
Chapter 10 

The Gaussian Channel 

The most important continuous alphabet channel is the Gaussian chan- 
nel depicted in Figure 10.1. This is a time discrete channel with output 
Yi at time i, where Yi is the sum of the input Xi and the noise 2;. The 
noise Zi is drawn i.i.d. from a Gaussian distribution with variance N. 
Thus 

Yi =Xi + Zi, Zi - ~(0, N) . (10.1) 

The noise Zi is assumed to be independent of the signal Xi. This channel 
is a good model for some common communication channels. Without 
further conditions, the capacity of this channel may be infinite. If the 
noise variance is zero, then the receiver receives the transmitted symbol 
perfectly. Since X can take on any real value, the channel can transmit 
an arbitrary real number with no error. 

If the noise variance is non-zero and there is no constraint on the 
input, we can choose an infinite subset of inputs arbitrarily far apart, so 
that they are distinguishable at the output with arbitrarily small 
probability of error. Such a scheme has an infinite capacity as well. 
Thus if the noise variance is zero or the input is unconstrained, the 
capacity of the channel is infinite. 

The most common limitation on the input is an energy or power 
constraint. We assume an average power constraint. For any codeword 
(x+2, ’ * . , xn) transmitted over the channel, we require 

1 n - c n i=l 
xf(P. (10.2) 

This communication channel models many practical channels, including 
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Figure 10.1. The Gaussian channel. 

radio and satellite links. The additive noise in such channels may be due 
to a variety of causes. However, by the central limit theorem, the 
cumulative effect of a large number of small random effects will be 
approximately normal, so the Gaussian assumption is valid in a large 
number of situations. 

We first analyze a simple suboptimal way to use this channel. 
Assume that we want to send 1 bit over the channel in 1 use of the 
channel. Given the power constraint, the best that we can do is to send 
one of two levels +I@ or -a The receiver looks at the corresponding 
received Y and tries to decide which of the two levels was sent. 
Assuming both levels are equally likely (this would be the case if we 
wish to send exactly 1 bit of information), the optimum decoding rule is 
to decide that +fl was sent if Y > 0 and decide -fl was sent if Y < 0. 
The probability of error with such a decoding scheme is 

pt? = 2 LPr(Y<OIX= +I@)+ ;Pr(Y>oIx= -fl) (10.3) 

= j+-(Z< -VFlX=+VF)+ ~Pr(Zz*~X= -fl) (10.4) 

= Pr(Z > 0) (10.5) 

=1-&g), 
where Q,(x) is the cumulative normal function 

I 

x 1 t2 -- 
@(x) = - -rn flT e 2 dt a 

(10.6) 

(10.7) 

Using such a scheme, we have converted the Gaussian channel into a 
discrete binary symmetric channel with crossover probability P,. Simi- 
larly, by using a four level input signal, we can convert the Gaussian 
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channel into a discrete four input channel. In some practical modulation 
schemes, similar ideas are used to convert the continuous channel into a 
discrete channel. The main advantage of a discrete channel is ease of 
processing of the output signal for error correction, but some informa- 
tion is lost in the quantization. 

10.1 THE GAUSSIAN CHANNEL: DEFINITIONS 

We now define the (information) capacity of the channel as the max- 
imum of the mutual information between the input and output over all 
distributions on the input that satisfy the power constraint. 

Definition: The information capacity of the Gaussian channel with 
power constraint P is 

C= max 1(X, Y) . (10.8) 
p(x) : EX2sP 

We can calculate the information capacity as follows: Expanding 
1(x, Y), we have 

1(X; Y) = h(Y) - h(YIX) (10.9) 

= h(Y) - h(X + 21X) (10.10) 

= h(Y) - h(ZIX) (10.11) 

= h(Y) - W), (10.12) 

since 2 is independent of X. Now, h(Z) = i log 2TeN. Also, 

EY2=E(X+Z)2=EX2+2EXEZ+EZ2=P+N, (10.13) 

since X and 2 are independent and EZ = 0. Given EY2 = P + N, the 
entropy of Y is bounded by i log 2me(P + N) by Theorem 9.6.5 (the 
normal maximizes the entropy for a given variance). 

Applying this result to bound the mutual information, we obtain 

1(X; Y) = h(Y) - h(Z) (10.14) 

1 1 
4 5 log 2ve(P + N) - 5 log 27reN (10.15) 

1 P 
=j1og 1+g # 

( 1 (10.16) 
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Hence the information capacity of the Gaussian channel is 

C = max 1(X, Y) = i log 
EX!kP 

(10.17) 

and the maximum is attained when X - MO, P). 
We will now show that this capacity is also the supremum of the 

achievable rates for the channel. The arguments are similar to the 
arguments for a discrete channel. We will begin with the corresponding 
definitions. 

