Operating

oystems: . Chapter D
Internals Concurrency:
and Design..

Mutual Exclusion
and Synchronization

Seventh Edition
By William Stallings

Principles

“Multiple Processes

mOperating System design 1s concerned
with the management of processes and
threads:

m Multiprogramming
m Multiprocessing
m Distributed Processing

Concurrency & Shared
- Data

m Concurrent processes may share data to
support communication, info exchange,...

m Threads 1n the same process can share
global address space

m Concurrent sharing may cause problems

m For example: lost updates

Concurrency

K

T

C

r
m

S

atomic operation A function or action implemented as a sequence of one or more instructions
that appears to be indivisible; that is, no other process can see an intermediate
state or interrupt the operation. The sequence of instruction is guaranteed to
execute as a group, or not execute at all, having no visible effect on system
state. Atomicity guarantees isolation from concurrent processes.

critical section A section of code within a process that requires access to shared resources
and that must not be executed while another process is in a corresponding
section of code.

deadlock A situation in which two or more processes are unable to proceed because
each is waiting for one of the others to do something.

livelock A situation in which two or more processes continuously change their states
in response to changes in the other process(es) without doing any useful
work.

mutual exclusion The requirement that when one process is in a critical section that accesses
shared resources, no other process may be in a critical section that accesses
any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared

data item and the final result depends on the relative timing of their
execution.

starvation A situation in which a runnable process is overlooked indefinitely by the
scheduler; although it is able to proceed, it is never chosen.

Table 5.1 Some Key Terms Related to Concurrency

Difficulties of Concurrency

m Sharing of global resources

m Difficult for the OS to manage the allocation
of resources optimally

m Difficult to locate programming errors as
results are not deterministic and

reproducible

" Race Condition -

m Occurs when multiple processes or
threads read and write shared data
1tems

m The final result depends on the order of
execution
m the “loser” of the race 1s the process

that updates last and will determine the
final value of the variable

Operating System Concerns

m Design and management issues raised by the existence of
concurrency:

m The OS must:

m be able to keep track of various processes

m allocate and de-allocate resources for each
active process

m protect the data and physical resources of each process
against interference by other processes

m ensure that the processes and outputs are independent
of the processing speed

OoumOOAXVT

Z0—-——"o0>»3mMm4dzZ—

Degree of Awareness

Relationship

Influence that One
Process Has on the
Other

Potential Control
Problems

Processes unaware of
each other

Competition

*Results of one
process independent
of the action of
others

*Timing of process
may be affected

eMutual exclusion

eDeadlock (renewable
resource)

eStarvation

Processes indirectly
aware of each other
(e.g., shared object)

Cooperation by
sharing

*Results of one
process may depend
on information
obtained from others

*Timing of process
may be affected

*Mutual exclusion

eDeadlock (renewable
resource)

eStarvation

eData coherence

Processes directly
aware of each other
(have communication
primitives available to
them)

Cooperation by
communication

*Results of one
process may depend
on information
obtained from others

*Timing of process
may be affected

eDeadlock
(consumable
resource)

eStarvation

Resource Competition

® Concurrent processes come into conflict when

they use the same resource (competitively or
shared)

® for example: I/0 devices, memory, processor time, clock

® Three control problems must be faced

¥ Need for mutual exclusion
¥ Deadlock
® Starvation

® Sharing processes also need to address cohe

Need for Mutual Exclusion

m If there 1s no controlled access to shared data,
processes or threads may get an inconsistent
view of this data

m The result of concurrent execution will depend
on the order 1n which instructions are
interleaved.

m Errors are timing dependent and usually not
reproducible.

A Simple Example

m Assume P1 and P2 are executing

this code and share the variable a static char a;
m Processes can be preempted at any void echo()
time. Ly
cin >> a;
m Assume P1 1s preempted after the cout << a;
input statement, and P2 then }

executes entirely

m The character echoed by P1 will be
the one read by P2 !!

Wiihat's the Probleni

m This 1s an example of a race condition

m Individual processes (threads) execute
sequentially 1n 1solation, but concurrency causes
them to interact.

m We need to prevent concurrent execution by
processes when they are changing the same data.
We need to enforce mutual exclusion.

The Critical Section
~Problem

m When a process executes code that manipulates
shared data (or resources), we say that the
process 1s 1n its critical section (CS) for that
shared data

® We must enforce mutual exclusion on the
execution of critical sections.

m Only one process at a time can be 1n 1ts CS (for
that shared data or resource).

