
Chapter 11 
A 

Maximum Entropy and 
Spectral Estimation 

The temperature of a gas corresponds to the average kinetic energy of 
the molecules in the gas. What can we say about the distribution of 
velocities in the gas at a given temperature? We know from physics that 
this distribution is the maximum entropy distribution under the tem- 
perature constraint, otherwise known as the Maxwell-Boltzmann dis- 
tribution. The maximum entropy distribution corresponds to the mac- 
rostate (as indexed by the empirical distribution) that has the most 
microstates (the actual gas velocities). Implicit in the use of maximum 
entropy methods in physics is a sort of AEP that says that all mi- 
crostates are equally probable. 

11.1 MAXIMUM ENTROPY DISTRIBUTIONS 

Consider the following problem: 

Maximize the entropy h( f) over all probability densities f satisfying 

1. f(x) 2 0, with equality outside the support set S, 
2. Js f(x) dx = 1, (11.1) 

3. Js f(x)ri(x) o?x = for 15 i cq, 5 172. 

Thus f is a density on support set S meeting certain moment 
constraints cyl, (Ye, . . . , LY,. 

Approach 1 (CuZcuZus): The differential entropy h( f) is a concave 
function over a convex set. We form the functional 
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J(f)= - /flnf+AO/f+Ii h,lP, 
i=l 

(11.2) 

and “differentiate” with respect to fix), the xth component off to obtain 

- = - In flX> - 1 + ho + 2 hi~i(3C) . 
aJ 

aft4 i=l 

(11.3) 

Setting this equal to zero, we obtain the form of the maximizing density 

flx>=e A,-l+E~f~ hi’ib) 
, x(=, (11.4) 

where A,, A,, . . . , A, are chosen so that f satisfies the constraints. 

The approach using calculus only suggests the form of the density 
that maximizes the entropy. To prove that this is indeed the maximum, 
we can take the second variation. It is simpler to use the information 
inequality D(glJ f > 2 0. 

Approach 2 (Information inequality): If g satisfies (11.1) and if f * is of 
the form (11.4), then O~D(gllf*)=-h(g)+h(f*). Thus h(g)rh(f*) 
for all g satisfying the constraints. We prove this in the following 
theorem. 

Theorem 11.1.1 (Maximum entropy distribution): Let f*(x) = f,(x) = 
e”O+Cc, Ai’i(kZ), xES, where ho,..., A, are chosen so that f* satisfies 
(11 .l ). Then f * uniquely maximizes h(f) over all probability densities f 
satisfying constraints (11.1). 

Proof: Let g satisfy the constraints (11.1). Then 

h(g)= - sglng I 

=- sgln 
I ; f* 

(11.5) 

(11.6) 

= -D(gllf*)--/sgln f* (11.7) 

(b) 
=- 

~ -Is f*( h* + C Airi) 

(11.9) 

(11.10) 
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=- sf*lnf* 
I 

(11.11) 

= h(f*) , (11.12) 

where (a) follows from the non-negativity of relative entropy, (b) from 
the definition off* and (c) from the fact that both f* and g satisfy the 
constraints. Note that equality holds in (a) if and only if g(x) = f*(x) for 
all X, except for a set of measure 0, thus proving uniqueness. 0 

The same approach 
distributions. 

holds for discrete entropies and for multivariate 

11.2 EXAMPLES 

Example 11.2.1 (One dimensional gas with a temperature constraint): 
Let the constraints be EX = 0, and EX2 = (r2. Then the form of the 
maximizing distribution is 

flx>=e . 
A,+A,x+Apx2 (11.13) 

To find the appropriate constants, we first recognize that this dis- 
tribution has the same form as a normal distribution. Hence the density 
that satisfies the constraints and also maximizes the entropy is the 
JV(O, (r2> distribution. 

Example 11.2.2 (Dice, no constraints): Let S = { 1,2,3,4,5,6}. The 
distribution that maximizes the entropy is the uniform distribution, 
p(x) = Q for x E S. 

Example 11.2.3 (Dice, with EX = C ipi = cu): This important example 
was used by Boltzmann. Suppose n dice are thrown on the table and we 
are told that the total number of spots showing is ncx. What proportion 
of the dice are showing face i, i = 1,2, . . . ,6 ? 

