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ABSTRACT

The radio surface brightness-to-diameter (Σ–D) relation for supernova remnants (SNRs) in the starburst galaxy
M82 is analyzed in a statistically more robust manner than in the previous studies that mainly discussed sample
quality and related selection effects. The statistics of data fits in the log Σ– log D plane are analyzed by using
vertical (standard) and orthogonal regressions. As the parameter values of D–Σ and Σ–D fits are invariant
within the estimated uncertainties for orthogonal regressions, slopes of the empirical Σ–D relations should
be determined by using the orthogonal regression fitting procedure. Thus obtained Σ–D relations for samples
which are not under severe influence of the selection effects could be used for estimating SNR distances. Using
the orthogonal regression fitting procedure, the Σ–D slope β ≈ 3.9 is obtained for the sample of 31 SNRs
in M82. The results of implemented Monte Carlo simulations show that the sensitivity selection effect does
not significantly influence the slope of the M82 relation. This relation could be used for estimating distances
to SNRs that evolve in a denser interstellar environment, with number density up to 1000 particles per cm3.
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1. INTRODUCTION

The relation between surface brightness (Σ) and diameter
(D) for supernova remnants (SNRs)—known as the Σ–D rela-
tion—is a standard way for investigating the radio brightness
evolution of these sources. In the vast majority of situations, it
is not feasible to observe the detailed evolution of individual
SNRs over very long periods of time. However, by studying the
properties of samples of SNRs, which cover a range of different
ages but are assumed to follow similar evolutionary paths, it is
possible to analyze their statistical properties and evolution. Un-
derstanding the statistical and evolutionary properties of SNR
samples and particularly using well-defined samples to deter-
mine the Σ–D relation also has an important role in providing
a method of distance determination for individual SNRs. This
is particularly relevant for Galactic SNRs, of which more than
200 have unknown or ill-determined distance measures (see, for
example, Green 2009).

In a single external galaxy, all SNRs in the sample are at
essentially the same distance. This makes the extragalactic
samples of better quality when compared to Galactic ones,
because the problems stemming from inaccurate knowledge of
distances are eliminated. Additionally, Malmquist bias5 severely
acts in the Galactic samples making them incomplete. An
extragalactic sample is not influenced by the Malmquist bias.
On the other hand, the best radio instruments at this moment can
provide detection of brighter SNRs only in the nearby galaxies.
Such a limited survey sensitivity results in a selection effect
that significantly reduces the number of detected objects within
a relatively distant extragalactic system (approximately up to
15 Mpc; see Urošević et al. 2005, hereafter Paper I; Chomiuk
& Wilcots 2009).

This paper presents a fitting procedure that can result, if
reliable samples are used, in Σ–D relations that are more useful

5 The volume selection effect—intrinsically bright objects are favored in any
flux-limited survey because they are sampled from a larger spatial volume.

in terms of distance estimation. The usual form of the relation
is

Σ = AD−β, (1)

where parameter A and slope β are obtained by fitting the
observational data for a sample of SNRs.

The two initial empirical Σ–D relations were derived by
Poveda & Woltjer (1968) and Milne (1970). During the 1970s
and early 1980s, a number of detailed analyses of Galactic
relations were presented (e.g., Clark & Caswell 1976; Milne
1979). More critical analysis started with the work of Green
(1984). A Galactic Σ–D relation that is still quite frequently used
was derived by Case & Bhattacharya (1998). A brief review of
Galactic and extragalactic relations was presented by Urošević
(2002). The updated Galactic Σ–D relations were derived by
Guseinov et al. (2003) and Xu et al.(2005).

The best sample for the Σ–D analysis consists of compact
SNRs from starburst galaxy M82 (see Arbutina et al. 2004; Paper
I). The analyzed sample (21 SNRs) was taken from Huang et al.
(1994) and McDonald et al. (2002). This sample is different
than other Galactic and extragalactic samples because it has the
steepest Σ–D slope (see Paper I) and shows a relatively high
degree of L–D correlation (for more on the L–D correlation
and trivial Σ–D relation concept, see Arbutina et al. 2004).
Furthermore, unlike other samples, it consists of a relatively
high number of very small and very bright SNRs (Paper I;
Fenech et al. 2008, hereafter F08). It is important to note that
in an extragalactic sample all the SNRs are essentially at the
same distance, wherefore a uniformly sensitive survey has a
uniform sensitivity in luminosity or surface brightness for all
SNRs within the sample. The survey sensitivity selection effect
has a weaker influence on the M82 Σ–D slope than on the
slopes derived for other nearby galaxies because M82 SNRs
are of relatively high brightness. This is shown in Paper I on
Monte Carlo generated artificial extragalactic samples; after
generating the sample, a sensitivity cutoff is applied selecting
only the points above the survey sensitivity line. The apparent
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Table 1
Summary Characteristics of the Selected Samples (the Number of Sources in Sample and Range of Relevant Quantities)

