
Chapter 4

Threads
Seventh Edition

By William Stallings

Operating

Systems:

Internals

and Design

Principles

Processes and Threads

Resource Ownership

Process includes a

virtual address space

to hold the process

image

◼ the OS provides protection

to prevent unwanted

interference between

processes with respect to

resources

Scheduling/Execution

Traditional processes have two characteristics:

Follows an execution path

that may be interleaved with

other processes

◼ a process has an execution state

(Running, Ready, etc.) and a

dispatching priority and is

scheduled and dispatched by the OS

◼ Traditional processes are sequential;

i.e. only one execution path

Processes and Threads

◼Multithreading - The ability of an OS to

support multiple, concurrent paths of

execution within a single process

◼The unit of resource ownership is referred

to as a process or task

◼The unit of dispatching is referred to as a

thread or lightweight process

Single Threaded Approaches
◼ A single execution

path per process, in

which the concept of

a thread is not

recognized, is referred

to as a single-threaded

approach

◼ MS-DOS, some

versions of UNIX

supported only this

type of process.

Multithreaded Approaches
◼ The right half of

Figure 4.1 depicts

multithreaded

approaches

◼ A Java run-time

environment is a

system of one process

with multiple threads;

Windows, some

UNIXes, support

multiple multithreaded

processes.

Processes

▪In a multithreaded environment the process is the
unit that owns resources and the unit of protection.

▪ i.e., the OS provides protection at the process level

▪Processes have

▪A virtual address space that holds the process
image

▪Protected access to
➢ processors
➢ other processes
➢ files
➢ I/O resources

One or More Threads
in a Process

• an execution state (Running, Ready, etc.)

• saved thread context when not running (TCB)

• an execution stack

• some per-thread static storage for local
variables

• access to the shared memory and resources of
its process (all threads of a process share this)

Each thread has:

Threads vs. Processes

Benefits of Threads

Takes less
time to create
a new thread

than a
process

Less time to
terminate a

thread than a
process

Switching between
two threads takes

less time than
switching between

processes

Threads enhance
efficiency in

communication
between programs

Thread Use in a
Single-User System

◼Foreground and background work

◼Asynchronous processing

◼Speed of execution

◼Modular program structure

Most of the state information dealing with
execution is maintained in thread-level data
structures

◼ In an OS that supports threads, scheduling and
dispatching is done on a thread basis

◆suspending a process involves suspending all
threads of the process

◆termination of a process terminates all threads
within the process

The key states for

a thread are:

◼ Running

◼ Ready

◼ Blocked

Thread operations

associated with a

change in thread

state are:

◼ Spawn (create)

◼ Block

◼ Unblock

◼ Finish

Multithreading

on a

Uniprocessor

Thread Synchronization

◼ It is necessary to synchronize the activities of

the various threads

◼ all threads of a process share the same

address space and other resources

◼ any alteration of a resource by one

thread affects the other threads in the

same process

Relationship Between
Threads and Processes

Table 4.2 Relationship between Threads and Processes

Multiple Cores &

Multithreading

• Multithreading and multicore chips have

the potential to improve performance of

applications that have large amounts of

parallelism

• Gaming, simulations, etc. are examples

• Performance doesn’t necessarily scale

linearly with the number of cores …

Amdahl’s Law

• Speedup depends on the amount of code that

must be executed sequentially

• Formula:

Speedup = time to run on single processor

time to execute on N || processors

1

= (1 – f) + f / N

(where f is the amount of parallelizable code)

Performance Effect

of Multiple Cores

Figure 4.7 (a) Figure 4.7 (b)

Processes and services provided by
the Windows Kernel are relatively
simple and general purpose

• implemented as objects

• created as new process or a copy of an existing

• an executable process may contain one or more
threads

• both processes and thread objects have built-in
synchronization capabilities

Process and Thread
Objects

Processes

• an entity
corresponding
to a user job or
application that
owns resources

Threads

• a dispatchable
unit of work
that executes
sequentially and
is interruptible

Windows makes use of two types of
process-related objects:

Windows Process and
Thread Objects

Multithreaded Process

Achieves concurrency
without the overhead of
using multiple processes

Threads within the same
process can exchange

information through their
common address space and

have access to the shared
resources of the process

Threads in different
processes can exchange

information through shared
memory that has been set up
between the two processes

Thread States

Figure 4.12 Windows Thread States

Linux Tasks

A process, or task, in
Linux is represented
by a task_struct data

structure

This structure
contains information

in a number of
categories

Linux
Process/Thread Model

Figure 4.16 Linux Process/Thread Model

Linux Threads

Linux does
not

recognize a
distinction
between

threads and
processes

User-level
threads are

mapped
into kernel-

level
processes

A new
process is
created by

copying the
attributes of
the current

process

The new
process can
be cloned so

that it
shares

resources

The clone()
call creates

separate
stack spaces

for each
process

