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Abstract. It is known that Constraint Satisfaction Problems (CSP) can
be converted into Boolean Satisfiability problems (SAT); however how to
encode a CSP into a SAT problem such that a SAT solver will efficiently
find a solution is still an open question. Various encodings have been
proposed in the literature. Some of them use a logical variable for each
element in each domain: among these very successful are the direct and
the support encodings. It is known that a SAT solver based on the DPLL
procedure obtains a propagation similar to Forward Checking on a direct-
encoded CSP, and to Maintaining Arc-Consistency on a support-encoded
CSP.
Other methods, such as the log-encoding, are more compact, and use
a logarithmic number of logical variables to encode domains. However,
they lack the propagation power of the direct and support encodings, so
many SAT solvers perform better on direct/support encodings than in
the log-encoding, as witnessed by many works in the literature.
In this paper, we propose a new encoding that combines the log and sup-
port encodings. The new encoding, called log-support, has a logarithmic
number of variables, and uses support clauses to obtain improved prop-
agation. Experiments on Job-Shop scheduling problems and randomly-
generated problems show the effectiveness of the proposed approach, with
respect to other popular approaches.

1 Introduction

One of the methodologies for solving Constraint Satisfaction Problems (CSP)
relies on the conversion into a different type of problem, e.g., the boolean satis-
fiability (SAT) problem, which has the same power from a complexity point of
view. This methodology has obvious advantages, such as the wide availability
of free, efficient, SAT solvers. SAT solvers have recently reached significant lev-
els of efficiency, and new solvers are proposed, tested and compared every year
in annual competitions [2, 21]. There are both complete SAT solvers, based on
systematic search (typically, variants of the DPLL procedure, by Davis, Put-
nam, Logemann, and Loveland [5]), and incomplete solvers, often based on local
search.

In general, there are different ways to produce a SAT instance from a given
CSP, usually called encodings [24, 18]. Very popular encodings assign a logical
variable to each possible element of a CSP domain, i.e., for each CSP variable
i and each value v in its domain, there is a logical variable xi,v that is true iff



variable i takes value v. The reason for such a domain representation is that it
lets the SAT solver achieve pruning in a similar way to a CSP solver applied to
the original CSP. When the SAT solver infers that a logical variable xi,v is false, it
means that the corresponding CSP variable i cannot take value v: the value v has
been pruned. The most popular CSP-SAT encoding was called direct encoding
by Walsh [24]; the DPLL applied to the SAT encoded CSP mimics the Forward
Checking on the original CSP [10, 24]. Gent [11] proposes the support encoding,
that has the same representation of domains, but a different representation of
constraints. He proves that unit propagation (used in DPLL solvers) applied
to the support encoding of a CSP to SAT, achieves the same pruning of arc-
consistency on the original CSP. Stronger types of consistency are proven in
[6].

On the other hand, using a SAT variable for each element in the domains
generates a huge search space. Indeed, it lets the SAT solver perform powerful
arc-consistency propagation, but at a cost: the search space of SAT is exponential
in the number of logical variables. Let us draw again a parallel with constraint
solvers: many efficient constraint solvers [1, 20, 14] use a compact representation
of domains. A domain is often represented with its bounds {l..u} so there is no
need to enumerate all the values in the domain. For example, the domain {1..100}
is represented just with the two integer numbers 1 and 100. When intermediate
values are deleted, the domain is represented often as unions of intervals, and
only when there is no other possibility they switch to an enumeration of all
the elements. Constraint solvers give up even the arc-consistency propagation in
some cases, in favour of a cheaper bound-consistency. For example, most solvers
will avoid arc-consistency propagation of the constraint X = 2 ∗ Y , that would
require deleting all the odd values from the domain of X, forcing to switch from
a compact representation to the enumerative form of the domain.

