
Chapter 7

Memory

Management
Seventh Edition

William Stallings

Operating

Systems:

Internals

and Design

Principles

Definition

◼ Memory management is the process of

◼ allocating primary memory to user programs

◼ reclaiming that memory when it is no longer needed

◼ protecting each user’s memory area from other user programs; i.e.,
ensuring that each program only references memory locations that
have been allocated to it.

Requirements

◼ In order to manage memory effectively the OS must have

◼ Memory allocation policies

◼ Methods to track the status of memory locations (free or allocated)

◼ Policies for preempting memory from one process to allocate to

another

Memory

Management

Terms

Memory Management
Requirements

◼ Memory management is intended to satisfy the

following requirements:

◼ Relocation

◼ Protection

◼ Sharing

◼ Logical organization

◼ Physical organization

Relocation

◼ Relocation is the process of adjusting program

addresses to match the actual physical addresses

where the program resides when it executes

◼ Why is relocation needed?

◼ Programmer/translator don’t know which other

programs will be memory resident when

the program executes

Relocation

◼ Why is relocation needed? (continued)

◼ Active processes need to be able to be swapped in and

out of main memory in order to maximize processor

utilization

◼ Specifying that a process must be placed in the same
memory region when it is swapped back
in would be limiting

◼ Consequently it must be possible to
adjust addresses whenever a program
is loaded.

Addressing Requirements

Simplified Process Image

Protection

◼ Processes need to acquire permission to reference memory locations for

reading or writing purposes

◼ Location of a program in main memory is unpredictable

◼ Memory references generated by a process must be checked at run time

◼ Mechanisms that support relocation also support protection

Sharing
◼ Advantageous to allow each process access to the same copy of

the program rather than have their own separate copy

◼ Memory management must allow controlled access to shared

areas of memory without compromising protection

◼ Mechanisms used to support relocation support sharing

capabilities

Logical Organization

◼ Main memory is organized as a linear (1-D) address space consisting of a sequence of bytes or
words.

◼ Programs aren’t necessarily organized this way

◼ Paging versus segmentation

Programs are written in modules

• modules can be written and compiled independently

• different degrees of protection given to modules
(read-only, execute-only)

• sharing on a module level corresponds to the user’s
way of viewing the problem

Physical Organization

◼ Two-level memory for program storage:

◼ Disk (slow and cheap) & RAM (fast and more

expensive)

◼ Main memory is volatile, disk isn’t

◼ User should not have to be responsible for

organizing movement of code/data between the

two levels.

Physical Organization

Cannot leave the
programmer with the

responsibility to manage
memory

Memory available for a
program plus its data
may be insufficient

overlaying allows various
modules to be assigned

the same region of
memory but is time

consuming to program

Programmer does not
know how much space

will be available

Memory Partitioning

◼ Virtual memory management brings processes into main memory

for execution by the processor

▪ involves virtual memory

▪ based on segmentation and paging

◼ Partitioned memory management

▪ used in several variations in some now-obsolete operating

systems

▪ does not involve virtual memory

Table 7.2

Memory

Management

Techniques

Fixed Partitioning

◼ Equal-size partitions

◼ any process whose size is less than

or equal to the partition size can be

loaded into an available partition

◼ The operating system can swap

out a process if all partitions are

full and no process is in the

Ready or Running state

◼ A program may be too big to fit in a partition

◼ program needs to be designed with the use of overlays

◼ Main memory utilization is inefficient

◼ any program, regardless of size, occupies an entire

partition

◼ internal fragmentation

◼ wasted space due to the block of data loaded being

smaller than the partition

Unequal Size Partitions

◼ Using unequal size partitions helps lessen the

problems

◼ programs up to 16M can be

accommodated without overlays

◼ partitions smaller than 8M allow smaller

programs to be accommodated with less

internal fragmentation

Memory Assignment

F

i

x

e

d

P

a

r

t

i

t

i

o

n

i

n

g

◼ The number of partitions specified at system

generation time limits the number of active

processes in the system

◼ Small jobs will not utilize partition space

efficiently

◼ Partitions are of variable length and number

◼ Process is allocated exactly as much memory as it

requires

◼ This technique was used by IBM’s mainframe

operating system, OS/MVT

Effect of

Dynamic

Partitioning

Dynamic Partitioning

• memory becomes more and more fragmented

• memory utilization declines

External Fragmentation

• technique for overcoming external fragmentation

• OS shifts processes so that they are contiguous

• free memory is together in one block

• time consuming and wastes CPU time

Compaction

Placement Algorithms

Best-fit

• chooses the
block that is
closest in size
to the request

First-fit

• begins to scan
memory from
the beginning
and chooses
the first
available
block that is
large enough

Next-fit

• begins to scan
memory from
the location
of the last
placement
and chooses
the next
available
block that is
large enough

Memory

Configuration

Example

Buddy System

◼ Comprised of fixed and dynamic partitioning

schemes

◼ Space available for allocation is treated as a

single block

◼ Memory blocks are available of size 2K words,

L ≤ K ≤ U, where
◼ 2L = smallest size block that is allocated

◼ 2U = largest size block that is allocated; generally 2U is the size of the

entire memory available for allocation

Buddy System Example

T

r

e

e

R

e

p

r

e

s

e

n

t

a

t

i

o

n

Addresses

• reference to a memory location independent of the current
assignment of data to memory

Logical

• address is expressed as a location relative to some known
point

Relative

• actual location in main memory

Physical or Absolute

◼ Partition memory into equal fixed-size chunks that are relatively

small

◼ Process is also divided into small fixed-size chunks of the same

size

Pages

• chunks of a
process

Frames

• available
chunks of
memory

Assignment of

Process to

Free Frames

Page Table

◼ Maintained by operating system for each process

◼ Contains the frame location for each page in the process

◼ Processor must know how to access the page table for the current

process

◼ Used by processor to produce a physical address

Data Structures

Logical Addresses

Logical-to-Physical Address

Translation - Paging

Segmentation

◼A program can be subdivided into segments

▪ may vary in length

▪ there is a maximum length

◼Addressing consists of two parts:

▪ segment number

▪ an offset

◼Similar to dynamic partitioning

◼Eliminates internal fragmentation

Logical-to-Physical Address
Translation - Segmentation

Security Issues

If a process has not
declared a portion of its
memory to be sharable,
then no other process

should have access to the
contents of that portion

of memory

If a process declares that a
portion of memory may be
shared by other designated
processes then the security

service of the OS must
ensure that only the

designated processes have
access

Buffer Overflow Attacks

◼ Security threat related to memory management

◼ Also known as a buffer overrun

◼ Can occur when a process attempts to store data beyond the

limits of a fixed-sized buffer

◼ One of the most prevalent and dangerous types of security

attacks

Buffer

Overflow

Stack Values

Defending Against
Buffer Overflows

◼ Prevention

◼ Detecting and aborting

◼ Countermeasure categories:

Compile-time Defenses

• aim to harden programs to resist attacks in new
programs

Run-time Defenses

• aim to detect and abort attacks in existing
programs

◼ Memory Management

◼ one of the most important and complex tasks of an

operating system

◼ needs to be treated as a resource to be allocated to and

shared among a number of active processes

◼ desirable to maintain as many processes in main

memory as possible

◼ desirable to free programmers from size restriction in

program development

◼ basic tools are paging and segmentation (possible to

combine)

◼ paging – small fixed-sized pages

◼ segmentation – pieces of varying size

Summary

