Operétz'ng
- Systems:

Internals:
and Design.
Principles”

Chapter 4
Threads

Seventh Edition
By William Stallings

Processes and Threads

Traditional processes have two characteristics:

Resource Ownership

Process includes a
virtual address space
to hold the process
image

m the OS provides protection
to prevent unwanted
interference between
processes with respect to
resources

Scheduling/Execution

Follows an execution path
that may be interleaved with
other processes

m a process has an execution state
(Running, Ready, etc.) and a
dispatching priority and is
scheduled and dispatched by the OS

m Traditional processes are sequential,
i.e. only one execution path

Processes and Threads

m Multithreading - The ability of an OS to
support multiple, concurrent paths of
execution within a single process

m The unit of resource ownership 1s referred
to as a process or task

m The unit of dispatching 1s referred to as a
thread or lightweight process

Single Threaded Approaches

m A single execution

path per process, in
which the concept of

a thread 1s not

recognized, is referred eeenn T R
to as a single-threaded i

m MS-DOS, some o e | Bt
versions of UNIX 5

supported only this
type Of prOCeSS. Figure 4.1 Threads an

d Processes [ANDE97]

Multithreaded Approaches

m The right half of

Figure 4.1 depicts
multithreaded

i -
m A Java run-time

environment 1S a

system of one process | 5 5 $ 5 5 $

with multiple threads; e e

Windows, some

UNIXes, support { e

mult Zpl e multithreaded Figure 4.1 Threads and Processes [ANDEYT]

ProCesses.

~ Processes

® In a multithreaded environment the process is the
unit that owns resources and the unit of protection.

® j.e., the OS provides protection at the process level

®Processes have

® A virtual address space that holds the process
image

dopbfe,g
® Protected access to 3?,\2,,1‘
» Processors ,
> oOther processes !
> files

> 1/0 resources

One or More Threads
in a Process

==
N g) @ J
Each thread has: 2 P %

 an execution state (Running, Ready, etc.)
* saved thread context when not running (TCB)
* an execution stack

» some per-thread static storage for local
variables

e access to the shared memory and resources of
its process (all threads of a process share this)

ithreaded
Process Model

Mult

Processes

Threads vs.

oE | T !
8 S8l H& _ s I
BES , L& |, EB& |
S 3 = A vl I
nf [_ i _
S L T] _
e e e e) -
|.|_._|._||:H||||_||ﬁ””””””””_.”””]”””””:
[=] | | a
sLd , BE , 29
BEg , wm& | &Ba& |
S B = v B
nf [_ k2 _
S O T] _
S L
|.|ﬂ||:”||||||ﬁ“H““H““”_.““H]““H“H:
e & w0 | | | T
HEN Y
I mm__ 5 = [T - I
_nf I v - _
(T L T] _
e e e e) -
| [|
| — | |
_mm_k_ _Imﬂ_
__.l_r_“_ | & & &
| 2831 158
& O™ AS_
I || _
....... T
| | | FT _
- §% 1 EY |
| __U.L_ | T |
_ v I W i
||||||| A
=== [|
I — | I
R EIREY R
F[M_ | ¥ B2 &
- IESEE-T
_hc | a9
| |

Single Threaded and Multithreaded Process Models

Figure 4.2

Béneﬁts of Threads

Takes less
time to create
a new thread

than a
process

Less time to
terminate a
thread than a
process

Threads enhance
efficiency in
communication
between programs

Switching between
two threads takes
less time than
switching between
processes

- Thread Use 1n a

~ Single-User System

mForeground and background work

m Asynchronous processing
mSpeed of execution

m Modular program structure

\L\L‘J i T)
1

&

\)
([

- Threads

m In an OS that supports threads, scheduling and
dispatching 1s done on a thread basis

Most of the state information dealing with
execution 1s maintained in thread-level data

structures

¢suspending a process involves suspending all
threads of the process

¢termination of a process terminates all thr .
within the process

Thread Execution States

The key states for

a thread are:

® Running
m Ready
m Blocked

Thread operations
associated with a
change 1n thread
state are:

m Spawn (create)
m Block

m Unblock

m Finish

Time

Thread A (Process 1) |

O Request
request complete

k

Time quantum
expires

h

Thread B (Process 1) |

Thread C (Process 2)

Blocked

Time quantum

Val

expires /'
Process
created

1 Ready

[Running

Figure 44 Multithreading Example on a Uniprocessor

Multithreading
on a
Uniprocessor

Thread Synchronization

m [t 1s necessary to synchronize the activities of
the various threads

m all threads of a process share the same
address space and other resources

m any alteration of a resource by one
thread affects the other threads in the
same process

Relationship Between
Threads and Processes

Threads:Processes

Description

Example Systems

1:1

1:M

Each thread of execution is a
unique process with its own
address space and resources.