In logarithmic encodings, each domain is represented by ⌈log2 d⌉ SAT vari-
ables [15, 13, 8, 24, 9, 18]. Such encodings can be tailored for specific constraints,
such as the not equal constraint [9]. In general, however, such encodings lack the
ability to remove single values from domains, which yields less powerful propa-
gation when compared to CSP solvers. In log encodings, one can either remove
half of the elements in the domain of a variable, or none. This can be useful as a
branching heuristics, but only for assigning the most significant bit1: fixing the
least significant bit means removing either all the even elements, or all the odd
(which is seldom useful). However, such encodings promise to save memory, and
to reduce the search space when compared to linear encodings: the search space
is exponential in the number of SAT variables, so reducing their number could
boost a significant improvement. Concerning constraints, log encodings usually
adopt a representation similar to the direct encoding.

In this paper, we propose a new encoding, called log-support, that uses sup-
port clauses in a logarithmic encoding. The codification of domains can be either
the usual binary representation, or based on a Gray code, in order to maximise

1 If a number n is represented with the m bits 〈bm−1, . . . , b0〉, i.e., n =
P

m−1

i=0
bi2

i, we
call bm−1 the most significant bit and b0 the least significant bit.



the propagation power of support clauses. We apply the new encodings on ran-
domly generated problems and on benchmark job-shop scheduling problems, and
compare the performances of the SAT solvers Chaff [17] and MiniSat [7] on the
encoded problems.

2 Preliminaries and Notation

A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉 where X is a set
of variables, ranging on some domains D, and subject to a set of constraints
C. To simplify the presentation, in this paper we focus on binary CSPs, i.e.,
problems in which all the constraints involve at most two variables. We will
indicate with n = |X| the number of variables, with d the maximum cardinality
of the domains. The symbols i and j will usually refer to variables, while v and
w are values in a domain.

A Satisfiability problem (SAT) is also built on a set of variables, which can
take only values true and false. In the paper, we will call them logical variables or
SAT variables to avoid confusion with the CSP variables. We will often indicate
the values true and false with the numbers 1 and 0. A SAT problem contains a
logical formula built on the logical variables. The formula is typically required to
be in conjunctive normal form, i.e., a set of clauses, i.e., disjunctions of literals
of the logical variables. A solution to a SAT problem is an assignment of values
true, false to the logical variables, such that all clauses are true (i.e., at least one
of the literals in each clause is true).

3 A Survey on Encodings

3.1 Direct encoding

In the direct encoding [24] there is a logical variable xi,v for each CSP variable i
and domain value v. For each CSP variable i, a clause (referred to as at-least-one
clause) imposes that i takes at least one of the values in its domain:

xi,1 ∨ xi,2 ∨ . . . ∨ xi,d (1)

Symmetrically, a set of clauses (called at-most-one clauses) forbid the variable i
to take two values at the same time:

¬xi,1 ∨ ¬xi,2 ¬xi,1 ∨ ¬xi,3 . . . ¬xi,1 ∨ ¬xi,d

¬xi,2 ∨ ¬xi,3 . . . ¬xi,2 ∨ ¬xi,d

...
¬xi,d−1 ∨ ¬xi,d

(2)

Finally, a set of clauses encodes the constraints. For each pair of inconsistent
assignments i 7→ v, j 7→ w s.t. (v, w) /∈ ci,j , we have a conflict clause:

¬xi,v ∨ ¬xj,w (3)



As an example, consider the following CSP: A ≤ B, with A and B ranging
over the set of values {0, 1, 2}. The direct encoding produces the clauses:

at-least-one a0 ∨ a1 ∨ a2 b0 ∨ b1 ∨ b2

at-most-one ¬a0 ∨ ¬a1 ¬a0 ∨ ¬a2 ¬b0 ∨ ¬b1 ¬b0 ∨ ¬b2

¬a1 ∨ ¬a2 ¬b1 ∨ ¬b2

conflict ¬a1 ∨ ¬b0 ¬a2 ∨ ¬b0 ¬a2 ∨ ¬b1

In this encoding, at-most-one clauses can be removed: in case the solution
provided by the SAT solver contains more than one CSP value for a CSP variable,
any of the values can be selected [18].