Definition: A (M, n) code for the Gaussian channel with power con- 
straint P consists of the following: 

1. An index set {1,2, . . . , M}. 
2. An encoding function x : { 1,2, . . . , M} + %‘“, yielding codewords 

x”(l), x”(2), . . . ,x”(M), satisfying the power constraint P, i.e., for 
every codeword 

i x:(w)5 nP, w=1,2 ,..., M. 
i=l 

(10.18) 

3. A decoding function 

g:?F-+{l,2 ,..., M}. (10.19) 

The rate and probability of error of the code are defined as in Chapter 
8 for the discrete case. 

Definition: A rate R is said to be achievable for a Gaussian channel 
with a power constraint P if there exists a sequence of (2nR, n) codes 
with codewords satisfying the power constraint such that the maximal 
probability of error hen’ tends to zero. The capacity of the channel is the 
supremum of the achievable rates. 

Theorem 10.1.1: The capacity of a Gaussian channel with power con- 
straint P and noise variance N is 

c l = 2 log bits per transmission . (10.20) 

Remark: We will first present a plausibility argument as to why we 
may be able to construct (2”‘, n) codes with low probability of error. 
Consider any codeword of length n. The received vector is normally 
distributed with mean equal to the true codeword and variance equal to 
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the noise variance. With high probability, the received vector is con- 
tained in a sphere of radius qm around the true codeword. If we 
assign everything within this sphere to the given codeword, then when 
this codeword is sent, there will be an error only if the received vector 
falls outside the sphere, which has low probability. 

Similarly we can choose other codewords and their corresponding 
decoding spheres. How many such codewords can we choose? The 
volume of an n-dimensional sphere is of the form A,rn where r is the 
radius of the sphere. In this case, each of the decoding spheres has 
radius m. These spheres are scattered throughout the space of 
received vectors. The received vectors have energy no greater than 
n(P + N) so they lie in a sphere of radius d-j. The maximum 
number of non-intersecting decoding spheres in this volume is no more 
than 

A,W + N)); = 2; log(l+;) (10.21) 
A,(nN) ; 

and the rate of the code is i log (1 + fi ). This idea is illustrated in Figure 
10.2. 

This sphere packing argument indicates that we cannot hope to send 
at rates greater than C with low probability of error. However, we can 
actually do almost as well as this, as is proved next. 

Figure 10.2. Sphere packing for the Gaussian channel. 
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Proof (Achievability): We will use the same ideas as in the proof of 
the channel coding theorem in the case of discrete channels, namely, 
random codes and joint typicality decoding. However, we must make 
some modifications to take into account the power constraint and the 
fact that the variables are continuous and not discrete. 

1. 

2. 

3. 

4. 

Generation of the codebook. We wish to generate a codebook in 
which all the codewords satisfy the power constraint. To ensure 
this, we generate the codewords with each element i.i.d. according 
to a normal distribution with variance P - E. Since for large n, 
i C X3 + P - E, the probability that a codeword does not satisfy the 
power constraint will be small. However, we do not delete the bad 
codewords, as this will disturb the symmetry of later arguments. 

LetX,(w), i = 1,2, . . . , n, w  = 1,2, . . . , 2”R be i.i.d. - N(O, P - E), 
forming codewords X”(l), X”(2), . . . , X”( 2nR) E 9”. 
Encoding. After the generation of the codebook, the codebook is 
revealed to both the sender and the receiver. To send the message 
index w, the transmitter sends the wth codeword X”(w) in the 
codebook. 
Decoding. The receiver looks down the list of codewords {X”(w)} 
and searches for one that is jointly typical with the received vector. 
If there is one and only one such codeword, the receiver declares it 
to be the transmitted codeword. Otherwise the receiver declares an 
error. The receiver also declares an error if the chosen codeword 
does not satisfy the power constraint. 
Probability of error. Without loss of generality, assume that 
codeword 1 was sent. Thus Y” = X”(1) + 2”. 

Define the following events: 

&,={; +W’} (10.22) 
rl 

and 

Ei = {(X”(i), Y”) is in A:‘} . (10.23) 

Then an error occurs if E, occurs (the power constraint is violated) or E”, 
occurs (the transmitted codeword and the received sequence are not 
jointly typical) or E, U E, U . . . U E+ occurs (some wrong codeword is 
jointly typical with the received sequence). Let Z? denote the event 
I@ # W and let P denote the conditional probability given W = 1. Hence 

Pr(8(W=1)=P(8)=P(E0UE”,UE,UE,U .a. UEZ,& (10.24) 
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2nR 

IP(E*)+P(E”,)+ Cp(E,L (10.25) 
i-2 

by the union of events bound for probabilities. By the law of large 
numbers, P&J+ 0 as n+ 00. Now, by the joint AEP (which can be 
proved using the same argument used in the discrete case), P(E”,)+ 0, 
and hence 

P(E”, ) 5 E for n sufficiently large . (10.26) 

Since by the code generation process, X”( 1) and X”(i) are independent, 
so are Y” and X”(i). Hence, the probability that X”(i) and Y” will be 
jointly typical is ~2-~(‘@’ y)-3’) by the joint AEP. Hence 

P~'=Pr(8)=Pr(8IW=l)=P(8) (10.27) 

rP(E,)+P(E”,)+ 2 REi) (10.28) 
i=2 

2nR 
I E + ~ + c 2-nczw Y)-3c) (10.29) 

i=2 

= & + (p _ 1)2-“‘zw; Y)-3c) (10.30) 

I zE + 23ne2-n(Z(X; Y)-R) (10.31) 

136 (10.32) 

for n sufficiently large and R < 1(X, Y) - 3~. 
This proves the existence of a good (2”R, n) code. 
Now choosing a good codebook and deleting the worst half of the 

codewords, we obtain a code with low maximal probability of error. In 
particular, the power constraint is satisfied by each of the remaining 
codewords (since the codewords that do not satisfy the power constraint 
have probability of error 1 and must belong to the worst half of the 
codewords). 

