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PROGRAMMING IN HASKELL 

Chapter 6 - Recursive Functions 
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Introduction 

As we have seen, many functions can naturally be 
defined in terms of other functions. 

factorial  :: Int  Int 

factorial n = product [1..n] 

factorial maps any integer n to the product 
of the integers between 1 and n. 
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Expressions are evaluated by a stepwise process of 
applying functions to their arguments. 
 
For example: 

factorial 4 

product [1..4] 

= 

product [1,2,3,4] 

= 

1*2*3*4 

= 

24 

= 
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Recursive Functions 

In Haskell, functions can also be defined in terms of 
themselves.  Such functions are called recursive. 

factorial 0     = 1 

factorial (n+1) = (n+1) * factorial n 

factorial maps 0 to 1, and any other 
positive integer to the product of itself 

and the factorial of its predecessor. 
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For example: 

factorial 3 

3 * factorial 2 

= 

3 * (2 * factorial 1) 

= 

3 * (2 * (1 * factorial 0)) 

= 

3 * (2 * (1 * 1)) 

= 

3 * (2 * 1) 

= 

= 
6 

3 * 2 

= 
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Note: 

 factorial 0 = 1 is appropriate because 1 is the 
identity for multiplication: 1*x = x = x*1. 

 

 The recursive definition diverges on integers  0 
because the base case is never reached: 

> factorial (-1) 

 

Error: Control stack overflow 
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Why is Recursion Useful? 

 Some functions, such as factorial, are simpler to 
define in terms of other functions. 

 

 As we shall see, however, many functions can 
naturally be defined in terms of themselves. 

 

 Properties of functions defined using recursion 
can be proved using the simple but powerful 
mathematical technique of induction. 
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Recursion on Lists 

Recursion is not restricted to numbers, but can also 
be used to define functions on lists. 

product       :: [Int]  Int 

product []     = 1 

product (n:ns) = n * product ns 

product maps the empty list to 1, 
and any non-empty list to its head 
multiplied by the product of its tail. 
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For example: 

product [2,3,4] 

2 * product [3,4] 

= 

2 * (3 * product [4]) 

= 

2 * (3 * (4 * product [])) 

= 

2 * (3 * (4 * 1)) 

= 

24 

= 
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Using the same pattern of recursion as in product 
we can define the length function on lists. 

length       :: [a]  Int 

length []     = 0 

length (_:xs) = 1 + length xs 

length maps the empty list to 0, 
and any non-empty list to the 

successor of the length of its tail. 
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For example: 

length [1,2,3] 

1 + length [2,3] 

= 

1 + (1 + length [3]) 

= 

1 + (1 + (1 + length [])) 

= 

1 + (1 + (1 + 0)) 

= 

3 

= 
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Using a similar pattern of recursion we can define 
the reverse function on lists. 

reverse       :: [a]  [a] 

reverse []     = [] 

reverse (x:xs) = reverse xs ++ [x] 

reverse maps the empty list to the empty 
list, and any non-empty list to the reverse 

of its tail appended to its head. 
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For example: 

reverse [1,2,3] 

reverse [2,3] ++ [1] 

= 

(reverse [3] ++ [2]) ++ [1] 

= 

((reverse [] ++ [3]) ++ [2]) ++ [1] 

= 

(([] ++ [3]) ++ [2]) ++ [1] 

= 

[3,2,1] 

= 
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Multiple Arguments 

Functions with more than one argument can also 
be defined using recursion.  For example: 

 Zipping the elements of two lists: 

zip              :: [a]  [b]  [(a,b)] 

zip []     _      = [] 

zip _      []     = [] 

zip (x:xs) (y:ys) = (x,y) : zip xs ys 
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drop             :: Int  [a]  [a] 

drop 0     xs     = xs 

drop (n+1) []     = [] 

drop (n+1) (_:xs) = drop n xs 

 Remove the first n elements from a list: 

(++)        :: [a]  [a]  [a] 

[]     ++ ys = ys 

(x:xs) ++ ys = x : (xs ++ ys) 

 Appending two lists: 
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Quicksort 

The quicksort algorithm for sorting a list of integers 
can be specified by the following two rules: 

 The empty list is already sorted; 

 

 Non-empty lists can be sorted by sorting the 
tail values  the head, sorting the tail values  
the head, and then appending the resulting 
lists on either side of the head value. 



16 

Using recursion, this specification can be translated 
directly into an implementation: 

qsort       :: [Int]  [Int] 

qsort []     = [] 

qsort (x:xs) = 

   qsort smaller ++ [x] ++ qsort larger 

   where 

      smaller = [a | a  xs, a  x] 

      larger  = [b | b  xs, b  x] 

 This is probably the simplest implementation of 
quicksort in any programming language! 

Note: 
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For example (abbreviating qsort as q): 

q [3,2,4,1,5] 

q [2,1] ++ [3] ++ q [4,5] 

q [1] q [] ++ [2] ++ q [] q [5] ++ [4] ++ 

[1] [] [] [5] 
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Exercises 

(1) Without looking at the standard prelude, define 
the following library functions using recursion: 

and :: [Bool]  Bool 

 Decide if all logical values in a list are true: 

concat :: [[a]]  [a] 

 Concatenate a list of lists: 
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(!!) :: [a]  Int  a 

 Select the nth element of a list: 

elem :: Eq a  a  [a]  Bool 

 Decide if a value is an element of a list: 

replicate :: Int  a  [a] 

 Produce a list with n identical elements: 
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(2) Define a recursive function 

merge :: [Int]  [Int]  [Int] 

that merges two sorted lists of integers to give 
a single sorted list.  For example: 

> merge [2,5,6] [1,3,4] 

 

[1,2,3,4,5,6] 
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(3) Define a recursive function 

 Lists of length  1 are already sorted; 

 

 Other lists can be sorted by sorting the two 
halves and merging the resulting lists.  

msort :: [Int]  [Int] 

that implements merge sort, which can be 
specified by the following two rules: 