3.2 Support Encoding

In the Support Encoding [16, 11], domains are represented in the same way
as in the direct encoding, i.e., we have at-least-one and at-most-one clauses.
Constraints, instead, are based on the notion of support. If an assignment i 7→ v
supports the assignments j 7→ w1, j 7→ w2, . . . , j 7→ wk, we impose that

xi,v → xj,w1
∨ xj,w2

∨ . . . ∨ xj,wk

i.e., we impose a support clause:

¬xi,v ∨ xj,w1
∨ xj,w2

∨ . . . ∨ xj,wk
(4)

In particular, if an assignment i 7→ v does not support any value, the support
clause reduces to ¬xi,v. If an assignment i 7→ v supports all values for a variable
j, no clause is required, so the CSP in the running example is represented as:

at-least-one a0 ∨ a1 ∨ a2 b0 ∨ b1 ∨ b2

at-most-one ¬a0 ∨ ¬a1 ¬a0 ∨ ¬a2 ¬b0 ∨ ¬b1 ¬b0 ∨ ¬b2

¬a1 ∨ ¬a2 ¬b1 ∨ ¬b2

support ¬a1 ∨ b1 ∨ b2 ¬b0 ∨ a0

¬a2 ∨ b2 ¬b1 ∨ a0 ∨ a1

3.3 Log Encoding

In the log encoding [15, 24, 9], domains are represented with m = ⌈log2 d⌉ logical
variables: each of the 2m combinations represents a possible assignment. More
precisely, for each CSP variable i we have logical variables xb

i , where xb
i = 1

iff bit b of the value assigned to i is 1. In this encoding, at-least-one and at-
most-one clauses are not necessary; however, in case the cardinality of domains
is not a power of two, we need to exclude the values in excess, with the so-
called prohibited-value clauses [18] (although the number of these clauses can be
reduced [9]). If value v does not belong to the domain of i, and v is represented

with the binary digits 〈vm−1, . . . , v0〉 (i.e., v =
∑m−1

b=0 2bvb), we can impose that

¬

(

m−1
∧

b=0

¬(vb ⊕ xb
i )

)

(5)



where the symbol ⊕ stands for exclusive or. Intuitively, ¬(s ⊕ b) is the literal b
if s is true, and the literal ¬b if s is false. Equation (5) is converted into the the
prohibited-value clause

m−1
∨

b=0

vb ⊕ xb
i .

In the running example, the domains have 3 values, so two bits are needed.
However, with 2 bits we have 22 combinations, so we have a spare combination:
the value 3. We add a prohibited-value clause for each domain:

¬a1 ∨ ¬a0 ¬b1 ∨ ¬b0.

Each constraint can have a specific encoding, tailored for its propagation
(see [9] for the not-equal constraint). In general, however, they are encoded with
conflict clauses. If two assignments i 7→ v, j 7→ w are in conflict, we impose a
clause of length 2m:

(

m−1
∨

b=0

vb ⊕ xb
i

)

∨

(

m−1
∨

b=0

wb ⊕ xb
j

)

where vb and wb are the binary representations of the values v and w.
In the running example, we will have:

prohibited-value ¬a1 ∨ ¬a0 ¬b1 ∨ ¬b0

conflict a1 ∨ ¬a0 ∨ b1 ∨ b0 ¬a1 ∨ a0 ∨ b1 ∨ b0

¬a1 ∨ a0 ∨ b1 ∨ ¬b0

4 The log-support encoding

In the log-encoding, we have a number of conflict clauses, each consisting of
2m literals; unluckily, the length of clauses typically influences negatively the
performance of a SAT solver.

Gent [11] proved that the DPLL procedure applied to a support-encoded CSP
performs powerful propagation of constraints, equivalent to the arc-consistency
in the original CSP. One could think of applying support clauses to logarithmic
encodings; the most intuitive formulation is probably the following. If an assign-
ment i 7→ v supports the assignments j 7→ w1, j 7→ w2, . . . , j 7→ wk, we could
impose, as in the support encoding, that

v → w1 ∨ w2 ∨ . . . ∨ wk

and then encode in binary form the values v and wi. However, the binary form
of a value wi is a conjunction of literals, so the formula becomes
(

∧

b

¬(vb ⊕ xb
i )

)

→

(

∧

b

¬(wb
1 ⊕ xb

j)

)

∨

(

∧

b

¬(wb
2 ⊕ xb

j)

)

∨. . .∨

(

∧

b

¬(wb
k ⊕ xb

j)

)

(6)



which, translated in conjunctive normal form, generates an exponential number
of clauses2.

