
Chapter 1

Computer System

Overview
Seventh Edition

By William Stallings

Operating

Systems:

Internals

and Design

Principles

Operating System

◼Exploits the hardware resources of one or more

processors to provide a set of services to system

users

◼Manages the processor, secondary memory and

I/O devices

Basic Elements

Processor

Main
Memory

I/O
Modules

System
Bus

Processor

Controls the
operation of the

computer

Performs the
data processing

functions

Referred to as
the Central

Processing Unit
(CPU)

Main Memory

◼Volatile: contents of the

memory are lost when the

computer is shut down

◼Also referred to as real

memory or primary memory

I/O Modules

Moves data
between the

computer and
external

environments
such as:

storage (e.g. hard
drive)

communications
equipment

terminals

System Bus

◼Provides communication

among processors, main

memory, and I/O modules

Top-Level
View

Microprocessor

◼ Invention that brought about desktop and
handheld computing

◼Processor on a single chip

◼Fastest general purpose processor

◼Multiprocessor capability

◼ Each chip contains multiple processors (cores);
each core may execute multiple threads

Graphical Processing
Units (GPUs)

◼Provide efficient computation on arrays
of data using Single-Instruction Multiple
Data (SIMD) techniques

◼Used for general numerical processing

◼Physics simulations for games

◼Computations on large spreadsheets

Digital Signal Processors
(DSPs)

◼Deal with streaming signals such as
audio or video

◼Used to be embedded in devices like
modems

◼Encoding/decoding speech and video
(codecs)

◼Support for encryption and security

System on a Chip
(SoC)

◼To satisfy the requirements of handheld

devices & embedded systems, the

microprocessor is giving way to the SoC

◼Components such as DSPs, GPUs,

codecs and main memory, in

addition to the CPUs and

caches, are on the same chip

Instruction Execution

◼A program consists of a set of instructions

stored in memory

• processor reads (fetches)
instructions from memory

• processor executes each
instruction

Two steps:

Basic Instruction Cycle

◼The processor fetches the instruction from

memory

◼Program counter (PC) holds address of the

instruction to be fetched next

▪ PC is incremented after each fetch

Instruction Register (IR)

Fetched instruction is

loaded into Instruction

Register (IR)

◼ Processor interprets the

instruction and performs

required action:

◼ Processor-memory

◼ Processor-I/O

◼ Data processing

◼ Control

Characteristics of a

Hypothetical Machine

Example of

Program

Execution

Interrupts

◼ Interrupt the normal sequencing of the

processor

◼Provided to improve processor utilization
◼ most I/O devices are slower than the processor

◼ processor must pause to wait for device

◼ wasteful use of the processor

Common Classes

of Interrupts

Flow of Control

Without

Interrupts

Interrupts:

Short I/O Wait

Transfer of Control via Interrupts

Instruction Cycle With Interrupts

Simple

Interrupt

Processing

Multiple Interrupts

An interrupt occurs
while another interrupt

is being processed

• e.g. receiving data
from a
communications line
and printing results at
the same time

Two approaches:

• disable interrupts
while an interrupt is
being processed

• use a priority scheme

Memory Hierarchy

◼ Major constraints in memory

 amount

 speed

 expense

◼ Memory must be able to keep up with the processor

◼ Cost of memory must be reasonable in relationship

to the other components

Memory Relationships

Faster
access time
= greater

cost per bit

Greater capacity
= smaller cost per

bit

Greater
capacity =

slower access
speed

The Memory Hierarchy

▪Going down the

hierarchy:

➢ decreasing cost per bit

➢ increasing capacity

➢ increasing access time

➢ decreasing frequency of

access to the memory by

the processor

Performance of a Simple
Two-Level Memory

Figure 1.15 Performance of a Simple Two-Level Memory

Example

◼Speed of fast memory (T1): 0.1

◼Speed of slow memory (T2): 1.0

◼Hit ratio for fast memory: .95

◼Average access time = .15

(.95 * .1) +(.05 * (1.0 + 0.1))

◼Memory references by the processor tend to

cluster

◼ Spatial locality: a reference to one memory

location usually means nearby locations will be

referenced too

◼ Temporal locality: if a location is referenced

once, it will probably be accessed again soon.