A process defines an address
space and dynamic resource
ownership. Multiple threads
may be created and executed
within that process.

A thread may migrate from
one process environment to
another. This allows a thread
to be easily moved among
distinct systems.

Combines attributes of M:1
and 1:M cases.

Traditional UNIX
implementations

Windows NT, Solaris, Linux,
0S/2,0S8/390, MACH

Ra (Clouds), Emerald

TRIX

Table 4.2 Relationship between Threads and Processes

Multiple Cores &
Multithreading

e Multithreading and multicore chips have
the potential to improve performance of
applications that have large amounts of
parallelism

* (Gaming, simulations, etc. are examples

* Performance doesn’t necessarily scale
linearly with the number of cores ...

Amdahl’s Law

Speedup depends on the amount of code that
must be executed sequentially
Formula:
Speedup = time to run on single processor
time to execute on N | | processors
1
= (1-H+f/N

(where f1s the amount of parallelizable code)

Performance Effect
of Multiple Cores

relative speedup

0% 25

/ 2% 20 Q

Figure 4.7 (a) Figure 4.7 (b)

g 20%
T 15
10% ¥
-//,——- &-
1]
=
& 10
L
0.5
I | |] I | | I 0 = | | I I | | I
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
number of processors number of processors
(a) Speedup with 0%, 2%, 5%, and 10% sequential portions (b) Speedup with overheads

Windows Processes

Processes and services provided by

the Windows Kernel are relatively
simple and general purpose

» implemented as objects
 created as new process or a copy of an existing

 an executable process may contain one or more
threads

» both processes and thread objects have built-in
synchronization capabilities

Process and Thread
- Obyects

Windows makes use of two types of
process-related objects:

Processes Threads

* an entity * a dispatchable
corresponding unit of work
to a user job or that executes
application that sequentially and

OWNS rESOUrces 1s interruptible

Object Body
Attributes

Services

Windows Process and

Process

Process ID

Securty Descriptor

Base priotity

Default processor affinity
Quota limits

Execution time

L'O counters

VM operation counters

Exception/debungzing ports
Exit status

Create process

Open process

Query process information
Set process information
Current process

Terminate process

(a) Process object

Thread Objects

Ohject Type

Object Body
Attributes

Services

Thread

Thread I

Thread context
Dymanyic priority
Base prioTity

Thread processor affimity
Thread execution time
Alert status
Suspension count
Impersonation tolcen
Termination port
Thread exit staims

Create thread

Open thread

Ouery thread information
Set thread information
Chrrent thread
Terminate thread

Get context

Set context

Snspend

Resume

Alert thread

Test thread alerxt
Register termination port

(b} Thread object

Multithreaded Process

®)
D)

Achieves concurrency
without the overhead of
using multiple processes

)—\

Threads within the same
process can exchange
information through their
common address space and
have access to the shared

resources of the process

v

Threads in different
processes can exchange
information through shared

between the two processes

memory that has been set up

)

Thread States

Runnable
. Standb
= S
Preempited
Ready Running
;A\ /
- i . EBlock/ Terminate
Available oo Available G '
Transition ~—p———r Waiting Terminated
Respurce Not Available
Not Runnable

Figure 4.12 Windows Thread States

Linux Tasks 2

A process, or task, in This structure
Linux 1s represented contains information

by a task_struct data in a number of
structure s categories

Linux
Process/ Thread Model

Stopped

signal

Running
State

termination

creation

_--
Ready scheduling Executing Zombie
iff—

/[
-/

Lninterruptible

/

Interruptible

Figure 4.16 Linux Process/Thread Model

Linux Threads

Linux does A new
not process 1s The clone()
recognize a created by call creates
distinction copying the separate
between attributes of stack spaces
threads and the current for each
processes process process

User-level The new
threads are process can
mapped be cloned so
into kernel- that it
level shares

pProcesses resources