We convert in clausal form only implications that have exactly one literal
in the conclusion. Let us consider, as a first case, only the most significant bit.
In our running example, the assignment A 7→ 2 supports only the assignment
B 7→ 2. We can state that, whenever A takes value 2, the most significant bit of
B must be true, i.e., we can impose:

a1 ∧ ¬a0 → b1

that results in the support clause ¬a1∨a0∨ b1. This clause is enough to rule out
two conflicting assignments: (A 7→ 2, B 7→ 0) and (A 7→ 2, B 7→ 1). So, we can
remove from the log-encoded CSP two conflict clauses (consisting of 4 literals
each) by adding one support clause (consisting of 3 literals). In our example:

prohibited-values ¬a1 ∨ ¬a0 ¬b1 ∨ ¬b0

support ¬a1 ∨ a0 ∨ b1

conflict a1 ∨ ¬a0 ∨ b1 ∨ b0

Note that this transformation is not always possible: we can substitute some
of the conflict clauses with one support clause only if all the binary form of
supported values agrees in the most significant bit. In other words,

– if a value v in the domain of variable i supports only values greater than or
equal to 2m−1 in the domain of variable j, we impose that

(

m−1
∨

b=0

¬(vb ⊕ xb
i )

)

→ xm−1
j

and avoid imposing the conflict clauses involving v and the values w such
that w < 2m−1

– if a value v in the domain of variable i supports only values less than 2m−1

in the domain of variable j, we impose that

(

m−1
∨

b=0

¬(vb ⊕ xb
i )

)

→ ¬xm−1
j

and avoid imposing the conflict clauses involving v and the values w such
that w ≥ 2m−1

– Otherwise, if some of the elements supported by v are in the interval [0..2m−1−
1] and some are in the interval [2m−1..2m−1], we do not perform the transfor-
mation, and impose the corresponding conflict clauses, as in the log-encoding.

2 Actually one could avoid the exponential number of clauses by introducing new
variables; we leave this issue for future research.



In general, a support clause has length m+1 and lets us remove d/2 conflict
clauses (of length 2m). This offers a significant reduction of the number of conflict
clauses when the domains are big, and the assignments that satisfy the constraint
are all grouped either in the first half or in the second half of the domain. This
happens rather often in many significant constraints (for instance, >, ≥, <, =).

To sum-up, this encoding has the following features:

– same number (n⌈log2 d⌉) of logical variables required by the log-encoding;
– reduced number of conflict clauses (of length 2⌈log2 d⌉), substituted by sup-

port clauses (of length ⌈log2 d⌉ + 1).

Extending to the other bits Of course, we can apply the same scheme to the
other direction (from B to A), and to other bits (not just to the most significant
one). In the running example, we can add the following support clauses:

b1 ∨ b0 ∨ ¬a0 b1 ∨ ¬b0 ∨ a1 b1 ∨ ¬b0 ∨ ¬a1

and, in this case, remove all the conflict clauses.

for each v ∈ dom(i)
MaskAnd = 2m − 1; // a l l b i t s = 1
MaskOr = 0;

for each w ∈ dom(j)
i f supports(i 7→ v,j 7→ w)

then MaskAnd = MaskAnd∧w // App l i e s AND to each b i t
MaskOr = MaskOr∨w // App l i e s OR to each b i t

endif;

end foreach w;

for b = 0 to m

i f (b-th bit of MaskAnd) = (b-th bit of MaskOr)

insert support clause;

endif;

end for ;

end foreach v

Fig. 1. Algorithm for finding support clauses

At first sight, finding if the support values share a same bit seems to require
scanning the set of supports for each bit, i.e., for each pair variable/value, one
needs to check m times the supporting values. However, such operation can be
performed with simple bit manipulations, and there is no need to scan for the
supports more than once, as shown in Figure 1.

