
Chapter 2

Operating System

Overview
Seventh Edition

By William Stallings

Operating

Systems:

Internals

and Design

Principles

Operating System

◼ An interface between applications and computer

◼ A program that controls the execution of

application programs and the allocation of

system resources

Main objectives of an OS:

• Convenience

• Efficiency

• Ability to evolve

◼A computer is a set of resources for

moving, storing, & processing data

◼The OS is responsible for managing

these resources

◼The OS exercises its control

through software

Efficiency:The Operating System

As a Resource Manager

◼Functions in the same way as ordinary

computer software

◼Program, or suite of programs, executed

by the processor

◼Frequently relinquishes control and must

be able to regain control to decide on the

next thing the processor should do.

Operating

System

as

Resource

Manager

Evolution of

Operating Systems

▪ Stages include:

Serial
Processing

Simple Batch
Systems

Multiprogrammed
Batch Systems

Time
Sharing
Systems

Serial Processing

Earliest Computers:

◼ No operating system

◼ programmers interacted
directly with the computer
hardware

◼ Computers ran from a console
with display lights, toggle
switches, some form of input
device, and a printer

◼ Users had access to the
computer in “series”

Problems:

◼ Scheduling:

◼ most installations used a

hardcopy sign-up sheet to

reserve computer time

◼ time allocations could

run short or long,

resulting in wasted

computer time

◼ Setup time

◼ a considerable amount of

time was spent just on setting

up the program to run

Simple Batch Systems

◼ Early computers were very expensive

◼ important to maximize processor utilization

◼ Monitor (primitive operating system)

◼ user no longer has direct access to processor

◼ job is submitted to computer operator who batches them

together and places them on an input device

◼ Monitor controls the sequence

of events

◼ Resident Monitor is software

always in memory

◼ Monitor reads in job and gives

control

◼ Job returns control to monitor

• while the user program is executing, it must not alter the memory area
containing the monitor

Memory protection for monitor

• prevents a job from monopolizing the system

Timer

• can only be executed by the monitor

Privileged instructions

• gives OS more flexibility in controlling user programs

Interrupts

Modes of Operation

User Mode

• user program executes in
user mode

• certain areas of memory are
protected from user access

• certain instructions may not
be executed

Kernel Mode

• monitor executes in kernel
mode

• privileged instructions may
be executed

• protected areas of memory
may be accessed

Simple Batch System
Overhead

◼ Processor time alternates between execution of user

programs and execution of the monitor

◼ Sacrifices:

◼ some main memory is now given over to the monitor

◼ some processor time is consumed by the monitor

◼ Despite overhead, the simple batch system improves

utilization of the computer.

Multiprogrammed
Batch Systems

◼ Processor is

often idle

◼ even with

automatic

job

sequencing

◼ I/O devices

are slow

compared to

processor

◼ The processor spends a certain amount of

time executing, until it reaches an I/O

instruction; it must then wait until that I/O

instruction concludes before proceeding

◼ What if there’s enough memory to hold the OS (resident

monitor) and two user programs.

◼ When one job needs to wait for I/O, the processor can switch to

the other job, which may not be waiting.

◼ Multiprogramming

◼ also known as multitasking

◼ memory is expanded to hold three, four, or more programs
and switch among all of them

Multiprogramming
Example

Effects on Resource
Utilization

Table 2.2 Effects of Multiprogramming on Resource Utilization

◼ Can be used to handle multiple interactive jobs

◼ Processor time is shared among multiple users

◼ Origin: multiple users simultaneously access

the system through terminals, with the OS

interleaving the execution of each user

program in a short burst or quantum of

computation

Table 2.3 Batch Multiprogramming versus Time Sharing

Compatible Time-Sharing
Systems

CTSS

◼ One of the first time-sharing
operating systems

◼ Developed at MIT by a group
known as Project MAC for IBM
709/7094

◼ Ran on a computer with 32,000
36-bit words of main memory, with
the resident monitor consuming
5000 of that

◼ To simplify both the monitor and
memory management a program
was always loaded to start at the
location of the 5000th word

Time Slicing

◼ System clock generates interrupts at
a rate of approximately one every
0.2 seconds

◼ At each interrupt OS regained
control and could assign processor to
another user

◼ At regular time intervals the current
user would be preempted and
another user loaded in

◼ Old user programs and data were
written out to disk

◼ Old user program code and data
were restored in main memory when
that program was next given a turn

◼ Operating Systems are among the most

complex pieces of software ever developed

Major advances in
development include:

• Processes

• Memory management

• Information protection and
security

• Scheduling and resource
management

• System structure

◼ Fundamental to the structure of operating systems

A process can be defined as:

a program in execution

an instance of a running program

the entity that can be assigned to, and executed on, a processor

a unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

◼ The execution context is
essential:

◼ it is the internal data by
which the OS is able to
supervise and control the
process

◼ includes the contents of the
various process registers

◼ includes information such as
the priority of the process and
whether the process is waiting
for the completion of a
particular I/O event

◼ A process contains

three components:

◼ an executable program

◼ the associated data

needed by the program

(variables, work space,

buffers, etc.)

