| Operciiz'ng
- Systems:
Internals
and Design. Chapte?r 3
Principles- | Process Description

and Control

Seventh Edition
By William Stallings

OS Management of
Application Execution

m Resources are made available to multiple
applications

m The processor 1s switched among multiple
applications so all will appear to be
progressing

m The processor and I/0 devices can be
used efficiently

Process Elements

m Two essential elements of a process are:

m which may be shared with other processes that are executing
the same program

A set of data associated with that code

m When the processor begins to execute the program code,
we refer to this executing entity as a process

o
o

Process Elements -

m While the program is executing, this process can be uniquely
characterized by a number of elements, including:

memory
pointers

1dentifier

program

DEONLY counter

I/0 status accounting
information nformation

context data

Process Control
Block

=Contains the process elements

= Makes 1t possible to interrupt a
running process and later resume
execution as if the interruption
had not occurred

=Created and managed by the
operating system

=Key tool that allows support for
multiple processes
(multiprogramming)

Identifier

State

Priority

Program counter

Memory pointers

Context data

1/0 status
mformation

Accounting

mformation

Figure 3.1 Simplified Process Control Block

Address Nain Memory
0

100

Dispatcher

Process

Exe Cutlon Process A

& -
L ,,

rocess

Two-State Process Model

m A process may be in one of two states:
B running
® not-running

Dispatch

/_\

Enter Not ; Exit
Running Running -

\/

Pause

{a) State transition diagram

Queuing Diagram

Queue
Enter

R,
l Diﬁpamh . —
Processor

'
Pause —‘

(k) Queuning diagram

Table 3.1 Reasons for Process

Creation

New batch job The OS is provided with a batch job control stream, usually
on tape or disk. When the OS is prepared to take on new
work, it will read the next sequence of job control
commands.

Interactive logon A user at a terminal logs on to the system.
Created by OS to provide a service The OS can create a process to perform a function on
behalf of a user program, without the user having to wait

(e.g., a process to control printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user
program can dictate the creation of a number of processes.

 Process Creation

Process :

* when the * 1s the * 1s the new
OS creates a original, process
process at creating,
the explicit ProCess
request of
another
process

Process Termination

m There must be a means for a process to indicate its
completion

m A batch job should include a HALT instruction or an
explicit OS service call for termination

m For an interactive application, the action of the user will
indicate when the process 1s completed (e.g. log off,
quitting an application) -

b
STop

Table 3.2

Reasons for
Process
Termination

Normal completion

Time limit exceeded

Memory unavailable

Bounds violation

Protection error

Arithmetic error

Time overrun

I/O failure

Invalid instruction

Privileged instruction

Data misuse

Operator or OS intervention

Parent termination

Parent request

The process executes an OS service call to indicate that it has
completed running.

The process has run longer than the specified total time limit. There are
a number of possibilities for the type of time that is measured. These
include total elapsed time ("wall clock time"), amount of time spent
executing, and, in the case of an interactive process, the amount of time
since the user last provided any input.

The process requires more memory than the system can provide.

The process tries to access a memory location that it is not allowed to
access.

The process attempts to use a resource such as a file that it is not
allowed to use, or it tries to use it in an improper fashion, such as
writing to a read-only file.

The process tries a prohibited computation, such as division by zero, or
tries to store numbers larger than the hardware can accommodate.

The process has waited longer than a specified maximum for a certain
event to occur.

An error occurs during input or output, such as inability to find a file,
failure to read or write after a specified maximum number of tries
(when, for example, a defective area is encountered on a tape), or
invalid operation (such as reading from the line printer).

The process attempts to execute a nonexistent instruction (often a result
of branching into a data area and attempting to execute the data).

The process attempts to use an instruction reserved for the operating
system.

A piece of data is of the wrong type or is not initialized.

For some reason, the operator or the operating system has terminated
the process (e.g., if a deadlock exists).

When a parent terminates, the operating system may automatically
terminate all of the offspring of that parent.

A parent process typically has the authority to terminate any of its
offspring.

Five-State Process Model

—_—
New e Ready Rumning e R Exit
e
l Timeout
Event
Occurs Event
Wait
Blocked

Figure 3.6 Five-State Process Model

Process States example

Process A

Process C

Dispatcher
|Illl||lll|l|||‘IIII|IIII|II11|I1II|1III IIII|III1|II
0 5 10 15 20 25 30 35 40 45 50

= Running = Ready - = Blocked

Figure 3.7 Process States for Trace of Figure 3.4

Using Two Queues

Ready Quene ———1 Release
Admit Dispatch
] Froceser

Timeout

Blocked Quene

Event llllll Event Wait
Oceurs

(a) Single blocked guene

Release

_

Multiple Ready Quene ——
Admit Dispatch
: ‘. i 1 Processor
Blocked
Timeout
il
Queues
Event 1 Quene Event 1 Wait
ven ai
Event 1 I ot
Occurs
Event 2 Quene R
Event 2 st Event 2 Wait
Occurs
L |
L
L |
Event n Quene
Event n Event n Wait
Occurs

(b) Multiple blocked guenes

Processes and Resources

What does the OS need to know to manage processes &
resources?