The Critical Section Problem

m Enforcing mutual exclusion guarantees that
related CS’s will be executed serially instead of
concurrently.

m The critical section problem is how to provide
mechanisms to enforce mutual exclusion so the
actions of concurrent processes won’t depend on
the order in which their instructions are
interleaved

The Critical Section Problem

m Processes/threads must request permission to
enter a CS, & signal when they leave CS.

m Program structure:
B entry section: requests entry to CS
m exit section: notifies that CS 1s completed

m remainder section (RS): code that does not involve
shared data and resources.

m The CS problem exists on multiprocessors as well
as on uniprocessors.

Mutual Exclusion and Data
Coherence

m Mutual Exclusion ensures data coherence if
properly used.

m Critical Resource (CR) - a shared resource such as
a variable, file, or device

m Data Coherence:

m The final value or state of a CR shared by concurrently executing processes
is the same as the final value or state would be if each process executed
serially, in some order.

Deadlock and Starvation

m Deadlock: two or more processes are blocked
permanently because each 1s waiting for a
resource held in a mutually exclusive manner by
one of the others.

m Starvation: a process is repeatedly denied access
to some resource which 1s protected by mutual
exclusion, even though the resource periodically
becomes available.

9) ¢

Ny,

PROCESS 1 4/

void PI
{
while (true) |
J* preceding code */;
entercritical (Ra);
[* critical section */;
exitcritical (Ra);
J* following code */;

[* DROCESS 2 #/

void P2
[
while (true) |
[* preceding code */;
entercritical (Ra);
[* critical section ¥/;
exiteritical (Ra);
Jt following code #/;

Mutual Exclusion

[* BROCESS n #/

void P
{
while (true) |
J* preceding code */;
entercritical (Ra);
[* critical section */;
exitcritical (Ra);
J* following code #/;
;
}

Figure 5.1 lllustration of Mutual Exclusion

Requirements for Mutual
| Exclusmn %

m Mutual Exclusion: must be enforced
m Non interference: A process that halts must ng _/

interfere with other processes %
m No deadlock or starvation
m Progress:A process must not be denied access to a critical
section when there 1s no other process using it

m No assumptions are made about relative process speeds
or number of processes

m A process remains inside its critical section for a finite
time only

. Mutual Exclusion:
Hardware Support

* Interrupt Disabling

— uniprocessor system

— disabling interrupts
guarantees mutual
exclusion

* Disadvantages:

— the efficiency of
execution could be
noticeably degraded

— this approach will not
work in a multiprocessor
architecture

~ Mutual Exclusion:
Hardware Support

m Special Machine Instructions

m Compare&Swap Instruction

m also called a “compare and exchange
instruction”

m a compare 1s made between a memory value
and a test value

m if the old memory value = test value, swap in a
new value to the memory location

m always return the old memory value
m carried out atomically in the hardware.

- Mutual Exclusion:
Hardware Support

m Compare&Swap Instruction

m Pseudo-code definition of the
hardware instruction:

compare_and_swap (word, test_val, new_val)
if (word ==test_val)

word = new_val;
return new_val

Compare and Swap

Instruction

J* program mutualsexclusion */
congt int n = /* number of processes */;
int k=1t ;
void P(imt i)
{
while (true) {
while (compare_and swapi(bcolt, 0, 1) == 1)
J* do nothing */;
J* critical section */;
baolt = Qo
J* remainder */;
}
h

vold main()

{
bolt = 0;
parbegin (P(1),

BF(2), EBim))

(a) Compare and swap instruction

Figure 5.2 Hardware Support for Mutual Exclusion

word = bolt
test val=0
new val =1

If bolt is O when
the C&S is
executed, the
condition is false
and P enters its
critical section.
(leaves bolt = 1)
If bolt = 1 when
C&S executes, P
continues to
execute the
while loop. It's
busy waiting (or
spinning)

Special Machine Instruction:
“Advantages '

4 Applicable to any number of processes on
either a single processor or multiple
pProcessors sharing main memory

1‘ Simple and easy to verify

4 It can be used to support multiple critical
sections; each critical section can be defined

by its own variable

Special Machine Instruction:
Disadvantages

‘ Busy-waiting 1s employed, thus while a
process 1s waiting for access to a critical
section 1t continues to consume processor
time

m Starvation 1s possible when a process

.leaves a critical section and more than one

process 1s waiting
m Deadlock 1s possible if priority- &z
‘ based scheduling 1s used N ®

Common
Concurrency

Mechanisms

Semaphore

An integer value used for signaling among processes. Only three
operations may be performed on a semaphore, all of which are
atomic: initialize, decrement, and increment. The decrement
operation may result in the blocking of a process, and the increment
operation may result in the unblocking of a process. Also known as a
counting semaphore or a general semaphore

Binary Semaphore

A semaphore that takes on only the values 0 and 1.

