5−1.2 1.4 33.8 9.3
G289.7−0.3 6.2 27.6 6.0
G290.1−0.8 MSH 11−61A 42.0 19.0 4.0 (7.0)b

G292.2−0.5 7.0 27.9 5.5 (8.4)b

G296.1−0.5 8.0 34.1 3.9
G296.5+10.0 PKS 1209−51/52 48.0 34.4 1.5 (2.1)b

G296.8−0.3 1156−62 9.0 26.2 5.4 (9.6)b
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Table 3
(Continued)

Catalog Name Other Name Flux density Diameter Distance
(Jy) (pc) (kpc)

G298.6−0.0 5.0 24.3 8.0
G299.2−2.9 0.5 43.7 10.7
G299.6−0.5 1.0 36.8 9.7
G301.4−1.0 2.1 43.9 5.2
G302.3+0.7 5.0 29.6 6.0
G304.6+0.1 Kes 17 14.0 17.8 7.6
G308.1−0.7 1.2 35.5 9.4
G309.2−0.6 7.0 25.2 6.4
G309.8+0.0 17.0 25.6 4.0 (3.6)b

G310.6−0.3 Kes 20B 5.0 21.9 9.4
G310.8−0.4 Kes 20A 6.0 24.8 7.1
G311.5−0.3 3.0 20.1 13.8
G312.4−0.4 45.0 26.3 2.4
G312.5−3.0 3.5 33.3 6.0
G315.4−2.3 RCW 86, MSH 14−63 49.0 26.9 2.2 (2.3)b

G315.9−0.0 0.8 44.6 8.2
G316.3−0.0 MSH 14−57 20.0 24.0 4.1
G317.3−0.2 4.7 25.2 7.9
G321.9−0.3 13.0 29.3 3.8
G323.5+0.1 3.0 29.5 7.8
G327.2−0.1 0.4 30.1 20.7
G327.4+0.4 Kes 27 30.0 22.5 3.7 (4.85)b

G327.4+1.0 1.9 33.3 8.2
G327.6+14.6 SN1006, PKS 1459−41 19.0 28.5 3.3 (2.2)b

G330.0+15.0 Lupus Loop 350.0 32.6 0.6
G330.2+1.0 5.0 24.9 7.8
G332.0+0.2 8.0 23.4 6.7
G332.4−0.4 RCW 103 28.0 16.9 5.8 (3.1)b

G332.4+0.1 MSH 16−51, Kes 32 26.0 20.2 4.6
G332.5−5.6 2.0 47.7 4.7
G335.2+0.1 16.0 25.5 4.2
G336.7+0.5 6.0 24.7 7.2
G337.0−0.1 CTB 33 1.5 14.2 32.5 (11.0)b

G337.2−0.7 1.5 24.8 14.2
G337.3+1.0 Kes 40 16.0 21.3 5.5
G337.8−0.1 Kes 41 18.0 16.3 7.6 (11.0)b

G338.1+0.4 4.0 29.5 6.8
G338.3−0.0 7.0 20.4 8.8 (11.0)b

G338.5+0.1 12.0 19.2 7.3
G340.4+0.4 5.0 22.3 9.1
G340.6+0.3 5.0 19.5 11.2 (15.0)b

G341.9−0.3 2.5 23.8 11.7
G342.0−0.2 3.5 26.1 8.6
G342.1+0.9 0.5 37.3 13.5
G343.1−0.7 7.8 31.0 4.5
G344.7−0.1 2.5 27.5 9.5 (6.3)b

G345.7−0.2 0.6 29.9 17.1
G346.6−0.2 8.0 19.9 8.5 (11.0)b

G348.5−0.0 10.0 20.8 7.2
G348.5+0.1 CTB 37A 72.0 16.5 3.8 (7.9)b

G348.7+0.3 CTB 37B 26.0 21.3 4.3 (13.2)b

G349.2−0.1 1.4 27.3 12.8
G349.7+0.2 20.0 9.9 15.2 (18.4)b

G350.0−2.0 26.0 31.5 2.4
G351.7+0.8 10.0 25.1 5.4
G351.9−0.9 1.8 29.9 9.9
G352.7−0.1 4.0 21.6 10.7 (7.5)b