Virtual
Memory

/ \

Processor

IO

'O

Main
Memory

Computer
Resources

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

OS
Control
Tables

g

Process
Image

Process

e fite-] Memiory Tables
Memory
T P~ /O Tables
Files
Processes ————f*{ File Tables
Primary Process Table
= Process 1
Process 2
Process 3
| |
| |
Process i

Figure 3.11

Process
Image

Process

General Structure of Operating System Control Tables

Memory Tables -

m Used to keep track of both
main (real) and secondary
(virtual) memory

m Processes are maintained
on secondary memory
using some sort of virtual
memory or simple
swapping mechanism

a . N
Must 1include:

allocation of main memory to
processes

allocation of secondary
memory to processes

protection attributes of blocks
of main or virtual memory

information needed to manage

virtual memory

\ /

I/0 Tables

m Used by the OS to manage
the I/0O devices and
channels of the computer
system

m At any given time, an I/0
device may be available or
assigned to a particular
process

/If an I/0 operation 1s in\
progress, the OS needs to
know:

the status of the I/0O

operation

the location in main
memory being used as the

source or destination of
the I/0O transfer

“File Tables

These tables provide
information about:

Silitofnation e existence of files
may be .
gy * Jocation on secondary
and used by a memory
file
management e current status

system, or the

OS itself e other attributes

Process Tables

m Must be maintained to manage processes

m Process tables must have some reference to
memory, I/0, and file tables

m e.g., pointers from each individual process entry to its data
in the other three sets of tables.

m The tables themselves must be accessible by the
OS and therefore are subject to memory
management

m Processes are represented by a process image

~ Process Control
Structures - PCB

Process Components

m A process must include a

program or set of programs to be
executed

A process will consist of at least
sufficient memory to hold the
program(s) and data of that
process

The execution of a program
typically involves a stack that is
used to keep track of procedure
calls and parameter passing
between procedures

Process Attributes

Each process has associated with
it a number of attributes that are
used by the OS for process
control —maintained in a Process
Control Block (PCB)

The collection of program, data,
stack, and attributes 1s referred to
as the process image

Process image location will
depend on the memory
management scheme being used

PCB elements

Process Identification

Identifiers
Numeric identifiers that may be stored with the process control block include
e[dentifier of this process
eIdentifier of the process that created this process (parent process)
*User identifier

Processor State Information

User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language that
the processor executes while in user mode. Typically, there are from 8 to 32 of these
registers, although some RISC implementations have over 100.

Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the
processor. These include
*Program counter: Contains the address of the next instruction to be fetched
*Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign,
zero, carry, equal, overflow)
eStatus information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A
stack is used to store parameters and calling addresses for procedure and system calls. The
stack pointer points to the top of the stack.

Process Contral Information

Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical

PCB elements
° ° tems of information:
(Contlnuatlon) *Process state; Defines the readiness of the process to be scheduled for execution (... running,

ready, waiting, halted).

*Prigrity: One or more fields may be used o describe the scheduling prionty of the process. In
s systems, several valoes are required (e.g. . detanlt, current, highest-allowable)

sScheduling-related information: This will depend on the scheduling alzorithm used. Examples
are the amount of time that the process has been waiting and the amount of time that the process
executed the last time 1 was menning.

sEvent: ldentity of event the process 1s pwating before it can be resumed.

Data Structuring
A process may be linked to other process inoa gueue. ring, or some other structure. For example, all
Processes Inoa walking state for a particular poority level may be linked in a queve. A process may
exhibit a parent-chald (creator-created) relationship with another process. The process control block
may contain pointers to other processes to support these structures.

Interprecess Uommunication
Varous flags, signals, and messages may be associated with communication between two
independent processes. Some or all of this information may be maimntamed in the process control
Block.

Process Privileges
Processes are granted privileges in terms of the memory that may be accessed and the types of
mmstructions that may be executed. In addition, privileges may apply to the use of system unlities and

SCTVICTS .

Memory Management
This section may include pointers to segment and/or page tables that describe the virual memaory

. — () assigned to this prooess.
o o % Resource Ownership and Utilization
O O OO [, Resources controlled by the process may be indicated, such as opened files. A history of uhlization of
Q the processor or other resources may also be included; this mformation may be needed by the

sCheduler.