Relevant Quantities S1 S2

Na 31 10
Sb (mJy) [0.099, 19.435] [0.72, 39.01]
L(J s−1 Hz−1) [1.21 × 1017, 2.38 × 1019] [8.82 × 1017, 4.78 × 1019]
D(pc) [0.64, 6.2] [0.205, 2.25]
Σ(W m−2 Hz−1 sr−1) [9.24 × 10−19, 4.16 × 10−15] (6.42 × 10−17, 1.22 × 10−13)

Notes. The adopted M82 distance is 3.2 Mpc (F08) which provides a linear size equivalent to 1 mas ≡ 0.0155 pc (as used in F08).
a The number of sources in the sample.
b Integrated flux density.

(after selection) and true (before selection) fitted slopes of the
simulated samples are then compared with the slopes fitted to
the real data.

In this paper, we use the new observations of compact SNRs
in M82 by F08. From F08, we extract a data set that consists of
31 SNRs and fit Σ–D regression for both orthogonal and vertical
offsets. Additionally, Monte Carlo simulations are performed to
illustrate the selection effect of survey sensitivity on the fitted
Σ–D slopes for the M82 sample (the simulation algorithm is
explained in more detail in Section 5).

2. THE M82 DATA SAMPLE

All data analyzed herein are collected from F08. The central
kpc of M82 was mapped at 5 GHz using the Multi-Element
Radio Linked Interferometer Network (MERLIN). The largest
detectable angular size with this array at 5 GHz is ∼1.2 arc-
sec (18.5 pc at the distance of M82). Fenech et al. present new
MERLIN observations made in 2002 along with observations
made 10 years earlier which were previously published by
Muxlow et al. (1994). Depending on particular image parame-
ters, the angular resolution in 1992 and 2002 data varies in the
range 35–50 mas (0.54–0.78 pc), but all sources were resolved
with a 35 mas beam (F08). Also, the rms noise in the 2002
data images varies in the range 17–24 μJy beam−1 and 46–60
μJy beam−1 for the 1992 data images (F08).

The sources from the 2002 observation are listed in Table 2 of
F08. Out of 55 sources there are 36 SNRs. For the purpose of this
paper, we have excluded five SNRs with the largest angular size
diameter estimates (sources with peak flux �0.1 mJy beam−1).
Inspection of Figure 3 in F08 shows that these five sources
are mostly of non-compact structure with only the brightest
parts above the sample sensitivity limit (0.085 mJy beam−1).
Consequently, these sources are easily confused with noise
and the diameters of their faint extended structures cannot be
accurately estimated. This left us with the 31 SNRs data set,
referred to as S1 further in the text. While all the data in S1
have associated integrated flux density errors, only seven points
have associated diameter errors. To calculate the error in Σ, we
need both flux density errors and diameter errors. Table 3 from
F08 presents flux densities, diameters, and associated errors
for 10 SNRs observed with MERLIN in 1992 (not necessarily
listed in Table 2 of F08). We used these 1992 measurements of
flux densities, diameters, and associated errors; this sample is
further referred to as S2. For elliptical sources, we calculated
the mean geometric diameter (for both S1 and S2). The fits of
non-weighted vertical and orthogonal offsets for S1, and non-
weighted and weighted vertical and orthogonal offsets for S2,
are presented in the following section. In Table 1, we present
the range of relevant quantities for samples S1 and S2.

3. FITTING

The standard fitting procedure in the Σ–D plane based on the
vertical (parallel to the y-axis) χ2 regression has been used for
the calibration of empirical Σ–D relations. Recently, Bandiera &
Petruk (2010) have used a different method: regression analysis
with two independent variables—diameter D and the density
of environment n0. In this paper, we stay with one independent
variable D (or Σ) but change the fitting procedure from vertical
to orthogonal offsets. Dependence on n0 is important for Σ–D
analysis. M82 SNRs evolve in a denser environment (Chevalier
& Fransson 2001; Arbutina & Urošević 2005), but variation
in the ambient density certainly exists. This is consistent with
observations of structural evolution and the wide range of
expansion velocities of individual SNRs in M82 (e.g., F08;
Pedlar et al. 1999; McDonald et al. 2001; Beswick et al. 2006;
Fenech et al. 2010). Variation in expansion velocities is probably
constrained by the differences in ambient density. This variation
in density, if it is assumed that the SNRs are evolving along
similar evolutionary tracks, probably does provide one of the
key reasons for the moderately large scatter in the plotted Σ–D
correlation.