Hence we have constructed a code which achieves a rate arbitrarily 
close to capacity. The forward part of the theorem is proved. In the next 
section, we show that the rate cannot exceed the capacity. Cl 

10.2 CONVERSE TO THE CODING THEOREM FOR GAUSSIAN 
CHANNELS 

In this section, we complete the proof that the capacity of a Gaussian 
channel is C = i log (1 + R> by proving that rates R > C are not achiev- 
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able. The proof parallels the proof for the discrete channel. The main 
new ingredient is the power constraint. 

Proof (Converse to Theorem 10.1 .l ): We must show that if Pr’ + 0 
for a sequence of (2”R, n) codes for a Gaussian channel with power 
constraint P, then 

1 P 
BC=$og l+E . ( > (10.33) 

Consider any (2”R, n) code that satisfies the power constraint, i.e., 

(10.34) 

for w  = 1,2,. . . , 2nR. Proceeding as in the converse for the discrete case, 
the uniform distribution over the index set w  E { 1,2, . . . , 2nR} induces a 
distribution on the input codewords, which in turn induces a dis- 
tribution over the input alphabet. Since we can decode the index W from 
the output vector Y” with low probability of error, we can apply Fano’s 
inequality to obtain 

H(WIY”)I~ + nRPr’= nc,, (10.35) 

where E, --, 0 as Pp’+ 0. Hence 

nR =H(W)= I(W; Y”)+H(WIY”) (10.36) 

sI(W; Y”)+ ncn (10.37) 

5 I(X”; Y”) + nen (10.38) 

= h(Y”) - h(Y”(X”) + nc, (10.39) 

= h(Y”) - h(Z”> + 7x, (10.40) 

5 i h(Yi) - h(Z”) + nE n (10.41) 
i=l 

=~ h(Yi)-~ h(Zi)+nE n (10.42) 
i=l i=l 

=i I(Xi;Y.)+nE I n’ (10.43) 
i=l 

Here Xi = Xi(W), where W is drawn according to the uniform dis- 
tribution on { 1,2, . . . , 2nR}. Now let Pi be the average power of the ith 
column of the codebook, i.e., 
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Pi=$j&f(W). (10.44) 
W 

Then, since YI: = Xi + Zi and since Xi and Zi are independent, the 
average power of Yi is Pi + IV. Hence, since entropy is maximized by the 
normal distribution, 

h(Yi) I i log2ne(P, + N) . (10.45) 

Continuing with the inequalities of the converse, we obtain 

nR 5 C (h(Yi) - h(Zi)) + ne, (10.46) 

5 C( i lOg(27Te(Pi + IV)) - i log2?rellr) + ne, (10.47) 

1 c Ig( P. = 
5 

0 l+” +ne,. 
N > 

(10.48) 

Since each of the codewords satisfies the power constraint, so does their 
average, and hence 

(10.49) 

Since fix) = % log(l + x) is a concave function of x, we can apply Jensen’s 
inequality to obtain 

; $ ; log(1 + 2) Is ; log(l + i 2 3) (10.50) 
l-l i-l 

1 P 
52log l+R . ( > (10.51) 

Thus R+log(l+;)+~,, E,+ 0, and we have the required con- 
verse. Cl 

Note that the power constraint enters the standard proof in (10.44). 

10.3 BAND-LIMITED CHANNELS 

A common model for communication over a radio network or a telephone 
line is a band-limited channel with white noise. This is a continuous 
time channel. The output of such a channel can be described as 

Y(t) = (x(t) + 2w) * h(t) , (10.52) 
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where X(t) is the signal waveform, Z(t) is the waveform of the white 
Gaussian noise, and h(t) is the impulse response of an ideal bandpass 
filter, which cuts out all frequencies greater than W. In this section, we 
give simplified arguments to calculate the capacity of such a channel. 

We begin with a representation theorem due to Nyquist [199] and 
Shannon [240], which shows that sampling a band-limited signal at a 
sampling rate & is sufficient to reconstruct the signal from the samples. 
Intuitively, this is due to the fact that if a signal is band-limited to W, 
then it cannot change by a substantial amount in a time less than half a 
cycle of the maximum frequency in the signal, that is, the signal cannot 
change very much in time intervals less than & seconds. 

Theorem 10.3.1: Suppose a function f(t) is band-limited to W, namely, 
the spectrum of the function is 0 for all frequencies greater than W Then 
the function is completely determined by samples of the function spaced 
&F seconds apart. 

