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Abstract. We present our current work on formalizing analytic (Carte-
sian) plane geometries within the proof assistant Isabelle/HOL. We give
several equivalent definitions of the Cartesian plane and show that it
models synthetic plane geometries (using both Tarski’s and Hilbert’s ax-
iom systems). We also discuss several techniques used to simplify and
automate the proofs. As one of our aims is to advocate the use of proof
assistants in mathematical education, our exposure tries to remain simple
and close to standard textbook definitions. Our other aim is to develop
the necessary infrastructure for implementing decision procedures based
on analytic geometry within proof assistants.

1 Introduction

In classic mathematics, there are many different geometries. Also, there are
different viewpoints on what is considered to be standard (Euclidean) geometry.
Sometimes, geometry is defined as an independent formal theory, sometimes as
a specific model. Of course, the connections between different foundations of
geometry are strong. For example, it can be shown that the Cartesian plane
represents (a canonical) model of formal theories of geometry.

The traditional Euclidean (synthetic) geometry, dating from the ancient
Greece, is a geometry based on a, typically small, set of primitive notions (e.g.,
points, lines, congruence relation, ...) and axioms (implicitly defining these
primitive notions). There is a number of variants of axiom systems for Euclidean
geometry and the most influential and important ones are Euclid’s system (from
his seminal “Elements”) and its modern reincarnations [1], Hilbert’s system [9],
and Tarski’s system [21].

One of the most influential inventions in mathematics, dating from the XVII
century, was the Descartes’s invention of coordinate system, allowing algebraic
equations to be expressed as geometric shapes. The resulting analytic (or Carte-
sian) geometry bridged the gap between algebra and geometry, crucial to the
discovery of infinitesimal calculus and analysis.

With the appearance of modern proof assistants, in recent years, many clas-
sical mathematical theories have been formally analyzed mechanically, within
proof assistants. This has also been the case with geometry and there have been
several attempts to formalize different geometries and different approaches to ge-
ometry. We are not aware that there have been full formalizations of the seminal
Hilbert’s [9] or Tarski’s [21] development, but significant steps have been made
and major parts of these theories have been formalized within different proof



assistants. As the common experience shows, using the proof assistants signifi-
cantly raises the level of rigour as many classic textbook developments turn out
to be imprecise or sometimes even flawed. Therefore, any formal treatment of
geometry, including ours, should rely on using proof assistants. Therefore, all the
work presented in this paper is done within Isabelle/HOL proof assistant [17].

Main applications of our present work are in automated theorem proving in
geometry and in mathematical education and teaching of geometry.

When it comes to automated theorem proving in geometry (GATP), the
analytic approach has shown to be superior . The most successful methods in
this field are algebraic methods (e.g., Wu’s method [22] and the Grobner bases
method [2, 11]) relying on the coordinate representation of points. Modern the-
orem provers relying on these methods have been used to show hundreds of
non-trivial theorems. On the other hand, theorem provers based on synthetic
axiomatizations have not been so successfull. Most GATP systems are used as
trusted software tools as they are usually not connected to modern proof as-
sistants. In order to increase their reliability, they should be connected to the
modern proof assistants (either by implementing them and proving their correct-
ness within proof assistants, or by having proof assistants check their claims).
Several steps in this direction have already been made [7,14].

In mathematics education in high-schools and in entry levels of university
both approaches (synthetic and analytic) to geometry are usually demonstrated.
However, while the synthetic approach is usually taught in its full rigor (aiming
to serve as an example of rigorous axiomatic development), the analytic geom-
etry is usually presented much more informally (sometimes just as a part of
calculus). Also, these two approaches are usually presented independently, and
the connections between the two are rarely formally proved within a standard
curriculum.

Having this in mind, this work tries to bridge several gaps that we feel are
present in current state-of-the-art in the field of formalizations of geometry.

1. First, we aim to formalize Cartesian geometry within a proof assistant, in a
rigorous manner, but still very close to standard high-school exposures.

2. We aim to show that several different definitions of basic notions of analytic
geometry found in various textbooks all turn out to be equivalent, therefore
representing a single abstract entity — the Cartesian plane.

3. We aim to show that the standard Cartesian plane geometry represents
a model of several geometry axiomatizations (most notably Tarski’s and
Hilbert’s).

4. We want to formally analyze model-theoretic properties of different ax-
iomatic systems (for example, we want to show that all models of Hilbert’s
geometry are isomorphic to the standard Cartesian plane).

5. We want to formally analyze axiomatizations and models of non-Euclidean
geometries and their properties (e.g., to show that the Poincaré disk is a
model of the Lobachevsky’s geometry).

! Proof documents are available online at http://argo.matf.bg.ac.rs



6. We want to formally establish connections of the Cartesian plane geometry
with algebraic methods that are the most successfull methods in GATP.

Several of these aims have been already established, while some other are
still in progress. In this paper we will describe the first three points. The last
point has already been discussed in [14], while other points are left for further
work.

Apart from having many theorems formalized and proved within Isabelle/HOL,
we also discuss our experience in applying different techniques used to simplify
the proofs. The most significant was the use of “without the loss of generality
(wlog)” reasoning, following the approach of Harrison [8] and justified by using
various isometric transformations.