For a description of the radio surface brightness evolution
of an SNR, we should investigate Σ–D correlation, while
for the distance determination of SNRs we need the D–Σ
correlation (see Green 2009). The starting point of our analysis
is the requirement that the D–Σ and Σ–D fit parameter values
are invariant within the estimated uncertainties. This can be
achieved with the orthogonal regression fitting procedure. Here,
we use both types of fitting, standard (vertical) and orthogonal,
and compare the results.

Data fitting is performed numerically. We search for the
minimum of the χ2 function using the simplex algorithm
(O’Neil 1971). The fit parameter values and their errors,
presented in Tables 2–4, are the mean values and associated
standard deviations after 10,000 bootstrap data re-samplings for
each fit. When fitting with data errors, the vertical offsets are
weighted with σ 2

yi
, while orthogonal offsets χ2 are calculated as

(yi−A−βxi )2

σ 2
yi

+(σxi
β)2 .

4. ANALYSIS OF FIT STATISTICS

At first glance, inspection of Figures 1 and 2 and the Tables
leads to the conclusion that resulting fit parameter values are
significantly influenced by the type of fitting procedure. The
Σ–D slopes are obviously steeper for orthogonal offsets (Figures
1 and 2; Table 2). The approximately “trivial” Σ–D slope
(β ≈ 2.4) is transformed into a very steep slope ≈3.9 for the
S1 sample of 31 SNRs (Table 2). Also, for the poorer sample
with respect to the number of objects (10 S2 SNRs), steeper
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Table 2
The Σ–D Relation

Fit log A Δ log A β Δβ Q WSSR/ndof
√

WSSR/ndof

The sample of 10 SNRs from Table 3 in F08, r = −0.924164, r2 = 85.407974%.

Ver. os. −15.2842 1.48035e−01 3.00753 0.43692 9.92070e−01 1.92172e−01 4.38374e−01
Ver. os. w. −14.9625 1.99015e−01 2.88255 0.41673 0.00000e+00 2.08336e+02 1.44338e+01
Ort. os. −15.2874 1.56158e−01 3.60747 0.52914 9.99999e−01 1.62385e−02 1.27430e−01
Ort. os. w. −14.9921 1.82236e−01 3.08412 0.47155 1.07173e−201 1.19871e+02 1.09485e+01

The sample of 31 SNRs from Table 2 in F08, r = −0.782763, r2 = 61.271836%.

Ver. os. −15.7409 2.01064e−01 2.41576 0.43166 9.99967e−01 2.71169e−01 5.20739e−01
Ort. os. −15.2535 1.87001e−01 3.85631 0.43339 1.00000e+00 2.58510e−02 1.60783e−01

Table 3
The L = BD−δ Relation

Fit log B Δ log B δ Δδ Q WSSR/ndof
√

WSSR/ndof

The sample of 10 SNRs from Table 3 in F08, r = −0.641483, r2 = 41.150074%

Ver. os. 18.6909 1.40852e−01 1.01038 0.43436 9.92093e−01 1.92008e−01 4.38187e−01
Ver. os. w. 19.0008 2.31966e−01 0.80511 0.57985 0.00000e+00 1.62263e+03 4.02818e+01
Ort. os. 18.6929 3.11494e−01 2.21533 0.95097 9.99888e−01 5.97075e−02 2.44351e−01
Ort. os. w. 18.9292 2.20137e−01 1.35415 0.82877 0.00000e+00 8.40500e+02 2.89914e+01

The sample of 31 SNRs from Table 2 in F08, r = −0.236428, r2 = 5.589839%

Ver. offst. 18.2409 2.01469e−01 0.43333 0.43048 9.99971e−01 2.68603e−01 5.18269e−01
Ort. offst. 19.1334 7.52688e−01 2.96520 1.40621 1.00000e+00 7.25849e−02 2.69416e−01

