
Chapter 12

File Management
Seventh Edition

By William Stallings

Operating

Systems:

Internals

and Design

Principles

Files

◼ Data collections created by users

◼ The File System is one of the most important parts of the OS to a user

◼ Desirable properties of files:

Long-term existence

• files are stored on disk or other secondary storage and do not disappear when a user logs off

Sharable between processes

• files have names and can have associated access permissions that permit controlled sharing

Structure

• files can be organized into hierarchical or more complex structure to reflect the relationships
among files

File Systems

◼ The file system gives users an abstraction of the disk

◼ It provides a way to store data organized as files as well as a

collection of functions that can be performed on files

◼ Maintain a set of attributes associated with the file

◼ Typical operations include:

◼ Create/Delete

◼ Open/Close

◼ Read/Write

File Management System
Objectives

◼ Meet the data management needs of the user

◼ Guarantee that the data in the file are valid

◼ Optimize performance

◼ Provide I/O support for a variety of storage device types

◼ Minimize the potential for lost or destroyed data

◼ Provide a standardized set of I/O interface routines to user
processes

◼ Provide I/O support for multiple users in the case of multiple-
user systems

Minimal User Requirements
▪Each user:

1
• should be able to create, delete, read, write and modify files

2
• may have controlled access to other users’ files

3
• may control what type of accesses are allowed to the files

4
• should be able to restructure the files in a form appropriate to the problem

5
• should be able to move data between files

6
• should be able to back up and recover files in case of damage

7
• should be able to access his or her files by name rather than by numeric identifier

File

Directory

Information

Table 12.2 Information Elements of a File Directory

Operations Performed
on a Directory

◼ To understand the requirements for a file structure, it is helpful to

consider the types of operations that may be performed on the

directory:

Search
Create

files
Delete

files
List

directory
Update

directory

Fig. 12.4:

Tree-

Structured

Directory
◼ Master directory

with user directories

◼ Each user directory

may have sub-

directories and files

as entries

◼ Simplifies require-

ments for unique

file names across

multiple users.

Figure 12.7

Example of

Tree-Structured

Directory

File Sharing

Two issues arise
when allowing files
to be shared among
a number of users:

access rights
management of

simultaneous
access

Access Rights

◼ None

◼ the user would not be allowed to
read the user directory that
includes the file

◼ Knowledge

◼ the user can determine that the
file exists and who its owner is
and can then petition the owner
for additional access rights

◼ Execution

◼ the user can load and execute a
program but cannot copy it

◼ Reading

◼ the user can read the file for any
purpose, including copying and
execution

◼ Appending

◼ the user can add data to the file
but cannot modify or delete any
of the file’s contents

◼ Updating

◼ the user can modify, delete, and
add to the file’s data

◼ Changing protection

◼ the user can change the access
rights granted to other users

◼ Deletion

◼ the user can delete the file from
the file system

User Access Rights

Owner

usually the
initial creator

of the file

has full rights

may grant
rights to
others

Specific
Users

individual
users who are
designated by

user ID

User
Groups

a set of users
who are not
individually

defined

All

all users who
have access to

this system

these are
public files

Record Blocking

2) Variable-Length Spanned Blocking

– variable-length records are packed

into blocks with no unused space

3) Variable-Length Unspanned
Blocking – variable-length records
are used, but spanning is not

◼ Blocks are the unit of I/O

with secondary storage

◼ for I/O to be

performed records

must be organized as

blocks

▪ Given the size of a block,

three methods of blocking

can be used:

1) Fixed-Length Blocking – fixed-length
records are used, and an integral
number of records (or bytes) are
stored in a block
Internal fragmentation – unused space
at the end of each block for records,
but not for bytes
appropriate for byte-stream files.

File Allocation

▪ Disks are divided into physical blocks (sectors on a track)

▪ Files are divided into logical blocks (subdivisions of the file)

▪ Logical block size = some multiple of a physical block size

▪ The operating system or file management system is responsible for

allocating blocks to files

▪ Space is allocated to a file as one or more portions (one or more

contiguous disk blocks). A portion is the logical block size.

▪ File allocation table (FAT):

▪ A generic term for the data structure used to keep track of the disk

portions assigned to a file

Preallocation vs
Dynamic Allocation

◼ A preallocation policy requires that the maximum size of a file be

declared at the time of the file creation request

◼ For many applications it is difficult to estimate reliably the maximum

potential size of the file

◼ tends to be wasteful because users and application programmers tend

to overestimate size

◼ Dynamic allocation allocates space to a file in portions as needed

Portion Size

◼ In choosing a portion size there is a trade-off between efficiency from

the point of view of a single file versus overall system efficiency

◼ Items to be considered:

1) contiguity of space increases performance, especially for
Retrieve_Next operations (sequential access).

