
Chapter 11

I/O Management

and Disk Scheduling
Seventh Edition

By William Stallings

Operating

Systems:

Internals

and

Design

Principles

External devices that engage in I/O with computer

systems can be grouped into three categories:

• suitable for communicating with the computer user

• printers, terminals, video display, keyboard, mouse

Human readable

• suitable for communicating with electronic equipment

• disk drives, USB keys, sensors, controllers

Machine readable

• suitable for communicating with remote devices

• modems, digital line drivers

Communication

◼ Devices differ in a number of areas:

Data Rate

• there may be differences of magnitude between the data transfer rates

Application

• the use to which a device is put has an influence on the software

Complexity of Control

• the effect on the operating system is filtered by the complexity of the I/O module that controls the device

Unit of Transfer
• data may be transferred as a stream of bytes or characters or in larger blocks

Data Representation

• different data encoding schemes are used by different devices

Error Conditions

• the nature of errors, the way in which they are reported, their consequences, and
the available range of responses differs from one device to another

◼ Three techniques for performing I/O are:

◼ Programmed I/O

◼ the processor issues an I/O command on behalf of a process to an I/O module;
that process then busy waits for the operation to be completed before proceeding

◼ Interrupt-driven I/O

◼ the processor issues an I/O command on behalf of a process

◼ if non-blocking – processor continues to execute instructions from the process
that issued the I/O command

◼ if blocking – the next instruction the processor executes is from the OS, which
will put the current process in a blocked state and schedule another process

◼ Direct Memory Access (DMA)

◼ a DMA module controls the exchange of data between main memory and an
I/O module

Techniques for Performing I/O

1
• Processor directly controls a peripheral device

2
• A controller or I/O module is added

3
• Same configuration as step 2, but now interrupts are employed

4
• The I/O module is given direct control of memory via DMA

5

• The I/O module is enhanced to become a separate processor, with
a specialized instruction set tailored for I/O

6

• The I/O module has a local memory of its own and is, in fact, a
computer in its own right

Disk
Performance
Parameters

◼ The actual details of disk I/O

operation depend on the:

◼ computer system

◼ operating system

◼ nature of the I/O

channel and disk

controller hardware

◼ When the disk drive is operating, the disk is rotating at constant speed

◼ To read or write the head must be positioned at the desired track and
at the beginning of the desired sector on that track

◼ Track selection involves moving the head in a movable-head system or
electronically selecting one head on a fixed-head system

◼ On a movable-head system the time it takes to position the head at the
track is known as seek time

◼ The time it takes for the beginning of the sector to reach the head is
known as rotational delay

◼ The sum of the seek time and the rotational delay equals the access
time

Table 11.3 Disk Scheduling Algorithms

◼ Processes in sequential order

◼ Fair to all processes

◼ Approximates random scheduling in performance

if there are many processes competing for the disk

First-In, First-Out (FIFO)

◼ Control of the scheduling is outside the control of disk management

software

◼ Goal is not to optimize disk utilization but to meet other objectives

◼ Short batch jobs and interactive jobs are given higher priority

◼ Provides good interactive response time

◼ Longer jobs may have to wait an excessively long time

◼ A poor policy for database systems

Scheduling Criteria

◼ Disk scheduling strategies are generally designed to treat all

requests as if they have equal priority. The objective of the

strategy is to optimize one or more of the following quantities:

◼ Throughput: number of requests processed per unit of time

◼ Average response time: waiting for a request to be processed

◼ Variance of response times: no starvation (indefinite

postponement). Each request should be processed within a

reasonable time period.

◼ Measures fairness and predictability.

Shortest Service

Time First

(SSTF)

◼ Select the request that requires
the least movement of the disk
arm from its current position

◼ Always choose the minimum
seek time

◼ Possible starvation: suppose
requests constantly arrive for
tracks between tracks 100 & 1

SCAN

◼ Also known as the elevator algorithm
◼ Arm moves in one direction only

◼ satisfies all outstanding requests until
it reaches the last track in that
direction then the direction is reversed

◼ Favors jobs whose requests are for
tracks nearest to both innermost and
outermost tracks but does not cause
starvation.