Overview of the paper. In Section 2 some background on Isabelle/HOL and the
notation used is given. In Section 3 we give several definitions of basic notions
of the Cartesian plane geometry and prove their equivalence. In Section 4 we
discuss the wlog reasoning and the use of isometric transformations in formal
geometry proofs. In Section 5 and Section 6 we show that our Cartesian plane
geometry models the axioms of Tarski and the axioms of Hilbert. In Section 7
we discuss the current state-of-the-art in formalizations of geometry. Finally, in
Section 8 we draw some conclusions and discuss future work.

2 Background

Isabelle/HOL.

3 Formalizing Cartesian Geometry

When formalizing a theory, one should decide which notions are considered to
be primitive, and which notions are defined, based on those primitive notions.
Our formalization of analytic geometry aims at establishing the connection with
synthetic geometries so it follows primitive notions given in the synthetic ap-
proach. Each geometry considers a class of objects called the points. Richer
geometries, such as Hilbert’s also consider distinct set of objects called the lines,
while Tarski’s geometry does not consider lines, at all. In some expositions of
geometry, lines are a defined notion, and they are defined as sets of points. This
assumes dealing with the full set theory, and many axiomatizations try to avoid
this. So, we are going to define both points and lines, since we want to allow to
analyzing both Tarski’s and Hilbert’s geometry. The basic relation connecting
points and lines is incidence, informally stating that a line contains a point (or
dually that the point is contained in a line). Other primitive relations (in most
axiomatic systems) are betweenness, defining the order of collinear points, and
congruence.



3.1 Points in Analytic Geometry.

Point in a real Cartesian plane is determined by its  and y coordinate. So, points
are pairs of real numbers (R?), what can be easily formalized in Isabelle/HOL
by type_synonym point® = "real X real”.

3.2 The Order of Points.

The order of (collinear) points is defined using the betweenness relation. This is a
ternary relation and B(A, B, C') denotes that points A, B, and C' are collinear and
that B is between A and C. However, some axiomatizations (e.g., Tarski’s) allow
the case when B is equal to A or C' (we will say the between relation is inclusive),
while some other (e.g., Hilbert’s) do not (and we will say that the between
relation is exclusive). In the first case, the between relation holds if there is a real
number 0 < k£ < 1 such that AB = k- AC. We want to avoid explicitly defining
vectors (as they are usually not a primitive, but a derived notion in synthetic
geometries) and so we formalized betweenness in Isabelle/HOL as following:

By (za,ya) (xzb,yb) (xc,yc) +—
(3(k:=real). 0<k AN k<1 A
(xb—za) =k-(xc—za) N (yb—ya)=k- (yc—ya))

If A, B, and C are required to be distinct, then 0 < k£ < 1 must hold, and
the relation is denoted by B}

3.3 Congruence.

The congruence relation is defined on pairs of points. Informally, AB =, CD
denotes that the segment AB is congruent to the segment C'D. Standard met-
ric in R? defines that distance of points A(z4,y4), B(ws,yg) to be d(A, B) =
V(@ —24)?+ (yp — ya)?. Squared distance is defined as d*>*9 A B = (zp —
74)? + (yp — ya)?. The points A, B are congruent to the points C, D iff
d*®9 A B =d*>% C D. In Isabelle/HOL this can be formalized as:

d>9 (z1,y1) (w2,92) = (x2 — 21) - (w2 — 21) + (Y2 = y1) - (¥2 — y1)
A1B] 2% AyBy +— d>%9 Ay By =d*>% Ay B

3.4 Lines and incidence.

Line equations. Lines in the Cartesian plane are usually represented by the
equations of the form Az + By + C = 0, so a triplet (4, B,C) € R? determines
a line. However, triplets where A = 0 and B = 0 do not correspond to valid
equations and must be excluded. However, equations Az + By + C' = 0 and
kAx+ kBy+ kC = 0, for a real k # 0, define a same line. So, a line must not be
defined just by a single equation, but a line must be defined as a class of equations
that have proportional coefficients. Formalization in Isabelle/HOL proceeds in
several steps. First, the domain of valid equation coefficients (triplets) is defined.
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typedef line_coeffs
{((A::real), (B ::real), (C ::real)). A#0V B #0}

When this type is defined, the function Rep_line_coeffs converts abstract values
of this type to their concrete underlying representations (tripplets of reals), and
the function Abs_line_coeffs converts (valid) tripplets to abstract values of this
type.

Two tripplets are equivalent iff they are proportional.

11 =9 l2 —
(EI A1 By Ol A2 B> CQ.
(Rep_line_coeffs 1y = (A1,B1,C1)) A Rep_line_coeffs lo = (Ag, By, Ca) A
(E”C k;éO/\AQZkAl A BQZkBl A022k01))

It is shown that this is indeed an equivalence relation. The definition of the type
of lines uses the support for quotient types and quotient definitions that has
been recently introduced to Isabelle/HOL [10]. So, lines (the type line®) are
defined using the quotient_type command, as equivalence classes of the ~%9
relation.