Reducing further the conflict clauses Suppose that a value v in the domain
of variable i conflicts with two consecutive values w and w+1 in the domain of j.



Suppose that the binary representation of the numbers w and w + 1 differs only
for the least significant bit b0. In this case, we can represent both the values w
and w+1 using only the m−1 most significant bits, so we can impose one single
conflict clause of length 2m − 1. This simple optimization can be considered as
applying binary resolution [6] to the two conflict clauses.

This scheme can then be extended to sets of consecutive conflicting values
whose cardinality is a power of two.

4.1 The quest for bound-consistency

Support clauses can rule out many conflict clauses. Moreover, if we focus on the
most significant bit, we can see that a support clause can split the domain in
two halves, dividing the elements higher than 2m−1 − 1 from those smaller than
2m−1. In a sense, this type of pruning goes in the direction of bound consistency.
In bound consistency, the representation of the domain is simply given by the
two bounds, which are numbers represented with the usual binary representation
of integers (i.e., with a logarithmic number of bits). The same space occupation
(logarithmic number of bits) holds for the log and log-support encodings.

In bound consistency, the logarithmic space representation of domains allows
us to represent domains as intervals: all intervals are representable, both during
bound-consistency propagation and during search. In the SAT-encoded CSP,
the current domain of a variable can be thought as the union of the possible
configurations allowed by the logical variables that are still not assigned. For
instance, a CSP variable A with domain [0..3] is represented in log-encoding
with 2 variables a1, a0. If (for instance, during the DPLL search) a1 is bound to
true (i.e., value 1), the possible values that 〈a1, a0〉 can take are 10 and 11, and
we can interpret the domain of A as being currently {2, 3}.

Again, if during the DPLL search the logical variables corresponding to the
CSP variable A are in the following states3

a4 7→ 1 a3 7→ 0 a2 7→ U a1 7→ U a0 7→ U

the possible values that A can take are 16..23. This situation resembles bound
consistency: all the available values are in an interval. However, in the situation

a4 7→ U a3 7→ 0 a2 7→ U a1 7→ U a0 7→ 1 (7)

the available values for A are {1, 3, 5, 7, 17, 19, 21, 23}, and they do not represent
an interval. Since CP solvers are very fast and rely often on bound consistency, we
might try to obtain the same propagation; with this aim in mind, the situation
of Eq. 7 can be considered a “wasted” configuration. By using the classical
binary representation of numbers, one obtains an interval only if the first k (most
significant) logical variables are all ground, and all the remaining SAT variables
of the domain are unassigned. Thus, the number of representable intervals is

3 Where ’U’ stands for an unassigned logical variable, i.e., a variable that still has not
an associated value.



∑m

k=0 2k = 2m+1 − 1. When the size of a domain d is a power of 2, m = log2 d,
so the number of possible intervals is 2d − 1.

However, we might think of rearranging the domain values in the hope that
all configurations represent intervals. One may wonder if there exists a logarith-
mic encoding such that all the possible intervals can be represented with the
assignments of (some of) the logical variables. Since we have d values, we have
⌈log2 d⌉ logical variables. Since each SAT variable can be in one of three possible
states (value 1, value 0, unassigned), the possible domains of a CSP variable
during search are 3⌈log2

d⌉. The possible sub-intervals are d(d + 1)/2, which is
greater than 3⌈log2

d⌉ for d > 2, so rearranging the values is not enough to get
bound consistency: more than ⌈log2 d⌉ logical variables are needed (per domain).

One may ask whether there exists an encoding with a number of logical vari-
ables per domain greater than ⌈log2 d⌉ (as in the log and log-support encodings)
but significantly smaller than d (as in the direct and support encodings) in which
unit propagation is equivalent to (or stronger than) bound consistency on the
original CSP. In a CP solver, domains only shrink during propagation. The SAT
solver shrinks the domain by fixing the value of a logical variable, so we require
that all element removals are obtained by fixing the value of a logical variable.