Table 4
The D–Σ Relation

Fit Coefficient ΔCoefficient 1/β Δ(1/β) Q WSSR/ndof
√

WSSR/ndof

The sample of 10 SNRs from Table 3 in F08, r = −0.924164, r2 = 85.407974%

Ver. os. −4.26141 5.54597e−01 0.27896 0.03736 9.99999e−01 1.74798e−02 1.32211e−01
Ver. os. w. −4.66426e 6.73978e−01 0.31067 0.04486 0.00000e+00 2.80880e+02 1.67595e+01
Ort. os. −4.32109e 5.48758e−01 0.28290 0.03697 9.99999e−01 1.61987e−02 1.27274e−01
Ort. os. w. −4.93663 6.22588e−01 0.32945 0.04178 2.32472e−200 1.19097e+02 1.09131e+01

The sample of 31 SNRs from Table 2 in F08, r = −0.782763, r2 = 61.271836%.

Ver. os. −3.83090 4.62411e−01 0.25182 0.02793 1.00000e+00 2.75240e−02 1.65904e−01
Ort. os. −4.00880 5.02672e−01 0.26253 0.03021 1.00000e+00 2.58590e−02 1.60807e−01

slopes are obtained, but the differences are not so huge as in the
case of the larger sample (see Table 2). On the other hand, D–Σ
slopes are approximately the same in both fitting procedures
(see Table 4). This is due to a rather small span of diameters
(1 order of magnitude) in comparison to the span of surface
brightnesses (4 orders of magnitude). This leads to flatter slopes
which results in similar lengths of vertical and orthogonal offsets
giving similar fit parameters.

For the proper Σ–D analysis, the L–D correlation should
be checked. If the L–D correlation does not exist, the trivial
Σ ∝ D−2 form should not be used (Arbutina et al. 2004).
The statistics of L–D correlations for both M82 samples are
rather poor. For the S2 sample, this is because of the relatively
low coefficient of correlation and a small number of objects in
the sample, while for the S1 sample, it is because of a very
low coefficient of correlation. The coefficient of correlation r is
calculated using the following equation:

r =
∑

i(xi − x)(yi − y)√∑
i(xi − x)2

√∑
i(yi − y)2

. (2)

Finally, based on the poor statistical results of the L–D fits
(Table 3), it can be concluded that both extracted samples show
a high degree of scattering.

5. MONTE CARLO SIMULATIONS

We performed a set of Monte Carlo simulations to estimate
the influence of the survey sensitivity selection effect on the
Σ–D slope for the M82 sample (31 SNRs). In both fitting
procedures (vertical and orthogonal), we used the algorithm
described below.

5.1. Vertical Offsets

Monte Carlo simulations are similar to those described in
Paper I. First, we determined the empirical log Σ standard devi-
ation from the best-fit line, assuming log D as the independent
variable. We then selected an interval in log D between 0.65 and
100 pc. This interval is then sprinkled with random points of the
same log D density as that of the real data.

The simulated points that lie on the log D axis are then pro-
jected onto a series of lines at different slopes (in steps of 0.1
from 1.5 to 4.5). Each of these lines passes through the extreme
upper left-hand end of the best-fit line to the real data. We also
added Gaussian noise in log Σ, which is related to the scatter of
the real data by a parameter called “scatter.” A scatter of 1 cor-
responds to the same standard deviation as that of the real data.

An appropriate sensitivity cutoff is applied to the simulated
data points, selecting points above the sensitivity line (for
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Figure 1. Data from Table 2 in F08 (31 SNRs). Thick solid line: non-weighted vertical offsets; dash-dotted line: non-weighted orthogonal offsets.

simplicity, we assumed a sensitivity line that passes through
the real data point of the lowest brightness). This is done 1000
times for each simulated slope and a least-squares best-fit line
(vertical regression) is generated for artificial samples.

In Table 5, the first column lists the scatter and the second
column shows the value of the simulated slope. Columns 3–6 are
for vertical offsets: the mean and standard deviation of the best-
fit slopes for the generated samples and the mean and standard
deviation of the best-fit slopes for sensitivity selected generated
samples. In the same manner, Columns 7–10 list the properties
for orthogonal offsets. Figure 3 shows one of our Monte Carlo
generated samples for vertical offsets at 5 GHz with a scatter of
1 and the simulated slope of 2.4.

5.2. Orthogonal Offsets

We calculated the standard deviation of data from the data
best-fit line using the orthogonal offsets. Then we have gen-
erated random diameters as described above. The points are
then projected onto the simulated slope line. Then we added

the Gaussian noise to the simulated points in the orthogonal
direction from the simulated slope line as

Dnoise = Dproj ± north.√
1 + 1

b2

, Σnoise = Σproj ± north.