To avoid using set theory, geometry axiomatizations that explicitly consider
lines use the incidence relation. If the previous definition of lines is used, then
checking incidence reduces to calculating whether the point (z,y) satisfies the
line equation A-x+ B -y -+ C = 0, for some representative coefficients A, B, and
C. However, to show that this relation is well defined, it must be shown that if
other representatives A’, B’, and C’ are chosen (that are proportional to A, B,
and C), then A" -z + B’ -y+ C = 0. In our Isabelle/HOL formalization, we use
the quotient package. So,

agin_h (x,y) 1 +—
(3 A B C. Rep_line_coeffs l=(A, B, C) N (A-z+B-y+C=0))

Then, A €%/ | is defined using the quotient_definition based on the rela-
tion ag_in_h. The well-definedness lemma is

lemma
assumes "l ~[""
shows "ag_in.h P l=agin_h P I'"

Affine definition. In affine geometry, a line is defined by fixing a point and a
vector. As points, vectors also can be represented by pairs of reals type_synonym
vec™ = "real x real”. Vectors defined like this form vector space (with natu-
rally defined vector addition and scalar multiplication). Points and vectors can
be added as (z,y) + (vz,vy) = (@ + vg,y + vy). Then, line is represented by a
Point and a non-zero vector:

typedef line_point_vec® = {(p :: point®,v :: vec™). v #£ (0,0)}

However, different points and vectors can determine a single line, and a quo-
tient construction must be used again. The



ll ~9 lg <—— (3])1 V1 P2 V2.
Rep_line_point_vec 1l = (p1,v1) A Rep_line_point_vec ly = (pa2,v2) A
(Fk. vi =k-va Apa=p1+k-v1))

It is shown that this is indeed an equivalence relation. Then, the type of lines
(line®9) is again defined by a quotient definitions ) are defined using the quotient_type
command, as equivalence classes of the =9 relation.

3.5 Isometries.

Isometries are usually defined notions in synthetic geometries. Reflections can
be defined first, and then other isometries can be defined as compositions of
reflections. However, in our current formalizations, isometries are used only as
an auxiliary tool used to simplify our proofs (as discussed in Section 4). So we
were not concerned with defining isometries in terms of primitive notions (points
and congruence) but we give their separate (analytic) definitions and prove the
properties needed in our later proofs.

Translation is defined for a given vector (not explicitly defined, but repre-
sented by a pair of reals). The formal definition in Isabelle/HOL is straightfor-
ward.

transp® (v1,va) (z1,22) = (v1 + 21, V2 + X2)

Rotation is parametrized for a real parameter « (representing the rotation
angle), while only rotations around the origin are considered (other rotations
can be obtained by composing translations and a rotation around the origin).
Elementary trigonometry is used to give the following formal definition in Is-
abelle/HOL.

rotp® a (z,y) = ((cosa) -z — (sina) -y, (sina) - ¢ + (cos ) - y)
There is also central symmetry that is easily defined using point coordinates:

symp™ (z,y) = (—z,—y)

Important properties of all isometries are invariance properties, i.e., they
preserve basic relations (betweenness and congruency).

By A B C+<+— By’ (transp™ v A) (transp™ v B) (transp® v C)
AB =% CD +—
(transp® v A)(transp® v B) =% (transp® v C)(transp® v D)
By A B C+— B (rotp™ o A) (rotp™ o« B) (rotp® a C)
AB =% CD < (rotp®® o A)(rotp® a B) = (rotp®™ « C)(rotp®? o D)

lemma ag_symp_bet:
By A B C+— B’ (symp® A) (symp®? B) (symp™ C)



lemma ag_symp_cong:
AB =% OD < (symp® A)(symp® B) = (symp® C)(symp® D)

Isometries are used only to transform points to canonical position (usually
to move them to the y-axis). The following lemmas show that this is possible.

Fv. transp®® v P = (0,0)
Ja. rotp® o P = (0,p)
By (0,0) Py P, — 3a p1 pa. rotp® o Py = (0,p1) Arotp® o Py = (0,p2)

4 Using Isometric Transformations

One of the most important techniques used to simplify our formalization relied
on using isometric transformations. We shall try to give a motivation for applying
isometries on the following, simple example.

Let us prove that in our model, if BfY A X B and BfY ABY then BfY X BY.
Even on this simple example, if a straightforward approach is taken and isometric
transformations are not used the algebraic calculations become tedious.

Let A= (za,ya), B= (zp,yp), and X = (zx,yx). Since By’ A X B holds,
there is a real number k1, 0 < ky < 1, such that (zx —x4) = k1 - (x5 — z4),
and (yx —ya) = k1 - (yp — ya). Similarly, since BfY A B Y holds, there is
a real number ko, 0 < ko < 1, such that (xp — x4) = ko - (zy — z4), and
(yp —ya) = ka2 (yy — ya). Then, we can define a real number k by

ko — ko - Ky
1—Fky -k~

If X # B, then, using straightforward but complex algebraic calculations, it
can be shown that 0 < k < 1, and that (zp —2x) = k- (xy — xx), and
(yp —yx) = k- (yy —yx), and therefore By’ X B'Y holds. The degenerate case
X = B holds trivially.

However, if we apply the isometric transformations, then we can assume that
A=1(0,0), B=(0,yp),and X = (0,yx), and that 0 < yx < yp. The case yp =
0 holds trivially. Otherwise, xy = 0 and 0 < yp < yy. Hence yx < yp < yy,
and the case holds. Note that in this case no significant algebraic calculations
were needed and the proof relied only on simple transitivity properties of <.