Mutex

Similar to a binary semaphore. A key difference between the two is
that the process that locks the mutex (sets the value to zero) must be
the one to unlock it (sets the value to 1).

Condition Variable

A data type that is used to block a process or thread until a particular
condition is true.

Monitor

A programming language construct that encapsulates variables,
access procedures and initialization code within an abstract data type.
The monitor's variable may only be accessed via its access
procedures and only one process may be actively accessing the
monitor at any one time. The access procedures are critical sections.
A monitor may have a queue of processes that are waiting to access
1t.

Event Flags

A memory word used as a synchronization mechanism. Application
code may associate a different event with each bit in a flag. A thread
can wait for either a single event or a combination of events by
checking one or multiple bits in the corresponding flag. The thread is
blocked until all of the required bits are set (AND) or until at least
one of the bits is set (OR).

Mailboxes/Messages

A means for two processes to exchange information and that may be
used for synchronization.

Spinlocks

Mutual exclusion mechanism in which a process executes in an
infinite loop waiting for the value of a lock variable to indicate
availability.

o S‘-emaphore

A variable that has an
integer value upon
which only three
operations are

There 1s no way to

inspect or manipulate
semaphores other than
el these three operations

1) May be initialized to a nonnegative integer value
2) The semWait operation decrements the value

3) The semSignal operation increments the value

~ Consequences

There 1s no way to
know before a

process decrements
a semaphore
whether it will
block or not

There 1s no way to
know which process
will continue
immediately on a
uniprocessor system
when two processes
are running
concurrently

You don’t know
whether another
process 1s waiting so
the number of
unblocked processes
may be zero or one

Semaphore Primitives

struct semaphore {
int count;
queueTlype gueue;

bi
vold semWait(semaphore s)
{
s.count—--;
if (s.count < 0) {
/* place this process in s.queus */;
/* block this process */;
t
t
vold semSignal (semaphore s)
{
s.count++;
if (s.count <= 0) {
/* remove a process P from s.queue */;
/* place process P on ready list */;
'
}

Figure 5.3 A Definition of Semaphore Primitives

Binary Semaphore Primitives

struct binary semaphore {
enum {zero, one} value;
queueType quesus;
ti
void semWaitB(binary semaphore s)
{
if (s.value == one)
s.value = zero;
else {
/* place this process in s.queue */;
/* block this process */;
t
t
void semSignalB(semaphore s)
{
if (s.queue 1s empty())
s.value = one;
else {
/* remove a process P from s.gqueue */;
/* place process P on ready list */;
t
J \J

Figure 5.4 A Definition of Binary Semaphore Primitives

- Strong/Weak Semaphores

® A queue 1s used to hold processes waiting on the semaphore

Strong Semaphores

* the process that has been blocked the longest 1s
released from the queue first (FIFO)

Weak Semaphores

* the order in which processes are removed from the
queue 1s not specified

Example of Semaphore
Mechanism

©

@

®

®

Processor
A
— [[[[] =1 = | [C[D[Bf—
Blocked quene Semaphore Ready queue
Processor
B
— [[[][] s=0 |— [[a[c[p}—0
Blocked quene Semaphore Ready queue
Processor
D
— [[[[5] s=-1 = | | |A]Cf—
Blocked quene Semaphore Ready queue
Processor
D
s=0

— [[[]]

| T [s[a[c—

Blocked quene

Semaphore

Ready queue

@ Processor

C ‘
— 11111 [=T TeE—
Blocked quene Semaphore Ready quene
Processor

D %

—_| [Blale] | s=3 p— [][] —

Blocked quene Semaphore Ready quene
® Processor
D ‘
T[] == =TT cl—

Blocked quene Semaphore Ready quene

Figure 5.5 Example of Semaphore Mechanism

Mutual Exclusion

/* program mutualexclusion */

const int n = /* number of processes */;

semaphore s = 1;

vold P(int 1)

{

while (true) {

semWalit(s);
/* critical section */;
semSignal(s);

/* remainder @ */;
t
}
vold main()
{
parbegin (P(1), P(2), . . ., B(n));
}

Figure 5.6 Mutual Exclusion Using Semaphores

Shared Data Protected

y a Semaphore

Ouene for Walue of

semaphore lock semaphore lock A B C
III Critical
region
w
. Mormal
————— e _semWait(lock)_)}] _— 1 xecution
L= L L
L] [o] \ Blocked on
____________________________ semWait(locky | : semaphore
= | o
¥
1
1 semWait{lock)
____________________________________ g ——=

-]

Note that normal
execttion can
proceed in paraliel
bt that critical
regions are serialized.