G353.6−0.7 2.5 42.9 4.9
G353.9−2.0 1.0 36.8 9.7
G354.8−0.8 2.8 34.8 6.3
G355.4+0.7 5.0 34.6 4.8
G355.6−0.0 3.0 22.9 11.3
G355.9−2.5 8.0 24.2 6.4
G356.2+4.5 4.0 36.2 5.0
G356.3−0.3 3.0 25.2 9.9
G356.3−1.5 3.0 33.1 6.6
G357.7+0.3 10.0 29.6 4.2
G358.0+3.8 1.5 52.3 4.7

Table 3
(Continued)

Catalog Name Other Name Flux density Diameter Distance
(Jy) (pc) (kpc)

G358.1+0.1 2.0 38.1 6.5
G358.5−0.9 4.0 31.0 6.3
G359.0−0.9 23.0 24.6 3.7
G359.1−0.5 14.0 27.7 4.0 (7.6)b

Notes.
a Using our Σ–D relation for this SNR makes no sense since it is reliably established
that G1.9+0.3 is increasing in its flux density.
b SNRs belonging to our new calibration sample from Table 1. Values in brackets
represent directly obtained distances.

Figure 3. Radio luminosity (at 1 GHz) vs. the diameter for the SNRs(Σ–D

calibrators) given in Table 1, to allow a possible dependence of the luminosity
on linear diameter in the form of Lν = CDδ . Weak correlation is evident,
primarily due to severe data scatter.

Six regression methods were applied on randomly generated
L–D samples. Figure 4 shows fitted L–D slopes δ as a function
of sample size, with a scatter rmode = 0.5 and the simulated
Σ–D slope β = 5. At first glance, Figure 4 leads to the conclu-
sion that OLS(Y |X), bisector, and geometric mean regression
(average δ values of −0.42,−1.41, and −2.64, respectively)
give much flatter slopes than arithmetic mean, orthogonal, and
OLS(X|Y ) regressions (δ −8.84,−14.90, and −17.25, respec-
tively). We note that orthogonal regression, which is of signif-
icant importance for us, gives a very similar slope (−14.9) for
randomly scattered data as that for real data (−15.3), which is
very good agreement but of no physical importance. The or-
thogonal fit performs very unstably, especially for lower sample
sizes (N < 500) and it is strongly influenced by data scatter,
as are the other five fitting methods. Although OLS(Y |X), bi-
sector, and geometric mean regression seem more stable than
the other three methods, converting their slopes into an angle
interval leads to the opposite conclusion.

The main reason for this instability can be inferred from a
brief inspection of Figure 5. When we increase the scatter of
the simulated data sets, the distribution of points tends to be
almost vertical and even severe scatter can change the fitted
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Figure 4. Fitted slopes of the power-law fit Lν = CDδ vs. sample sizes for six regression types applied on randomly generated samples (rmode = 0.5). It is evident
that the orthogonal fit becomes very unstable for the L–D relation and strongly influenced by data scatter, especially for a small number of points, as is the case with
our sample.

(A color version of this figure is available in the online journal.)

slope from negative to positive. This effect produces a break in
the dependence of the orthogonal fit slope from data dispersion
(rmode). This may be due to a lower span of luminosities for the
L–D relation in comparison to the span of surface brightness
for Σ–D relation (spans of diameters are the same for both
relations).

It can be inferred from further analysis that, taking into
account all six fitting procedures, the geometric mean regression
gives a slope that is close to that expected, δ = −β + 2 (for
simulated Σ–D slope β = 6, 5, 4, 3). Figure 6 also shows that
the geometric mean regression can be a valid tool for obtaining
L–D relation for a limited range of data dispersion. Thus, we
should be careful if geometric mean regression is applied on
L–D analysis since it is not insensitive to severe scatter, such as
orthogonal regression, when applied on Σ–D relation.