Theorem 1. Let D = [l..u] ⊂ Z an integer interval, k = |D|. Let {0, 1, U}m

(for some integer m) a set. Let a � b ⇔ [∀i(ai = bi ∨ ai = U)] a partial order
on {0, 1, U}m. Let I ⊆ ℘(D) the set of non empty intervals included in D. Let
f : I 7→ {0, 1, U}m an injective function such that X ⊆ Y ⇒ f(X) � f(Y ).

Then, m ≥ k − 1.

Proof. Consider the sequence of intervals I0 ≡ D, I1 ≡ [l + 1..u], . . . Ik−1 ≡ {l}.
Each interval is strictly included in the previous, so f(Ij) ≺ f(Ij+1). But a ≺ b
implies that the number of U symbols in a is greater than the number of U
symbols in b. Thus, I0 has at least k − 1 symbols U , and m ≥ k − 1.

Theorem 1 gives a lower bound on the number of variables required for achiev-
ing a propagation strong at least as bound-consistency. k − 1 is also an upper
bound: with k − 1 variables we can achieve arc-consistency, by using a support
encoding of k variables in which the k-th variable is not explicitly represented
(as it is true when all the other k − 1 are false). So, a linear number of logical
variables is needed to achieve bound-consistency. But this is the same number of
variables needed for the stronger arc-consistency, so bound-consistency cannot
reduce the number of SAT variables required (w.r.t. arc-consistency).

However, we can try an approximation of bound consistency: we can re-
arrange the values in the domains such that a higher number of configurations
reachable during the DPLL search represent intervals. The Gray code is a suit-
able candidate.

4.2 Gray code

The Reflected Binary Code was introduced by Gray [12] (and then named after
him). In the Gray code, with m bits one can represent 2m different values, as in



the classical binary code. However, the encoded version of any two consecutive
numbers differs only for one bit (Figure 2). The Gray encoding of a binary
number b can be simply obtained as g = b ⊕ (b/2), i.e., the exclusive OR of the
number b and its right shift of one position.

0 0000 4 0110 8 1100 12 1010

1 0001 5 0111 9 1101 13 1011

2 0011 6 0101 10 1111 14 1001

3 0010 7 0100 11 1110 15 1000

Fig. 2. 4 bit Gray code

So, by encoding the values in the CSP domains with a Gray code, all intervals
of size 2 are representable, while in the classical binary code only half of them
are representable: those in which the lower bound is even and the upper bound
is odd. For instance, in a 4-bit binary code we can represent the domain {2, 3}
(configuration 001U) but we cannot represent the domain {3, 4}. In the 4-bit
Gray code, {2, 3} is represented by configuration 001U and {3, 4} by 0U10. There
are d−1 intervals of size 2. Since, as in the classical binary representation, when
the first k bits are fixed we also have an interval of possible values, the number
of intervals representable with the Gray code is at least 5

2
d (since of the intervals

of size 2, half are also possible with the classical binary representation).
With a Gray representation, the running example is encoded as follows:

prohibited-values ¬a1 ∨ a0 ¬b1 ∨ b0

support ¬a1 ∨ a0 ∨ b0 b1 ∨ b0 ∨ ¬a0

¬a1 ∨ ¬a0 ∨ b0 b1 ∨ b0 ∨ ¬a1

¬a1 ∨ ¬a0 ∨ b1 b1 ∨ ¬b0 ∨ ¬a1

By using a Gray code, the number of support clauses has increased from 4 to 6
(50%), while (in this case) no conflict clauses are necessary. The intuition is that
a higher number of support clauses should allow for more powerful propagation,
but in some cases it could also increase the size of the SAT problem. However,
each support clause has one CSP value in the antecedent and one of the bits in
the conclusion, so for each CSP constraint there are at most 2d⌈log2 d⌉ support
clauses. The number of conflict clauses in the log-encoding cannot be higher
than the number of pairs of elements in a domain, so d2. Recall also that conflict
clauses are longer than support clauses, so we can estimate the size of the (Gray)
log-support encoding to be smaller than that of the log-encoding, when d is
sufficiently large.