1 + b2
, (3)

with north. being the noise in the orthogonal offset direction and
b being the simulated slope. All artificial samples are fitted using
orthogonal fitting procedure repeated 1000 times. The results of
Monte Carlo simulations for orthogonal offsets are presented in
Figure 3 (for slope β = 3.9) and Table 5.

6. DISCUSSION

By contrast to the standard (vertical) fitting, the orthogonal
regression procedure leads to a significant change in the slope
of the Σ–D relation from 2.4 to 3.9 (Table 2). The latter is
a steep empirical slope, very far away from the trivial one
(β ≈ 2), and between theoretical predictions for the energy
conserving phase of an SNR evolution (β = 3.5 and 4.25),
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Figure 2. Data from Table 3 in F08 (10 SNRs). The errors are plotted for all points. Thick solid line: non-weighted vertical offsets; dashed line: weighted vertical
offsets; the dash-dotted and thin solid lines are for the non-weighted and weighted orthogonal offsets, respectively.

obtained by Duric & Seaquist (1986) and Berezhko & Völk
(2004), respectively. The inverted slope value (1/3.9 ≈ 0.26) is
approximately the same as the value obtained by D–Σ fitting.
Thus, for the orthogonal fitting procedure, D–Σ and Σ–D fit
parameter values are invariant within the estimated uncertainties
(see Tables 2 and 4). A careful inspection of Table 4 leads to
the conclusion that both fitting procedures provide similar D–Σ
slopes. Therefore, in the case of M82 SNRs, instead of using the
more complicated orthogonal regression method, one can find
the D–Σ slope by the standard (vertical) fitting and after that
invert it to find a valid Σ–D slope. This supports a suggestion
to use the D–Σ relation given by Green (2009). This is possible
because of the narrow span of diameters for M82 SNRs (1 order
of magnitude) in comparison to the wide span of brightnesses (4
orders of magnitude). If these spans are similar, the orthogonal
procedure has to be used for the useful D–Σ regression, too.

Based on the L–D analysis (Table 3), it can be concluded
that corresponding correlations are very poor. A large scatter

in the data is evident and hence the correlation coefficients are
low. On the other hand, some poor trends in the L–D plane
are visible but the moderately large level of scattering (or a
small number of objects) in analyzed samples could not provide
any valid conclusion about these trends (see Figures 1 and 2,
second panel). There are observed differences in the expansion
velocities of the SNRs in M82 (see F08, and references therein).
This implies that they are either on different evolutionary tracks
(connected with different initial energy of explosion), and/or
expanding into different density regions, or as a consequence,
may be in different phases of SNR evolution. Consequently, a
relatively large data scatter can be explained by the above noted
influences.

When presenting fit parameter values in the tables, we have
given the ratio of weighted sum of square residuals (offsets) and
number of degrees of freedom (WSSR/ndof). The probability
Q of obtaining larger WSSRs is also presented. While for
non-weighted offsets WSSR/ndof and Q values are of no
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Table 5
Results of Monte Carlo Simulations