Structure of Process
Images in Virtual Memory

Process Process Process
identification idertifi cation identification
Procossor state Procossor state Procassor state
infarmatian imformaticn informati on
Process control Process control Process control
infarmation information irformati on
Ll=ar stack lser stack Llser stack
Private user Private usar Private user
address space address space address space
(programs, data) {programs, data) {programs, data)

! I ! I ! I
i ! i ! i !
| Shared address | | Shared address ! | Shared address !
! space . ! space . ! space .
I l I l I l
i j i j i j
Process 1 Process 2 Process n

Figure 313 User Processes in Virtual Memory

Process List Structures

Process
Control Block

Running e

Ready

Blocked

Figure 3.14 Process List Structures

Role of the
Process Control Block

m The most important data structure in an OS
m contains all of the information about a process that 1s needed by the OS
m blocks are read and/or modified by virtually every module in the OS
m defines the state of the OS

m Difficulty is not access, but protection

m a bug in a single routine could damage process control blocks, which
could destroy the system’s ability to manage the affected processes

m a design change in the structure or semantics of the process control
block could affect a number of modules in the OS

Modes of Execution f

User Mode System Mode
m less-privileged mode m more-privileged mode
B USer programs m also referred to as
typically execute in control mode or kernel
this mode mode

m kernel of the

operating system /\

/

Table 3.7
Typical
Functions
of an
Operating
System

Kernel

Process Management

*Process creation and termination
*Process scheduling and dispatching
*Process switching

*Process synchronization and support for interprocess communication
*Management of process control blocks

Memory Management
*Allocation of address space to processes
*Swapping
*Page and segment management

I/O Management

*Buffer management
*Allocation of I/O channels and devices to processes

Support Functions

eInterrupt handling
*Accounting
*Monitoring

Process Creation

m Once the OS decides to create a new process it:

assigns a unique process identifier
to the new process
allocates space for the process

sets the appropriate linkages

creates or expands other data
structures

initializes the process control ‘
block .v

Process (Context) Switching

A process switch may occur any time that the OS has gained control from the
currently running process. Possible events giving OS control are:

Mechanism Cause

Use

Interrupt External to the execution of the
current instruction

Trap Associated with the execution of
the current instruction

Supervisor call Explicit request

Reaction to an asynchronous
external event

Handling of an error or an
exception condition

Call to an operating system
function

System Interrupts

Interrupt Trap

m Due to some sort of event m An error or exception
that 1s external to and
independent of the currently
running process

m clock interrupt m OS determines if the

condition is fatal

condition generated within
the currently running process

m [/0 interrupt

m memory fault m moved to the Exit state
R Timieelice and a process switch
m the maximum amount of occ.urs :
time that a process can m action will depend on the
execute before being nature of the error

interrupted

Change of Process State

m The steps 1 update the process

a full process save the context of control block of

3 3 the processor the process
switch are: currently in the

Running state

move the process
control block of

this process to the

appropriate queue

If the currently running process is to be moved to
another state (Ready, Blocked, etc.), then the OS select another

must make substantial changes in its environment process for
execution

restore the context
of the processor to
that which existed

update the process
control block of
the process
selected

update memory

at the time the
selected process was
last switched out

management data
structures

Security Issues

m An OS associates a set of privileges with each process

m Typically a process that executes on behalf of a user has the
privileges that the OS recognizes for that user

m Highest level of privilege 1s referred to as adminstrator, supervisor,
Or 100t access

m A key security issue in the design of any OS is
to prevent, or at least detect, attempts by a user or
malware from gaining unauthorized privileges
on the system and from gaining root access s

System Access Threats

Intruders Malicious Software
m Often referred to as a hacker or m Most sophisticated types of threats
cracker to computer systems

* those that need a host program (parasitic)

» Masquerader =
« Misfeasor N / ® * viruses, logic bombs, backdoors
« Clandestine user A * those that are independent

» worms, bots

m Objective is to gain access to a
system or to increase the range of

privileges accessible on a system m Can be relatively
harmless or very
m Attempts to acquire information that damaging

should have been protected

_ Countermeasures:
Intrusion Detection |

m “A security service that monitors and analyzes system events for the
purpose of finding, and providing real-time or near real-time warning
of, attempts to access system resources in an unauthorized manner”

(RFC 2828)

m May be host or network based

m An intrusion detection system (IDS) comprises three logical
components:

- user
~ 1Interface

sensors > analyzers

m [DSs are typically designed to detect human intruder behavior as well
as malicious software behavior

‘Countermeasures:
Authentication

m “The process of verifying
an identity claimed by or

for a system entity.”

(RFC2828) something
the
individual
knows

m An authentication process
consists of two steps:

m Identification

m Verification

m Four general means of

authenticating a user’s something the

identitv: individual
Y possesses

something the
individual does
(dynamic

biometrics)

_ Countermeasures:
Access:Control

m Implements a security policy that specifies who or what may have
access to each specific system resource and the type of access that
1s permitted 1in each instance

m Mediates between a user and system resources
m A security administrator maintains an authorization database

m An auditing function monitors and keeps a record of user accesses
to system resources

Countermeasures:
- Firewalls .