Processes Accessing Shared Data Protected by a Semaphore

Producer/Consumer Problem

General
Situation: The Problem:

’ e ensure that the
one or more producers are producer can’t add

generating data and data into full

lacing these 1n a buffer
P : lg : buffer and
a single consumer 1s L

taking items out of the
buffer one at time

only one producer or
consumer may access the
buffer at any one time

remove data from
an empty buffer

Block on: Unblock on:

Producer: insert in full buffer Consumer: 1tem 1nserted

Consumer: remove from empty buffer Producer: item removed

bL11 | B[2] [B[3] | b[4] | b[5] = s * B[]

Finite
Circular T Y

Ot In

BUffer (a)

BI1] | B[2] | B[2] [b[4] | B[5] s s & @ b[]

|

In Ohat
by

Jeure 512 Finite Circular Buffer for the
Ii; 12 Finite C lar Buffer for il
Producer/Consumer Problem

e = S == O O

= O

/* program boundedbuffer */

const int sizeofbuffer = /* buffer size */;

semaphore s = 1, n= 0, e= sizeofbuffer;

void producer()

{

while (true) {

produce () ;
semWait(e);
semWait(s);

append() ;

semSignal(s);

semSignal (n);

g

}

t

m
U void consumer ()
{
El‘ while (true) {
semWait(n);
S semWait(s);
take();
p semSignal(s);
semSignal (e);
h consume() ;

}
n }

void main()

{

g O parbegin (producer, consumer);
t

Figure 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem Using Semaphores

Implementation of

Semaphores

m Imperative that the semWait and
semSignal operations be implemented as
atomic primitives

m Can be imp.

emented in hardware or firmware

m Software sc]

nemes such as Dekker’s or

Peterson’s algorithms can be used &

m Use one of the hardware-supported H
schemes for mutual exclusion ii

. Review

m Concurrent processes, m Semaphores: OS
threads mechanism for mutual
exclusion & other

z e
Access to shared synchronization issues

data/resources
m Standard

m Need to enforce mutual seniaphiore/counting

exclusion

. m Binary semaphore
m Hardware mechanisms

have limited usefulness m Producer/consumer
problem

° ' -
4 L ’
' ¢ ’/o/ < - 7S o
¢ . . < y < 7 o
» o & 7 o
Monltors < S ‘ C 4
v . / ,(, q

m Programming language construct that provides
equivalent functionality to that of semaphores and is
easier to control

m Implemented 1n a number of programming
languages

m 1including Concurrent Pascal, Pascal-Plus, Modula-2,
Modula-3, and Java

m Has also been implemented as a program library

m Software module consisting of one or more
procedures, an initialization sequence, and local
data

%J o ‘ i i ‘}'E:‘.-*JY g ¥ e :
Monitor Characteristics
*n A v g ¥ y M A i
S, p & A % 7 e
Local data variables
are accessible only
by the monitor’s Only one process
procedures and not may be executing in
by any external the monitor at a
procedure time

Process enters
monitor by invoking
one of its
procedures

. Synchronization

m Achieved by the use of condition variables that are
contained within the monitor and accessible only
within the monitor

m Condition variables are operated on by two
functions:

m cwait(c): suspend execution of the calling process on
condition c

m csignal(c): resume execution of some process blocked
after a cwait on the same condition

Structure of a Monitor
|

monitor waiting area Entrance
(1 [

condition ¢l

cwalit(cl)

guene of
entering
Processes

MONITOR
-

local data

condition variables

Procedure 1

L I]
EF-qD [P-q] EF-----qD Ep-q] EF-

— -
-
condition cn -
g .

ralt{c

ewa (cn) Procedure &
e » ——-
urgent queue E
\
i 1 e e s .
csrgna T initialization code
:Iil:
Exit