◼ In a hierarchical memory, data can be

organized so that the percentage of accesses to

each successively lower level is substantially

less than that of the level above

◼ i.e., locations in current locality should be in the

faster levels of memory.

◼Can be applied across more than two levels of

memory

Memory Hierarchy

• Cache Memory: fastest; volatile; contains a

subset of main memory

• Most processors have more than one

level

• Main Memory: slower; also volatile

• Disk: slowest, non-volatile, used to store

programs and data permanently

◼ Invisible to the OS

◼Processor must access memory at least once

per instruction cycle

◼Processor execution time is limited by memory

cycle time

◼Exploit the principle of locality with a small,

fast memory

◼On a memory reference, the processor first

checks cache

◼ If not found, a block of memory is read into

cache

◼Locality makes it likely that many future

memory references will be to other bytes in the

block

Cache and

Main

Memory

Cache/Main-Memory Structure

I/O Techniques

Three techniques are possible for I/O
operations:

Programmed
I/O

Interrupt-
Driven I/O

Direct Memory
Access (DMA)

∗ When the processor encounters an instruction relating
to I/O, it executes that instruction by issuing a command
to the appropriate I/O module

Programmed I/O

◼ The I/O module performs the requested action

then sets the appropriate bits in the I/O status

register

◼ The processor periodically checks the status of the

I/O module until it determines the instruction is

complete

◼ With programmed I/O the performance level of

the entire system is severely degraded

Interrupt-Driven I/O

Processor
issues an I/O
command to a

module and
then goes on
to do some
other useful

work

The I/O module will
then interrupt the

processor to request
service when it is
ready to exchange

data with the
processor

The processor
executes the
data transfer

and then
resumes its

former
processing

More efficient than
Programmed I/O but

still requires active
intervention of the

processor to transfer
data between memory

and an I/O module

Direct Memory Access
(DMA)

When the processor wishes to read or write data it
issues a command to the DMA module containing:

• whether a read or write is requested

• the address of the I/O device involved

• the starting location in memory to read/write

• the number of words to be read/written

∗ Performed by a separate module on the system bus or
incorporated into an I/O module

◼Transfers the entire block of data directly to
and from memory without going through the
processor
◼ processor is involved only at the beginning and end of the

transfer

◼ processor executes more slowly during a transfer when
processor access to the bus is required

◼More efficient than interrupt-driven or
programmed I/O

Symmetric Multiprocessors

(SMP)

◼ A stand-alone computer system with the
following characteristics:
◼ two or more similar processors of comparable capability

◼ processors share the same main memory and are
interconnected by a bus or other internal connection scheme

◼ processors share access to I/O devices

◼ all processors can perform the same functions

◼ the system is controlled by an integrated operating system
that provides interaction between processors and their
programs at the job, task, file, and data element levels

Performance

• a system with multiple
processors will yield greater
performance if work can be
done in parallel

Availability

• the failure of a single
processor does not halt the
machine

Incremental Growth

• an additional processor can
be added to enhance
performance

Scaling

• vendors can offer a range of
products with different price
and performance
characteristics

SMP Organization

Figure 1.19 Symmetric Multiprocessor Organization

Multicore Computer

◼Also known as a chip multiprocessor

◼Combines two or more processors (cores) on a

single piece of silicon (die)

◼ each core consists of all of the components of an

independent processor

◼ In addition, multicore chips also include L2

cache and in some cases L3 cache

Intel Core i7

Supports two forms of external communications to other chips:

DDR3 Memory Controller

• brings the memory controller for the DDR (double data rate) main
memory onto the chip

• with the memory controller on the chip the Front Side Bus is
eliminated

QuickPath Interconnect (QPI)

• enables high-speed communications among connected
processor chips

Intel
Core i7

Figure 1.20 Intel Corei7 Block Diagram

Summary

◼Basic Elements
◼ processor, main memory, I/O modules, system

bus

◼ GPUs, SIMD, DSPs, SoC

◼ Instruction execution
◼ processor-memory, processor-I/O, data processing,

control

◼ Interrupt/Interrupt Processing

◼ Memory Hierarchy

◼ Cache/cache principles and designs

◼ Multiprocessor/multicore