Therefore, we suggest obtaining the L–D relation directly by
using some type of regression only if the data set of calibrators
is not subject to severe scatter. In other cases, a more accurate
approach would first require the derivation of the Σ–D relation
from which then, by using Equation (20), we obtain the L–D
relation. Our conclusion is also supported by the fact that
Arbutina et al. (2004) did not find any significant correlation
when analyzing L–D dependence, except for the M82 starburst
galaxy (with a fit quality of 64%), for which a good Σ–D relation
does exist.

5. DISTANCES OF TWO NEWLY FOUND GALACTIC
SNRs: G25.1−2.3 AND G178.2−4.2

The Sino-German λ6 cm Galactic plane survey is a sensitive
survey with the potential to detect new low-surface-brightness
SNRs. This survey searches for new shell-like objects in
the λ6 cm survey maps and studies their radio emission,

polarization, and spectra using the λ6 cm maps together with
the λ11 cm and λ21 cm Effelsberg observations.

Gao et al. (2011) have discovered two new large faint SNRs,
G25.1−2.3 and G178.2−4.2, both of which show shell structure.
G25.1−2.3 is revealed by its strong southern shell, which has
a size of 80′ × 30′. It has a non-thermal radio spectrum with a
spectral index of α = −0.49 ± 0.13. G178.2−4.2 has a size of
72′ × 62′ with strongly polarized emission being detected along
its northern shell. The spectrum of G178.2−4.2 is also non-
thermal, with an integrated spectral index of α = −0.48±0.13.
Its low surface brightness makes G178.2−4.2 the second faintest
known Galactic SNR. This demonstrates that more large and
faint SNRs exist, but are very difficult to detect.

Using the total intensity and the radio spectral index, Gao
et al. (2011) calculated the surface brightness of both objects
at 1 GHz, obtaining Σ1GHz = 5.0 × 10−22 W m−2 Hz−1 sr−1

for the southern shell of G25.1−2.3 and Σ1GHz = 7.2 × 10−23

W m−2 Hz−1 sr−1 for G178.2−4.2.
The Σ–D relation of CB98 was used to estimate the distances

of the two newly found SNRs. For G25.1−2.3, they found that
the diameter for the shell is 72 pc and the distance was 3.1 kpc,
consistent with those derived from the H i data. For G178.2−4.2,
they found that the diameter is 197 pc and its distance is 9.4 kpc.
This places the object far outside the Galaxy, which seems hardly
possible, as the authors have pointed out in their paper.

This is the appropriate place to mention specific behavior of
the Σ–D relation, depending on the brightness of the SNR for
which the distance is calculated. The slope of the Σ–D relation
directly affects derived diameters and hence distances. A steeper
slope will give larger diameters (and hence distances) for SNRs
with higher surface brightnesses, while it will lead to smaller
diameters (distances) for SNRs with lower surface brightnesses.

We applied our new Galactic Σ–D relation to obtain the
distances of these two objects. For G25.1−2.3, we find that
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Figure 5. Appearance of the L–D relation with increasing data dispersion (quantified with parameter rmode). It can be inferred from the plots that larger scattering
leads to the decrease and even loss of the correlation.

the diameter for the shell is 42 pc and hence the distance is
1.8 kpc, which is still not far from that derived from the H i
data. For G178.2−4.2, we find that the corresponding diameter
is only 63 pc, so its distance is 3.0 kpc, which places the object
inside the Milky Way. Note, however, that the uncertainties of
these estimates could be as large as 50%.

6. DEPENDENCE OF Σ–D RELATION ON THE DENSITY
OF THE INTERSTELLAR MEDIUM

We focus on a more direct connection between the ISM
density and the Σ–D relation. Duric & Seaquist (1986) assumed
that the dependence of surface brightness on the density of the

ISM has the form Σ ∝ ρ
η

0 ∝ n
η

H, where ρ0 and nH are the average
ambient density and hydrogen number density, respectively, and
η is a constant (see also Berezhko & Völk 2004). This means, the
larger the surrounding ISM density, the greater the synchrotron
emission from the SNR.

This suggests that, on average, SNRs in dense environments
would tend to have higher surface brightness in comparison
to those evolving in lower-density media. However, since the
Σ = AD−17/4 relation depends primarily on the initial explosion
energy (Equation (16)), variation in SN energy rather than
density could produce scattering in some parts of the Σ–D
diagram.