Proof: Let F(o) be the frequency spectrum of fct). Then 

(10.53) 

(10.54) 

since F(o) is 0 outside the band -27rW I 0 52~W. If we consider 
samples spaced $ seconds apart, the value of the signal at the sample 
points can be written 

(10.55) 

The right hand side of this equation is also the definition of the 
coefficients of the Fourier series expansion of the periodic extension of 
the function F(w), taking the interval -2 r W to 2 r W as the fundamen- 
tal period. Thus the sample values f( &) determine the Fourier coeffici- 
ents and, by extension, they determine the value of F(o) in the interval 
(-27rW, 27rW). Since a function is uniquely specified by its Fourier 
transform, and since F(o) is 0 outside the band W, we can determine the 
function uniquely from the samples. 

Consider the function 

sin@) = 
sin(2rWt) 

2vwt ’ (10.56) 

This function is 1 at t = 0 and is 0 for t = n/2W, n # 0. The spectrum of 
this function is constant in the band (- W, W) and is zero outside this 
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band. Now define 

g(t) = jim f( &) sinc( t - &) . (10.57) 

From the properties of the sine function, it follows that g(t) is band- 
limited to W and is equal to fin/2 W) at t = n/2W. Since there is only one 
function satisfying these constraints, we must have g(t) = fit>. This 
provides an explicit representation of fit) in terms of its samples. Cl 

A general function has an infinite number of degrees of freedom-the 
value of the function at every point can be chosen independently. The 
Nyquist-Shannon sampling theorem shows that a band-limited function 
has only 2W degrees of freedom per second. The values of the function at 
the sample points can be chosen independently, and this specifies the 
entire function. 

If a function is band-limited, it cannot be limited in time. But we can 
consider functions that have most of their energy in bandwidth W and 
have most of their energy in a finite time interval, say (0, 2’). We can 
describe these functions using a basis of prolate spheroidal functions. 
We do not go into the details of this theory here; it sufllces to say that 
there are about 2TW orthonormal basis functions for the set of almost 
time-limited, almost band-limited functions, and we can describe any 
function within the set by its coordinates in this basis. The details can 
be found in a series of papers by Slepian, Landau and Pollak [169], 
11681, [253]. Moreover, the projection of white noise on these basis 
vectors forms an i.i.d. Gaussian process. The above arguments enable us 
to view the band-limited, time-limited functions as vectors in a vector 
space of 2TW dimensions. 

Now we return to the problem of communication over a band-limited 
channel. Assuming that the channel has bandwidth W, we can represent 
both the input and the output by samples taken 1/2W seconds apart. 
Each of the input samples is corrupted by noise to produce the corre- 
sponding output sample. Since the noise is white and Gaussian, it can 
be shown that each of the noise samples is an independent, identically 
distributed Gaussian random variable. If the noise has payer spectral 
density N,,/2 and bandwidth W, then the noise has power 22 W = N,W 
and each of the 2WT noise samples in time 2’ has variance N,WTI 
2WT = N,/2. Looking at the input as a vector in the 2TW dimensional 
space, we see that the received signal is spherically normally distributed 
about this point with covariance $. 

Now we can use the theory derived earlier for discrete time Gaussian 
channels, where it was shown that the capacity of such a channel is 

1 
C = 2 log bits per transmission . (10.58) 



250 THE GAUSSMN CHANNEL 

Let the channel be used over the time interval CO, 2’1. In this case, the 
power per sample is PTI2WT = P/2W, the noise variance per sample is 
9 2W Q& = &/2, and hence the capacity per sample is 

C=~log(l+f)=~log(I+&) bitspersample. 
2 

(10.59) 

Since there are 2W samples each second, the capacity of the channel can 
be rewritten as 

bits per second . (10.60) 

This equation is one of the most famous formulae of information theory. 
It gives the capacity of a band-limited Gaussian channel with noise 
spectral density A$,/2 watts/Hz and power P watts. 

If we let W-, 00 in (10.60), we obtain 

P 
C = F log, e bits per second, 

0 

(10.61) 

as the capacity of a channel with an infinite bandwidth, power P and 
noise spectral density No/2. Thus for infinite bandwidth channels, the 
capacity grows linearly with the power. 

Example 10.3.1 (Telephone line): To allow multiplexing of many chan- 
nels, telephone signals are band-limited to 3300 Hz. Using a bandwidth 
of 3300 Hz and a SNR (signal to noise ratio) of 20 dB (i.e., P/NOW = loo), 
in (10.60), we find the capacity of the telephone channel to be about 
22,000 bits per second. Practical modems achieve transmission rates up 
to 19,200 bits per second. In real telephone channels, there are other 
factors such as crosstalk, interference, echoes, non-flat channels, etc. 
which must be compensated for to achieve this capacity. 

10.4 PARALLEL GAUSSIAN CHANNELS 

In this section, we consider k independent Gaussian channels in parallel 
with a common power constraint. The objective is to distribute the total 
power among the channels so as to maximize the capacity. This channel 
models a non-white additive Gaussian noise channel where each paral- 
lel component represents a different frequency. 

