
Project Ideas – SMD156 Computational Geometry

H̊akan Jonsson

October 2, 2006

1 General instruction

Each of the suggested projects below asks for an
implementation of a program that solves a problem
with geometric flavour using geometric algorithms
and data structures. For each problem there are
explicit upper bounds on the time and space a so-
lution might consume. In many cases it is possible
to find solutions with better upper bounds.

Each program should have a graphical user inter-
face (GUI) by which actions can be controlled and
results are displayed. In particular, and in addi-
tion to the possibility to enter input manually (by
clicking, dragging, typing etc), the GUI should sup-
port the automatic generation of fairly large sets
of input, like sets of points, line segments, convex
polygons etc.

There are no restrictions on the programming
environment and the programming language the
project is implemented in as long as all geomet-
ric computations are programmed explicitely; it is
not allowed to call geometric routies in libraries
that happen to be present in the chosen environ-
ment/language.

Maybe needless to say, cheating by copying geom-
etry code from someone else (the Internet, a book or
paper, a fellow student etc) is not allowed. This also
goes for help; don’t do someone else’s project for
them and don’t have someone else do your project.
Don’t cheat.

As a first step, you should try to come up with a
solution on your own. You typically spend a day or
so thinkning about the problem. Then you discuss
the problem with friends and eventually, if you like,
with me. I will give you enough hints so that you
end up with a fairly good solution.

1.1 To finnish up the project

There are three things that must be completed to
pass the project.

1. Have the source code graded by me. You pack
everything together in a single file and mail it
to me or, if the file is more than 2 megabytes
in size, you instead mail me an URL or unix
path on Sigma where I can find the file.

To pass the grading I should be able to read
and understand your code. Give the “big pic-

ture” and then the details. If you write it so
that all your fellow classmates would under-
stand it when browsing through the code once
and without your help, I will also understand
it. I like to stress that this is an important
criteria.

It should be clear from the program structure,
the names on variables and methods etc, and
comments

• WHAT is done,

• HOW it is done, and

• WHY it works and does not consume
more time and space than allowed.

I will focus on the geometric parts. I am
not particularly interested in the GUI part (it
should, however, still be in the file so every-
thing compiles but I will not pay much atten-
tion to it during my grading).

If I can’t understand your program when
browsning through it you will be asked to ex-
plain it to me face to face. If this turns out
to be a long, boring (yes), and complicated ex-
plaination, you will be asked to re-write the
program and re-submit it. If this still does not
improve the program you fail and will also fail
the entire course.

2. Give a short presentation (≈ 15 min) of your
project for the class with

(a) a description of the problem you have
solved, usually easy if you prepare a slide
with an example of a typical problem in-
stance,

(b) a (high-level) description of the geometric
algorithms and data structures you have
used in your solution, easy if you prepare
a bullet-list with the main steps, and

(c) a justification that your solution keeps
within the required upper bounds, where
you relate to the bullets above and ex-
plain.

3. Demonstrate your program in front of the class.
This is done in connection to your presentation.

1

2 Projects

2.1 Point location in triangulations

Implement a data structure and operations for point
location in triangulations (Fig. 1).

Upper bounds: O(n) space for the point location
structure and queries should take O(log n) time,
where n is the number of points in the triangula-
tion. Building the structure: O(n2) time.
More: The only requirement on the triangulation
part is that it should be practical so it is possible
to run a demo in front of the class. Keep this part
simple.

q

Figure 1: A triangulation of a point set. The query
point q lies in the shaded triangle.

2.2 Contour of a set of rectangles

Given a set of rectangles, their contour is the set of
boundaries that bounds their union (Fig. 2).

Implement an algorithm that computes1 a con-
tour.

Upper bounds: O(n2) time, where n is the num-
ber of rectangles.
More: —

a) b)

Figure 2: a) Input rectangles. b) Their contour.

2.3 Smallest bounding box of a sim-

ple polygon

Implement an algorithm that computes the small-
est perimeter bounding box of a simple poly-
gon (Fig. 2).

Upper bounds: O(n log n) time and O(n) space,
where n is the number of vertices in the polygon.
More: —

1The program should not just visualize the contour. It

should also store it in some internal data structure.

Figure 3: A smallest bounding box of a simple poly-
gon.

2.4 Facility location

Write a program that, given a set of points in the
plane and a number r, computes where a disc with
radius r should be placed in order to maximize the
number of input points covered by the disc (Fig. 4)2.

Upper bounds: O(n2 log n) time and O(n) space,
where n is the number of points.

More: —

r

Figure 4: A placement of a disc width radius r that
contains a maximum number of points.

2.5 Clustering

Implement a program that splits a set S of n

points in the plane into two sets such that the dis-
tance of the convex hulls of the two sets is maxi-
mized (Fig. 5).

Upper bounds: O(n3) time.

More: —

Figure 5: The shortest path between p and q among
obstacles (polygons).

2If points are customers and r is the longest distance a

customer is willing to go to buy an item, the midpoint of

the disc is where the store should be placed to maximize the

number of potential customers.

2

2.6 Shortest paths among obstacles

Write a program that, given a set of disjoint poly-
gons, a start point p, and an end point q, computes
the shortest path between p and q that does not
enter into the interior of any polygon (Fig. 6).