One way of going about this is to count the number of ways that n 
dice can fall so that ni dice show face i. There are ( nI, n,,Y.. , ns ) such ways. 
This is a macrostate indexed by (n,, n,, . . . , n6) corresponding to 
( “. ) microstates, each having probability f . To find the most 
p:o%bie”‘macrostate, we wish to maximize ( n n,,Y.. , ns ) under the ob- 
served constraint on the total number of spots:’ 

6 

Ix in; = na , (11.14) 
i=l 
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Using a crude Stirling’s approximation, n! = ( 4 )“, we find 

( n 
> 

2: 
n,, n,, . . . 9 n, 

n n 
( > 
- 
e 

ni 
= 

(11.15) 

(11.16) 

=e ( 
n1 nH y, !2*. ns 

n ’ n ) 
. (11.17) 

Thus maximizing ( nl, n,,‘t . . , nB ) under the constraint (11.14) is almost 
equivalent to maximizing H( pl, p2, . . . , p,J under the constraint 
C ipi = a. Using Theorem 11.1.1 under this constraint, we find the 
maximum entropy probability mass function to be 

hi 

Pr=g--p 
i-l 

(11.18) 

where A is chosen so that C ipT = a. Thus the most probable macrostate 
is (n.pT, npg . . . . , npf), and we expect to find nT = npT dice showing face 
i. 

In Chapter 12, we shall show that the reasoning and the approxima- 
tions are essentially correct. In fact, we shall show that not only is the 
maximum entropy macrostate the most likely, but it also contains 
almost all of the probability. Specifically, for rational a, 

Ni --pT <e,i=1,2 ,..., 
n 

6li X,=na}+l, (11.19) 
i=l 

as n+m along the subsequence such that na is an integer. 

Example 11.2.4: Let S = [a, b], with no other constraints. Then the 
maximum entropy distribution is the uniform distribution over this 
range. 

Example 11.2.8: S = [0, 00) and EX = p. Then the entropy maximizing 
distribution is 
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This problem has a physical interpretation. Consider the distribution of 
the height X of molecules in the atmosphere. The average potential 
energy of the molecules is fixed, and the gas tends to the distribution 
that has the maximum entropy subject to the constraint that E[mgX1 is 
fixed. This is the exponential distribution with density f(;lG) = heck, 313 1 
0. The density of the atmosphere does indeed have this distribution. 

Example 11.2.6: S = (- 00, a), and EX = p. Here the maximum entropy 
is infinite, and there is no maximum entropy distribution. (Consider 
normal distributions with larger and larger variances.) 

Example 11.23 S = ( -00, m), EX = cyl 
entropy distribution is N(cyl, a2 - a! ;). 

and EX2 = a2. The maximum 

Example 11.2.8: S = .!% “, EXiXj = Ku, 1 I i, j I n. This is a multi- 
variate example, but the same analysis holds and the maximum entropy 
density is of the form 

flx)=e v . ho+Ci j A(jXiXj (11.21) 

Since the exponent is a quadratic form, it is clear by inspection that the 
density is a multivariate normal with zero mean. Since we have to 
satisfy the second moment constraints, we must have a multivariate 
normal with covariance Kii, and hence the density is 

fix)= l 
(V%)"IKf 

e-Jx=r’x, (11.22) 

which has an entropy 

h(Nn(O, KN = log(2ne)“(K/ , (11.23) 

as derived in Chapter 9. 

11.3 AN ANOMALOUS 

We have proved that the 
constraints 

MAXIMUM ENTROPY PROBLEM 

maximum entropy distribution subject to the 

I S 
hi (32)flX) d% = (Yi (11.24) 

is of the form 
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flx)=e Ag+ r: Aihi(X) (11.25) 

if&,&..., A, satisfying the constraints (11.24) exist. 
We now consider a tricky problem in which the Ai cannot be chosen to 

satisfy the constraints. Nonetheless, the “maximum” entropy can be 
found. We consider the following problem: maximize the entropy subject 
to the constraints 

I 

co 

f(x)o!.X=l, --m (11.26) 

I 

03 

x~x)dx=aI, (11.27) 
--m 

I 

m 

xzflx> dx = cx2 , (11.28) 
--m 

I 

m 

x3flx> dx = a3 . (11.29) --m 

In this case, 
the form 

the maximum entropy distribution, if it exists, must be of 

f(x) = e A,,+hlx+A2x2+A~3 . (11.30) 

But if A, is non-zero, then Jrco f = 00 and the density cannot be normal- 
ized. So A, must be 0. But then we have four equations and only three 
variables, so that in general it is not possible to choose the appropriate 
constants. The method seems to have failed in this case. 

The reason for the apparent failure is simple: the entropy has an 
upper bound under these constraints, but it is not possible to attain it. 
Consider the corresponding problem with only first and second moment 
constraints. In this case, the results of Example 11.2.1 show that the 
entropy maximizing distribution is the normal with the appropriate 
moments. With the additional third moment constraint, the maximum 
entropy cannot be higher. Is it possible to achieve this value? 