Assume that we have a set of Gaussian channels in parallel as 
illustrated in Figure 10.3. The output of each channel is the sum of the 
input and Gaussian noise. For channel j, 
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Xk+& Yk 
Figure 10.3. Parallel Gaussian channels. 

yj=Xj+Zj, j=1,2,...,k, 

with 

(10.62) 

and the noise is assumed to be independent from channel to channel. We 
assume that there is a common power constraint on the total power 
used, i.e., 

EiX;SP. 
j=l 

We wish to distribute the power among the various channels so as to 
maximize the total capacity. 

The information capacity of the channel C is 

C= max 1(X1,X,, . . . ,xh; Yl, Yz, . 0’) Yk) I 
f(Jp”‘& ’ . . 2 x,): C EX+P 

(10.65) 

We calculate the distribution that achieves the information capacity for 
this channel. The fact that the information capacity is the supremum of 
achievable rates can be proved by methods identical to those in the proof 
of the capacity theorem for single Gaussian channels and will be 
omitted. 
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Since Z,, Z,, . . . , Zk are independent, 

=h(Y,,Y,,...,Y,)-h(Z,,Z,,...,Z,IX,,X,,..’,X,) 

= MY,,  Yz, .  .  l ,  Yk> -  h(Z,, z , ,  .  l .  ,  z,> (10.66) 

= MY,, Yz, . . . , Yk) - c Wi) (10.67) 

(10.68) 

,,;log(l+$), 
i 

(10.69) 

where Pi = EXf , and C Pi = P. Equality is achieved by 

(10.70) 

So the problem is reduced to finding the power allotment that 
maximizes the capacity subject to the constraint that C Pi = P. This is a 
standard optimization problem and can be solved using Lagrange multi- 
pliers. Writing the functional as 

J(P1,...,P~)=C flOg(l+~)+I(CPi) 
i 

and differentiating with respect to Pi, we have 

1 1 
,jFpjq+“=Op 

(10.71) 

(10.72) 

or 

Pi= V-Ni. (10.73) 

However since the Pi’s must be non-negative, it may not always be 
possible to find a solution of this form. In this case, we use the 
Kuhn-Tucker conditions to verify that the solution 

Pi ‘(V -Ni)+ (10.74) 
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Figure 10.4. Water-filling for parallel channels. 

is the assignment that maximizes capacity, where Y is chosen so that 

&-Ni)+ =P. (10.75) 

Here (x)+ denotes the positive part of x, i.e., 

x ifxr0 
(x)+ ={O ifx<OI 

(10.76) 

This solution is illustrated graphically in Figure 10.4. The vertical 
levels indicate the noise levels in the various channels. As signal power 
is increased from zero, we allot the power to the channels with the 
lowest noise. When the available power is increased still further, some 
of the power is put into noisier channels. The process by which the 
power is distributed among the various bins is identical to the way in 
which water distributes itself in a vessel. Hence this process is some- 
times referred to as “water-filling.” 

10.5 CHANNELS WITH COLORED GAUSSIAN NOISE 

In the previous section, we considered the case of a set of parallel 
independent Gaussian channels in which the noise samples from differ- 
ent channels were independent. Now we will consider the case when the 
noise is dependent. This represents not only the case of parallel chan- 
nels, but also the case when the channel has Gaussian noise with 
memory. For channels with memory, we can consider a block of n 
consecutive uses of the channel as n channels in parallel with dependent 
noise. As in the previous section, we will only calculate the information 
capacity for this channel. 

Let Kz be the covariance matrix of the noise, and let K, be the input 
covariance matrix. The power constraint on the input can then be 
written as 
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lcEXfSP, (10.77) n i 
or equivalently, 

(10.78) 

Unlike the previous section, the power constraint here depends on n; the 
capacity will have to be calculated for each n. 

Just as in the case of independent channels, we can write 

I<x,,&, * * * 3,; Yl, Yz, * * * , YJ 
= MY,, YQ, . . . , Y,> - w,, z,, . . . , 2,) . (10.79) 

Here h(Z,, Z,, . . . , 2, > is determined only by the distribution of the 
noise and is not dependent on the choice of input distribution. So finding 
the capacity amounts to maximizing h( YI , Y2, . . . , Y, ). The entropy of 
the output is maximized when Y is normal, which is achieved when the 
input is normal. Since the input and the noise are independent, the 
covariance of the output Y is KY = K, + K, and the entropy is 

MY,, Yz, . . . , Y,) = i log((2re)“IKx + K& . (10.80) 

Now the problem is reduced to choosing K, so as to maximize (K, + K, I, 
subject to a trace constraint on K,. To do this, we decompose K, into its 
diagonal form, 

Then 

K, = QhQt, where QQ” = I. (10.31) 

I& + K,) = 1% + QAQ”l (10.82) 

= lQllQ%~ + 41~7 (10.83) 

=lQ%Q+N (10.84) 

= (A+ Al, (10.85) 

where A = QtKxQ. Since for any matrices B and C, 

tr@C) = tr(cI3)) (10.86) 

we have 
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tr(4 = tdQtK’Q) (10.87) 

= tr(QQtK,) (10.88) 

= h(K,). (10.89) 

Now the problem is reduced to maximizing IA + Al subject to a trace 
constraint tr(A) 5 nl? 