Vertical offsets Orthogonal offsets

Scatter Simulated
Slope

Mean
Simulated

Slope

SD of Mean
Simulated

Slope

Mean Slope
After

Selection

SD of Slope
After

Selection

Mean
Simulated

Slope

SD of Mean
Simulated

Slope

Mean Slope
After

Selection

SD of Slope
After

Selection

1.0 1.500000 1.500696 0.099013 1.286365 0.109226 1.497463 0.055816 1.497168 0.055705
1.0 1.600000 1.600147 0.104393 1.349833 0.123326 1.598297 0.057974 1.587014 0.058188
1.0 1.700000 1.699489 0.099988 1.426584 0.131765 1.702749 0.060101 1.683068 0.067908
1.0 1.800000 1.802722 0.101126 1.507596 0.148833 1.804823 0.063576 1.782269 0.076331
1.0 1.900000 1.899529 0.101864 1.576387 0.156577 1.901645 0.065447 1.878356 0.082454
1.0 2.000000 1.997602 0.096299 1.672339 0.168350 2.003504 0.066718 1.979787 0.094530
1.0 2.100000 2.101995 0.101180 1.751897 0.183618 2.097585 0.069813 2.071091 0.112198
1.0 2.200000 2.203092 0.101992 1.836862 0.198541 2.201668 0.070944 2.182622 0.121677
1.0 2.300000 2.298177 0.100645 1.911342 0.212355 2.297719 0.078436 2.278483 0.139566
1.0 2.400000 2.402304 0.099143 2.005975 0.228506 2.402684 0.080858 2.384728 0.146849
1.0 2.500000 2.500295 0.100127 2.098402 0.243022 2.504435 0.081318 2.481287 0.165271
1.0 2.600000 2.602096 0.101548 2.172323 0.261917 2.600812 0.088288 2.576799 0.184526
1.0 2.700000 2.702694 0.101349 2.266196 0.287042 2.704265 0.085594 2.675869 0.204002
1.0 2.800000 2.799537 0.100410 2.340753 0.298422 2.799311 0.090789 2.784884 0.229936
1.0 2.900000 2.897140 0.098674 2.421775 0.310348 2.899872 0.095418 2.877078 0.238608
1.0 3.000000 2.996749 0.099588 2.498980 0.323027 3.003264 0.098458 2.979326 0.249424
1.0 3.100000 3.104522 0.098841 2.589717 0.345333 3.102771 0.102963 3.076613 0.290303
1.0 3.200000 3.202747 0.102624 2.688157 0.357554 3.204156 0.104733 3.179113 0.326909
1.0 3.300000 3.298963 0.099057 2.763613 0.362475 3.300337 0.106178 3.290091 0.310472
1.0 3.400000 3.402224 0.102481 2.839851 0.412462 3.405014 0.104106 3.377635 0.405915
1.0 3.500000 3.507588 0.104501 2.953550 0.443178 3.500932 0.107231 3.498262 0.398552
1.0 3.600000 3.601357 0.098950 3.027741 0.440752 3.603510 0.113465 3.603639 0.441060
1.0 3.700000 3.698463 0.102682 3.100663 0.431116 3.699302 0.115896 3.686992 0.517250
1.0 3.800000 3.800653 0.102899 3.198014 0.492386 3.809688 0.118302 3.789941 0.506556
1.0 3.900000 3.901953 0.100244 3.276876 0.484156 3.907993 0.121222 3.879406 0.624074
1.0 4.000000 3.997578 0.100347 3.371390 0.524299 4.003947 0.128336 3.956310 0.633162
1.0 4.100000 4.098606 0.103149 3.451102 0.567184 4.101723 0.127667 4.003518 0.836152
1.0 4.200000 4.203367 0.099424 3.549554 0.561571 4.205925 0.131813 4.103016 0.918963
1.0 4.300000 4.296356 0.103596 3.563594 0.564266 4.301982 0.133642 4.140517 0.947753
1.0 4.400000 4.399762 0.102086 3.677029 0.617068 4.396678 0.136565 4.231672 1.092972
1.0 4.500000 4.500762 0.099421 3.754998 0.640986 4.513678 0.138215 4.261958 1.206376
2.0 1.500000 1.497074 0.201499 1.010993 0.208958 1.503948 0.123884 1.491782 0.120576
2.0 1.600000 1.601748 0.206268 1.059087 0.211039 1.611962 0.125516 1.565151 0.122074
2.0 1.700000 1.699103 0.206710 1.097170 0.225302 1.709634 0.127692 1.629440 0.129925
2.0 1.800000 1.815947 0.198277 1.148707 0.227667 1.806221 0.136550 1.718790 0.151350
2.0 1.900000 1.898634 0.205865 1.184780 0.240272 1.906057 0.140358 1.818100 0.177176
2.0 2.000000 2.003181 0.208126 1.229978 0.239254 2.001608 0.141960 1.909523 0.193236
2.0 2.100000 2.106723 0.196232 1.282816 0.266664 2.115680 0.149275 2.012858 0.243819
2.0 2.200000 2.195067 0.200040 1.317523 0.278585 2.214054 0.154374 2.100802 0.277017
2.0 2.300000 2.297552 0.198016 1.378041 0.304825 2.310805 0.166987 2.184658 0.346117
2.0 2.400000 2.402734 0.192766 1.457052 0.326163 2.403606 0.169570 2.268059 0.405243
2.0 2.500000 2.500341 0.191161 1.510620 0.345794 2.519952 0.178789 2.328069 0.539537
2.0 2.600000 2.603374 0.201804 1.553823 0.358145 2.606837 0.179346 2.382969 0.617191
2.0 2.700000 2.696222 0.194625 1.628281 0.407107 2.702147 0.182631 2.305122 0.883883
2.0 2.800000 2.802244 0.198338 1.671113 0.416296 2.818203 0.190096 2.292552 0.999156
2.0 2.900000 2.904717 0.209044 1.757733 0.452250 2.918469 0.191426 2.191101 1.186119
2.0 3.000000 3.000119 0.200248 1.794150 0.449686 3.009131 0.205601 2.091009 1.306820
2.0 3.100000 3.095304 0.199938 1.861154 0.493821 3.120773 0.203151 2.027416 1.389508
2.0 3.200000 3.206066 0.200175 1.928786 0.495782 3.210318 0.209492 1.922314 1.469364
2.0 3.300000 3.305481 0.191043 2.017072 0.513027 3.318200 0.220698 1.704367 1.569541
2.0 3.400000 3.397078 0.198111 2.045195 0.562483 3.406487 0.224814 1.631980 1.610402
2.0 3.500000 3.510252 0.208732 2.105675 0.588506 3.516766 0.231254 1.439036 1.648696
2.0 3.600000 3.602030 0.206381 2.150111 0.604538 3.619306 0.233198 1.341696 1.673103
2.0 3.700000 3.691687 0.201116 2.245178 0.687834 3.713207 0.232729 1.240939 1.677783
2.0 3.800000 3.814261 0.194869 2.285464 0.694195 3.822946 0.250042 1.173427 1.684988
2.0 3.900000 3.899518 0.198059 2.332963 0.720083 3.915391 0.253124 1.115622 1.664230
2.0 4.000000 4.007378 0.208750 2.446729 0.717167 4.025399 0.257137 0.951611 1.650998
2.0 4.100000 4.108197 0.209448 2.473150 0.788030 4.117051 0.254371 0.863239 1.593827
2.0 4.200000 4.203942 0.206663 2.561313 0.789212 4.232547 0.274843 0.830775 1.621492
2.0 4.300000 4.303620 0.199229 2.637333 0.854930 4.325485 0.272846 0.783813 1.597587
2.0 4.400000 4.399662 0.196009 2.689233 0.854584 4.413641 0.279349 0.608025 1.497785
2.0 4.500000 4.515249 0.199041 2.720509 0.910855 4.513320 0.282582 0.701798 1.558721
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Figure 3. Monte Carlo generated sample at 5 GHz for a scatter of 1. M82 data points (31 SNRs, signed by asterisks) are plotted together with the sensitivity (solid)
line; artificially generated points are plotted above (filled circles) and below (open circles) this line. Dashed line: fit before selection; dotted line: fit after selection.
Left: vertical offsets for a simulated slope of 2.4; right: orthogonal offsets for a simulated slope of 3.9.