We cannot achieve it, but we can come arbitrarily close. Consider a 
normal distribution with a small “wiggle” at a very high value of x. The 
moments of the new distribution are almost the same as the old one, 
with the biggest change being in the third moment. We can bring the 
first and second moments back to their original values by adding new 
wiggles to balance out the changes caused by the first. By choosing the 
position of the wiggles, we can get any value of the third moment 
without significantly reducing the entropy below that of the associated 
normal. Using this method, we can come arbitrarily close to the upper 
bound for the maximum entropy distribution. We conclude that 
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1 
~~ph(f)=h(Jlr(O,(~,-cue))= $n2mG2-4L (11.31) 

This example shows that the maximum entropy may only be E- 
achievable. 

11.4 SPECTRUM ESTIMATION 

Given a stationary zero mean stochastic process {X,}, we define the 
autocorrelation function as 

R(k) = EX,X,+~ , (11.32) 

The Fourier transform of the autocorrelation function for a zero mean 
process is the power spectral density S( A), i.e., 

S(A) = i R(m)eeimA, -n<hr7r. 
m=--m 

(11.33) 

Since the power spectral density is indicative of the structure of the 
process, it is useful to form an estimate from a sample of the process. 

There are many methods to estimate the power spectrum. The 
simplest way is to estimate the autocorrelation function by taking 
sample averages for a sample of length n, 

n-k 

fi(k)=& C xixi+k* 
i 1 

(11.34) 

If we use all the values of the sample correlation function R(s) to 
calculate the spectrum, the estimate that we obtain from (11.33) does 
not converge to the true power spectrum for large n. Hence this method, 
called the periodogram method, is rarely used. 

One of the reasons for the problem with the periodogram method is 
that the estimates of the autocorrelation function from the data have 
different accuracies. The estimates for low values of k (called the lags) 
are based on a large number of samples and those for high k on very few 
samples. So the estimates are more accurate at low k. The method can 
be modified so that it depends only on the autocorrelations at low k by 
setting the higher lag autocorrelations to 0. However this introduces 
some artifacts because of the sudden transition to zero autocorrelation. 
Various windowing schemes have been suggested to smooth out the 
transition. However, windowing reduces spectral resolution and can give 
rise to negative power spectral estimates. 

In the late 196Os, while working on the problem of spectral estima- 
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tion for geophysical applications, Burg suggested an alternative method. 
Instead of setting the autocorrelations at high lags to zero, he set them 
to values that make the fewest assumptions about the data, i.e., values 
that maximize the entropy rate of the process. This is consistent with 
the maximum entropy principle as articulated by Jaynes [ 1431. Burg 
assumed the process to be stationary and Gaussian and found that the 
process which maximizes the entropy subject to the correlation con- 
straints is an autoregressive Gaussian process of the appropriate order. 
In some applications where we can assume an underlying autoregres- 
sive model for the data, this method has proved useful in determining 
the parameters of the model (e.g., linear predictive coding for speech). 
This method (known as the maximum entropy method or Burg’s 
method) is a popular method for estimation of spectral densities. We 
prove Burg’s theorem in Section 11.6. 

11.5 ENTROPY RATES OF A GAUSSIAN PROCESS 

In Chapter 9, we defined the differential entropy of a continuous 
random variable. We can now extend the definition of entropy rates to 
real-valued stochastic processes. 

Definition: The differential entropy rate of a stochastic process 
{X,}, Xi E 9, is defined to be 

h(g) = lim 
M&,X,,...,X,) 

n-m n (11.35) 

if the limit exists. 

Just as in the discrete case, we can show that the limit exists for 
stationary processes and that the limit is given by the two expressions 

(11.36) 

(11.37) 

For any sample of a stationary Gaussian stochastic process, we have 

h(X,, X2, . . . , XJ = i log(27re)nIK’“‘I , (11.38) 

where the covariance matrix K?’ is Toeplitz with entries R(O), 
R(l), . . . , R(n - 1) along the top row. Thus $’ = R( Ii -jl) = E(X, - 
EXi)(Xj - Ex,). As n+q the density of the eigenvalues of the 
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covariance matrix tends to a limit, which is the spectrum of the 
stochastic process. Indeed, Kolmogorov showed that the entropy rate of 
a stationary Gaussian stochastic process can be expressed as 

h(&)=;logalre+& _:logS(h)& I 
(11.39) 

The entropy rate is also lim,,, h(X, IXn-‘). Since the stochastic 
process is Gaussian, the conditional distribution is also Gaussian and 
hence the conditional entropy is i log 2?reat, where a: is the variance of 
the error in the best estimate of X, given the infinite past. Thus 

a: - 1 22h’W, 
27re 

(11.40) 

where h(E) is given by (11.39). Hence the entropy rate corresponds to 
the minimum mean squared error of the best estimator of a sample of 
the process given the infinite past. 

