
Chapter 5

Concurrency:

Mutual Exclusion

and Synchronization

Operating

Systems:

Internals

and Design

Principles

Seventh Edition

By William Stallings

◼Operating System design is concerned

with the management of processes and

threads:

◼Multiprogramming

◼Multiprocessing

◼Distributed Processing

Concurrency & Shared
Data

◼Concurrent processes may share data to

support communication, info exchange,...

◼Threads in the same process can share

global address space

◼Concurrent sharing may cause problems

◼For example: lost updates

K

e

y

T

e

r

m

s

Concur renc y

Table 5.1 Some Key Terms Related to Concurrency

Difficulties of Concurrency

◼Sharing of global resources

◼Difficult for the OS to manage the allocation

of resources optimally

◼Difficult to locate programming errors as

results are not deterministic and

reproducible

◼Occurs when multiple processes or
threads read and write shared data
items

◼The final result depends on the order of
execution

◼ the “loser” of the race is the process
that updates last and will determine the
final value of the variable

Operating System Concerns

◼ Design and management issues raised by the existence of

concurrency:

◼ The OS must:

◼ be able to keep track of various processes

◼ allocate and de-allocate resources for each

active process

◼ protect the data and physical resources of each process

against interference by other processes

◼ ensure that the processes and outputs are independent

of the processing speed

P I

R N

O T

C E

E R

S A

S C

T

I

O

N

Resource Competition

▪Concurrent processes come into conflict when
they use the same resource (competitively or
shared)
▪ for example: I/O devices, memory, processor time, clock

▪Three control problems must be faced
▪ Need for mutual exclusion
▪ Deadlock
▪ Starvation

▪ Sharing processes also need to address coherence

Need for Mutual Exclusion

◼ If there is no controlled access to shared data,

processes or threads may get an inconsistent

view of this data

◼ The result of concurrent execution will depend

on the order in which instructions are

interleaved.

◼ Errors are timing dependent and usually not

reproducible.

A Simple Example

◼ Assume P1 and P2 are executing
this code and share the variable a

◼ Processes can be preempted at any
time.

◼ Assume P1 is preempted after the
input statement, and P2 then
executes entirely

◼ The character echoed by P1 will be
the one read by P2 !!

static char a;

void echo()

{

cin >> a;

cout << a;

}

What’s the Problem?

◼ This is an example of a race condition

◼ Individual processes (threads) execute
sequentially in isolation, but concurrency causes
them to interact.

◼ We need to prevent concurrent execution by
processes when they are changing the same data.
We need to enforce mutual exclusion.

The Critical Section
Problem

◼ When a process executes code that manipulates

shared data (or resources), we say that the

process is in its critical section (CS) for that

shared data

◼ We must enforce mutual exclusion on the

execution of critical sections.

◼ Only one process at a time can be in its CS (for

that shared data or resource).

The Critical Section Problem

◼ Enforcing mutual exclusion guarantees that

related CS’s will be executed serially instead of

concurrently.

◼ The critical section problem is how to provide

mechanisms to enforce mutual exclusion so the

actions of concurrent processes won’t depend on

the order in which their instructions are

interleaved

The Critical Section Problem

◼ Processes/threads must request permission to

enter a CS, & signal when they leave CS.

◼ Program structure:

◼ entry section: requests entry to CS

◼ exit section: notifies that CS is completed

◼ remainder section (RS): code that does not involve

shared data and resources.

◼ The CS problem exists on multiprocessors as well

as on uniprocessors.

Mutual Exclusion and Data
Coherence

◼ Mutual Exclusion ensures data coherence if
properly used.

◼ Critical Resource (CR) - a shared resource such as
a variable, file, or device

◼ Data Coherence:
◼ The final value or state of a CR shared by concurrently executing processes

is the same as the final value or state would be if each process executed
serially, in some order.

Deadlock and Starvation

◼ Deadlock: two or more processes are blocked

permanently because each is waiting for a

resource held in a mutually exclusive manner by

one of the others.

◼ Starvation: a process is repeatedly denied access

to some resource which is protected by mutual

exclusion, even though the resource periodically

becomes available.

Mutual Exclusion

Figure 5.1 Illustration of Mutual Exclusion

◼ Mutual Exclusion: must be enforced

◼ Non interference: A process that halts must not
interfere with other processes

◼ No deadlock or starvation

◼ Progress:A process must not be denied access to a critical
section when there is no other process using it

◼ No assumptions are made about relative process speeds
or number of processes

◼ A process remains inside its critical section for a finite
time only

– uniprocessor system

– disabling interrupts

guarantees mutual

exclusion

– the efficiency of

execution could be

noticeably degraded

– this approach will not

work in a multiprocessor

architecture

◼Special Machine Instructions

◼Compare&Swap Instruction
◼ also called a “compare and exchange

instruction”

◼ a compare is made between a memory value
and a test value

◼ if the old memory value = test value, swap in a
new value to the memory location

◼ always return the old memory value

◼ carried out atomically in the hardware.

◼Compare&Swap Instruction

◼Pseudo-code definition of the

hardware instruction:

compare_and_swap (word, test_val, new_val)

if (word ==test_val)

word = new_val;

return new_val

Figure 5.2 Hardware Support for Mutual Exclusion

word = bolt

test_val = 0

new_val = 1

If bolt is 0 when

the C&S is

executed, the

condition is false

and P enters its

critical section.