practical importance and are calculated only for the sake of
completeness, they show that weighted fits are not statistically
justified (Q � 0.001 and WSSR/ndof ∼1, when the scatter is
on the order of ∼1 standard deviation).

Arbutina & Urošević (2005) argued that SNRs of different
types can be found along more or less parallel tracks in the Σ–D
plane. The tracks are presumably defined by the density of the
surrounding environment in which SNRs evolve.

Inspection of Table 5 shows that for scatters larger than 1,
slopes of the Σ–D relation are seriously under the influence of
the sensitivity cutoff. This implies that for a reliable calibration
of the Σ–D relation, compact samples should be used (SNRs
with similar initial properties evolving in similar environments).
This criterion is probably satisfied for the M82 SNR sample
consisting of young SNRs that evolve in the dense environment
of the M82 starburst region. The latter conclusions may be valid
if all SNRs have entered the energy conserving (Sedov) phase.
The exact phase of evolution remains the main uncertainty
for M82 SNRs. At least one compact SNR 43.3+59.2 has an
exponent m, from the dynamical law R ∝ tm, �0.68 implying
the free expansion (Beswick et al. 2006). Chevalier & Fransson
(2001), on the other hand, argue that M82 SNRs may even be
in the radiative phase.

For the simulated data scatter of 1, that should resemble
the real scatter of the data, the slope of the Σ–D relation
is not severely biased by the sensitivity cutoff. A similar
conclusion is drawn from the Monte Carlo sensitivity related
simulations in Paper I. They used the M82 data sample of
Huang et al. (1994), collected with the Very Large Array, while
the M82 sample analyzed in this work was recorded with the
MERLIN measurements. This resulted in somewhat different

sensitivity lines but nevertheless both studies came up with
similar conclusions.