◼ the execution context

(or “process state”) of

the program

Process

Management

▪ The entire state of the

process at any instant is

contained in its context

▪ New features can be

designed and incorporated

into the OS by expanding

the context to include any

new information needed to

support the feature

◼ Technique in which a process, executing an application, is
divided into threads that can run concurrently

Thread

• dispatchable unit of work

• includes a processor context and its own data area to enable subroutine
branching

• executes sequentially and is interruptible

Process

• a collection of one or more threads and associated system resources

• programmer has greater control over the modularity of the application and the
timing of application related events

Symmetric
Multiprocessing (SMP)

◼ Term that refers to a computer hardware architecture and also to the

OS behavior that exploits that architecture

◼ Several processes can run in parallel

◼ Multiple processors are transparent to the user

◼ these processors share same main memory and I/O facilities

◼ all processors can perform the same functions

◼ The OS takes care of scheduling of threads or processes on

individual processors and of synchronization among processors

SMP Advantages

Performance
more than one process can be

running simultaneously, each on a
different processor

Availability
failure of a single process does not

halt the system

Incremental
Growth

performance of a system can be
enhanced by adding an

additional processor

Scaling
vendors can offer a range of products

based on the number of processors
configured in the system

◼ Virtualization

◼ enables a single PC or server to simultaneously run multiple

operating systems or multiple sessions of a single OS

◼ Each (guest) operating system runs in a virtual machine (VM),

and can execute multiple applications

◼ Guest operating systems execute as if they were interacting

directly with the hardware, but in fact they are interacting

with a Virtual Machine Monitor (VMM) which runs

directly on the hardware or on a host operating

system

Virtual

Machine

Concept

Note: In some
cases, servers
in particular, the
VMM runs
directly on the
hardware.
This figure
represents a
hosted virtual
machine

Correction: should be Virtual MACHINE Concept

Multicore OS
Considerations

◼ The design challenge for a

many-core multicore system is

to efficiently harness the

multicore processing power

and intelligently manage the

substantial on-chip resources

efficiently

◼ Potential for parallelism exists

at three levels:

hardware parallelism within
each core processor, known as

instruction level parallelism

potential for multiprogramming
and multithreaded execution

within each processor

potential for a single application
to execute in concurrent

processes or threads across
multiple cores

◼ MS-DOS 1.0 released in 1981

◼ 4000 lines of assembly language
source code

◼ ran in 8 Kbytes of memory

◼ used Intel 8086 microprocessor

◼ Windows 3.0 shipped in 1990

◼ 16-bit

◼ GUI interface

◼ implemented as a layer on top of
MS-DOS

◼ Windows 95

◼ 32-bit version

◼ led to the development of Windows
98 and Windows Me

◼ Windows NT (3.1) released in 1993

◼ 32-bit OS with the ability to support
older DOS and Windows
applications as well as provide
OS/2 support

◼ Windows 2000

◼ included services and functions to
support distributed processing

◼ Active Directory

◼ plug-and-play and power-
management facilities

◼ Windows XP released in 2001

◼ goal was to replace the versions of
Windows based on MS-DOS with
an OS based on NT

◼ Windows Vista shipped in 2007

◼ Windows Server released in 2008

◼ Windows 7 shipped in 2009, as well
as Windows Server 2008 R2

◼ Windows Azure

◼ targets cloud computing

◼ Two important characteristics of Windows are its support for

threads and for symmetric multiprocessing (SMP)

◼ OS routines can run on any available processor, and different routines can

execute simultaneously on different processors

◼ Windows supports the use of multiple threads of execution within a single

process. Multiple threads within the same process may execute on different

processors simultaneously

◼ Server processes may use multiple threads to process requests from more

than one client simultaneously

◼ Windows provides mechanisms for sharing data and resources between

processes and flexible interprocess communication capabilities

Traditional UNIX Systems

◼ Were developed at Bell Labs and became operational on a PDP-7 in 1970

◼ Incorporated many ideas from Multics

◼ PDP-11was a milestone because it first showed that UNIX could be an OS for all
computers

◼ Next milestone was rewriting UNIX in the programming language C

◼ demonstrated the advantages of using a high-level language for system code

◼ Was described in a technical journal for the first time in 1974

◼ First widely available version outside Bell Labs was Version 6 in 1976

◼ Version 7, released in 1978 is the ancestor of most modern UNIX systems

◼ Most important of the non-AT&T systems was UNIX BSD (Berkeley Software
Distribution)

◼ Started out as a UNIX variant for the IBM PC

◼ Linus Torvalds, a Finnish student of computer science, wrote the initial

version

◼ Linux was first posted on the Internet in 1991

◼ Today it is a full-featured UNIX system that runs on several platforms

◼ Is free and the source code is available

◼ Key to success has been the availability of free software packages

◼ Highly modular and easily configured

Modular
Monolithic Kernel

◼ Most UNIX systems are
monolithic (includes virtually all
of the OS functionality in one
large block of code that runs as a
single process with a single
address space)

◼ All the functional components
of the kernel have access to all
of its internal data structures
and routines

◼ Linux improves on this
somewhat because it is
structured as a collection of
modules

Loadable Modules

◼ Relatively independent blocks

◼ A module is an object file whose
code can be linked to and unlinked
from the kernel at runtime

◼ A module is executed in kernel
mode on behalf of the current
process

◼ Have two important
characteristics:

◼ Dynamic linking

◼ Stackable modules