Comparing the previous two proofs, indicates how applying isometric trans-
formations significantly simplifies the calculations involved and shortens the
proofs.

Since this technique is used throughout our formalization, it is worth dis-
cussing what is the best way to formulate the appropriate lemmas that justify
its use and use as much automation as possible. We followed the approach of
Harrison [8].

The property P is invariant under the transformation ¢ iff it is not affected
after transforming the points by t¢.

Ubaciti pricu za lin-
ije - Filip



inv P t+—( A B C. P ABC+«—P (tA) (tB) (t0))

Then, the following lemma can be used to reduce the statement to any three
collinear points to the positive part of the y-axis (alternatively, z-axis could be
chosen).

lemma
assumes "V yp yo. 0<yp A yp <yc— P (0,0) (0,y5) (0,yc)"
"Wo. inv P (transp® v )" "Va. inv P (rotp® « )"
"inv P (symp®? )"
shows "WABC. B ABC— P ABC"

It turns out that showing that the statement is invariant to isometric trans-
formations is mostly done by automation using the lemmas stating that the
betweenness and congruent relations are invariant to isometric transformations.

5 Tarski’s geometry

Our goal in this section is to prove that our definitions of the Cartesian plane sat-
isfy all the axioms of Tarski’s geometry. Tarski’s geometry considers only points,
betweenness (denoted by B;(A, B, C)) and congruence (denoted by AB =2, C') as
basic objects. In Tarski’s geometry lines are not explicitly present and collinear-
ity is defined by using the betweenness relation.

Ci(A, B, C) < Bi(A, B,C) V B,(B,C, A) vV B,(C, A, B)

5.1 Axioms of congruence.
First three Tarski’s axioms express basic properties of congruence.

AB =, BA
AB=~,CC— A=B
AB=~, CDA AB=, EF — CD =, EF

~ag

We want to prove that our relation %9 satisfies the properties abstractly
given by the previous axioms (i.e., that the given axioms hold for our Carte-
sian model). For example, for the first axiom this reduces to showing that
AB =% BA. The proofs are rather straightforward and are done almost au-
tomatically (by simplifications after unfolding the definitions).

5.2 Axioms of Betweenness.

Identity of Betweenness. First axiom of (inclusive) betweenness gives its one
simple property and, for our model, it is also proved almost automatically.

B.(A,B,A) —» A=B



The aziom of Pasch. The next axiom is the Pasch’s axiom:
Bi(A,P,C)ANBy(B,Q,C) — (3X. (B:(P,X,B)AB,(Q, X, A)))

Under the assumption that all points involved are distinct the picture corre-
sponding to this axioms is:

A P é\

Before we discuss the proof that our Cartesian plane satisfies this axiom we
discuss some issues related to the Tarski’s geometry that turned out to be impor-
tant for our overall proof organization. The final version of Tarski’s axiom system
was designed to be minimal (it contains only 11 axioms), and the central ax-
ioms that describe the betweenness relation are the identity of betweenness and
Pasch’s axiom. In formalizations of Tarski’s geometry ([16]), all other elementary
properties of this relation are derived from these two axioms. For example, to
derive the symmetry property (i.e., B:(4, B,C) = B;(C, B, A)), the axiom of
Pasch is applied to triplets ABC and BCC and the point X is obtained so that
B:(C,X,A) and By(B, X, B), and then, by axiom 1, X = B and B;(C, B, A)
holds. However, in our experience, in order to prove that our Cartesian plane
models Tarski’s axioms (especially the axiom of Pasch), it would be convenient
to have some of its consequences (e.g., the symmetry and transitivity properties)
already proved. Indeed, earlier variants of Tarski’s axiom system contained more
axioms, and these properties were separate axioms. From a more abstract view-
point, the symmetry property seems to be simpler property then Pasch’s axiom
(for example, it involves only the points lying on a line, while the axiom of Pasch
allows points that lie in a plane that are not necessarily collinear). Moreover, the
previous proof uses rather subtle properties of the way that the Pasch’s axiom
is formulated. For example, if its conclusion used By(B, X, P) and Bi(4, X, Q)
instead of B(P, X, B) and B,(Q, X, A), then the proof could not be conducted.
Therefore, we decided that a good approach would be to directly show that some
elementary properties (e.g., symmetry, transitivity) of the betweenness relation
hold in the model, and use these facts in the proof of much more complex Pasch’s
axiom.

B¥ A AB
B¥ ABC—BY CBA



BY AX B ANBY ABYBY XBY
BY AX B ABY ABY 5BY AXY

Returning to the proof that our Cartesian plane satisfy the full Pasch’s ax-
iom, first several degenerate cases need to be considered. First group of degen-
erate cases arise when some points in the construction are equal. For example,
Bi(A, P,C) allows that A= P = C, that A= P # C, that A # P = C and that
A # P # C. A direct approach would be to analyze all these cases separately.
However, a better approach is to carefully analyze the conjecture and identify
which cases are substantially different. It turns out that only two different cases
are relevant. If P = C, then @ is the point sought. If @ = C, then P is the
point sought. Next group of degenerate cases arise when all points are collinear.
In this case, either B.(A, B,C) or B,(B, A,C) or Bi(B,C, A) holds. In the first
case B is the point sought, in the second case it is the point A, and in the third
case it is the point P.