Now we apply Hadamard’s inequality, mentioned in Chapter 9. 
Hadamard’s inequality states that the determinant of any positive 
definite matrix K is less than the product of its diagonal elements, i.e., 

with equality iff the matrix is diagonal. Thus 

IA+AIIn(Aii +hi) (10.91) 

with equality iff A is diagonal. Since A is subject to a trace constraint, 

~~Aii~P, 
i 

(10.92) 

and Aii zz 0, the maximum value of ni(Aii + hi) is attained when 

Aii + Ai = Y. (10.93) 

However, given the constraints, it may not be always possible to satisfy 
this equation with positive Aii. In such cases, we can show by standard 
Kuhn-Tucker conditions that the optimum solution corresponds to 
setting 

Aii = (Y - hi)+ , (10.94) 

where v is chosen SO that C Aii = nl? This value of A maximizes the 
entropy of Y and hence the mutual information. We can use Figure 10.4 
to see the connection between the methods described above and “water- 
filling”. 

Consider a channel in which the additive Gaussian noise forms a 
stochastic process with finite dimensional covariance matrix &i’. If the 
process is stationary, then the covariance matrix is Toeplitz and the 
eigenvalues tend to a limit as n --) 00. The density of eigenvalues on the 
real line tends to the power spectrum of the stochastic process [126]. In 
this case, the above “water-filling” argument translates to water-filling 
in the spectral domain. 
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f 
w 

Figure 10.5. Water-filling in the spectral domain. 

Hence for channels in which the noise forms a stationary stochastic 
process, the input signal should be chosen to be a Gaussian process with 
a spectrum which is large at frequencies where the noise spectrum is 
small. This is illustrated in Figure 10.5. The capacity of an additive 
Gaussian noise channel with noise power spectrum iV( f> can be shown 
to be [120] 

(10.95) 

where v is chosen so that JCv - AK f>>’ df= P. 

10.6 GAUSSIAN CHANNELS WITH FEEDBACK 

In Chapter 8, we proved that feedback does not increase the capacity for 
discrete memoryless channels. It can greatly help in reducing the 
complexity of encoding or decoding. The same is true of an additive noise 
channel with white noise. As in the discrete case, feedback does not 
increase capacity for memoryless Gaussian channels. However, for 
channels with memory, where the noise is correlated from time instant 
to time instant, feedback does increase capacity. The capacity without 
feedback can be calculated using water-filling, but we do not have a 
simple explicit characterization of the capacity with feedback. In this 
section, we describe an expression for the capacity in terms of the 
covariance matrix of the noise 2. We prove a converse for this expression 
for capacity. We then derive a simple bound on the increase in capacity 
due to feedback. 



10.6 GAUSSIAN CHANNELS WZTH FEEDBACK 257 

W yi 

Figure 10.6. Gaussian channel with feedback. 

The Gaussian channel with feedback is illustrated in Figure 10.6. The 
output of the channel Yi is 

The feedback allows the input of the channel to depend on the past 
values of the output. 

A (ZmR, n) code for the Gaussian channel with feedback consists of a 
sequence of mappings 
input message and Y”-’ 

xi( W, Y’-‘), where W E {1,2, . . . , 2nR} is the 
is the sequence of past values of the output. 

Thus x( W, l ) is a code function rather than a codeword. In addition, we 
require that the code satisfy a power constraint, 

E[i &:Wi-+~, w~{1,2 ,..., 2nR), (10.97) 
i 

where the expectation is over all possible noise sequences. 
We will characterize the capacity of the Gaussian channel is terms of 

the covariance matrices of the input X and the noise 2. Because of the 
feedback, X” and 2” are not independent; Xi depends causally on the 
past values of 2. In the next section, we prove a converse for the 
Gaussian channel with feedback and show that we achieve capacity if 
we take X to be Gaussian. 

We now state an informal characterization of the capacity of the 
channel with and without feedback. 

1. With feedback. The capacity Cn,, in bits per transmission of the 
time-varying Gaussian channel with feedback is 

(10.98) 
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where the maximization is taken over all X” of the form 

i-l 

Xi=~ b,Zj+Vi, i=l,2 ,..., n, 
j=l 

(10.99) 

and V” is independent of 2”. 
To verify that the maximization over (10.99) involves no loss of 

generality, note that the distribution on X” + 2” achieving the 
maximum entropy is Gaussian. Since 2” is also Gaussian, it can be 
verified that a jointly Gaussian distribution on (X”, Z”, X” + 2”) 
achieves the maximization in (10.98). But since 2” = Y” - X”, the 
most general jointly normal causal dependence of X” on Y” is of 
the form (10.99), where V” plays the role of the innovations 
process. Recasting (10.98) and (10.99) using X = BZ + V and Y = 
X + 2, we can write 