Finally, it is worth noting that various codes can exist having the same prop-
erty of the Gray code; however while the reflected binary Gray code, as pre-
sented here, can be computed with two simple binary operations (namely shift
and exclusive or), in general finding other codes with the same property is an
NP-complete problem (it is equivalent to finding an Hamiltonian circuit on a



hypercube). In future work we plan to study codes that maximise the number
of intervals that can be represented.

5 Experimental Results

In order to test the effectiveness of the log-support encoding and its Gray variant
(in the following, the Gray-encoding), we developed a series of experiments,
based on randomly-generated CSPs and on Job-Shop Scheduling benchmarks.

5.1 Randomly generated problems

The first set of experiments is based on randomly generated CSPs. A random
CSP is often generated given four parameters [22]: the number n of variables,
the size d of the domains, the probability p that there is a constraint on a given
pair of variables, and the conditional probability q that a pair of assignments is
consistent, given that there is a constraint linking the two variables.

In order to exploit the compact representation of log-encodings, we focussed
on CSPs with a high number of domain values. In order to keep the running time
within reasonable bounds, we had to keep small the number of CSP variables.

The log-support encoding was developed for constraints in which the set of
satisfying assignments is connected, and we can easily foresee that a Gray code
will have no impact on randomly generated constraint matrices. Thus, to test
the applicability of the Gray encoding, we used a different generation scheme, in
which satisfying assignments have a high probability to be grouped in clusters.
Note that also real-life constraints typically have their satisfying assignments
grouped together, and not completely sparse.

For each constraint (selected with independent probability p) on two variables
A and B, we randomly selected a pair of values v and w respectively from the
domains of A and B. The pair (v, w) works as an “attractor”: the probability that
a constraint is satisfied will be higher near the point (v, w) and will be smaller
far from that point. More precisely, the probability that a pair of assignments
(a, b) is satisfied is proportional to the euclidean distance between (a, b) and
the attractor (v, w): q = 1 − α

√

(a − v)2 + (b − w)2, where α is a coefficient
that normalises the value of q in the interval 0..1. A posteriori, we grouped the
experiments with a same frequency of satisfied assignments, and plotted them
in the graph of Figure 3.

This set of experiments was performed running zChaff 2004.5.13 [17] and with
MiniSAT 1.14 [7] on a Pentium M715 processor 1.5GHz, with 512MB RAM. A
memory limit was set at 150MB, and a timeout at 1000s. Each of the point is
the geometric mean of at least 25 experiments, where the conditions of timeout
or out of memory are represented by 1000s. The timing results include both the
time spent for the encoding and for solving the problem; however, the encoding
time was always negligible. Note that to perform the experiments we did not
generate a DIMACS file, because the time for loading the DIMACS could have
been large (see also the discussion in the nex section).



Fig. 3. Experiments on randomly-generated problems (n = 7, d = 512, p = 30 and q

from 10 to 100). Times in ms. Left: Chaff, Right: MiniSat

From the graphs, we can see that the log encoding is the slowest when the
constraints are very tight (small values of q). This is probably due to the fact
that in the log-encoding we have limited propagation of constraints, which makes
hard proving unsatisfiability. On the other hand, when the constraints are very
loose (q near 80-90%), the log encoding performs better than the direct and
support encodings.

The support encoding is often the best option for MiniSat, while Gray per-
formed best in the zChaff experiments. Moreover, the log-support/Gray encod-
ings are often competitive. For high values of q, the log-support/Gray encodings
keep the same behaviour of the log-encoding. This is reasonable, because when
q is near 100% very few support clauses are inserted. On the other hand, when
the probability q is small, the support clauses have a strong influence, and al-
low the SAT solver to detect infeasibility orders of magnitude faster than in the
log-encoding. Both the log-support and the Gray encodings are typically faster
than the direct encoding.