Note that all degenerate cases that arise in the Pasch’s axioms were proved
directly by using these elementary properties and that coordinate computations
did not need to be used in those cases. This suggests that degenerate cases of
Pasch’s axiom are equivalent to the conjunction of the given properties. Further,
this suggests that if Tarski’s axiomatics was changed so that it included these
elementary properties, then the Pasch’s axiom could be weakened so that it
includes only the central case of non-collinear, distinct points.

Finally, the central case remains. In that case, algebraic calculations are used
to calculate the coordinates of the point X and prove the conjecture. To simplify
the proof, isometries are used, as described in Section 4. The configuration is
transformed so that A becomes the origin (0,0), and so that P = (0,yp) and
C = (0, yc) lie on the positive part of the y-axis. Let B = (zp,y5), @ = (g, Y0)
and X = (zx,yx)- Since B;(A, P, C) holds, there is a real number k3,0 < k3 < 1,
such that yp = k3 - yo. Similarly, since B;(B, @, C) holds, there is a real number

ks, 0 < ks <1, such that (xp —24) =ko- (v —2a), and 29 —2p = —ks *TpB
and yo — yp = k4 * (yo — yp). Then, we can define a real number k; by
ks (1 —kyq)
ky+ ks — ks ky

A # P # C and points are not colinear, then, using straightforward algebraic
calculations, it can be shown that 0 < k1 < 1, and that xx = k; - 5, and
yx —yp = k1-(ys—yp), and therefore B, (P, X, B) holds. Similarly, we can define
a real number ko by % and show that 0 < ko < 1 and that following
holds: xx —xg = —k2 - zg and yx —ygo = —k2 - yo and thus B,(Q, X, A) holds.
From these two conclusion we have determined point X.

Lower dimension axiom. The next axiom states that there are 3 non-collinear
points. Hence any model of these axioms must have dimension greater than 1.
It trivially holds in our Cartesian model (e.g., (0,0), (0,1), and (1,0) are non-
collinear.

3 A B C. ~ C(AB,C)



Aziom (Schema) of Continuity. Tarski’s continuity axiom is essentially the
Dedekind cut construction. Intuitively, if all points of a set of points are on
one side of all points of the other set of points, then there is a point between the
two sets. The original Tarski’s are defined within the framework of First Order
Logic and sets are not explicitly recognized in Tarski’s formalization. Instead of
speaking about sets of points, Tarski uses first order predicates ¢ and .

(Fa.Ve. Vy. ¢ x Ap y — Bi(a,z,y)) — (Fb. Va. Vy. ¢ z Ay y — Be(z,b,y))

However, the formulation of this lemma within the Higher Order Logic frame-
work of Isabelle/HOL does not restrict predicate f and g to be FOL predicates.
Therefore, from a strict viewpoint, our formalization of Tarski’s axioms within
Isabelle/HOL gives a different geometry then Tarski’s original axiomatic system.

lemma
assumes "Jda. Vx. Vy. ¢ a ANy y — BY a z y"
shows "3b. Va. Vy. ¢ x ANy y — B = b y"

Still, it turns out that it is possible to show that the Cartesian plane also sat-
isfies the stronger variant of the axiom (without FOL restrictions on predicates
f and g). If one of the sets is empty, the statement trivially holds. If the sets
have a point in common, that point is the point sought. In other cases, isometry
transformations are applied so that all points from both sets lie on the positive
part of the y-axis. Then, the statement reduces to proving

lemma
assumes
"P={z. 220N ¢(0,2)}" "Q={y. y=0A(0,y)}"
"=(3b. be PAbLE Q)" "Jxg. zp € P" "Jyo. yo € Q"
"Wx e P. Yy € Q. B7Y (0,0) (0,z) (0,y)"
shows

"3b. Yz e P. Yy e Q. BY (0,z) (0,b) (0,y)"

Proving this requires using non-trivial properties of reals, i.e., their com-
pleteness. Completeness of reals in Isabelle/HOL is formalized in the following
theorem (the supremum, i.e., the least upper bound property):

(Fz.ze P)AN(y. Ve eP.x<y) —3S. Vy. (FzeP.y<z)+y<5S)

P satisfies the supremum property. Indeed, since, by an assumption, P and
@ do not share a common element, from the assumptions it holds that Va €
P.Yy € Q. x <y, so any element of () is an upper bound for P. By assumptions,
P and @ are non-empty, so there is an element b such that Vz € P. x < b and
Vy € Q. b <y, so the theorem holds.



5.3 Axioms of Congruence and Betweenness.

Upper dimension axiom. Three points equidistant from two distinct points form
a line. Hence any model of these axioms must have dimension less than 3.

AP, AQ N BP=,BQACP2CQANP+£Q — C(A,B,C)

C

Segment construction aziom.
JE. Bi(A,B,E) N BE=,CD

The proof that our Cartesian plane models this axiom is simple and starts
by transforming the points so that A becomes the origin and that B lies on
the positive part of the y-axis. Then A = (0,0) and B = (0,b), b > 0. Let
d=+vd?*» C D. Then E = (0,b+ d).

Five segment azxiom.