Although it is difficult to decide which SNRs should be in-
cluded or excluded from analysis, we tried to extract subsamples
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Table 4
Basic Properties of the 28 Galactic SNRs Evolving in Dense ISM, i.e., Associated with Molecular Clouds

Catalog Name Conventional Name Evidence Surface Brightness Diameter
(W m−2 Hz−1 sr−1) (pc)

G18.8+0.3a Kes 67 CO MA & LB, CO ratio 2.66e-20 47.7
G21.8−0.6 Kes 69 OH, CO MA & LB, HCO + , H2 2.60e-20 30.3
G23.3−0.3 W41 H i MA & CO RC, extended TeV 1.45e-20 33.0
G31.9+0.0a 3C391 OH, molecular MA & LB (CO, HCO + ,CS), H2, NIR 1.03e-19 14.6
G33.6+0.1a Kes 79 CO MA, HCO + MA, broad OH absorption 3.31e-20 20.4
G41.1−0.3 3C397 CO MA & LB 2.94e-19 10.0
G43.3−0.2a W49B H2 MA, CO ratio 4.77e-19 10.1
G54.4−0.3a HC40 CO MA & LB, IR MA 2.63e-21 38.4
G78.2+2.1a γ Cygni, DR4 CO MA 1.34e-20 20.9
G84.2−0.8a CO MA 5.17e-21 23.4
G89.0+4.7a HB21 CO MA & LB, CO ratio, H2, NIR 3.07e-21 24.2
G94.0+1.0 3C434.1 CO RC 2.61e-21 41.4
G109.1−1.0 CTB 109 CO MA & LB 4.22e-21 26.1
G111.7−2.1a Cassiopeia A, 3C461 H2CO absorption, IR RC, CO RC 1.64e-17 4.9
G132.7+1.3a HB3 CO MA 1.06e-21 51.2
G166.0+4.3a VRO 42.05.01 unusual shape, CO RC 5.47e-22 57.4
G189.1+3.0 IC443, 3C157 OH, CO ratio, H2, molecular MA & LB 1.22E-20 19.6
G205.5+0.5a Monoceros Nebula CO RC 4.98e-22 76.8
G260.4−3.4a Puppis A, MSH 08-44 CO RC, OH(negative) 6.52e-21 35.1
G290.1−0.8 MSH 11-61A CO RC 2.38e-20 33.2
G332.4−0.4a RCW 103 IR MA & colors, NIR, H2 & HCO + MA 4.21e-20 9.0
G337.0−0.1 CTB 33 OH 1.34e-19 4.2
G337.8−0.1 Kes 41 OH 5.02e-20 23.5
G344.7−0.1 IR RC & colors 3.76e-21 18.3
G346.6−0.2 OH, H2, IR colors 1.88E-20 25.6
G348.5+0.1a CTB 37A OH, H2, IR MA 4.82e-20 34.5
G349.7+0.2a OH, CO MA & LB, CO ratio, H2, IR MA 6.02e-19 12.0
G359.1−0.5a OH, CO & H2 MA, HCO + & CS absorption 3.66e-21 53.1

Notes. Evidence: chief evidence that suggests the interaction between SNR and molecular clouds. LB = line broadening, MA = morphology agreement, H2 =
vibrational/rotational lines of molecular hydrogen [e.g., H2 1–0 S(1) line (2.12 um), H2 0–0 S(0)–S(7) lines], NIR = Near-infrared (e.g., [Fe ii] line), OH = 1720 MHz
OH maser, RC = rough morphological correspondence, etc. (taken from the List of Galactic SNRs Interacting with Molecular Clouds by Jiang et al. 2010).
a SNRs belonging to Case & Bhattacharya’s (1998) calibration sample.

Figure 6. Performance of geometric mean regression for fitting power-law L–D

relation Lν = CDδ . This type of regression can be a valid tool for obtaining
the L–D relation only for a limited range of data dispersion and is closest to
theoretical value δ = −β + 2.

of Galactic SNRs (using Table 1) based on the density of the
medium in which they evolve and then to obtain particular Σ–D
relation.