Upper bounds: O(n2 log n) time, where n is the
total number of edges in the obstacles.
More: See also Chapter 15 in the course book [1].

p
q

Figure 6: The shortest path between p and q among
obstacles (polygons).

2.7 Convex hull of line intersections

There are O(n2) intersections among n lines. Write
a program that, given just the lines, computes
the convex hull of these intersections in O(n log n)
time(!) (Fig. 7).

Upper bounds: O(n log n) time, where n is the
number if lines.
More: —

Figure 7: The convex hull of intersections among
lines.

2.8 Closest pair

Given a set of points, compute a pair of points
whose distance is smaller than or equal to all other
distances between points (Fig. 8).

Upper bounds: O(n log n) time, where n is the
number of points.
More: —

2.9 Shortest paths in weighted re-

gions

Implement a program that computes a fastest path
among triangles in a triangulation with different
“thickness” (Fig. 9).

Figure 8: A closest pair.

Let T be a triangulation in which each triangle
have been assigned a positive weight that represents
how “thick” the triangle is. Let S be a polygo-
nal path that connects two points p and q and lies
entirely within T . Let ∆1, ∆2, . . . , ∆k denote the
triangles that S intersects from p and q, let wi be
a weight associated with ∆i, and di the length of
∆i ∩ S, the part of S that lies in ∆i.

Then, given T the program should compute a
path S such that

∑

i

widi

is minimized.

Upper bounds: —
More: —

Figure 9: Weighted regions.

2.10 Collision Detection

Write a program that, given two simple and disjoint
polygons P and Q, where P lies strictly to the left
of Q, computes the first points on the polygons that
will collide if P is translated horizontally and in the
positive x-direction, or determines that they do not
collide (Fig. 10).

Upper bounds: O((n+m) log(n+m)) time, where
n = |P| and m = |Q|.
More: —

P
Q

Figure 10: The circle shows where P collides with
Q when translated horizontally to the right.

3

2.11 Translating Rectangles for

Maximal Overlap

Implement an algorithm that translates a set B of
rectangles (all rectangles are translated in the x-
and y-directions exactly the same) onto another set
of rectangles R such that their common intersection
B ∩R is maximized (Fig. 11).

Upper bounds: O(n4) time, where n is the total
number of rectangles in B and R.

More: —

Figure 11: How should the set of dark rectangle
be translated onto the grey ones to maximize the
overlap?.

2.12 Shortest path in a Simple Poly-

gon

Implement an algorithm that computes the shortest
path between two given points in a given simple
polygon (Fig. 12).

Upper bounds: O(n) time once the polygon has
been triangulated, where n is the size of the poly-
gon.

More: There is no bound on the triangulation, as
long as it works in practice (at the demonstration
and for polygons with, say, at least 30-40 vertices);
keep this part simple.

p
q

Figure 12: The shortest path between p and q.

2.13 Largets Empty Square

Implement a program that, given a set of n points
in the plane, computes a data structure to an-
swer queries about largest empty squares efficiently:
Given a query point q, find the largest empty square
centered at q (Fig. 13).

Upper bounds: Your query algorithm should run
in O(log2 n) time and O(n log n) space.
More: —

q

Figure 13: The largets empty square centered at
the query point q.

2.14 Monotone Polygons

Implement a program that checks if there is a di-
rection in which a simple polygon is monotone and,
in that case, reports such a direction (Fig. 14).

Upper bounds: O(n) time, where n is the size of
the polygon.
More: —

Figure 14: A simple polygon and a direction in
which it is monotone.

2.15 Triangulation using Divide-

and-Conquer

Implement a program that computes a triangula-
tion of a set of points in the plane by Divide-and-
Conquer, that is the algorithm recursively divides
the set in two halves, triangulates the halves, and
stich them together into a single triangulation by
adding triangles between them. (Fig. 15).

Upper bounds: O(n log n) time, where n is the
number of points.
More: —

2.16 Kernels

The kernal of a simple polygon is the subset of
points that can see3 the whole polygon. Implement
a program that take a simple polygon as input and
compute its (possibly empty) kernel. (Fig. 16).

3A point can see another if the line of sight does not go

outside the polygon.

4

Figure 15: A triangulation of a point set.

Upper bounds: O(n) time and space, where n is
the size of the polygon.

More: —

Figure 16: The kernel of a simple polygon.

2.17 Convex layers

The convex layers of a set of points is the set of
convex hulls one gets by computing a convex hull,
removing it, computing a convex hull of the remain-
ing points, removing it, computing yet one convex
hull of the remaining points, etc until there are no
points left. Implement a program that computes
the convex layers of a set of points (Fig. 17).

Upper bounds: O(n2) time and O(n) space,
where n is the number of points.

More: —

Figure 17: Convex layers.

Acknowledgement

Some of the project ideas were inspired by simi-
lar material produced by Bettina Speckmann and
David Mount.

References

[1] Mark de Berg, Otfried Schwarzkopf, Marc van
Kreveld, Mark Overmars, Computational Ge-

ometry: Algorithms and Applications, Springer-
Verlag, 2000. 2nd rev., ISBN: 3-540-65620-0.

5