Finally, the Gray encoding is slightly faster than the log-support, probably
due to the fact that more support clauses are present.

5.2 Job-Shop Scheduling Problems

We applied the encodings to the set of Job-Shop Scheduling Problems taken from
the CSP competition 2006 [23] (and originally studied in [19]). These problems
involve 50 CSP variables with variable domain sizes, from 114 to 159.

The results are given in Figure 4: the plots show the number of problems
that were solvable within a time limit given in abscissa (the higher the graph,
the better). The experiments were performed with zChaff 2004.5.13 [17] and
with MiniSat 1.14 [7]. The results were obtained on a Pentium M715 processor
1.5GHz, with 512MB RAM.

The log encoding performed worst, and both solvers were able to solve only
a limited subset of the problems within 500s.



Fig. 4. Experiments on Job-Shop scheduling problems. Left: Chaff, right: MiniSAT

In the experiments performed with Chaff, the support encoding was able to
solve some of the problems very quickly; however, given a longer timeout, the
log-support was typically the best choice (it was able to solve more problems). In
the experiments with MiniSat, the best encoding was the direct, possibly because
of the special handling of binary clauses implemented in MiniSat. Notice that
for both solvers the support encoding performed worse than the log-support and
the Gray encoding.

In this set of instances, the Gray encoding did not provide any improvement
with respect to the log-support.

Chaff required on average 65MB of RAM to solve a direct-encoded CSP,
56MB to solve a support-encoded CSP, and only 19MB to solve a problem en-
coded with log-support or Gray.

The size of the generated SAT problem is also instructive and can give an
estimate of the size of a DIMACS file containing the encoding. A log-encoded
CSP used on average about 107 literals; considering that the number of logical
variables is about n⌈log2 d⌉ ≈ 50 ·8 = 400, and that each literal is represented in
DIMACS with 5.5 bytes (3 ASCII characters for representing the number itself,
plus one of space, and half, on average, for the sign), we can estimate a DIMACS
file of about 55MB. The log-support/Gray encodings generate on average about
1.7 · 106 literals, thus the average size of a DIMACS can be estimated as 9.5MB.

On the other hand, the linear encodings use nd logical variables, that in our
instances is about 6600, so four bytes are necessary in the text file DIMACS
format to represent the variable, that gives on average 6.5 bytes per literal.
The direct encoding used on average 2.3 · 106 literals, that gives 14MB for the
DIMACS, and the support 7 · 106, that gives a 45MB DIMACS file.

We can conclude that the log-support is a significant improvement with re-
spect to the log encoding, both in terms of solution time and size of the generated
SAT problem. The direct encoding is often faster than the log-support, but it
requires more memory for Chaff to solve them, and the DIMACS file is much



larger. Thus the log-support and Gray encodings could be interesting solution
methods in cases with limited memory.

6 Conclusions and future work

In this paper we proposed a new encoding, called log-support, and its variant
in Gray code, for mapping CSPs into SAT. The log-support uses a logarithmic
number of SAT variables for representing the domains of CSP variables, as in the
well-known log-encoding. Experiments show that the new encodings outperform
the traditional log-encoding, and are often competitive with direct and support
encodings. Moreover, the size of the encoded SAT instance is typically a fraction
of the size required by the direct and support encodings.

In future work, we plan to define a platform for defining CSPs, in the line of
previous research. Cadoli et al. [4, 3] developed a language and an architecture
for encoding problems belonging to the class NP into DIMACS form, and then
use a SAT solver to perform the search. We believe that such architecture could
be enriched by populating it with a variety of the many encodings proposed in
recent years, and with the log-support/Gray encodings.

Other optimisations could be performed on the log encodings. We cite the
binary encoding [8], that uses a logarithmic number of logical variables to en-
code domains, and it avoids imposing prohibited value clauses by encoding a
domain value with a variable number of SAT variables. In future work, we plan
to experiment with a variation of the log-support that exploits the same idea.

Finally, we plan to study the applicability of the proposed encodings to non-
binary CSPs.
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