Mathweson et al. (1983) classified SNRs into four cate-
gories based on their optical characteristics: Balmer-dominated,
oxygen-rich, plerion/composite, and evolved SNRs. Balmer-
dominated line emission is produced when the expanding SNR
encounters a low-density (∼0.1–1 cm−3), partially neutral ISM.
The hydrogen overrun by the shock is collisionally excited in
a thin (�1015 cm) ionization zone, producing optical spectra
dominated by the Balmer lines of hydrogen (Ghavamian et al.
2007). Oxygen-rich SNRs were mainly identified based on their
optical oxygen line emission properties and they primarily oc-
cur in H ii and molecular cloud regions, i.e., in higher-density
regions. Young oxygen-rich SNRs are likely to interact with
an especially complex circumstellar medium, rather than the
ISM. Balmer-dominated SNRs are connected to Type Ia SNe—
deflagration of C/O white dwarf, while oxygen-rich SNRs orig-
inate in the Type Ib events—explosions of a massive O or a
Wolf-Rayet star.

We created a subsample of 28 Galactic SNRs with known
distances, using an online database14 from Gilles & Samar
(2012), interacting with molecular clouds, i.e., evolving in dense
ISM. The properties of these SNRs are given in Table 4. After
applying orthogonal regression on the subsample from Table 4,
the Σ–D relation obtained is

Σ1GHz = 3.89+12.81
−2.98 × 10−15D−3.9±0.4 W m−2 Hz−1 sr−1, (21)

14 This work also builds on the List of Galactic SNRs Interacting with
Molecular Clouds maintained by Jiang et al.,
http://astronomy.nju.edu.cn/∼bjiang/SNR6.htm
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Figure 7. Σ–D plots at 1 GHz for Balmer-dominated (empty circles) and oxygen
rich SNRs (triangles). The thin line represents the former sample and the thick
line represents the later sample. The fit lines are obtained by orthogonal offsets.
As expected, remnants evolving in a dense environment lie above those evolving
in a low-density medium due to higher synchrotron emission.

which is slightly steeper than the relation β = 3.5 ± 0.5 ob-
tained by Arbutina et al. (2004), whose sample contained only
14 Galactic SNRs associated with molecular clouds. The av-
erage fractional error is f̄ = 0.35. Slope β = 3.9 for Galac-
tic SNRs in dense ISM is in very good agreement with slope
obtained for the M82 data sample by Urošević et al. (2010),
who also used orthogonal fitting. Our obtained slope approx-
imately coincides with the conclusion of Berezhko & Völk
(2004) that SNRs in dense ISM should populate the part of
the line Σ = AD−17/4.

The sample of Galactic SNRs evolving in low-density
ISM is significantly smaller. Until now, only five Galactic
SNRs showing Balmer-dominated characteristics have been
reported (see review papers Vink 2012; Heng 2010) and
are therefore thought to expand in low-density medium. The
Balmer-dominated subsample contains: Kepler (G4.5 + 6.8),
Cygnus Loop (G74.0−8.5), Tycho (G120.1 + 1.4), RCW 86
(G315.4−2.3), and SN 1006 (G327.6 + 14.6), whose basic prop-
erties can be found in Table 1. The Σ–D relation obtained is

Σ1GHz = 1.89+4.08
−1.29 × 10−16D−3.5±0.5 W m−2 Hz−1 sr−1, (22)

with an average fractional error f̄ = 0.18. Figure 7 shows
the relation for Balmer-dominated and oxygen-rich Galactic
SNRs for comparison purposes. The two relations have similar
slopes, but the former is below the latter, as we would expect for
SNRs in low-density environments. To further investigate the
influence of the ISM density on the Σ–D relation, we should
use more complete samples, especially samples of Balmer-
dominated remnants.

7. SELECTION EFFECTS

Identification of Galactic SNRs is always accompanied by se-
lection effects arising from the difficulty in identifying (1) faint
SNRs and (2) small angular size SNRs (e.g., CB98; Green
1991, 2005; Urošević et al. 2005, 2010). A high enough sur-
face brightness for SNRs is required in order to distinguish

them from the background Galactic emission. Any Galactic ra-
dio survey is severely biased by observational constraints. The
surface-brightness limit seriously affects the completeness of
all catalogs of Galactic SNRs and the derived flux densities of
many SNRs are also poorly determined. Additionally, small an-
gular size SNRs are likely to be missing from current catalogs
and calibration samples. Their small size may cause incorrect
classification of SNR type and also lead to incorrect calculation
of their surface brightness.