11.6 BURG’S MAXIMUM ENTROPY THEOREM 

Theorem 11.6.1: The maximum entropy rate stochastic process {Xi} 
satisfying the constraints 

EXiXi+, = Cyk, k = 0, 1, . . . , p, for all i , 

is the pth order Gauss-Markov process of the form 

xi = - $ akxi-k + Zi , 
k=l 

(11.42) 

where the Zi are i.i.d. - N(0, a2) and a,, a2,. . . , aP, u2 are chosen to 
satisfy (Il.41 ). 

Remark: We do not assume that {Xi} is (a) zero mean, (b) Gaussian, 
or (c) wide-sense stationary. 

Proofi Let x1,x2,. . . , X, be any stochastic process that satisfies the 
constraints (11.41). Let Z,, Z,, . . . ,Z, be a Gaussian process with the 
same covariance matrix as X1, X2, . . . , X,. Then since the multivariate 
normal distribution maximizes the entropy over all vector-valued 
random variables under a covariance constraint, we have 



11.6 BURG’S MAXIMUM ENTROPY THEOREM 275 

h(X,,X,, . . . , X,)~h(Z,,Z,,...,Z,) (11.43) 

=h(Z,,..., 2,) + i h(zilZi-l, zi-2,. * * ,zl) 
i=p+l 

(11.44) 

sh(Z,,..., Zp)+ i h(ZiIZi-,,Zi-,, * * l ,zi-p) 
i=p+l 

(11.45) 

by the chain rule and the fact that conditioning reduces entropy. Now 
define Z;,Z;I,..., 2: as a pth order Gauss-Markov process with the 
same distribution as 2, , Z,, . . . , 2, for all orders up to p. (Existence of 
such a process will be verified using the Yule-Walker equations 
immediately after the proof.) Then since h(Zi IZi _ 1, . . . , Zi -p ) depends 
only on the pth order distribution, 
h(ziIz’i-1, 

h(Zi 1 Zi _ 1, . . . , Zi -p ) = 
. . . , Z& ), and continuing the chain of inequalities, we 

obtain 

h(X~,X~,...,X,)rh(Z,,o..,Z,)+i=~+~h(zilzi-~,zi-~,..*,‘i-~) 

(11.46) 

=h(Z;,..., 2;) + i h(Z; &‘+ z[-,, . . . 3 z;-,) 
i-p+1 

(11.47) 

=h(Z;,Z; ,..., Z;), (11.48) 

where the last equality follows from the pth order Markovity of the 
{ 2:). Dividing by n and taking the limit, we obtain 

1 
lim; h(X,,X,, . . . ,X,+lim ; h(Z;,Z; ,..., Z;)=h*, (11.49) 

where 

h* = $ log&reu2, (11.50) 

which is the entropy rate of the Gauss-Markov process. Hence, the 
maximum entropy rate stochastic process satisfying the constraints is 
the pth order Gauss-Markov process satisfying the constraints. Cl 

A bare bones summary of the proof is that the entropy of a finite 
segment of a stochastic process is bounded above by the entropy of a 
segment of a Gaussian random process with the same covariance 
structure. This entropy is in turn bounded above by the entropy of the 
minimal order Gauss-Markov process satisfying the given covariance 
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constraints. Such a process exists and has a convenient characterization 
by means of the Yule-Walker equations given below. 

Note on the choice of a,, . . . , ap and g2: Given a sequence of 
covariances R(O), R(l), . . . , R(p), does there exist a pth order Gauss- 
Markov process with these covariances? Given a process of the form 
(11.421, can we choose the ak’s to satisfy the constraints? Multiplying 
(11.42) by Xi-l and taking expectations, and noting that R(k) = N-k), 
we get 

R(O) = - i a&-k) + cr2 
&=l 

(11.51) 

and 

R(Z)=-5 a,R(l-k), I=1 2 , ,... . (11.52) 
k=l 

These equations are called the Yule-Walker equations. There are p + 1 
equations in the p + 1 unknowns a,, a2, . . . , ap, a2. Therefore, we can 
solve for the parameters of the process from the covariances. 

