
0

PROGRAMMING IN HASKELL

Chapter 2 - First Steps

1

The Hugs System

 Hugs is an implementation of Haskell 98, and is
the most widely used Haskell system;

 The interactive nature of Hugs makes it well
suited for teaching and prototyping purposes;

 Hugs is available on the web from:

www.haskell.org/hugs

2

Starting Hugs

% hugs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Report bugs to: hugs-bugs@haskell.org

|| || ___

>

On a Unix system, Hugs can be started from the %
prompt by simply typing hugs:

3

The Hugs > prompt means that the Hugs system
is ready to evaluate an expression.

For example:

> 2+3*4

14

> (2+3)*4

20

> sqrt (3^2 + 4^2)

5.0

4

The Standard Prelude

The library file Prelude.hs provides a large number
of standard functions. In addition to the familiar
numeric functions such as + and *, the library also
provides many useful functions on lists.

 Select the first element of a list:

> head [1,2,3,4,5]

1

5

 Remove the first element from a list:

> tail [1,2,3,4,5]

[2,3,4,5]

 Select the nth element of a list:

> [1,2,3,4,5] !! 2

3

 Select the first n elements of a list:

> take 3 [1,2,3,4,5]

[1,2,3]

6

 Remove the first n elements from a list:

> drop 3 [1,2,3,4,5]

[4,5]

 Calculate the length of a list:

> length [1,2,3,4,5]

5

 Calculate the sum of a list of numbers:

> sum [1,2,3,4,5]

15

7

 Calculate the product of a list of numbers:

> product [1,2,3,4,5]

120

 Append two lists:

> [1,2,3] ++ [4,5]

[1,2,3,4,5]

 Reverse a list:

> reverse [1,2,3,4,5]

[5,4,3,2,1]

8

Function Application

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space.

f(a,b) + c d

Apply the function f to a and b, and add
the result to the product of c and d.

9

In Haskell, function application is denoted using
space, and multiplication is denoted using *.

f a b + c*d

As previously, but in Haskell syntax.

10

Moreover, function application is assumed to have
higher priority than all other operators.

f a + b

Means (f a) + b, rather than f (a + b).

11

Examples

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y

12

Haskell Scripts

 As well as the functions in the standard prelude,
you can also define your own functions;

 New functions are defined within a script, a text
file comprising a sequence of definitions;

 By convention, Haskell scripts usually have a .hs
suffix on their filename. This is not mandatory,
but is useful for identification purposes.

13

My First Script

double x = x + x

quadruple x = double (double x)

When developing a Haskell script, it is useful to
keep two windows open, one running an editor for
the script, and the other running Hugs.

Start an editor, type in the following two function
definitions, and save the script as test.hs:

14

% hugs test.hs

Leaving the editor open, in another window start
up Hugs with the new script:

> quadruple 10

40

> take (double 2) [1,2,3,4,5,6]

[1,2,3,4]

Now both Prelude.hs and test.hs are loaded, and
functions from both scripts can be used:

15

factorial n = product [1..n]

average ns = sum ns `div` length ns

Leaving Hugs open, return to the editor, add the
following two definitions, and resave:

 div is enclosed in back quotes, not forward;

 x `f` y is just syntactic sugar for f x y.

Note:

16

> :reload

Reading file "test.hs"

> factorial 10

3628800

> average [1,2,3,4,5]

3

Hugs does not automatically detect that the script
has been changed, so a reload command must be
executed before the new definitions can be used:

17

Naming Requirements

 Function and argument names must begin with
a lower-case letter. For example:

myFun fun1 arg_2 x’

 By convention, list arguments usually have an s
suffix on their name. For example:

xs ns nss

18

The Layout Rule

In a sequence of definitions, each definition must
begin in precisely the same column:

a = 10

b = 20

c = 30

a = 10

 b = 20

c = 30

 a = 10

b = 20

 c = 30

19

means

The layout rule avoids the need for explicit syntax
to indicate the grouping of definitions.

a = b + c

 where

 b = 1

 c = 2

d = a * 2

a = b + c

 where

 {b = 1;

 c = 2}

d = a * 2

implicit grouping explicit grouping

20

Useful Hugs Commands

Command Meaning

:load name load script name

:reload reload current script

:edit name edit script name

:edit edit current script

:type expr show type of expr

:? show all commands

:quit quit Hugs

21

Exercises

N = a ’div’ length xs

 where

 a = 10

 xs = [1,2,3,4,5]

Try out slides 2-8 and 14-17 using Hugs.

Fix the syntax errors in the program below,
and test your solution using Hugs.

(1)

(2)

22

Show how the library function last that selects
the last element of a list can be defined using
the functions introduced in this lecture.

(3)

Similarly, show how the library function init
that removes the last element from a list can
be defined in two different ways.

(5)

Can you think of another possible definition? (4)

0

PROGRAMMING IN HASKELL

Chapter 3 - Types and Classes

1

What is a Type?

A type is a name for a collection of related values.
For example, in Haskell the basic type

True False

Bool

contains the two logical values:

2

Type Errors

Applying a function to one or more arguments of
the wrong type is called a type error.