Additionally, Malmquist bias is severe in the Galactic sam-
ples, making them incomplete. This is a type of volume selection
effect that naturally favors bright objects in any flux-limited sur-
vey because they are sampled from a larger spatial volume. The
result is a bias against low surface-brightness remnants such as
highly evolved old SNRs. Only the extragalactic samples are not
influenced by the Malmquist bias since all SNRs in the sample
are at essentially the same distance.

Urošević et al. (2010) performed a set of Monte Carlo
simulations to estimate the influence of the survey sensitivity
selection effect on the Σ–D slope for the M82 sample (31 SNRs).
An appropriate sensitivity cutoff is applied to the simulated
data points, taking into account only points above the given
sensitivity line. They concluded that the sensitivity selection
effect does not have a major impact on the Σ–D slope.

Technological advances in radio telescopes and X-ray instru-
ments will greatly increase the number of known SNRs, lead to
a better determination of their properties, and thus reduce the
influence of the mentioned selection effects.

8. SUMMARY AND CONCLUSION

This paper presents a re-analysis of the theoretical and espe-
cially empirical Galactic Σ–D relation and the dependence of
this relation on the density of the ISM. We were motivated by
the observed property that the empirical Σ–D relation strongly
depends on the used regression due to severe scatter in data
samples. In contrast to the standard least-squares (vertical) re-
gression, we examine the behavior of six different types of
regression. We put emphasis on those that satisfy the require-
ment that the values of parameters obtained from the fitting of
Σ–D and D–Σ relations should be invariant within estimated
uncertainties, i.e., treat Σ and D symmetrically (namely: or-
thogonal regression, bisector, arithmetic, and geometric mean
regressions).

The catalog of known Galactic SNRs has grown significantly
in size since the work of CB98, from 215 to 274 SNRs. The
number of SNRs with known distances has also increased. We
included the latest distance updates, if available, to derive a new
Galactic Σ–D relation, using a sample of 60 shell SNRs. We
concluded from our tests that the size of the sample significantly
influences the stability of any type of regression and that more
observations are necessary to increase the statistical significance
of the sample.

We present an additional modification to the theoretical Σ–D
relation for SNRs in the adiabatic expansion (Sedov) phase.
This modification is based on the equipartition introduced by
Reynolds & Chevalier (1981). Our modification induces a new
sub-phase lying between late free expansion and early Sedov
phase with a slope of β = 5.75. Our theoretical slope (β = 4.25)
for relatively older SNRs in the Sedov phase is also in agreement
with that of Berezhko & Völk (2004).

We have performed an extensive series of Monte Carlo
simulations to evaluate numerically how well each of the six
regression methods approximate the artificially proposed Σ–D
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dependence with added scatter. The orthogonal regression is
the most accurate slope predictor in data sets with severe
scatter, as it gives the slope closest to the original value.
For other regression procedures, the fitted slopes of the Σ–D
relation are seriously affected by data scatter. Standard (vertical)
fitting, or OLS(Y |X), which was used in previous papers
considering empirical Σ–D relation, leads to a significant
change in slope when applied on highly dispersed data sets.
When the scatter increases, the standard fitting leads to flatter,
almost trivial, slopes (β ≈ 2). Also, similar conclusions
apply to OLS(X|Y ), bisector, arithmetic, and geometric mean
regressions. A possible reason may be the inherent property of
Σ–D data sets, which are defined by a narrow range of diameters
(about one order of magnitude), in comparison to the wide range
of surface brightness (approximately five orders of magnitude).
We recommend using orthogonal regression for obtaining any
type of empirical Σ–D relation.