Monte Carlo simulations are carried out for the purpose of
checking the completeness of the M82 SNR sample. Objects
with low surface brightnesses cannot be detected because
they are affected by the survey sensitivity selection effect.
By simulating this effect, we tried to find out whether our
sample (i.e., corresponding Σ–D slope) is representative for
M82 SNR population or not. Inspection of Table 5, when
scatter is generated by vertical offsets, shows that the sensitivity
selection effect makes the observed Σ–D slopes shallower. The
result is identical to the one obtained in Paper I. When scatter is
generated by the orthogonal offsets, the sensitivity line does not
cut a significant number of artificial objects located in the lower
left part of the field. In the scatter 1 scenario, the sensitivity cutoff
does not affect the Σ–D slope (see Table 5). A very interesting
situation arises in the simulation of the orthogonal scatter 2
scenario. The Σ–D slopes are changed significantly. The lower
left part of the artificial samples is cut by the sensitivity line
when scatter is high (higher than the real one) and the slopes
of relations become shallower. Based on the analysis of the
results of the simulations presented (Table 5), we believe that
the orthogonal scatter 1 scenario is more likely for two reasons:
(1) the slope (β = 3.9) is obtained by the orthogonal procedure
that gives the invariant Σ–D and D–Σ slopes and (2) scatter is
generated by the orthogonal offsets and corresponds to the real
scatter in the observed data set. We conclude that the sensitivity
selection effect does not have a major impact on the Σ–D slope
for M82 SNRs.

With D–Σ and Σ–D fit slopes being invariant within the
estimated uncertainties in the orthogonal fitting procedure,
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assuming a relatively complete sample, the Σ ∝ D−3.9 relation
for M82 SNRs could potentially describe the evolution of young
SNRs in the energy conserving phase of their evolution, and this
relation might be useful for estimating distances to such SNRs.
The problem that remains is the coupling of the evident data
scattering in the F08 SNR sample and a small number of objects
for which reliable statistics can be done. Another problem is
that most of the sources do not show a significant flux density
variation (Kronberg et al. 2000), implying a trivial physical
relation Lν ≈ const. Some sources, like 41.30+59.6, show
flux increase rather than decrease (F08). Therefore, the Σ–D
relations obtained in this paper should be used with caution.

Finally, some compact radio objects in M82 may not be
SNRs as proposed by Seaquist & Stanković (2007). They
analyzed compact non-thermal radio objects and concluded that
some of them are probably the so-called wind-driven bubbles
(WDBs) due to the lack of observed time variability in most
of the sources, implying ages greater than expected for SNRs.
However, the recent detection of γ radiation from M82 (Abdo
et al. 2010) confirms the standard opinion that radio objects in
M82 are indeed SNRs. The strong shock waves of young SNRs
are necessary for the efficient production of cosmic rays by
the so-called diffuse shock acceleration (DSA) mechanism. The
inverse Compton scattering of the background electromagnetic
radiation by the cosmic-ray electrons (leptonic model) or a decay
of neutral pions, mainly produced by cosmic-ray protons during
the interaction with the gas (hadronic model), represents two
basic mechanisms for the production of γ rays. WDBs probably
do not represent proper sites for the production of γ rays, due
to slower shock waves in comparison to shock waves of young
SNRs.

7. CONCLUSIONS

We suggest that the orthogonal regression procedure be used
for obtaining empirical Σ–D relations. In that case, the values of
parameters obtained from the fitting of Σ–D and D–Σ relations
are invariant within estimated uncertainties. Alternatively, if a
data span in Σ covers more orders of magnitude than a data
span in D, the fitting of the D–Σ relation with vertical offsets
can give a β that resembles the slope fitted with either Σ–D
or D–Σ orthogonal offsets. The steep Σ–D slope (β = 3.9) is
obtained when fitting the orthogonal regression to the updated
M82 SNR sample. The results of our Monte Carlo simulations
suggest that this slope is probably free of the sensitivity selection
effect. Moreover, it is closer to the updated theoretically derived
slopes for the energy conserving phase of SNR evolution. The
relation Σ ∝ D−3.9 could represent the average evolutionary
track for SNRs in M82, and could potentially be used for
estimating the distances of young SNRs expanding in dense

environment. However, data scattering and, more importantly,
a relatively small number of objects in the analyzed samples
constrain the reliability of this relation. Due to this, the obtained
Σ–D relations should be used with caution. More observations
and better theoretical description are necessary for a deeper
understanding of the radio evolution of these SNRs.

The authors thank Dragana Momić for reading the manuscript
and the anonymous referee for valuable comments that improved
the quality of this paper. This work is part of Projects No.
146003 and 146012 supported by the Ministry of Science and
Environmental Protection of Serbia.
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