AB =, A'B' A BC' 2, B'C" N AD =, A'D' A\ BD 2, B'D' A
Bi(A,B,C) A By(A',B',C") N A# B — CD =, C'D'

Proving that our model satisfies this axiom was rather straightforward, but
it required complex calculations. To simplify the proofs, points A, B and C were
transformed to the positive part of the y-axis. Since calculations involved square
roots, we did not manage to use much automatization and many small steps
needed to be spelled out manually.

The aziom of Fuclid.

B:(A,D,T) A B:(B,D,C) NA#+D —
(3XY. (B:(A,B,X) N Biy(A,C)Y) N By(X,T,Y)))

)

The corresponding picture when all points are distinct is:



6 Hilbert’s geometry

Our goal in this section is to prove that our definitions of the Cartesian plane
satisfy the axioms of Hilbert’s geometry. Hilbert’s plane geometry considers
points, lines, betweenness (denoted by Bp(A, B,C)) and congruence (denoted
by AB 2, C) as basic objects.

In Hilbert original axiomatization [9] some assumptions are implied from the
context. For example, if it is said that there exists two points, it always means
two distinct points. If this is not assumed then some statements does not hold,
e.g. betweenness does not hold if the points are equal. Having this is mind, it
could be said that formalizations increase the degree of rigor of Hilbert axioms.

6.1 Axioms of Incidence

A#4B-—3l. Ae,IANBe,l
A#B— 3. Ae,INBe,l

The final axioms of this groups is formalized within two separate statements.

JAB. A#B AN Aepl NBeyl
SABC. ~Ch(A, B,C)

The collinearity relation Cp, (used in the previous statement) is defined as
Ch(A,B,C) «—dl.Aepl N Bepl N Cepl

Of course, we want to show that our Cartesian plane definition satisfies these
axioms. For example, this means that we need to show that

A#B—3. Ae¥INBEYL

Proofs of all these lemmas are trivial and mostly done by unfolding the
definitions and then using automation (using the Grobner bases methods).



6.2 Axioms of Order

lemma
assumes Bj(A, B,C)
shows A#B N A#C N B#C AN (Ch(A,B,C)) N By(C,B,A)

lemma
assumes A # C
shows 3B. B,(A4,C,B)

lemma
assumes Al Bepl C eyl
A#B B#C A#C
shows  Bip(A,B,C) N =(BL(B,C,A)) N —=(By(C,A,B))V
=(Bin(A,B,C)) A Bu(B,C,A) N =(By(C,A,B))V
_‘(Bh(AaBaC)) A _‘(Bh(BvcaA)) A Bh(CaAvB)

The proof that the relations =%, €%/ , and By  satisfy these axioms are
simple and again have been done mainly by unfolding the definitions and using
automation.

Axiom of Pasch.

lemma
assumes A# B B#C C#A
Bh(A,P,B) Pey,l -Cepl
—Ae,l -Beylh
shows JQ. (Bh(A,Q,C) AN QEp l) V (Bh(B,Q,C) AN QEp l)

c

A

In the original Pash axiom there is one more assumption — points A, B and C
are not colinear, so the axiom is formulated only for the central, non-degenerate
case. However, in our model the statement holds trivially if they are, so we
have shown that our model satisfies both the central and the degenerate case
of collinear points. Note that, due to the properties of the Hilbert’s between
relation, the assumptions about the distinctness of points cannot be omitted.

The proof uses the standard technique. First, isometric transformations are
used to translate points to the y-axis, so that A = (0,0), B = (zp,0) and P =
(xp,0). Let C = (z¢,yc) and Rep_line_coef fs 1 = (la,lp,lc). We distinguish
two major cases, depending in which of the given segments requested point lies.



Using the property Bp(A, P, B) it is shown that l4 - yg # 0 and then, two
coefficient k1 = l;~lyCB and ke = % are defined. Next, it is shown that it
holds 0 < k1 < 1or 0 < ks < 1. Using 0 < k1 < 1, the point Q = (zg,yg) is
determined by zg = k1 - z¢ and yg = k1 - Yo, thus By (4, Q,C) holds. In the
other case, when the second property holds, the point Q = (z4,y,) is determined

by xg = ke - (xc —xp) +2p and yg = k2 - Yo, thus By(B, Q, C) holds.

6.3 Axioms of Congruence

The first axiom gives the possibility of constructing congruent segments on given
lines. In Hilbert’s Grundlagen [9] it is formulated as follows: If A, B are two
points on a line a, and A’ is a point on the same or another line a’ then it is
always possible to find a point B’ on a given side of the line a’ through A’ such
that the segment AB is congruent to the segment A’ B’. However, in our formal-
ization part on a given side is changed and two points are obtained (however,
that is implicitly stated in the original axiom).

lemma
assumes "A # B" "Aepl" "Bepl" "A e, l'"
shows "3IB'C'. B’ el N C'epl! N Bp(C'A',B") A
AB =, A’B’ N AB =4, A'C'

A B

—o

c’ Al B’

The proof that this axiom holds in our Cartesian model, starts with isometric
transformation so that A’ becomes (0,0) and I’ becomes the x-axes. Then, it is
rather simple to find the two points on the x-axis by determining their coordi-
nates using condition that d>*9 between them and the point A’ is same as the
d*>*9 A B.