> 1 + False

Error

1 is a number and False is a logical
value, but + requires two numbers.

3

Types in Haskell

 If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

 Every well formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference.

4

 All type errors are found at compile time, which
makes programs safer and faster by removing
the need for type checks at run time.

 In Hugs, the :type command calculates the type
of an expression, without evaluating it:

> not False

True

> :type not False

not False :: Bool

5

Basic Types

Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

Integer - arbitrary-precision integers

Float - floating-point numbers

String - strings of characters

Int - fixed-precision integers

6

List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

A list is sequence of values of the same type:

[t] is the type of lists with elements of type t.

7

 The type of a list says nothing about its length:

[False,True] :: [Bool]

[False,True,False] :: [Bool]

[[’a’],[’b’,’c’]] :: [[Char]]

Note:

 The type of the elements is unrestricted. For
example, we can have lists of lists:

8

Tuple Types

A tuple is a sequence of values of different types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1,t2,…,tn) is the type of n-tuples whose ith
components have type ti for any i in 1…n.

9

 The type of a tuple encodes its size:

(False,True) :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’]) :: (Bool,[Char])

Note:

 The type of the components is unrestricted:

10

Function Types

not :: Bool  Bool

isDigit :: Char  Bool

In general:

A function is a mapping from values of one type
to values of another type:

t1  t2 is the type of functions that map
values of type t1 to values to type t2.

11

 The arrow  is typed at the keyboard as ->.

 The argument and result types are unrestricted.
For example, functions with multiple arguments
or results are possible using lists or tuples:

Note:

add :: (Int,Int)  Int

add (x,y) = x+y

zeroto :: Int  [Int]

zeroto n = [0..n]

12

Functions with multiple arguments are also possible
by returning functions as results:

add’ :: Int  (Int  Int)

add’ x y = x+y

add’ takes an integer x and returns a function
add’ x. In turn, this function takes an integer

y and returns the result x+y.

Curried Functions

13

 add and add’ produce the same final result, but
add takes its two arguments at the same time,
whereas add’ takes them one at a time:

Note:

 Functions that take their arguments one at a
time are called curried functions, celebrating
the work of Haskell Curry on such functions.

add :: (Int,Int)  Int

add’ :: Int  (Int  Int)

14

 Functions with more than two arguments can be
curried by returning nested functions:

mult :: Int  (Int  (Int  Int))

mult x y z = x*y*z

mult takes an integer x and returns a function
mult x, which in turn takes an integer y and

returns a function mult x y, which finally takes
an integer z and returns the result x*y*z.

15

Why is Currying Useful?

Curried functions are more flexible than functions
on tuples, because useful functions can often be
made by partially applying a curried function.

For example:

add’ 1 :: Int  Int

take 5 :: [Int]  [Int]

drop 5 :: [Int]  [Int]

16

Currying Conventions

 The arrow  associates to the right.

Int  Int  Int  Int

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

Means Int  (Int  (Int  Int)).

17

 As a consequence, it is then natural for function
application to associate to the left.

mult x y z

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions in
Haskell are normally defined in curried form.

18

Polymorphic Functions

A function is called polymorphic (“of many forms”)
if its type contains one or more type variables.

length :: [a]  Int

for any type a, length takes a list of
values of type a and returns an integer.

19

 Type variables can be instantiated to different
types in different circumstances:

Note:

 Type variables must begin with a lower-case
letter, and are usually named a, b, c, etc.

> length [False,True]

2

> length [1,2,3,4]

4

a = Bool

a = Int

20

 Many of the functions defined in the standard
prelude are polymorphic. For example:

fst :: (a,b)  a

head :: [a]  a

take :: Int  [a]  [a]

zip :: [a]  [b]  [(a,b)]

id :: a  a

21

Overloaded Functions

A polymorphic function is called overloaded if its
type contains one or more class constraints.

sum :: Num a  [a]  a

for any numeric type a, sum
takes a list of values of type a
and returns a value of type a.

22

 Constrained type variables can be instantiated to
any types that satisfy the constraints:

Note:

> sum [1,2,3]

6

> sum [1.1,2.2,3.3]

6.6

> sum [’a’,’b’,’c’]

ERROR

Char is not a
numeric type

a = Int

a = Float

23

Num - Numeric types

Eq - Equality types

Ord - Ordered types

 Haskell has a number of type classes, including:

 For example:

(+) :: Num a  a  a  a

(==) :: Eq a  a  a  Bool

(<) :: Ord a  a  a  Bool

24

Hints and Tips

 When defining a new function in Haskell, it is
useful to begin by writing down its type;

 Within a script, it is good practice to state the
type of every new function defined;

 When stating the types of polymorphic functions
that use numbers, equality or orderings, take
care to include the necessary class constraints.

25

Exercises

[’a’,’b’,’c’]

(’a’,’b’,’c’)

[(False,’0’),(True,’1’)]

([False,True],[’0’,’1’])

[tail,init,reverse]

What are the types of the following values? (1)

26

second xs = head (tail xs)

swap (x,y) = (y,x)

pair x y = (x,y)

double x = x*2

palindrome xs = reverse xs == xs

twice f x = f (f x)

What are the types of the following functions? (2)

Check your answers using Hugs. (3)

0

PROGRAMMING IN HASKELL

Chapter 4 - Defining Functions

1

Conditional Expressions

As in most programming languages, functions can
be defined using conditional expressions.

abs :: Int  Int

abs n = if n  0 then n else -n

abs takes an integer n and returns n if it
is non-negative and -n otherwise.