2) having a large number of small portions increases the size of

tables needed to manage the allocation information

3) having fixed-size portions simplifies the reallocation of space

4) having variable-size or small fixed-size portions minimizes

waste of unused storage due to overallocation

Summarizing the
Alternatives

◼ Two major alternatives:

Variable, large
contiguous portions

• provides better performance,
esp. for sequential access

• the variable size avoids waste

• the file allocation tables are
small

Blocks

• small fixed portions provide
greater flexibility

• they may require large tables or
complex structures for their
allocation

• contiguity has been abandoned
as a primary goal

• blocks are allocated as needed

Table 12.3

File Allocation Methods

Contiguous File Allocation

▪A single
contiguous set of
blocks is allocated
to a file at the time
of file creation

▪Preallocation
strategy using
variable-size
portions

▪Is the best from
the point of view
of the individual
sequential file

12.9

After Compaction

Figure 12.10 Contiguous File Allocation (After Compaction)

Chained

Allocation

▪Allocation is on an
individual block basis

▪Each block contains a
pointer to the next block in
the chain

▪The file allocation table
needs just a single entry for
each file

▪No external
fragmentation to worry
about

▪Better for sequential files 12.11

Chained Allocation After Consolidation

12.12

Indexed Allocation with
Block Portions

12.13

Review
◼ File systems can support files organized as a sequence of bytes or as a

sequence of records

◼ Access methods depend on file organization

◼ Disk storage of files can be contiguous, linked or indexed

◼ Logical blocks of a file are mapped to one or more disk sectors to

create physical blocks (portions).

◼ Directories map user names to internal names

◼ File Allocation Tables map files to disk locations

◼ Free lists keep track of unallocated space.

Free Space Management

◼ Just as allocated space must be managed, so must the unallocated

space

◼ To perform file allocation, it is necessary to know which blocks are

available

◼ A disk allocation table is needed in addition to a file allocation table

◼ Bit vectors

◼ Chained free portions

◼ Indexing.

◼ Free block list

Bit Tables (Bit Vectors)

◼ This method uses a vector containing one bit for each block on the

disk

◼ Each entry of a 0 corresponds to a free block, and each 1

corresponds to a block in use

Advantages:

• works well with any file
allocation method

• it is as small as possible

Chained Free Portions

◼ The free portions may be chained together by using a pointer and

length value in each free portion

◼ Negligible space overhead because there is no need for a disk

allocation table

◼ Suited to all file allocation methods

Disadvantages:

• leads to fragmentation

• every time you allocate a block you need to read
the block first to recover the pointer to the new
first free block before writing data to that block

Indexing

◼ Treats free space as a file and uses an index table as it would for file

allocation

◼ For efficiency, the free-space index should be on the basis of

variable-size portions rather than blocks

◼ This approach provides efficient support for all of the file allocation

methods

Free Block List

Each block is assigned a
number sequentially

the list of the numbers
of all free blocks is

maintained in a
reserved portion of the

disk

Depending on the size of
the disk, either 24 or 32

bits will be needed to store
a single block number

the size of the free
block list is 24 or 32
times the size of the

corresponding bit table
and must be stored on

disk

There are two effective
techniques for storing a

small part of the free
block list in main

memory:

the list can be treated as
a push-down stack with
the first few thousand
elements of the stack
kept in main memory

the list can be treated as
a FIFO queue, with a
few thousand entries

from both the head and
the tail of the queue in

main memory

Volumes

◼ Essentially, a volume is a logical disk

◼ A collection of addressable sectors in secondary memory

that an OS or application can use for data storage

◼ The sectors in a volume need not be consecutive on a

physical storage device

◼ they need only appear that way to the OS or

application

◼ A volume may be the result of assembling and merging

smaller volumes

Summary
◼ A file management system:

◼ is a set of system software that provides services to users and applications in the use of files

◼ is typically viewed as a system service that is served by the operating system

◼ Files:

◼ consist of a collection of records

◼ if a file is primarily to be processed as a whole, a sequential file organization is the simplest
and most appropriate

◼ if sequential access is needed but random access to individual file is also desired, an indexed
sequential file may give the best performance

◼ if access to the file is principally at random, then an indexed file or hashed file may be the
most appropriate

◼ directory service allows files to be organized in a hierarchical fashion

◼ Some sort of blocking strategy is needed

◼ Key function of file management scheme is the management of disk space

◼ strategy for allocating disk blocks to a file

◼ maintaining a disk allocation table indicating which blocks are free