Figure 5.15 Structure of a Monitor

Problem Solution
%i% Using a Monitor

/* program producerconsumer */
monitor boundedbuffer;

char buffer [N];

int nextin, nextout;

int count;

cond notfull, notempty:

/* space for N items

/* buffer pointers

/* number of items in buffer

/* condition variables for synchronization

void append (char x)

{
if (count == N) cwait(notfull); /* buffer is full; avoid overflow
buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++;
/* one more item in buffer */
csignal (notempty); /* resume any waiting consumer
)
void take (char x)
{
if (count == 0) cwait(notempty); /+* buffer is empty; avoid underflow
X = buffer[nextout];
nextout = (nextout + 1) % N;
count--; /* one fewer item in buffer
csignal (notfull); /* resume any waiting producer
1
{ /* monitor body
nextin = 0; nextout = 0; count = 0; /* buffer initially empty
1

k/
x/
*/
*/

x/
¥/

%/
t/

void producer()

{
char x;
while (true) {
produce(X);
append(x);
}
}
void consumer ()
{
char x;
while (true) {
take(x);
consume (xX) ;
}
1
void main()
{
parbegin (producer, consumer);
}

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a Monitor

Message Passing

m When processes interact with one another two
fundamental requirements must be satisfied:

synchronization communication

* to enforce mutual * to exchange
exclusion information

m Message Passing 1s one approach to providing both
of these functions

m works with distributed systems and shared memory multiprocessor and
UNiprocessor systems

Message Passing =<

m The actual function is normally provided in the form
of a pair of primitives:
send (destination, message)
receive (source, message)

m A process sends information in the form of a message
to another process designated by a destination

m A process receives information by executing the
receive primitive, indicating the source and the

message

Message Passing

Synchronization
Send
blocking
nonblocking
Receive
blocking
nonblocking
test for arrival

Addressing
Direct
send
receive
explicit
implicit
Indirect
static
dynamic
ownership

Format
Content
Length

fixed

variable

Queuing Discipline
FIFO
Priority

Table 5.5 Design Characteristics of Message Systems for Interprocess Communication and Synchronization

Synchronization

o . When a re o
Communication of 2 €Xecuted i, Ceive primici
message between two Process tllltlve is

processes implies

synchronization between the
two

the receiver cannot
receive a message until
it has been sent by
another process

~Blocking Send,
Blocking Receive

m Both sender and receiver are blocked until
the message 1s delivered

m Sometimes referred to as a rendezvous

m Allows for tight synchronization between

processes e
o

- Nonblocking Send

Nonblocking send, blocking receive

e sender continues on but receiver is blocked until the
requested message arrives

 most useful combination

» sends one or more messages to a variety of destinations as

quickly as possible

« example -- a service process that exists to provide a service

or resource to other PTOCESSES

 neither party is required to wait

Nonblocking send, nonblocking receive

"® Addressing

+ Schemes for specifying processes in send
and receive primitives fall into two

categories:

Indirect
addressing

Direct

addressing

% Direct Addressing

m Send primitive includes a specific 1dentifier
of the destination process

m Receive primitive can be handled in one of
two ways:

m require that the process explicitly

designate a sending process
m effective for cooperating concurrent processes
m implicit addressing

m source parameter of the receive primitive possesses a
value returned when the receive operation has been

performed

'\%g Indirect Addressing

Messages are sent to a
shared data structure Queues are
consisting of queues that referred to as

can temporarily hold mailboxes
messages

Allows for One process sends a

1 o1 message to the mailbox
greater ﬂelelhty and the other process

in the use of picks up the message
messages from the mailbox

Indirect Process Communication

. -
51 —W Rl - Rl
Sn
O (b M
R, S R,
[3
5] e——] Mailbox .
[3
Ry, Ss

¢} Ome 1o many (d) Many to many

General Message Format

Message Type

Destination ID
_M Header Source ID

Message Length

Control Information

Body Message Contents

Figure 5.19 General Message Format

Messages Su m m a ry

e Useful for the enforcement of mutual exclusion discipline

Operating system themes are: \U

e Multiprogramming, multiprocessing, distributed processing
e Fundamental to these themes is concurrency

@

e issues of conflict resolution and cooperation arise
Mutual Exclusion

e Condition in which there is a set of concurrent processes, only one of
which is able to access a given resource or perform a given function
at any time

e One approach involves the use of special purpose machine
instructions

Semaphores

e Used for signaling among processes and can be readily used to enforce
a mutual exclusion discipline