C-SCAN
(Circular SCAN)

◼ Restricts scanning to one direction

only

◼ When the last track has been visited

in one direction, the arm is returned

to the opposite end of the disk and

the scan begins again

◼ Reduces maximum delay for new

requests.

Table 11.2 Comparison of Disk Scheduling Algorithms

◼ Redundant Array of Independent

Disks

◼ Objective: improve performance &

reliability of disk I/O

◼ Consists of seven levels, zero

through six

◼ Levels 0 & 1 don’t include

parity checks

◼ Details for striping and

parity differ from level

to level

Design
architectures
share three

characteristics:

RAID is a set of
physical disk drives

viewed by the
operating system as a

single logical drive

data are
distributed across
the physical drives

of an array in a
scheme known as

striping

redundant disk capacity
is used to store parity
information, which

guarantees data
recoverability in case of

a disk failure

Table 11.4 RAID Levels

RAID
Level 0

◼ Not a true RAID: no redundancy

◼ Data are distributed across all of the disks

◼ Two unrelated I/O requests can be done in

parallel if they are on different disks, or

◼ Here, strips 0-3, 4-7, etc. represent a stripe:

consecutive bytes in a file and all can be read

in parallel in a single related operation.

RAID
Level 1

◼ Redundancy is achieved by the simple
expedient of duplicating all the data

◼ There is no “write penalty” (time
required to compute and update parity
bits).

◼ When a drive fails the data may still be
accessed from the second drive

◼ Principal disadvantage is the cost

RAID
Level 2

◼ Uses a parallel access technique: all disks

involved in each operation

◼ Data striping is used, usually small strips

◼ Typically a Hamming code is used; can

detect/correct single bit errors, detect double

bit errors.

◼ Effective choice in an environment in which

many disk errors occur but otherwise overkill:

too many extra disks are required.

RAID
Level 3

◼ Requires only a single redundant disk, which serves as
a parity disk. If a single disk fails its contents can be
reconstructed from the parity disk.

◼ Employs parallel access, with data distributed in small
strips

◼ Can achieve very high data transfer rates due to small
strip size.

RAID
Level 4

◼ Makes use of an independent access
technique

◼ A bit-by-bit parity strip is calculated across
corresponding strips on each data disk,
and the parity bits are stored in the
corresponding strip on the parity disk

◼ Involves a write penalty when an I/O write
request of small size is performed

RAID
Level 5

◼ Similar to RAID-4 but distributes the
parity bits across all disks

◼ Typical allocation is a round-robin
scheme

◼ Has the characteristic that the loss of
any one disk does not result in data loss

RAID
Level 6

◼ Two different parity calculations are
carried out and stored in separate blocks
on different disks

◼ Provides extremely high data availability

◼ Incurs a substantial write penalty
because each write affects two parity
blocks

◼ Cache memory is used to apply to a memory that is smaller and faster than

main memory and that is interposed between main memory and the

processor

◼ Reduces average memory access time by exploiting the principle of locality

◼ Disk cache is a buffer in main memory for disk sectors

◼ Contains a copy of some of the sectors on the disk

when an I/O request is
made for a particular sector,

a check is made to
determine if the sector is in

the disk cache

if YES
the request is satisfied

via the cache

if NO
the requested sector
is read into the disk
cache from the disk

◼ Most commonly used algorithm that deals with the design issue of

replacement strategy

◼ The block that has been in the cache the longest with no reference

to it is replaced

◼ A stack of pointers reference the cache

◼ most recently referenced block is on the top of the stack

◼ when a block is referenced or brought into the cache, it is placed on the

top of the stack

◼ The block that has experienced the fewest references is replaced

◼ A counter is associated with each block

◼ Counter is incremented each time block is accessed

◼ When replacement is required, the block with the smallest count is

selected

◼ I/O architecture is the computer system’s interface to the outside world

◼ Disk I/O has the greatest impact on overall system performance

◼ Two of the most widely used approaches are disk scheduling and the disk

cache

◼ A disk cache is a buffer, usually kept in main memory, that functions as a

cache of disk block between disk memory and the rest of main memory