The following two axioms are proved straightforward by unfolding the cor-
responding definitions, and automatically performing algebraic calculations and
Grobner basis method.

lemma
assumes AB =, A'B’ AB =, A”B"
shows A'B’ =, A”B"

lemma
assumes "B (A,B,C)" "B,(A',B',C")* "AB ¥, A’B'" "BC ¥, B'C'"
shows "AC =, A'C'"

Next three axioms in the Hilbert’s axiomatization are concerning the notion
of angles, and we have not yet considered angles in our formalization.



6.4 Axiom of Parallels

lemma
assumes "—P €, 1"
shows "3Al'. P, l! A ﬁ(ﬂ P. Preyl N Pyey l/)"

The proof of this axiom consists of two parts. First, it is shown that such line
exists and second, that it is unique. Showing the existence is done by finding coef-
ficients of the line sought. Let P = (zp,yp) and Rep_line_coef fsl = (La,lp,lc).
Then coefficients of the requested line are (l4,lp,—la-xp — 5 -yp). In the sec-
ond part, the proof starts from the assumption that there exists two lines that
satisfy the condition P €, 1" A =(3 P;. Py €, 1 A Py €, l'). In the proof it is
shown that their coefficients are proportional and thus the lines are equal.

6.5 Axioms of Continuity

Axiom of Archimedes. Let A; be any point upon a straight line between the
arbitrarily chosen points A and B. Choose the points As, A3, Ay, ... so that Ay
lies between A and As, A between A; and Az, As between A, and Ay etc.
Moreover, let the segments AA;, A1 Ay, As Az, A3Ay, . .. be equal to one another.
Then, among this series of points, there always exists a point A,, such that B
lies between A and A,,.

It is rather difficult to represent series of points in a manner as stated in the
axiom and our solution was to use list. First, we define a list such that each four
consecutive points are congruent and betweenness relation holds for each three
consecutive points.

definition
congruentl [ — length 1 >3 A
Vi. 0<i A i+2<length | —
AP E+1)2 0 6E+1)0 ! G+2) A
Br((L!Vd),l!"!GE+1),1! (E+2))

Having this, the axiom can be bit transformed, but still with the same mean-
ing, and it states that there exists a list of points with properties mentioned
above such that for at least one point A’ of the list, B;(A, B, A’) holds. In Is-
abelle/HOL this is formalized as:

lemma
assumes Bj(A4, Ay, B)
shows  dI. congruentl (A # Al # 1) N (3i. Br(A,B, (1! 4)))

The main idea of the proof is in the statements d>®9 A A’ > d*>% A B and
d*>* A A =t-d*>*9 A A;. So, in the first part of the proof we find such ¢ that
t-d*>*9 A A; > d*>*9 A B holds. This is achieved by applying Archimedes’ rule for
real numbers. Next, it is proved that there exists a list [ such that congruentl
[ holds, that it is longer then ¢, and that it’s first two elements are A and Aj;.



This is done by induction on the parameter t. The basis of induction, when
t = 0 trivially holds. In the induction step, the list is extended by one point such
that it is congruent with the last three elements of the list and that between
relation holds for the last two elements and added point. Using these conditions,
coordinates of the new point are easily determined by algebraic calculations.
Once constructed, the list satisfies the conditions of the axiom, what is easily
showed in the final steps of the proof. The proof uses some additional lemmas
which are mostly used to describe properties of the list that satisfies condition
congruentl .

7 Related work

There are a number of formalizations of fragments of various geometries within
proof assistants.

Formalizing Tarski geometry using Coq proof assistant was done by Narboux
[16]. Many geometric properties are derived, different versions of Pasch axiom,
betweenness and congruence properties.The paper is concluded with the proof
of existence of midpoint of a segment.

Another formalization using Coq was done for projective plane geometry by
Magaud, Narboux and Schreck [12,13]. Some basic properties are derived, as
well as the principle of duality for projective geometry. Finely the consistency
of the axioms are proved in three models, both finite and infinite. In the end
authors discuss the degenerate cases and choose ranks and flats to deal with
them.

The first attempt to formalize first three groups of Hilbert’s axioms and its
consequences in Isabelle/Isar proof assistant was done by Meikele and Fleuriot
[15]. The authors argue the common believed assumption that Hilbert’s proofs
are less intuitive and more rigorous. Important conclusion is that Hilbert uses
many assumptions that in formalization checked by a computer could not be
made and therefore had to be formally justified.

Guilhot connects Dynamic Geometry Software (DGS) and formal theorem
proving using Coq proof assistant in order to ease studying the Euclidean ge-
ometry for high school students [6]. Pham, Bertot and Narboux suggest a few
improvements [18]. The first is to eliminate redundant axioms using a vector ap-
proach. They introduced four axioms to describe vectors and tree more to define
Euclidean plane, and they introduced definitions to describe geometric concepts.
Using this, geometric properties are easily proved. The second improvement is
use of area method for automated theorem proving. In order to formally jus-
tify usage of the area method, Cartesian plane is constructed using geometric
properties previously proved.