C 
1 

n, FB = max 2n log 
I(B + I)K,“‘(B + Iy + K,I 

n) 
IK’ I 

(10.100) 
z 

where the maximum is taken over all nonnegative definite K, and 
strictly lower triangular B such that 

trU3KF’Bt + K,) I nP . (10.101) 

(Without feedback, B is necessarily 0.) 
2. Without feedback. The capacity C, of the time-varying Gaussian 

channel without feedback is given by 

C, = max -!- log 
+ tr(K+P 2n 

(n) . 
IK I 

(10.102) 
2 

This reduces to water-filling on the eigenvalues { Ain’} of K’$‘. Thus 

n 

‘n 2’, = Og l+ 
=- 

Ix1 ( 

(A - P)+ 
’ 

i 1 
,Cn; > 

9 (10.103) 
i 

where ( y)’ = max{ y, 0) and where A is chosen so that 

i (A-hj”‘)+=nP. 
i=l 

(10.104) 

We now prove an upper bound for the capacity of the Gaussian 
channel with feedback. This bound is actually achievable, and is there- 
fore the capacity, but we do not prove this here. 
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Theorem 10.6.1: The rate R, fir any (2”Rn, n) code with Pf’ + 0 for the 
Gaussian channel with feedback satisfies 

11 n) 

R, I - - log IK’ I 
n2 + + ‘n p 

IK I 2 
(10.105) 

with l ,+O as n+a. 

Proof: By Fano’s inequality, 

H(WIY”) I 1 + nR,Pp’ = nen, (10.106) 

where E, + 0 as Pp’ + 0. We can then bound the rate as follows: 

nR, = H(W) (10.107) 

= I(W, Y”) + H(W(y”) (10.108) 

SI(W, Y”)+ ne, (10.109) 

= C I(W; YJYiT1) + m, (10.110) 

2 c [h(Y,IYi-l) - h(Yil W, Y”-‘, Xi, Xi-‘, P-l)] + 7x, (10.111) 

(t-’ c [h(Yi)Yi-‘) - h(Z,( W, Y”-‘, Xi,XiS1, P-l)] + ne, (10.112) 

= c [h(YilY’-‘) - h(Z,( Z’-l)] + nr, (10.113) 

= h(Y”) - h(Z”) + ne, , (10.114) 

where (a) follows from the fact that Xi is a function of W and the past 
Yi’s, and Z’-l is Yi-’ - Xi-‘, (b) follows from Y = Xi + Zi and the fact 
that h(X + 21X) = h(ZIX), and (c) follows from the fact Zi and 
(W, Y’-‘, Xi) are conditionally independent given Zi-‘. Continuing the 
chain of inequalities after dividing by n, we have 

1 n) 

R,~n[h(Yn)-h(Zn)]+e,- 
1 IK’ I 

( 2n log + + En 9 JK’ I 
(10.115) 

z 

by the entropy maximizing property of the normal. cl 

We have proved an upper bound on the capacity of the Gaussian 
channel with feedback in terms of the covariance matrix K$i,. We now 
derive bounds on the capacity with feedback in terms of K$’ and @‘, 
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which will then be used to derive bounds in terms of the capacity 
without feedback. For simplicity of notation, we will drop the 
superscript n in the symbols for covariance matrices. 

We first prove a series of lemmas about matrices and determinants. 

Lemma 10.6.1: Let X and Z be n-dimensional random vectors. Then 

K x+z + Kx-z = 2Kx + 2K, (10.116) 

Proof: 

K x+z = E(X + 2)(X + 2)” 

= EXXt + EX? + EZXt + EZZ’ 

=K,+K,+K,,+K,. 

Similarly, 

K,_,=K,-K,--K,,+K,. 

(10.117) 

(10.118) 

(10.119) 

(10.120) 

Adding these two equations completes the proof. Cl 

Lemma 10.6.2: For two n x n positive definite matrices A and B, if 
A - B is positive definite, then IAl 2 (B I. 

Proof: Let C = A - B. Since B and C are positive definite, we can 
consider them as covariance matrices. Consider two independent normal 
random vectors X, - N(0, B) and X, - N(0, C). Let Y = X, + X,. Then 

h(Y) 2 WIX,) (10.121) 

= h(X, I&> (10.122) 

= MX,), (10.123) 

where the inequality follows from the fact that conditioning reduces 
dflerential entropy, and the final equality from the fact that X, and X, 
are independent. Substituting the expressions for the differential en- 
tropies of a normal random variable, we obtain 
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(10.124) 

which is equivalent to the desired lemma. q 

Lemma 10.6.3: For two n-dimensional random vectors X and 2, 

l&+,I ‘2”IK, + &I l 

Proof: From Lemma 10.6.1, 

(10.125) 

2(Kx + K,) - Kx+z = K,-, 2 0 9 (10.126) 

where A 2 0 means that A is non-negative definite. Hence, applying 
Lemma 10.6.2, we have 

IK,+,I 5 pu& + K,)I = 2”p& +&I, 

which is the desired result. 0 

(10.127) 

We are now in a position to prove that feedback increases the capacity 
of a non-white Gaussian additive noise channel by at most half a bit. 