Our obtained slope (β = 4.8) is significantly steeper than
previous values, it is far from the trivial one (β ≈ 2.0), and
it agrees with theoretical predictions for the Sedov phase of
SNR evolution. Since our calibration sample contains 60 SNRs,
which probably have different explosion energies, evolve in
different ambient density, and may be in different phases of SNR
evolution, the relation Σ ∝ D−4.8 could represent an averaged
evolutionary track for Galactic SNRs. As such, it potentially
could be used for estimating the distances of SNRs in our
Galaxy. A relatively large data scatter can be partly explained
by the above mentioned influences.

Additional analysis is carried out to examine the possible
dependence of radio luminosity on the linear diameter (L–D
relation) for SNRs. Also, this analysis may provide an answer
as to whether determination of SNR distances on the basis of a
Σ–D relation is possible. We did not find any significant corre-
lation for our sample consisting of 60 SNRs, while orthogonal
regression gives a very steep slope (β ≈ −15) that has no
physical meaning. Monte Carlo simulations have revealed that
the L–D relation is very sensitive to severe scatter in the data,
which is surely present in our sample. Therefore, it is possible
to obtain the L–D relation only if the set of calibrators is not
subject to severe scatter. Otherwise, we obtain very steep slopes
without physical meaning. We recommend an indirect approach
to obtaining an L–D relation, which requires obtaining the Σ–D
relation first (by orthogonal regression).

We made an attempt to find a homogeneous subsample of
Galactic SNRs in low-density and dense environments and to
obtain the Σ–D relations for two particular classes of SNRs.
Applying orthogonal regression to the sample (which contains
28 SNRs) made of SNRs that evolve in a dense environment
of molecular clouds (including oxygen-rich SNRs) leads to the
slope β = 3.9. Our sample contains twice as many SNRs as
that of Arbutina et al. (2004) and the obtained slope is slightly
steeper. Our slope for SNRs in dense ISM is in good agreement
with the result obtained by Urošević et al. (2010) for the sample
of 31 SNRs in the M82 galaxy (β = 3.9). Urošević et al. (2010)
proposed their relation to be used for estimating distances to
SNRs that evolve in a denser interstellar environment, with
number density up to 1000 particles cm−3. This agreement may
be very useful because this is the best sample for the Σ–D
analysis, consisting of a relatively high number of very small
and very bright SNRs from starburst galaxy M82.

In contrast to the sample of SNRS evolving in a dense
environment, we still have a very small sample of SNRs in
a low-density medium (Balmer-dominated), consisting of five

SNRs only. Obviously, this sample is too small for any firm
conclusions to be made. The Σ–D slope β = 3.5 obtained for
this sample is close to that for SNRs in a dense environment,
and these two classes of SNRs approximately lie on two parallel
tracks or domains in the log–log plane, one above another,
as expected. However, the small number of objects in the
Balmer-dominated sample strongly constrain the reliability of
this relation, therefore it should be used with caution. More
optical and X-ray observations are needed for discovering new
Balmer-dominated (Ia) and oxygen-rich (Ib) SNRs.

We used our new empirical relation to estimate distances to
147 shell-like remnants with unknown distances and obtained
a drastically changed the distance scale for Galactic SNRs.
Though we are aware of theoretical and statistical flaws in
the Σ–D relation, we think that in cases where direct distance
estimates are unavailable, the Σ–D relation should remain an
important tool for distance determination. The obtained Σ–D
relations should be used with caution because uncertainties of
distance estimates could be as large as about 50%. Although
we have increased the number of calibrators significantly,
more observations are needed to get a better understanding
of the radio evolution of SNRs. We expect that this paper
will potentially be useful for practitioners of radio astronomy,
given the improvement expected from future instruments such
as SKA.15
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Note added in proof. After our paper was accepted, we were
contacted by Dr. Ping Zhou who pointed out that object
Kes 78 actually has an independently determined distance of
4.8 kpc (Zhou & Chen 2011), object 3C391 has another distance
estimate of 8 kpc (Chen & Slane 2001 and Chen et al. 2004),
and Tycho SNR has a new distance estimate of 2.5 kpc (Zhang
et al. 2012). These changes, however, do not significantly affect
our results (slope estimates stay within the statistical errors).
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Urošević, D., Pannuti, T. G., Duric, N., & Theodorou, A. 2005, A&A, 435, 437
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