Avigad describes the axiomatization of Euclidean geometry [1]. Authors start
from the claim that Euclidean geometry describes more naturally geometry state-
ments than some axiomatizations of geometry done recently and it’s diagram-
matic approach is not so full of weaknesses as some might think. In order to
prove this, the system E is introduced in which basic objects such as point, line,



circle are described as literals and axioms are used to describe diagram prop-
erties from which conclusions could be made. The authors also illustrate the
logical framework in which proofs can be constructed. In the work are presented
some proofs of geometric properties as well as equivalence between Tarski’s sys-
tem for ruler-and-compass and E. The degenerate cases are avoided by making
assumptions and thus only proving general case.

In [20] is proposed the minimal set of Hilbert axioms and set theory is used to
model it. The main properties and theorems are carried out within this model.

In many of these formalizations the authors omitted discussion about degen-
erate cases. Although, usually the general case expresses important geometry
property, observing degenerate cases usually leads to conclusion about some ba-
sic properties such as transitivity or symmetry, and thus makes them equally
important.

Beside formalization of geometries many authors tried to formalize auto-
mated proving in geometry.

Grgoire, Pottier and Théry combine a modified version of Buchbergers algo-
rithm and some reflexive techniques to get an effective procedure that automat-
ically produces formal proofs of theorems in geometry [5].

Génevaux, Narboux and Schreck formalize Wu’s simple method in Coq [4].
Their approach is based on verification of certificates generated by an implemen-
tation in Ocaml of a simple version of Wu’s method.

Fuchs and Théry formalize Grassmann-Cayley algebra in Coq proof assistant
[3]. The second part, more interesting in the context of this paper, presents
application of the algebra on the geometry of incidence. Points, lines and there
relationships are defined in form of algebra operations. Using this, theorems
of Pappus and Desargues are interactively proved in Coq. Finally the authors
describe the automatisation in Coq of theorem proving in geometry using this
algebra. The drawback of this work is that only those statements where goal is
to prove that some points are collinear can automatically be proved and that
only non-degenerate cases are considered.

Pottier presents programs for calculating Grobner basis, F4, GB and gbcoq
and compares them [19]. A solution with certificates is proposed and this shortens
the time for computation such that gbcoq, although made in Coq, becomes
competitive with two others. Application of Grobner basis on algebra, geometry
and arithmetic are represented through three examples.

8 Conclusions and Further Work

In this paper, we have developed a formalization of Cartesian plane geometry
within Isabelle/HOL. Several different definitions of the Cartesian plane were
given, but it was shown that they are all equivalent. The definitions were taken
from the standard textbooks. However, to express them in a formal setting of a
proof assistant, much more rigour was necessary. For example, when expressing
lines by equations, some textbooks mention that equations represent the line if
their coefficients are “proportional”, while some other fail even to mention this.



The texts usually do not mention constructions like equivalence relations and
equivalence classes that underlie our formal definitions.

We have formally shown that the Cartesian plane satisfies all Tarski’s axioms
and most of the Hilbert’s axioms (including the continuity axiom). Proving that
our Cartesian plane model satisfies all the axioms of the Hilbert’s system is
left for further work (as we found the formulation of the completeness axiom
problematic).

Our experience shows that proving that our model satisfies Hilbert’s axioms
is easier then showing that it satisfies Tarski’s axioms. This is mostly due to
the definition of the betweenness relation. Namely, Tarski’s axiom allows points
connected by the betweenness relation to be equal. This gives rise to many de-
generate cases that need to be considered separately, what complicates reasoning
and proofs.

The fact that analytic geometry models geometric axioms is usually taken for
granted, as a rather simple fact. However, our experience shows that, although
conceptually simple, the proof of this fact requires complex computations and is
very demanding for formalization. It turned out that the most significant tech-
nique used to simplify the proof was “without loss of generality reasoning” and
using isometry transformations. For example, we have tried to prove the central
case of the Pasch’s axiom, without applying isometry transformations first. Al-
though it should be possible do a proof like that, the arising calculations were
so difficult that we did not manage to finish such a proof. After applying isome-
try transformations, calculations remained non-trivial, but still, we managed to
finish this proof (however, many manual interventions had to be used because
even powerful tactics relying on the Grobner bases did not manage to do all
the algebraic simplifications automatically). From this experiment on Pasch’s
axiom, we learned the significance of isometry transformations and we did not
even try to prove other lemmas directly.

Our formalization of the analytic geometry relies on the axioms of real num-
bers and properties of reals are used throughout our proofs. Many properties
would hold for any numeric field (and Grébner bases tactics used in our proofs
would also work in that case). However, for showing the continuity axioms, we
used the supremum property, not holding in an arbitrary field. In our further
work, we would like to build analytic geometries without using the axioms of real
numbers, i.e., define analytic geometries within Tarski’s or Hilbert’s axiomatic
system. Together with the current work, this would help analyzing some model
theoretic properties of geometries. For example, we want to show the categoric-
ity of both Tarski’s and Hilbert’s axiomatic system (and prove that all models
are isomorphic and equivalent to the Cartesian plane).

Our present and further work also includes formalizing analytic models of
non-Fuclidean geometries. For example, we have given formal definitions of the
Poincaré disk (were points are points in the unit disk and lines are circle seg-
ments perpendicular to the unit circle) using the Complex numbers available
in Isabelle/HOL and currently we are showing that these definitions satisfy all
axioms except the parallelness axiom.



Finally, we want to connect our formal developments to the implementation

of algebraic methods for automated deduction in geometry, making formally
verified yet efficient theorem provers for geometry.
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