2

Conditional expressions can be nested:

signum :: Int  Int

signum n = if n < 0 then -1 else

 if n == 0 then 0 else 1

 In Haskell, conditional expressions must always
have an else branch, which avoids any possible
ambiguity problems with nested conditionals.

Note:

3

Guarded Equations

As an alternative to conditionals, functions can also
be defined using guarded equations.

abs n | n  0 = n

 | otherwise = -n

As previously, but using guarded equations.

4

Guarded equations can be used to make definitions
involving multiple conditions easier to read:

 The catch all condition otherwise is defined in
the prelude by otherwise = True.

Note:

signum n | n < 0 = -1

 | n == 0 = 0

 | otherwise = 1

5

Pattern Matching

Many functions have a particularly clear definition
using pattern matching on their arguments.

not :: Bool  Bool

not False = True

not True = False

not maps False to True, and True to False.

6

Functions can often be defined in many different
ways using pattern matching. For example

(&&) :: Bool  Bool  Bool

True && True = True

True && False = False

False && True = False

False && False = False

True && True = True

_ && _ = False

can be defined more compactly by

7

True && b = b

False && _ = False

However, the following definition is more efficient,
because it avoids evaluating the second argument
if the first argument is False:

 The underscore symbol _ is a wildcard pattern
that matches any argument value.

Note:

8

 Patterns may not repeat variables. For example,
the following definition gives an error:

b && b = b

_ && _ = False

 Patterns are matched in order. For example, the
following definition always returns False:

_ && _ = False

True && True = True

9

List Patterns

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons” that
adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).

10

Functions on lists can be defined using x:xs patterns.

head :: [a]  a

head (x:_) = x

tail :: [a]  [a]

tail (_:xs) = xs

head and tail map any non-empty list to
its first and remaining elements.

11

Note:

 x:xs patterns must be parenthesised, because
application has priority over (:). For example,
the following definition gives an error:

 x:xs patterns only match non-empty lists:

> head []

Error

head x:_ = x

12

Integer Patterns

pred :: Int  Int

pred (n+1) = n

As in mathematics, functions on integers can be
defined using n+k patterns, where n is an integer
variable and k>0 is an integer constant.

pred maps any positive
integer to its predecessor.

13

Note:

 n+k patterns must be parenthesised, because
application has priority over +. For example,
the following definition gives an error:

 n+k patterns only match integers  k.

> pred 0

Error

pred n+1 = n

14

Lambda Expressions

Functions can be constructed without naming the
functions by using lambda expressions.

x  x+x

the nameless function that takes a
number x and returns the result x+x.

15

 The symbol  is the Greek letter lambda, and is
typed at the keyboard as a backslash \.

 In mathematics, nameless functions are usually
denoted using the  symbol, as in x  x+x.

 In Haskell, the use of the  symbol for nameless
functions comes from the lambda calculus, the
theory of functions on which Haskell is based.

Note:

16

Why Are Lambda's Useful?

Lambda expressions can be used to give a formal
meaning to functions defined using currying.

For example:

add x y = x+y

add = x  (y  x+y)

means

17

const :: a  b  a

const x _ = x

is more naturally defined by

const :: a  (b  a)

const x = _  x

Lambda expressions are also useful when defining
functions that return functions as results.

For example:

18

odds n = map f [0..n-1]

 where

 f x = x*2 + 1

can be simplified to

odds n = map (x  x*2 + 1) [0..n-1]

Lambda expressions can be used to avoid naming
functions that are only referenced once.

For example:

19

Sections

An operator written between its two arguments can
be converted into a curried function written before
its two arguments by using parentheses.

For example:

> 1+2

3

> (+) 1 2

3

20

This convention also allows one of the arguments
of the operator to be included in the parentheses.

For example:

> (1+) 2

3

> (+2) 1

3

In general, if  is an operator then functions of the
form (), (x) and (y) are called sections.

21

Why Are Sections Useful?

Useful functions can sometimes be constructed in
a simple way using sections. For example:

- successor function

- reciprocation function

- doubling function

- halving function

(1+)

(*2)

(/2)

(1/)

22

Exercises

Consider a function safetail that behaves in the
same way as tail, except that safetail maps the
empty list to the empty list, whereas tail gives
an error in this case. Define safetail using:

 (a) a conditional expression;
 (b) guarded equations;
 (c) pattern matching.

Hint: the library function null :: [a]  Bool can
be used to test if a list is empty.

(1)

23

Give three possible definitions for the logical
or operator (||) using pattern matching.

(2)

Redefine the following version of (&&) using
conditionals rather than patterns:

(3)

True && True = True

_ && _ = False

Do the same for the following version: (4)

True && b = b

False && _ = False

	chapter2.pdf
	chapter3.pdf
	chapter4.pdf