» interfaces with computers
outside a network

A dedicated . |
» has special security

Compl.].ter precautions built into it to
. rotect sensitive files on
that: e

computers within the network

» all traffic must pass through

D GSI gn the firewall

» only authorized traffic will be

goals Of d allowed to pass
ﬁrewall . » immune to penetration

UNIX Process States

User Running
Kernel Running
Ready to Run, im Memory

Asleep m Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

Lombie

Executing in user mode.
Executing in kemel mode.
Feadvtorun as soon as the kemel schedules it.

Unable to execute until an event occurs; process 1s in main memory
(a blocked state).

Process is readv to run, but the swapper must swap the process into
main memory before the kemnel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondarv storage (a blocked state).

Process is returning from kemel to user mode, but the kemel
preempts it and does a process switch to schedule another process.

Process is newly created and not vet ready torun.

Process no longer exists, but it leaves a record forits parent process
to collect.

UNIX Process State Transition Diagram

fork
Created
Preempted
return e enough not enough memory
to nser Fy e mMEemory, (swapping system only)
Y
LY
LY
-
Uiser i ¢ "i‘
Running preempy ~
swap out
return Ready fo Run: P Ready fo Run
reschedule : ;
In Memory 4 — Swapped
process = swap in
system call,
interrupt Kernel Fy FY
Running
interrupt, sleep wakeup wakeup
imterrupt return exit
;i Asleep in SWap ouk Sleep,
e hic Memory Swapped

Figure 3.17 UNIX Process State Transition Diagram

A Unix
Process

Process text
Process data
User stack

Shared memory

User-Level Context

Executable machine instructions of the program

Data accessible by the program of this process

Contains the arguments, local variables, and pointers for
functions executing in user mode

Memory shared with other processes, used for interprocess
communication

Program counter
Processor status register
Stack pointer

General-purpose registers

Register Context

Address of next instruction to be executed; may be in
kernel or user memory space of this process

Contains the hardware status at the time of preemption;
contents and format are hardware dependent

Points to the top of the kernel or user stack, depending on
the mode of operation at the time or preemption
Hardware dependent

Process table entry
U (user) area

Per process region table

Kernel stack

System-Level Context

Defines state of a process; this information is always
accessible to the operating system

Process control information that needs to be accessed only
in the context of the process

Defines the mapping from virtual to physical addresses;
also contains a permission field that indicates the type of
access allowed the process: read-only, read-write, or read-
execute

Contains the stack frame of kernel procedures as the
process executes in kernel mode

Table 3.11
UNIX

Process
Table Entry

Process status
Pointers

Process size

User identifiers

Process identifiers

Event descriptor

Priority
Signal

Timers

P_link

Memory status

Current state of process.
To U area and process memory area (text, data, stack).

Enables the operating system to know how much space to
allocate the process.

The real user ID identifies the user who is responsible for
the running process. The effective user ID may be used by
a process to gain temporary privileges associated with a
particular program; while that program is being executed as
part of the process, the process operates with the effective
user ID.

ID of this process; ID of parent process. These are set up
when the process enters the Created state during the fork
system call.

Valid when a process is in a sleeping state; when the event
occurs, the process is transferred to a ready-to-run state.

Used for process scheduling.
Enumerates signals sent to a process but not yet handled.

Include process execution time, kernel resource utilization,
and user-set timer used to send alarm signal to a process.

Pointer to the next link in the ready queue (valid if process
is ready to execute).

Indicates whether process image is in main memory or
swapped out. If it is in memory, this field also indicates
whether it may be swapped out or is temporarily locked
into main memory.

Process Creation

m Process Allocate a slot in the process table for the new process

creation 1s by

means of the

» Assign a unique process ID to the child process
kernel system

call, fork() » Make a copy of the process image of the parent, with the

exception of any shared memory

m This causes the

» Increments counters for any files owned by the parent, to
reflect that an additional process now also owns those files

OS, 1n Kernel
Mode, to:

 Assigns the child process to the Ready to Run state

» Returns the ID number of the child to the parent process,
and a 0 value to the child process

B
.

After Creation

m After creating the process the Kernel can do one of the
following, as part of the dispatcher routine:

m stay in the parent process
m transfer control to the child process
m transfer control to another process

&y

)
B &R

Summary

The most fundamental concept in a modern OS is the process

The principal function of the OS i1s to create, manage, and terminate
processes

Process control block contains all of the information that is required for
the OS to manage the process, including its current state, resources
allocated to it, priority, and other relevant data

The most important states are Ready, Running and Blocked

The running process is the one that is currently being executed by the
processor

A blocked process 1s waiting for the completion of some event

A running process 1s interrupted either by an interrupt or by executing
a supervisor call to the OS