Fast algorithms such as the Levinson algorithm and the Durbin 
algorithm [213] have been devised to use the special structure of these 
equations to efficiently calculate the coefficients a,, a2, . . . , ap from the 
covariances. (We set a, = 1 for a consistent notation.) Not only do the 
Yule-Walker equations provide a convenient set of linear equations for 
calculating the ak’s and o2 from the R(k)%, they also indicate how the 
autocorrelations behave for lags greater than p. The autocorrelations for 
high lags are an extension of the values for lags less than p. These 
values are called the Yule-Walker extension of the autocorrelations. The 
spectrum of the maximum entropy process is seen to be 

(11.53) 

This is the maximum entropy spectral density subject to the constraints 
MN, R(l), l . . , R(p). 

In a practical problem, we are generally given a sample sequence 
x,,x,, l l l 

, X,, from which we calculate the autocorrelations. An 
important question is how many autocorrelation lags we should 
consider, i.e., what is the optimum value of p? A logically sound method 
is to choose the value of p that minimizes the total description length in 
a two stage description of the data. This method has been proposed by 
Rissanen [218,223] and Barron [17] and is closely related to the idea of 
Kolmogorov complexity. 
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SUMMARY OF CHAPTER 11 

Maximum entropy distribution: Let f be a probability density satisfying 
the constraints 

I sflx)ri(x)=ai, for llirm. (11.54) 

Let f*(x) = f,(x) = eAO+cK1 hi’i(r), x E S, and let A,, . . . , A, be chosen so that f * 
satisfies (11.54). Then f * uniquely maximizes h( f) over all f satisfying these 
constraints. 

Maximum entropy spectral density estimation: The entropy rate of a 
stochastic process subject to autocorrelation constraints R,, R,, . . . , R, is 
maximized by the pth order zero-mean Gauss-Markov process satisfying 
these constraints. The maximum entropy spectrum is 

(11.55) 

PROBLEMS FOR CHAPTER 11 

1. Maximum entropy. Find the maximum entropy density f defined for 
x L 0 satisfying EX = (Y~, E In X = Q~. That is, maximize -.J f In f 
subject to J 3Gf(3c) C& = CZ~, J(ln x)f<x) dx = (Ye, where the integrals are 
over 0 I x < 03. What family of densities is this? 

2. Min D(PIIQ) d un er constraints on P. We wish to find the (parametric 
form) of the probability mass function P(x), x E {1,2, . . . } that 
minimizes the relative entropy D(PIlQ) over all P such that 
C P(x)gi(x) = ai, i = 1,2, . . . . 
(a) Use Lagrange multipliers to guess that 

JNQ-) = Q(x)eC?=~ h,gi(x)+ho (11.56) 

achieves this minimum if there exist Ai’S satisfying the cyi 
constraints. This generalizes the theorem on maximum entropy 
distributions subject to constraints. 

(b) Verify that P* minimizes D(P 11 Q ). 

3. Maximum entropy processes. Find the maximum entropy rate 
stochastic process {Xi}:“, subject to the constraints: 
(a) EXf=l, i=l,2 ,..,, 
(b) EXf = 1, EXiXi+I = &, i = 1,2, . . . . 



278 M AXlM UM ENTROPY AND SPECTRAL ESTlMATlON 

4. Find the maximum entropy spectrum for the processes in parts (a) and 
(b) of Problem 3. 

5. Maximum entropy zuith marginals. What is the maximum entropy 
distribution p(x, y) that has the following marginals? Hint: You may 
wish to guess and verify a more general result. 

Y 

X 1 2 3 

‘I-- 
1 Pll Pl2 P13 l/2 
2 P21 P22 P23 l/4 
3 PSI P32 P33 l/4 

Z/3 l/6 l/6 

6. Processes with fixed ma~ginals. Consider the set of all densities 
with fixed pairwise marg;inals fxl&,, x2), f&&,, x3), . . . 9 
f x, _ 1, x (x, _ 1, x, ). Show that the maximum entropy process with these 
margi&ls is the first-order (possibly time-varying) Markov process 
with these marginals. Identify the maximizing f*(xl, x2, . . . , x, ). 

7. Every density is a maximum enfropy density. Let f,(x) be a given density. 
Given dx), consider the parametric family of densities g,(x) 
maximizing h(X) over all f satisfying J flx)r<x) & = cr. Now let r(x) = 
In fO(x). Show that g,(x) = f,(x) for an appropriate choice (Y = q,. Thus 
&(x) is a maximum entropy density under the constraint j f In fO = q,. 

HISTORICAL NOTES 

The maximum entropy principle arose in statistical mechanics in the 
nineteenth century and has been advocated for use in a broader context by Jaynes 
[143]. It was applied to spectral estimation by Burg [47]. The information theoretic 
proof of Burg’s theorem is from Choi and Cover [56]. 