(leaves bolt = 1)

If bolt = 1 when

C&S executes, P

continues to

execute the

while loop. It’s

busy waiting (or

spinning)

◼ Applicable to any number of processes on
either a single processor or multiple
processors sharing main memory

◼ Simple and easy to verify

◼ It can be used to support multiple critical
sections; each critical section can be defined
by its own variable

Special Machine Instruction:

Disadvantages

◼ Busy-waiting is employed, thus while a
process is waiting for access to a critical
section it continues to consume processor
time

◼ Starvation is possible when a process
leaves a critical section and more than one
process is waiting

◼ Deadlock is possible if priority-
based scheduling is used

Semaphore

There is no way to
inspect or manipulate
semaphores other than
these three operations

A variable that has an
integer value upon
which only three

operations are
defined:

1) May be initialized to a nonnegative integer value

2) The semWait operation decrements the value

3) The semSignal operation increments the value

Consequences

There is no way to
know before a

process decrements
a semaphore

whether it will
block or not

There is no way to
know which process

will continue
immediately on a

uniprocessor system
when two processes

are running
concurrently

You don’t know
whether another

process is waiting so
the number of

unblocked processes
may be zero or one

Semaphore Primitives

Binary Semaphore Primitives

A queue is used to hold processes waiting on the semaphore

• the process that has been blocked the longest is
released from the queue first (FIFO)

Strong Semaphores

• the order in which processes are removed from the
queue is not specified

Weak Semaphores

Producer/Consumer Problem

General
Situation:
• one or more producers are

generating data and
placing these in a buffer

• a single consumer is
taking items out of the
buffer one at time

• only one producer or
consumer may access the
buffer at any one time

The Problem:

• ensure that the
producer can’t add
data into full
buffer and
consumer can’t
remove data from
an empty buffer

S

o

l

u

t

i

o

n

U

s

i

n

g

S

e

m

a

p

h

o

r

e

s

Figure 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem Using Semaphores

Implementation of
Semaphores

◼ Imperative that the semWait and
semSignal operations be implemented as
atomic primitives

◼Can be implemented in hardware or firmware

◼Software schemes such as Dekker’s or
Peterson’s algorithms can be used

◼Use one of the hardware-supported
schemes for mutual exclusion

Review

◼ Concurrent processes,

threads

◼ Access to shared

data/resources

◼ Need to enforce mutual

exclusion

◼ Hardware mechanisms

have limited usefulness

◼ Semaphores: OS

mechanism for mutual

exclusion & other

synchronization issues

◼ Standard

semaphore/counting

◼ Binary semaphore

◼ Producer/consumer

problem

Monitors

◼ Programming language construct that provides
equivalent functionality to that of semaphores and is
easier to control

◼ Implemented in a number of programming
languages

◼ including Concurrent Pascal, Pascal-Plus, Modula-2,
Modula-3, and Java

◼ Has also been implemented as a program library

◼ Software module consisting of one or more
procedures, an initialization sequence, and local
data

Monitor Characteristics

Local data variables
are accessible only
by the monitor’s

procedures and not
by any external

procedure

Process enters
monitor by invoking

one of its
procedures

Only one process
may be executing in

the monitor at a
time

Synchronization

◼ Achieved by the use of condition variables that are

contained within the monitor and accessible only

within the monitor

◼ Condition variables are operated on by two

functions:

◼ cwait(c): suspend execution of the calling process on

condition c

◼ csignal(c): resume execution of some process blocked

after a cwait on the same condition

Figure 5.15 Structure of a Monitor

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a Monitor

◼ When processes interact with one another two

fundamental requirements must be satisfied:

◼ Message Passing is one approach to providing both

of these functions

◼ works with distributed systems and shared memory multiprocessor and

uniprocessor systems

synchronization

• to enforce mutual
exclusion

communication

• to exchange
information

Message Passing

◼ The actual function is normally provided in the form

of a pair of primitives:

send (destination, message)

receive (source, message)

◼ A process sends information in the form of a message

to another process designated by a destination

◼ A process receives information by executing the
receive primitive, indicating the source and the

message

Message Passing

Table 5.5 Design Characteristics of Message Systems for Interprocess Communication and Synchronization

◼Both sender and receiver are blocked until

the message is delivered

◼Sometimes referred to as a rendezvous

◼Allows for tight synchronization between

processes

Nonblocking Send

• sender continues on but receiver is blocked until the
requested message arrives

• most useful combination

• sends one or more messages to a variety of destinations as
quickly as possible

• example -- a service process that exists to provide a service
or resource to other processes

Nonblocking send, blocking receive

• neither party is required to wait

Nonblocking send, nonblocking receive

 Schemes for specifying processes in send

and receive primitives fall into two

categories:

Direct
addressing

Indirect
addressing

Direct Addressing
◼ Send primitive includes a specific identifier

of the destination process

◼ Receive primitive can be handled in one of
two ways:

◼ require that the process explicitly
designate a sending process

◼ effective for cooperating concurrent processes

◼ implicit addressing
◼ source parameter of the receive primitive possesses a

value returned when the receive operation has been
performed

Indirect Addressing

Messages are sent to a
shared data structure

consisting of queues that
can temporarily hold

messages

Queues are
referred to as

mailboxes

One process sends a
message to the mailbox
and the other process
picks up the message

from the mailbox

Allows for
greater flexibility

in the use of
messages

Messages

• Useful for the enforcement of mutual exclusion discipline

Operating system themes are:

• Multiprogramming, multiprocessing, distributed processing

• Fundamental to these themes is concurrency

• issues of conflict resolution and cooperation arise

Mutual Exclusion
• Condition in which there is a set of concurrent processes, only one of

which is able to access a given resource or perform a given function
at any time

• One approach involves the use of special purpose machine
instructions

Semaphores

• Used for signaling among processes and can be readily used to enforce
a mutual exclusion discipline