Theorem: 10.6.2: 

c, 1 
n FB I C, + - bits per transmission 

2 
(10.128) 

Proof: Combining all the lemmas, we obtain 

c 1 
( max (K I - log y 

np FB - tr(KX)snP %a IK I z 
(10.129) 

(10.130) 

(10.131) 

1 
SC,+- 2 bits per transmission, (10.132) 

where the inequalities follow from Theorem 10.6.1, Lemma 10.6.3 and 
the definition of capacity without feedback, respectively. Cl 
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SUMMARY OF CHAPTER 10 

Maximum entropy: max,,s=, h(X) = & log awnecu. 

The Gaussian channel: Yi = Xi + Zi, Zi - J(O, N), power constraint 
f C~~,Xf rP, 

bits per transmission . (10.133) 

Band-limited additive white Gaussian noise channel: Bandwidth W, 
two-sided power spectral density N,/2, signal power P, 

C=Wlog(l+&)bitsper second. (10.134) 

Water-filling (12 parallel Gaussian channels): 5 = 4 + Zj , j = 1,2, . . . , k, 
Zj - NO, Nj), C;31 X; I F’, 

c= 5 ;log(l+ (v-Ny)+) 
i=l I 

(10.135) 

where v is chosen so that C( v - Ni )’ = P. 

Additive non-white Gaussian noise channel: Yi = Xi + Zi, 2” - NO, K,) 

(10.136) 

where A,, A,, . . . , A, are the eigenvalues of K, and Y is chosen so that 
Ci (v - hi)+ = nP. 

Capacity without feedback: 

cn = t2EL 2n 
r log I& +&I 

X lK.1 * 

Capacity with feedback: 

c = n, FB 

Feedback bound: 

(10.137) 

(10.138) 

c,,F#c,,+;. (10.139) 
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PROBLEMS FOR CHAPTER 10 

1. A mutual inform&ion game. Consider the following channel: 

z 

X 
+!I- + Y 

Throughout this problem we shall constrain the signal power 

EX=O, EX2=P, (10.140) 

and the noise power 

EZ=O, EZ2=N, (10.141) 

and assume that X and Z are independent. The channel capacity is 
given by 1(X, X + Z ). 

Now for the game. The noise player chooses a distribution on Z to 
minimize 1(X, X + Z), while the signal player chooses a distribution on 
X to maximize 1(X, X + Z ). 

Letting X* - h-(0, P), Z” - JV(O, N), show that X* and Z* satisfy 
the saddlepoint conditions 

z(x;x+z*)~z(x*;x*+z*)~z(x*;x*+z). (10.142) 

Thus 

mjnmFl(X;X+ Z)=mxaxmzml(X,X+ Z) (10.143) 

=;1og 1+; , ( ) (10.144) 

and the game has a value. In particular, a deviation from normal for 
either player worsens the mutual information from that player’s 
standpoint. Can you discuss the implications of this? 

Note: Part of the proof hinges on the entropy power inequality from 
Section 16.7, which states that if X and Y are independent random 
n-vectors with densities, then 

e 
$A(X+Y) 

Le 34(X) + e b(Y) . (10.145) 

2. A channel with two independent looks at Y. Let Y1 and Y2 be conditional- 
ly independent and conditionally identically distributed given X. 
(a) Show 1(X, Y1, Y,) = 21(X, Y,) - Z(Y,; Y,). 
(b) Conclude that the capacity of the channel 
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x4----+ w,, y,> 
is less than twice the capacity of the channel 

3. The two-look Gaussian channel. 

x-4-I-, w,, y,> 
Consider the ordinary Shannon Gaussian channel with two correlated 
looks at X, i.e., Y = (Y,, Y,), where 

Yl =x+2, (10.146) 

Y2 =x+2, (10.147) 

with a power constraint P on X, and (Z,, 2,) - NJO, K), where 

K=[; z]. (10.148) 

Find the capacity C for 

(4 P = 1 
(b) p = 0 
(c) p=-1 

4. Parallel channels and waterfilling. Consider a pair of parallel Gaussian 
channels, i.e., 

(10.149) 

(10.150) 

and there is a power constraint 23(X: + Xi) I 2P. Assume that U: > 0:. 
At what power does the channel stop behaving like a single channel 
with noise variance ai, and begin behaving like a pair of channels? 

HISTORICAL NOTES 

The Gaussian channel was first analyzed by Shannon in his original paper [238]. 
The water-filling solution to the capacity of the colored noise Gaussian channel 
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was developed by Holsinger [135]. Pinsker [210] and Ebert [94] showed that 
feedback at most doubles the capacity of a non-white Gaussian channel; a simple 
proof can be found in Cover and Pombra [76]. Cover and Pombra also show that 
feedback increases the capacity of the non-white Gaussian channel by at most 
half a bit. 


