
0

PROGRAMMING IN HASKELL

Chapter 6 - Recursive Functions

1

Introduction

As we have seen, many functions can naturally be
defined in terms of other functions.

factorial :: Int  Int

factorial n = product [1..n]

factorial maps any integer n to the product
of the integers between 1 and n.

2

Expressions are evaluated by a stepwise process of
applying functions to their arguments.

For example:

factorial 4

product [1..4]

=

product [1,2,3,4]

=

1*2*3*4

=

24

=

3

Recursive Functions

In Haskell, functions can also be defined in terms of
themselves. Such functions are called recursive.

factorial 0 = 1

factorial (n+1) = (n+1) * factorial n

factorial maps 0 to 1, and any other
positive integer to the product of itself

and the factorial of its predecessor.

4

For example:

factorial 3

3 * factorial 2

=

3 * (2 * factorial 1)

=

3 * (2 * (1 * factorial 0))

=

3 * (2 * (1 * 1))

=

3 * (2 * 1)

=

=
6

3 * 2

=

5

Note:

 factorial 0 = 1 is appropriate because 1 is the
identity for multiplication: 1*x = x = x*1.

 The recursive definition diverges on integers  0
because the base case is never reached:

> factorial (-1)

Error: Control stack overflow

6

Why is Recursion Useful?

 Some functions, such as factorial, are simpler to
define in terms of other functions.

 As we shall see, however, many functions can
naturally be defined in terms of themselves.

 Properties of functions defined using recursion
can be proved using the simple but powerful
mathematical technique of induction.

7

Recursion on Lists

Recursion is not restricted to numbers, but can also
be used to define functions on lists.

product :: [Int]  Int

product [] = 1

product (n:ns) = n * product ns

product maps the empty list to 1,
and any non-empty list to its head
multiplied by the product of its tail.

8

For example:

product [2,3,4]

2 * product [3,4]

=

2 * (3 * product [4])

=

2 * (3 * (4 * product []))

=

2 * (3 * (4 * 1))

=

24

=

9

Using the same pattern of recursion as in product
we can define the length function on lists.

length :: [a]  Int

length [] = 0

length (_:xs) = 1 + length xs

length maps the empty list to 0,
and any non-empty list to the

successor of the length of its tail.

10

For example:

length [1,2,3]

1 + length [2,3]

=

1 + (1 + length [3])

=

1 + (1 + (1 + length []))

=

1 + (1 + (1 + 0))

=

3

=

11

Using a similar pattern of recursion we can define
the reverse function on lists.

reverse :: [a]  [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

reverse maps the empty list to the empty
list, and any non-empty list to the reverse

of its tail appended to its head.

12

For example:

reverse [1,2,3]

reverse [2,3] ++ [1]

=

(reverse [3] ++ [2]) ++ [1]

=

((reverse [] ++ [3]) ++ [2]) ++ [1]

=

(([] ++ [3]) ++ [2]) ++ [1]

=

[3,2,1]

=

13

Multiple Arguments

Functions with more than one argument can also
be defined using recursion. For example:

 Zipping the elements of two lists:

zip :: [a]  [b]  [(a,b)]

zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

14

drop :: Int  [a]  [a]

drop 0 xs = xs

drop (n+1) [] = []

drop (n+1) (_:xs) = drop n xs

 Remove the first n elements from a list:

(++) :: [a]  [a]  [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

 Appending two lists:

15

Quicksort

The quicksort algorithm for sorting a list of integers
can be specified by the following two rules:

 The empty list is already sorted;

 Non-empty lists can be sorted by sorting the
tail values  the head, sorting the tail values 
the head, and then appending the resulting
lists on either side of the head value.

16

Using recursion, this specification can be translated
directly into an implementation:

qsort :: [Int]  [Int]

qsort [] = []

qsort (x:xs) =

 qsort smaller ++ [x] ++ qsort larger

 where

 smaller = [a | a  xs, a  x]

 larger = [b | b  xs, b  x]

 This is probably the simplest implementation of
quicksort in any programming language!

Note:

17

For example (abbreviating qsort as q):

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q [] ++ [2] ++ q [] q [5] ++ [4] ++

[1] [] [] [5]

18

Exercises

(1) Without looking at the standard prelude, define
the following library functions using recursion:

and :: [Bool]  Bool

 Decide if all logical values in a list are true:

concat :: [[a]]  [a]

 Concatenate a list of lists:

19

(!!) :: [a]  Int  a

 Select the nth element of a list:

elem :: Eq a  a  [a]  Bool

 Decide if a value is an element of a list:

replicate :: Int  a  [a]

 Produce a list with n identical elements:

20

(2) Define a recursive function

merge :: [Int]  [Int]  [Int]

that merges two sorted lists of integers to give
a single sorted list. For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]

21

(3) Define a recursive function

 Lists of length  1 are already sorted;

 Other lists can be sorted by sorting the two
halves and merging the resulting lists.

msort :: [Int]  [Int]

that implements merge sort, which can be
specified by the following two rules:

