
Chapter 7 

Kolmogorov Complexity 

The great mathematican Kolmogorov culminated a lifetime of research 
in mathematics, complexity and information theory with his definition 
in 1965 of the intrinsic descriptive complexity of an object. In our 
treatment so far, the object X has been a random variable drawn 
according to a probability mass function p(x). If X is random, there is a 
sense in which the descriptive complexity of the event X = x is log & , 
because [log &l is the number of bits required to describe x by a 
Shannon code. One notes immediately that the descriptive complexity of 
such an object depends on the probability distribution. 

Kolmogorov went further. He defined the algorithmic (descriptive) 
complexity of an object to be the length of the shortest binary computer 
program that describes the object. (Apparently a computer, the most 
general form of data decompressor, will use this description to exhibit 
the described object after a finite amount of computation.) Thus the 
Kolmogorov complexity of an object dispenses with the probability 
distribution. Kolmogorov made the crucial observation that the defini- 
tion of complexity is essentially computer independent. It is an amazing 
fact that the expected length of the shortest binary computer description 
of a random variable is approximately equal to its entropy. Thus the 
shortest computer description acts as a universal code which is uniform- 
ly good for all probability distributions. In this sense, algorithmic 
complexity is a conceptual precursor to entropy. 

This chapter is intellectually more demanding than the others in this 
book, and indeed, it can be omitted in a first course on information 
theory. Perhaps a proper point of view of the role of this chapter is to 
consider Kolmogorov complexity as a way to think. One does not use the 
shortest computer program in practice because it may take infinitely 
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long to find such a minimal program. But one can use very short, not 
necessarily minimal, programs in practice. And the idea of finding such 
short programs leads to universal codes, a good basis for inductive 
inference, a formalization of Occam’s Razor (“The simplest explanation 
is best”) and to clarity of thought in physics, computer science, and 
communication theory. 

Before formalizing the notion of Kolmogorov complexity, let us give 
three strings as examples. They are 

1. 0101010101010101010101010101010101010101010101010101010- 
101010101 

2. 0110101000001001111001100110011111110011101111001100100- 
100001000 

3. 1101111001110101111101101111101110101101111000101110010- 
100111011 

What are the shortest binary computer programs for each of these 
sequences? The first sequence is definitely simple. It consists of thirty- 
two 01’s. The second sequence looks random and passes most tests for 
randomness, but it is in fact the binary expansion of fi - 1. Again, this 
is a simple sequence. The third again looks random, except that the 
proportion of l’s is not near l/2. We shall assume that it is otherwise 
random. It turns out that by describing the number k of l’s in the 
sequence, then giving the index of the sequence in a lexicographic 
ordering of those with this number of l’s, one can give a description of 
the sequence in roughly log n + nH( k > bits. This again is substantially 
less than the n bits in the sequence. Again, we conclude that the 
sequence, random though it is, is simple. In this case, however, it is not 
as simple as the other two sequences, which have constant length 
programs. In fact, its complexity is proportional to n. Finally, we can 
imagine a truly random sequence generated by pure coin flips. There are 
2” such sequences and they are all equally probable. It is highly likely 
that such a random sequence cannot be compressed, i.e., there is no 
better program for such a sequence than simply saying “Print the 
following: 0101100111010.. . 0.” The reason for this is that there are not 
enough short programs to go around. Thus the descriptive complexity of 
a truly random binary sequence is as long as the sequence itself. 

These are the basic ideas. It will remain to be shown that this notion 
of intrinsic complexity is computer independent, i.e., that the length of 
the shortest program does not depend on the computer. At first, this 
seems like nonsense. But it turns out to be true, up to an additive 
constant. And for long sequences of high complexity, this additive 
constant (which is the length of the pre-program that allows one 
computer to mimic the other) is negligible. 
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7.1 MODELS OF COMPUTATION 

To formalize the notions of algorithmic complexity, we first discuss 
acceptable models for computers. All but the most trivial computers are 
universal, in the sense that they can mimic the actions of other 
computers. We will briefly touch on a certain canonical universal compu- 
ter, the universal Turing machine. The universal Turing machine is the 
conceptually simplest universal computer. 

In 1936, Turing was obsessed with the question of whether the 
thoughts in a living brain could equally well be held by a collection of 
inanimate parts. In short, could a machine think? By analyzing the 
human computational process, he posited some constraints on such a 
computer. Apparently, a human thinks, writes, thinks some more, 
writes, and so on. Consider a computer as a finite state machine 
operating on a finite symbol set. (The symbols in an infinite symbol set 
cannot be distinguished in finite space.) A program tape, on which a 
binary program is written, is fed left to right into this finite state 
machine. At each unit of time, the machine inspects the program tape, 
writes some symbols on a work tape, changes its state according to its 
transition table and calls for more program. The operations of such a 
machine can be described by a finite list of transitions. Turing argued 
that this machine could mimic the computational ability of a human 
being. 

After Turing’s work, it turned out that every new computational 
system could be reduced to a Turing machine, and conversely. In 
particular, the familiar digital computer with its CPU, memory and 
input output devices could be simulated by and could simulate a Turing 
machine. This led Church to state what is now known as Church’s 
thesis, which states that all (sufficiently complex) computational models 
are equivalent in the sense that they can compute the same family of 
functions. The class of functions they can compute agrees with our 
intuitive notion of effectively computable functions, that is, functions for 
which there is a finite prescription or program that will lead in a finite 
number of mechanically specified computational steps to the desired 
computational result. 

We shall have in mind throughout this chapter the computer illus- 
trated in Figure 7.1. At each step of the computation, the computer 
reads a symbol from the input tape, changes state according to its state 
transition table, possibly writes something on the work tape or output 
tape, and moves the program read head to the next cell of the program 
read tape. This machine reads the program from right to left only, never 
going back, and therefore the programs form a prefix-free set. No 
program leading to a halting computation can be the prefix of another 
such program. The restriction to prefix-free programs leads immediately 
to a theory of Kolmogorov complexity which is formally analogous to 
information theory. 



7.2 KOLMOGOROV COMPLEXITY: DEFZNZTZONS AND EXAMPLES 147 

Input tape Output tape 
Finite 
state XI x2 x3 l a* 

machine ’ 

Work tape 

Figure 7.1. A Turing machine. 

We can view the Turing machine as a map from a set of finite length 
binary strings to the set of finite or infinite length binary strings. 
In some cases, the computation does not halt, and in such cases the 
value of the function is said to be undefined. The set of functions 
f: (0, l}*+ (0, l}” u (0, I}” computable by Turing machines is called 
the set of partial recursive functions. 

7.2 KOLMOGOROV COMPLEXITY: DEFINITIONS AND 
EXAMPLES 

Let x be a finite length binary string and let Ou be a universal computer. 
Let Z(x) denote the length of the string x. Let Q(p) denote the output of 
the computer % when presented with a program p. 

We define the Kolmogorov (or algorithmic) complexity of a string x as 
the minimal description length of x. 

Definition: The Kolmogorov complexity K,(x) of a string x with respect 
to a universal computer % is defined as 

the minimum length over all programs that print x and halt. Thus K,(x) 
is the shortest description length of x over all descriptions interpreted 
by computer %. 

An important technique for thinking about Kolmogorov complexity is 
the following-if one person can describe a sequence to another person 
in such a manner as to lead unambiguously to a computation of that 
sequence in a finite amount of time, then the number of bits in that 
communication is an upper bound on the Kolmogorov complexity. For 
example, one can say “Print out the first 1,239,875,981,825,931 bits of 
the square root of e.” Allowing 8 bits per character (ASCII), we see that 
the above unambiguous 73 symbol program demonstrates that the 
Kolmogorov complexity of this huge number is no greater than (8)( 73) = 
584 bits. Most numbers of this length have a Kolmogorov complexity of 
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1,239,875,981,825,931 bits. The fact that there is a simple algorithm to 
calculate the square root of e provides the saving in descriptive com- 
plexity. 

In the above definition, we have not mentioned anything about the 
length of x. If we assume that the computer already knows the length of 
x, then we can define the conditional Kolmogorov complexity knowing 
Z(x) as 

This is the shortest description length if the computer % has the length 
of x made available to it. 

It should be noted that K,(xl y) is usually defined as K,(xI y, y*), 
where y* is the shortest program for y. This is to avoid certain slight 
asymmetries in chain rules like K(x, y) = K(x) + K( y lx) = K( y> + K(xI y), 
but we will not use this definition here. 

We first prove some of the basic properties of Kolmogorov complexity 
and then consider various examples. 

Theorem 7.2.1 (Universality of Kolmogorov complexity): If 021 is a 
universal computer, then for any other computer S& 

K&x) 5 K&) + c, (7.3) 

for all strings x E (0, l}*, where the constant cd does not depend on x. 

Proof: Assume that we have a program pge for computer ~4 to print x. 
Thus 4 psa ) = x. We can precede this program by a simulation program 
s, which tells computer % how to simulate computer .sL The computer % 
will then interpret the instructions in the program for ~4, perform the 
corresponding calculations and print out x. The program for 021 is 
p = s&pa and its length is 

(7.4) 

where cd is the length of the simulation program. Hence, 

for all strings x. 0 

The constant cd in the theorem may be very large. For example, & 
may be a large computer with a large number of functions built into the 
system. The computer 011 can be a simple microprocessor. The simulation 
program will contain the details of the implementation of all these 
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functions, in fact, all the software available on the large computer. The 
crucial point is that the length of this simulation program is indepen- 
dent of the length of x, the string to be compressed. For sufficiently long 
X, the length of this simulation program can be neglected, and we can 
discuss Kolmogorov complexity without talking about the constants. 

If .J# and % are both universal, then we have 

I&(x) - K&q < c (7.6) 

for all X. Hence we will drop all mention of 021 in all further definitions. 
We will assume that the unspecified computer 011 is a fixed universal 
computer. 

Theorem 7.2.2 (Conditional complexity is less than the length of the 
sequence): 

K(xlZ(x)) 5 Z(x) + c . (7.7) 

Proof: We can exhibit the string x in the program. The program is 
self-delimiting because Z(x) is provided and the end of the program is 
thus clearly defined. A program for printing x is 

Print the following Z-bit sequence: x1x2.. . x~~~). 

Note that no bits are required 
this program is Z(x) + c. Cl 

to describe I? since 1 is given. The length of 

Without knowledge of the length of the string, we will need an 
additional stop symbol or we can use a self-punctuating scheme like the 
one described in the proof of the next theorem. 

Theorem 7.2.3 (Upper bound on Kolmogorov complexity): 

K(x) 5 K(xIZ(x)) + 2 log Z(x) + c . (7.8) 

Proof: If the computer does not know Z(x), the method of Theorem 
7.2.2 does not apply. We must have some way of informing the computer 
when it has come to the end of the string of bits that describes the 
sequence. We describe a simple but inefficient method which uses a 
sequence 01 as a “comma.” 

Suppose Z(x) = n. To describe Z(x), repeat every bit of the binary 
expansion of n twice; then end the description with a 01 so that the 
computer knows that it has come to the end of the description of n. For 
example, the number 5 (binary 101) will be described as 11001101. This 
description requires 2 [log nl + 2 bits. 
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Thus, inclusion of the binary representation of Z(x) does not add more 
than 2 log Z(x) + c bits to the length of the program, and we have the 
bound in the theorem. Cl 

A more efficient method for describing n is to do so recursively. We 
first specify the number (log n) of bits in the binary representation of n, 
and then specify the actual bits of n. To specify log n, the length of 
the binary representation of n, we can use the inefficient method 
(2 log log n) or the efficient method (log log n + l l 0). If we use the effi- 
cient method at each level, until we have a small number to specify, we 
can describe n in log n + log log n + log log log n + * * . bits, where we 
continue the sum until the last positive term. This sum of iterated 
logarithms is sometimes written log* n. Thus Theorem 7.2.3 can be 
improved to 

K(x) 5 K(x)Z(x)) + log* Z(x) + c . (7.9) 

We now prove that there are very few sequences with low complexity. 

Theorem 7.2.4 (Lower bound on Kolmogorov complexity): The number 
of strings x with complexity K(x) < k satisfies 

I{x E {O,l}*:K(x)< k}l<2”. (7.10) 

Proof: There are not very many short programs. If we list all the 
programs of length < k, we have 

k-l 

A, 0, 1, OO,Ol, 10, 11, . . . , WV’ ; i-1 ,i . . ( . . . 
12 4 2k-1 

and the total number of such programs is 

(7.11) 

(7.12) 

Since each program can produce only one possible output sequence, the 
number of sequences with complexity < k is less than 2”. Cl 

To avoid confusion and to facilitate exposition in the rest of this 
chapter, we shall need to introduce a special notation for the binary 
entropy function 

H,(p) = -plogp-Cl-p)logu--PL (7.13) 

Thus, when we write H,($ CyC1 Xi), we will mean -2, logX, - (l- 
2,) log(I - &) and not the entropy of random variable &. When there 
is no confusion, we shall simply write H(p) for H,(p). 
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Now let us consider various examples of Kolmogorov complexity. The 
complexity will depend on the computer, but only up to an additive 
constant. To be specific, we consider a computer that can accept un- 
ambiguous commands in English (with numbers given in binary nota- 
tion). We will assume the inequality 

1 
-2 nH(jt) ( -;52 , ( > 

nH(i) 
n+l 

(7.14) 

which can be easily proved using Stirling’s formula [llO]. An alternative 
proof can be found in Example 12.1.3. 

Example 7.2.1 (A sequence of n zeroes): If we assume that 
ter knows n, then a short program to print this string is 

the compu- 

Print the specifiednumberof zeroes. 

The length of this program is a constant number of bits. This program 
length does not depend on n. Hence the Kolmogorov complexity of this 
sequence is c, and 

K(OO0 . . . 0172) = c for all n . (7.15) 

Example 7.2.2 (KoZmogorov complexity of 7~): The first n bits of 7~ can 
be calculated using a simple series expression. This program has a small 
constant length, if the computer already knows n. Hence 

K(qTg...qJn)=c. (7.16) 

Example 7.2.3 (Gbtham weather): Suppose we want the computer to 
print out the weather in Gotham for n days. We can write a program 
that contains the entire sequence x = X,X, . . . x,, where xi = 1 indicates 
rain on day i. But this is inefficient, since the weather is quite depen- 
dent. We can devise various coding schemes for the sequence to take the 
dependence into account. A simple one is to find a Markov model to 
approximate the sequence (using the empirical transition probabilities) 
and then code the sequence using the Shannon code for this probability 
distribution. We can describe the empirical Markov transitions in 
O( log n) bits, and then use log & bits to describe x, where p is the 
specified Markov probability. Assuming that the entropy of the weather 
is l/5 bits per day, we can describe the weather for n days using about 
n/5 bits, and hence 

K(Gotham weatherin) = i + O(log n) + c . (7.17) 
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Example 7.2.4 (A repeating sequence of the form 01010101 . . . 01): A 
short program suffices. Simply print the specified number of 01 pairs. 
Hence 

K(010101010.. . 01112) = c . (7.18) 

Example 7.2.6 (A f&&al): The fractal on the cover is part of the 
Mandelbrot set, and is generated by a simple computer program. For 
different points c in the complex plane, one calculates the number of 
iterations of the map z,+~ = zi + c (starting with z0 = 0) needed for lzl to 
cross a particular threshold. The point c is then colored according to the 
number of iterations needed. 

Thus the fractal is an example of an object that looks very complex 
but is essentially very simple. Its Kolmogorov complexity is nearly zero. 

Example 7.2.6 (The Mona Lisa): We can make use of the many 
structures and dependencies in the painting. We can probably compress 
the image by a factor of 3 or so by using some existing easily described 
image compression algorithm. Hence, if n is the number of pixels in the 
image of the Mona Lisa, 

K(Mona LisaIn) i + c . (7.19) 

Example 7.2.7 (An integer n): If the computer knows the number of 
bits in the binary representation of the integer, then we need only 
provide the values of these bits. This program will have length c + log n. 

In general the computer will not know the length of the binary 
representation of the integer. So we must inform the computer in some 
way when the description ends. Using the method to describe integers 
used to derive (7.91, we see that the Kolmogorov complexity of an 
integer is bounded by 

K(n)5 log*n++. (7.20) 

Example 7.2.8 (A sequence of n bits with k ones): Can we compress a 
sequence of n bits with k ones? 

Our first guess is no, since we have a series of bits that must be 
reproduced exactly. But consider the following program: 

Generate, in lexi cographic 
0 f these sequences 

0 rder , all sequences wi 
prin t the ith sequence 

thk ones; 

This program will print out the required sequence. The only variables in 
the program are k (with range (0, 1, . . . , n}) and i (with conditional 
range (z )). The total length of this program is 
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Zlogk log ; ( > 
Z(p)=c+ - + - 

to express k to express i 

zzc+Zlogk+nH, 

(7.21) 

(7.22) 

since ( i ) I ZnHo 0 h 
by (7.14). We have used 2 log k + 2 bits to represent k 

by the inefficient method described in the proof of Theorem 7.2.3. Thus 
if Cy=, xi = It, then 

K&,x2 ,..., x,ln)~nH (7.23) 

We can summarize the last example in the following theorem: 

Theorem 7.2.5: The Kolmogorov complexity of a binary string x is 
bounded by 

K(x,x, . . . x~~n)~nHO(~ :,xi)+210gn+c. (7.24) 

Proof: Use the program described in the last example. Cl 

Remark: Let x E { 0, l}* be the data we wish to compress, and 
consider the program p to be the compressed data. We will have 
succeeded in compressing the data only if Z(p) < Z(x), or 

K(x) < Z(x) . (7.25) 

In general, when the length Z(x) of the sequence x is small, the constants 
that appear in the expressions for the Kolmogorov complexity will 
overwhelm the contributions due to Z(x). Hence the theory is useful 
primarily when Z(x) is very large. In such cases, we can safely neglect 
the constants that do not depend on Z(x). 

7.3 KOLMOGOROV COMPLEXITY AND ENTROPY 

We now consider the relationship between the Kolmogorov complexity of 
a sequence of random variables and its entropy. In general, we show 
that the expected value of the Kolmogorov complexity of a random 
sequence is close to the Shannon entropy. First, we prove that the 
program length8 satisfy the ICraft inequality: 
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Lemma 7.3.1: For any computer %, 

.:.&dt. 2-z(p)s la 
Proof: If the computer halts on any program, it does not look any 

further for input. Hence, there cannot be any other halting program 
with this program as a prefix. Thus the halting programs form a 
prefix-free set, and their lengths satisfy the Kraft inequality (Theorem 
5.2.1). cl 

We now show that AEK(X” 1 n) = H(X) for i.i.d. processes with a finite 
alphabet. 

Theorem 7.3.1 (Relationship of Kolmogorov complexity and en- 
tropy): Let the stochastic process {Xi} be drawn Cd. according to the 
probability mass function fix), x E E, where 2’ is a finite alphabet. Let 
RX")= Ily=, f(xi). Then th ere exists a constant c such that 

H(X)5 i 2 flx”)K(x”[n)(H(X)+ ‘8’10gn + c (7.27) 
n x” n n 

for all n. Thus 

E k K(X”ln)+H(X). (7.28) 

Proof: Consider the lower bound. The allowed programs satisfy the 
prefix property, and thus their lengths satisfy the Kraft inequality. We 
assign to each xn the length of the shortest program p such that 
%(p, n) = XI These shortest programs also satisfy the Kraft inequality. 
We know from the theory of source coding that the expected codeword 
length must be greater than the entropy. Hence 

~flx”>K(x”~n)~H(X,,X, ,..., X,)=nH(X). (7.29) 
xn 

We first prove the upper bound when %’ is binary, i.e., X1, X,, . . . , X, are 
i.i.d. - Bernoulli(B). Using the method of Theorem 7.2.5, we can bound 
the complexity of a binary string by 

K(x,x, . . . xnln)Q2HO(i z1xJ+210gn+e. (7.30) 

Hence 

EK(X,x, . . . Xn~n)~nEH,-,(~ g1Xi)+210gn+c (7.31) 
z 
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~nH~(~~~EXi)+2Logn+c (7.32) 

=nH,(8)+2logn+c, (7.33) 

where (a) follows from Jensen’s inequality and the concavity of the 
entropy. Thus we have proved the upper bound in the theorem for 
binary processes. 

We can use the same technique for the case of a non-binary finite 
alphabet. We first describe the type of the sequence (the empirical 
frequency of occurrence of each of the alphabet symbols as defined in 
Section 12.1) using I8!?I log n bits. Then we describe the index of the 
sequence within the set of all sequences having the same type. The type 
class has less than anHcPx”) elements (where P,,, is the type of the 
sequence xn), and therefore the two-stage description of a string xn has 
length 

K(~~~n)~nH(P~,)+~~)logn+c. (7.34) 

Again, taking the expectation 
binary case, we obtain 

and applying Jensen’s inequality as in the 

EK(Xflln)~nH(X)+IS?Ilogn+c. (7.35) 

Dividing this by n yields the upper bound of the theorem. Cl 

7.4 KOLMOGOROV COMPLEXITY OF INTEGERS 

In the last section, we defined the Kolmogorov complexity of a binary 
string as the length of the shortest program for a universal computer 
that prints out that string. We can extend that definition to define the 
Kolmogorov complexity of an integer to be the Kolmogorov complexity of 
the corresponding binary string. 

Definition: The Kolmogorov complexity of an integer n is defined as 

K(n) = min Z(p). p : %(p)=n 
(7.36) 

The properties of the Kolmogorov complexity of integers are very 
similar to those of the Kolmogorov complexity of bit strings. The 
following properties are immediate consequences of the corresponding 
properties for strings. 

Theorem 7.4.1: For universal computers A?’ and %, 
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Also, since any number can 
have the following theorem. 

K&a) 5 Kd(n> + c, . 

be specified by its binary expansion, we 

(7.37) 

Theorem 7.4.2: 

K(n)5 log*n+cc. (7.38) 

Theorem 7.4.3: There are an infinite number of integers n such that 
K(n) > log n. 

Proof: We know from Lemma 7.3.1 that 

and 

c 
n 2- 

Wn) ( 1 9 (7.39) 

But if K(n) < log n for all n > n,, then 

co 
c 2- K(n) > i pgn = 00, 

(7.40) 

(7.41) 
n=no 

which is a contradiction. 

n=no 

cl 

7.5 ALGORITHMICALLY RANDOM AND INCOMPRESSIBLE 
SEQUENCES 

From the examples in Section 7.2, it is clear that there are some long 
sequences that are simple to describe, like the first million bits of 7~. By 
the same token, there are also large integers that are simple to describe, 
such as 

or (loo!)!. 
We now show that although there are some simple sequences, most 

sequences do not have simple descriptions. Similarly, most integers are 
not simple. Hence if we draw a sequence at random, we are likely to 
draw a complex sequence. The next theorem shows that the probability 
that a sequence can be compressed by more than k bits is no greater 
than 2-! 
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Theorem 7.5.1: Let XI, X2, . . . ,X, be drawn according to a Ber- 
noulli( i ) process. Then 

P(K(X,X, . * .X,In)<n - k)<2-k. 

Proof: 

P(K(X,x, . . .X,ln)<n-k) 

= c 2-” (7.44) 
x1, x2,. . . , x,,:K(zl x2. . . x,ln)<n-k 

= x1,x2,..., I{ x, :K(x,xG, . . .x,In)<n - k}12-” 

< 2n-k 2-” (by Theorem 7.2.4) (7.45) 

=2-Y cl 

Thus most sequences have a complexity close to their length. For 
example, the fraction of sequences of length n that have complexity less 
than n - 5 is less than l/32. This motivates the following definition: 

Definition: A sequence x,, x,, . . . ,x, is said to be algorithmically ran- 
dom if 

K(x1x2...x,In)32. (7.47) 

Note that by the counting argument, there exists, for each n, at least 
one sequence xn such that 

K(xnIn) 2 n . (7.48) 

Definition: We call an infinite string x incompressible if 

(7.49) 

Theorem 7.5.2 (Strong law of large numbers for incompressible se- 
quences): If a string x1x2 . . . is incompressible, then it satisfies the law of 
large numbers in the sense that 

l nx+l - c -. 
n i=l i 2 

(7.50) 

Hence the proportions of O’s and l’s in any incompressible string are 
almost equal. 
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Proof: Let 8, = ; Cr=, xi denote the proportion of l’s in xi, x2, . . . , x,. 
Then using the method of Example 7.2 of Section 7.2, one can write a 
program of length n&,(0,) + 2 log <no, ) + c to print Y. By the incompres- 
sibility assumption, we also have the lower bound, 

n-c,~~(~“ln)cnH,(8,)+2logn+c’. (7.51) 

where c,ln+ 0 and c’ does not depend on n. Thus 

H,(8,Dl- 
2logn +c, +c’ 

. 
n (7.52) 

Inspection of the graph of H,(p) (Figure 7.2) shows that 0, is close to fr 
for large n. Specifically, the above inequality implies that 

where an is chosen so that 

0.8 

0.7 

0.3 

0.2 

(7.53) 

i 0.6 0.7 0.8 0.9 1 

Figure 7.2. H,(p) versus p. 
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which implies that an ~Oasnj03.ThustCxij~asn~03. Cl 

We have now proved that incompressible sequences look random in 
the sense that the proportion of O’s and l’s are almost equal. In general, 
we can show that if a sequence is incompressible, it will satisfy all 
computable statistical tests for randomness. (Otherwise, identification 
of the test that x fails will reduce the descriptive complexity of x, 
yielding a contradiction.) In this sense, the algorithmic test for random- 
ness is the ultimate test, including within it all other computable tests 
for randomness. 

We now prove a related law of large numbers for the Kolmogorov 
complexity of Bernoulli( 6) sequences. The Kolmogorov complexity of a 
sequence of binary random variables drawn i.i.d. according to a 
Bernoulli(B) process is close to the entropy H,,(8). 

Theorem 7.5.3: Let XI, X,, . . . , X, be drawn i.i.d. - Bernoulli@). Then 

;K(XI,Xz,... , Xnln)+ H,(B) in probability. (7.55) 

Proof: Let X, = A C Xi be the proportion of l’s in X1, X,, . . . , X,. 
Then using the method described in (7.23), we have 

K(x,,x , ,  .  l .  ,X,ln)snH,(X,)+2logn+c, (7.56) 

and since by the weak law of large numbers, X,, + 8 in probability, we 
have 

1 
;K(X,,X,,...,X,ln)-H,,(e)ze -*O. 

Conversely, we can bound the number of sequences with complexity 
significantly lower than the entropy. From the AEP, we can divide the 
set of sequences into the typical set and the non-typical set. There are at 
least (1 - •)2~(~~(‘)-~) sequences in the typical set. At most 2n(Ho(e)-c) of 
these typical sequences can have a complexity less than n(H,@) - c). 
The probability that the complexity of the random sequence is less than 
n(H,W - C) is 

NW” In> < n(H,,@) - cl) 
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SE+ c pw 1 
x”~Ar), K(x”ln)<nWO(B)-c) 

(7.58) 

SE+ c 2- nw*(eb-r) (7.59) 
r”~Ay), K(xRln)<nWob9)--c) 

re+2 nvf&J j-c) 2- nvfo(e)--E) (7.60) 

= E + 2-44, (7.61) 

which is arbitrarily small for appropriate choice of E, n and c. Hence 
with high probability, the Kolmogorov complexity of the random se- 
quence is close to the entropy, and we have 

K(x,,X,, . . . ,&Jn> 3 H,(6) in probability. q (7.62) 
n 

7.6 UNIVERSAL PROBABILITY 

Suppose that a computer is fed a random program. Imagine a monkey 
sitting at a keyboard and typing the keys at random. Equivalently, feed 
a series of fair coin flips into a universal Turing machine. In either case, 
most strings will not make sense to the computer. If a person sits at a 
terminal and types keys at random, he will probably get an error 
message, i.e., the computer will print the null string and halt. But with 
a certain probability he will hit on something that makes sense. The 
computer will then print out something meaningful. Will this output 
sequence look random? 

From our earlier discussions, it is clear that most sequences of length 
n have complexity close to n. Since the probability of an input program p 
is 2-“P’, shorter programs are much more probable than longer ones. 
And shorter programs, when they produce long strings, do not produce 
random strings; they produce strings with simply described structure. 

The probability distribution on the output strings is far from uniform. 
Under the computer induced distribution, simple strings are more likely 
than complicated strings of the same length. This motivates us to define 
a universal probability distribution on strings as follows: 

Definition: The universal probability of a string x is 

P,(x) = C 2-lCp’ = Pr(%(p) = x) , (7.63) 
p : %(p)=x 

which is the probability that a program randomly drawn as a sequence 
of fair coin flips pl, pa, . . . will print out the string x. 
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This probability is universal in many senses. We can consider it as the 
probability of observing such a string in nature; the implicit belief is 
that simpler strings are more likely than complicated strings. For 
example, if we wish to describe the laws of physics, we might consider 
the simplest string describing the laws as the most likely. This principle 
is known as “Occam’s Razor”, and has been a general principle guiding 
scientific research for centuries-if there are many explanations consis- 
tent with the observed data, choose the simplest. In our framework, 
Occam’s Razor is equivalent to choosing the shortest program that 
produces a given string. 

This probability mass function is called universal because of the 
following theorem: 

Theorem 7.6.1: For every computer &, 

(7.64) 

for every string x E (0, I)*, where the constant CA depends only on % and 
d. 

Proof: From the discussion of Section 7.2, we recall that for every 
program p’ for d that prints x, there exists a program p for % of length 
not more than I( p’) + cd produced by prefixing a simulation program for 
d. Hence 

P,(x) = c 2-l’%- 
p : Wp)=r 

p, :z,1Cx 2-l(“)-‘& = c;PJx> . Cl (7.65) 

Any sequence drawn according to a computable probability mass 
function on binary strings can be considered to be produced by some 
computer & acting on a random input (via the probability inverse 
transformation acting on a random input). Hence the universal prob- 
ability distribution includes a mixture of all computable probability 
distributions. 

Remark (Bounded likelihood ratio): In particular, Theorem 7.6.1 
guarantees that a likelihood ratio test of the hypothesis that X is drawn 
according to P, versus the hypothesis that it is drawn according to P& 
will have bounded likelihood ratio. If (3% and & are universal, then 
P&x)/P&(x) is bounded away from zero and infinity for all x. This is in 
contrast to other simple hypothesis testing problems (like Bernoulli@ > 
versus Bernoulli(B,)) where the likelihood ratio goes to 0 or 00 as the 
sample size goes to infinity. Apparently P, can never be completely 
rejected as the true distribution of any data drawn according to some 
computable probability distribution. In that sense, we cannot reject the 
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possibility that the universe is the output of monkeys typing at a 
computer. 

In Section 7.11 we will prove that 

P,(x) = P’“’ , (7.66) 

thus showing that K(X) and log & have equal status as universal 
algorithmic complexity measures. 

We will conclude this section with an example of a monkey at a 
typewriter vs. a monkey at a computer keyboard. If the monkey types at 
random on a typewriter, the probability that it types out all the works of 
Shakespeare (assuming the text is 1 million bits long) is 2-1~ooo~ooo. If the 
monkey sits at a computer terminal, however, the probability that it 
types out Shakespeare is now 2-K(Shakespeare) = 2-250*ooo, which though 
extremely small is still exponentially more likely than when the monkey 
sits at a dumb typewriter. 

The example indicates that a random input to a computer is much 
more likely to produce “interesting” outputs than a random input to a 
typewriter. We all know that a computer is an intelligence amplifier. 
Apparently it creates sense from nonsense as well. 

7.7 THE HALTING PROBLEM AND THE NON-COMPUTABILITY 
OF KOLMOGOROV COMPLEXITY 

Consider the following paradoxical statement: 

This statement is false. 

This paradox is sometimes stated in a two-statement form: 

Thenext statement is false. 

The preceding statement is true. 

These paradoxes are versions of what is called the Epimenides Liar 
Paradox, and it illustrates the pitfalls involved in self-reference. In 
1931, Godel used this idea of self-reference to show that any interesting 
system of mathematics is not complete; there are statements in the 
system that are true but which cannot be proved within the system. To 
accomplish this, he translated theorems and proofs into integers, and 
constructed a statement of the above form, which can therefore not be 
proved true or false. 

The halting problem in computer science is very closely connected 
with Godel’s incompleteness theorem. In essence, it states that for any 
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computational model, there is no general algorithm to decide whether a 
program will halt or not (go on forever). Note that it is not a statement 
about any specific program. Quite clearly, there are many programs that 
can be easily shown to halt or go on forever. The halting problem says 
that we cannot answer this question for all programs. The reason for 
this is again the idea of self-reference. 

To a practical person, the halting problem may not be of any immedi- 
ate significance, but it has great theoretical importance as the dividing 
line between things that can be done on a computer (given unbounded 
memory and time) and things that cannot be done at all (such as proving 
all true statements in number theory). Godel’s incompleteness theorem 
is one of the most important mathematical results of this century, and 
its consequences are still being explored. The halting problem is an 
essential example of Godel’s incompleteness theorem. 

One of the consequences of the non-existence of an algorithm for the 
halting problem is the non-computability of Kolmogorov complexity. The 
only way to find the shortest program in general is to try all short 
programs and see which of them can do the job. However, at any time 
some of the short programs may not have halted and there is no 
effective (finite mechanical) way to tell whether they will halt or not and 
what they will print out. Hence, there is no effective way to find the 
shortest program to print a given string. 

The non-computability of Kolmogorov complexity is an example of the 
Berry paradox. The Berry paradox asks for “the shortest number not 
nameable in under ten words.” No number like 1,101,121 can be a 
solution since the defining expression itself is less than ten words long. 
This illustrates the problems with the terms nameable and describable; 
they are too powerful to be used without a strict meaning. If we restrict 
ourselves to the meaning “can be described for printing out on a 
computer,” then we can resolve Berry’s paradox by saying that the 
smallest number not describable in less than ten words exists, but is not 
computable. This so-called “description” is not a program for computing 
the number. E. F. Beckenbach pointed out a similar problem in the 
classification of numbers as dull or interesting; the smallest dull num- 
ber must be interesting. 

As stated at the beginning of the chapter, one does not really 
anticipate that practitioners will find the shortest computer program for 
a given string. The shortest program is not computable, although as 
more and more programs are shown to produce the string, the estimates 
from above of the Kolmogorov complexity converge to the true Kol- 
mogorov complexity. (The problem, of course, is that one may have 
found the shortest program and never know that no shorter program 
exists.) Even though Kolmogorov complexity is not computable, it pro- 
vides a framework within which to consider questions of randomness 
and inference. 
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In this section, we introduce Chaitin’s mystical, magical number a, 
which has some extremely interesting properties. 

Definition: 

a= 
p : %&-dt. 2-1(p) ’ 

(7.67) 

Note that a= Pr(%( p) halts), the probability that the given universal 
computer halts when the input to the computer is a binary string drawn 
according to a Bernoulli( i ) process. 

Since the programs that halt are prefix-free, their lengths satisfy the 
Kraft inequality, and hence the above sum is always between 0 and 1. 
Let fi, = .olwz . . . wn denote the first n bits of a. 

Properties of Cl: 

1. fl is non-computable. There is no effective (finite, mechanical) way 
to check whether arbitrary programs halt (the halting problem), so 
there is no effective way to compute a. 

2. Let is a “Philosopher’s Stone”. Knowing fl to an accuracy of n bits 
will enable us to decide the truth of any provable or finitely 
refutable mathematical theorem that can be written in less than n 
bits. Actually all that this means is that given n bits of IR, there is 
an effective procedure to decide the truth of n-bit theorems; the 
procedure may take an arbitrarily long (but finite) time. Of course, 
without knowing a, it is not possible to check the truth or falsity of 
every theorem by an effective procedure (Godel’s incompleteness 
theorem). 

The basic idea of the procedure using n bits of Q is simple: we 
run all programs until the sum of the masses 2-1’p’ contributed by 
programs that halt equals or exceeds a,, the truncated version of 
n that we are given. Then, since 

n-3$2-“, (7.68) 

we know that the length of all further contributions of the form 
2-“” to n from programs that halt must also be less than 2-Y 
This implies that no program of length In that has not yet halted 
will ever halt, which enables us to decide the halting or non- 
halting of all programs of length 5-n. 

To complete the proof, we must show that it is possible for a 
computer to run all possible programs in “parallel” in such a way 
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that any program that halts will eventually be found to halt. First, 
list all possible programs, starting with the null program, A: 

A, 0, 1, OO,Ol, 10, 11,000,001,010,011,. . . (7.69) 

Then let the computer execute one clock cycle of A for the first 
cycle. In the next cycle, let the computer execute two clock cycles of 
A and two clock cycles of the program 0. In the third cycle, let it 
execute three clock cycles of each of the first three programs, and 
so on. In this way, the computer will eventually run all possible 
programs and run them for longer and longer times, so that if any 
program halts, it will eventually be discovered to halt. The compu- 
ter keeps track of which program is being executed and the cycle 
number so that it can produce a list of all the programs that halt. 
This enables the computer to find any proof of the theorem or a 
counterexample to the theorem if the theorem can be stated in less 
than n bits. Knowledge of fl turns previously unprovable theorems 
into provable theorems. Here R acts as an oracle. 

Though R seems magical in this respect, there are other num- 
bers that carry the same information. For example, if we take the 
list of programs and construct a real number in which the ith bit 
indicates whether program i halts, then this number also can be 
used to decide any finitely refutable question in mathematics. This 
number is very dilute (in information content) because one needs 
approximately 2” bits of this indicator function to decide whether 
an n-bit program halts or not. Given 2” bits, one can tell immedi- 
ately without any computation whether any program of length less 
than n halts or not. However, 0 is the most compact representa- 
tion of this information since it is algorithmically random and 
incompressible. 

What are some of the questions that we can resolve using a? 
Many of the interesting problems in number theory can be stated 
as a search for a counterexample. For example, it is straightfor- 
ward to write a program that searches over the integers x, y, z and 
n and halts only if it finds a counterexample to Fermat’s last 
theorem, which states that 

xn+yn=zn (7.70) 

has no solution in integers for n 2 3. Another example is Gold- 
bath’s conjecture, which states that any even number is a sum of 
two primes. Our program would search through all the even 
numbers starting with 2, check all prime numbers less than it and 
find a decomposition as a sum of two primes, It will halt if it comes 
across an even number that does not have such a decomposition. 
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Knowing whether this program halts is equivalent to knowing the 
truth of Goldbach’s conjecture. 

We can also design a program that searches through all proofs 
and halts only when it finds a proof of the required theorem. This 
program will eventually halt if the theorem has a finite proof. 
Hence knowing n bits of Q we can find the truth or falsity of all 
theorems that have a finite proof or are finitely refutable and 
which can be stated in less than n bits. 

3. Ccz is algorithmically random. 

Theorem 7.8.1: R cannot be compressed 
there exists a constant c such that 

by more than a constant, i.e., 

K(y02...~,)Zv2-c, for all n . (7.71) 

Proof: We know that if we are given n bits of R, we can deter- 
mine whether or not any program of length sn halts. Using 
K(w,o,... O, ) bits, we can calculate n bits of a, and then we can 
generate a list of all programs of length In that halt, together with 
their corresponding outputs. We find the first string x,, that is not on 
this list. The string x0 is then the shortest string with Kolmogorov 
complexity K(rxO) > n. The complexity of this program to print x0 is 
K(LR, ) + c, which must be at least as long as the shortest program for x,,. 
Consequently, 

K(~,)+c~K(x,)>n, (7.72) 

for all n. Thus K(w,o, . . . o,) > n - c, and a cannot be compressed by 
more than a constant. 

7.9 UNIVERSAL GAMBLING 

Suppose a gambler is asked to gamble sequentially on sequences x E 
{ 0, l}*. He has no idea of the origin of the sequence. He is given fair 
odds (a-for-l) on each bit. How should he gamble? 

If he knew the distribution of the elements of the string, then he 
might use proportional betting because of its optimal growth-rate prop- 
erties, as shown in Chapter 6. If he believes that the string occurred 
naturally, then it seems intuitive that simpler strings are more likely 
than complex ones. Hence, if he were to extend the idea of proportional 
betting, he might bet according to the universal probability of the string. 
For reference, note that if the gambler knows the string x in advance, 
then he can increase his wealth by a factor of 2”“’ simply by betting all 
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his wealth each time on the next symbol of x. Let the wealth S(x) 
associated with betting scheme b(x), C b(x) = 1, be given by 

S(x) = 2z’“‘b(x) . (7.73) 

Suppose the gambler bets b(x) = 2-K(y) on a string x. This betting 
strategy can be called universal gambling. We note that the sum of the 
bets 

2 b(x) = 2 2-K’*’ -C - 
x X 

(7.74) 

and he will not have used all his money. For simplicity, let us assume 
that he throws the rest away. For example, the amount of wealth 
resulting from a bet b( 0110) on a sequence x = 0110 is 2”“‘b(x) = 
24b(O110) plus the amount won on all bets b(O1lO.. . > on sequences 
consistent with x. 

Then we have the following theorem: 

Theorem 7.9.1: The logarithm of the amount of money a gambler 
achieves on a sequence using universal gambling plus the complexity of 
the sequence is no smaller than the length of the sequence, or 

log S(x) + K(x) 1 Z(x) . (7.75) 

Remark: This is the counterpart of the gambling conservation 
theorem W* + H = log m from Chapter 6. 

Proof: The proof follows directly from the universal gambling 
scheme, b(x) = 2-“‘, since 

S(x) = c 2zL”“b(x’) 2 2z’x“J-K’“’ , 
X’JX 

(7.76) 

where x ’ 7 x means that x is a prefix of x ‘. Taking logarithms establishes 
the theorem. 0 

The result can be understood in many ways. For sequences with finite 
Kolmogorov complexity, 

&yx) ~2ZwuX) = 2zw-c (7.77) 

for all x. Since 2”“’ is the most that can be won in Z(x) gambles at fair 
odds, this scheme does asymptotically as well as the scheme based 
on knowing the sequence in advance. Thus, for example, if x = 
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7rl7T2.. . 7rn.. . , the digits in the expansion of 7~, then the wealth at time 
n will be S, = S(P) 2 ~2”~” for all n. 

If the string is actually generated by a Bernoulli process with 
parameter p, then 

S(X, . . . 
X,) > ~“-nHo(Xn)-2 logn-c ~ 2 n(l-,,,,-2*-3 

, (7.78) 

which is the same to first order as the rate achieved when the gambler 
knows the distribution in advance, as in Chapter 6. 

From the examples, we see that the universal gambling scheme on a 
random sequence does asymptotically as well as a scheme which uses 
prior knowledge of the true distribution. 

7.10 OCCAM’S RAZOR 

In many areas of scientific research, it is important to choose among 
various explanations of observed data. And after choosing the explana- 
tion, we wish to assign a confidence level to the predictions that ensue 
from the laws that have been deduced. 

For example, Laplace considered the probability that the sun will rise 
again tomorrow, given that it has risen every day in recorded history. 
Laplace’s solution was to assume that the rising of the sun was a 
Bernoulli@) process with unknown parameter 6. He assumed that 8 was 
uniformly distributed on the unit interval. Using the observed data, he 
calculated the posterior probability that the sun will rise again tomo- 
rrow and found that it was 

PK+1 =11x, = 1,x,-, = 1,. . . ,x1 = 1) 

ml+, =1,x,=1,x,-,=1 ,..., x,=1> 
= 

P(x~=1,x,~,=1,..., x1=1> 

I 

1 

8 n+l de 
0 = 
fl 
I 8” do 

0 

n+l =- 
U-2 

(7.79) 

(7.80) 

which he put forward as the probability that the sun will rise on day 
n + 1 given that it has risen on days 1 through n. 

Using the ideas of Kolmogorov complexity and universal probability, 
we can provide an alternative approach to the problem. Under the 
universal probability, let us calculate the probability of seeing a 1 next 
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after having observed n l’s in the sequence so far. The conditional 
probability that the next symbol is a 1 is the ratio of the probability of 
all sequences with initial segment 1” and next bit equal to 1 to the 
probability of all sequences with initial segment 1”. The simplest pro- 
grams carry most of the probability, hence we can approximate the 
probability that the next bit is a 1 with the probability of the program 
that says “Print l’s forever”. Thus 

cp(l”ly)=J4l”)=c>o. (7.81) 
Y 

Estimating the probability that the next bit is 0 is more difficult. Since 
any program that prints 1”O . . . yields a description of n, its length 
should at least be K(n), which for most n is about log n + O(log log n), 
and hence ignoring second-order terms, we have 

2 p(l”Oy)zp(ln0)~2-lo~n x J 
Y n’ 

Hence the conditional probability of observing a 0 next is 

p(op”) = 
p(l”O) 1 

p(l”0) +p(1") = cn (7.83) 

which is similar to the result ~(011") = ll(n + 1) derived by Laplace. 
This type of argument is a special case of “Occam’s Razor”, which is a 

general principle governing scientific research, weighting possible expla- 
nations by their complexity. William of Occam said “Nunquam ponenda 
est pluralitas sine necesitate”, i.e., explanations should not be multip- 
lied beyond necessity [259]. In the end, we choose the simplest explana- 
tion that is consistent with the observed data. For example, it is easier 
to accept the general theory of relativity than it is to accept a correction 
factor of c/r3 to the gravitational law to explain the precession of the 
perihelion of Mercury, since the general theory explains more with 
fewer assumptions than does a “patched” Newtonian theory. 

7.11 KOLMOGOROV COMPLEXITY AND UNIVERSAL 
PROBABILITY 

We now prove an equivalence between Kolmogorov complexity and 
universal probability. We begin by repeating the basic definitions. 

K(x) = min Z(p) . p : Q(p)=x (7.84) 

P,(x)= 2 2-Y 
p : Q(p)=x 

(7.85) 
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Theorem 7.11.1 (Equivalence of K(x) and log & ): There exists a 
constant c, independent of x, such that 

2- K(Jc) 5 P,(x) I c2 -K(x) (7.86) 

for all strings x. Thus the universal probability of a string x is essentially 
determined by its Kolmogorov complexity. 

Remark: This implies that K(x) and log & have equal status as 
universal complexity measures, since 

1 K(x)--c’s logp,o~K(x). (7.87) 

Recall that the complexity defined with respect to two different compu- 
ters Kgl and K,, are essentially equivalent complexity measures if 
lK%(x) - K,,(x)1 is bounded. Theorem 7.11.1 shows that K,(x) and 
log & are essentially equivalent complexity measures. 

Notice the striking similarity between the relationship of K(x) and 
log J&J in Kolmogorov complexity and the relationship of H(X) and 
log &J in information theory. The Shannon code length assignment 
l(x) = [log A1 achieves an average description length H(X), while in 
Kolmogorov complexity theory, log &J is almost equal to K(x). Thus 
log & is the natural notion of descriptive complexity of x in algorithmic 
as well as probabilistic settings. 

The upper bound in (7.87) is obvious from the definitions, but the 
lower bound is more difficult to prove. The result is very surprising, 
since there are an infinite number of programs that print x. From any 
program, it is possible to produce longer programs by padding the 
program with irrelevant instructions. The theorem proves that although 
there are an infinite number of such programs, the universal probability 
is essentially determined by the largest term, which is 2 -? If P%(x) is 
large, then K(x) is small, and vice versa. 

However, there is another way to look at the upper bound that makes 
it less surprising. Consider any computable probability mass function on 
strings p(x). Using this mass function, we can construct a Shannon-Fan0 
code (Section 5.9) for the source, and then describe each string by the 
corresponding codeword, which will have length log P&. Hence for any 
computable distribution, we can construct a description of a string using 
not more than log P& + c bits, which is an upper bound on the Kol- 
mogorov complexity K(x). Even though P%(x) is not a computable prob- 
ability mass function, we are able to finesse the problem using the 
rather involved tree construction procedure described below. 
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Proof (of Theorem 7.11.1): The first inequality is simple. Let p* be 
the shortest program for X. Then 

as we wished to show. 
We can rewrite the second inequality as 

1 
K(x) 5 log pou(x) + c ’ (7.89) 

Our objective in the proof is to find a short program to describe the 
strings that have high P%(x). 

An obvious idea is some kind of Huffman coding based on P%(x), but 
P,(x) cannot be effectively calculated, and hence a procedure using 
Huffman coding is not implementable on a computer. Similarly the 
process using the Shannon-Fan0 code also cannot be implemented. 
However, if we have the Shannon-Fan0 code tree, we can reconstruct 
the string by looking for the corresponding node in the tree. This is the 
basis for the following tree construction procedure. 

To overcome the problem of non-computability of P,(x), we use a 
modified approach, trying to construct a code tree directly. Unlike 
Huffman coding, this approach is not optimal in terms of minimum 
expected codeword length. However, it is good enough for us to derive a 
code for which each codeword for x has a length that is within a constant 
of 1% z&J. 

Before we get into the details of the proof, let us outline our approach. 
We want to construct a code tree in such a way that strings with high 
probability have low depth. Since we cannot calculate the probability of 
a string, we do not know a priori the depth of the string on the tree. 
Instead, we successively assign x to the nodes of the tree, assigning x to 
nodes closer and closer to the root as our estimate of P,(x) improves. We 
want the computer to be able to recreate the tree and use the lowest 
depth node corresponding to the string x to reconstruct the string. 

We now consider the set of programs and their corresponding outputs 
{<p,d}. We try t o assign these pairs to the tree. But we immediately 
come across a problem-there are an infinite number of programs for a 
given string, and we do not have enough nodes of low depth. However, 
as we shall show, if we trim the list of program-output pairs, we will be 
able to define a more manageable list that can be assigned to the tree. 

We now demonstrate the existence of programs for x of length 
1% F&P 

Tree construction procedure. For the universal computer %, we simulate 
all programs using the technique explained in Section 7.8. We list all 
binary programs: 
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A, 0, l,OO, 01, 10, 11,000,001,010,011,. . . (7.90) 

Then let the computer execute one clock cycle of A for the first stage. In 
the next stage, let the computer execute two clock cycles of A and two 
clock cycles of the program 0. In the third stage, let the computer 
execute three clock cycles of each of the first three programs, and so on. 
In this way, the computer will eventually run all possible programs and 
run them for longer and longer times, so that if any program halts, it 
will be discovered to halt eventually. We use this method to produce a 
list of all programs that halt in the order in which they halt together 
with their associated outputs. For each program and its corresponding 
output, ( pK, zK), we calculate nk, which is chosen so that it corresponds 
to the current estimate of P,(x). Specifically, 

nk = 1 1 
log 7 1 R&J ’ 

where 

(7.91) 

(7.92) 

Note that i),(~, > T P,(x) on the subsequence of times k such that xK = x. 
We are now ready to construct a tree. As we add to the list of triplets, 
( pk, xlz, nk), of programs that halt, we map some of them onto nodes of a 
binary tree. For the purposes of the construction, we must ensure that 
all the ni’s corresponding to a particular zk are distinct. To ensure this, 
we remove from the list all triplets that have the same x and n as some 
previous triplet. This will ensure that there is at most one node at each 
level of the tree that corresponds to a given x. 

Let {(&xi, ni):i = 1,2,3,. . . } denote the new list. On the win- 
nowed list, we assign the triplet (pi, 11~;) n;> to the first available node at 
level ni + 1. As soon as a node is assigned, all of its descendants become 
unavailable for assignment. (This keeps the assignment prefix-free.) 

We illustrate this by means of an example: 

(pl,q, n,) = (10111,1110,5), n, = 6 because [%(x1) L 2-““) = 2-’ 
(p2, x,, n,> = (11,W a, n, = 2 because t%(x,) 2 2-“p2’ = 2-2 
(p,, xs, ns) = (0, 1110, 11, n, = 1 because Pw(x8) h 2-“ps’ + 2-““I’ = 2-’ + 2-l 

2 2-l 
(p,, x4, n,) = (1010,1111,4), n,=4becausefi (x ) ZZ~-‘(‘~)= 
(pa, x,, n,) = (101101,1110, l), n, = 1 because @“(x4) ~2~’ + 2-“i42- 6 6 

rp1 6 
22-l 

(Pa, X6, n,) = (100, 1,3), n, = 3 because p%kr,) 2 2-“p6’ = 2-’ 

(7.93) 



7.11 KOLMOGOROV COMPLEXI7-Y AND UNIVERSAL PROBABlLl72’ 173 

We note that the stringx = (1110) appears in positions 1,3 and 5 in the 
list, but n3 = n5. The estimate of the probability P, (1110) has not 
jumped sufficiently for ( p5, x5, n5) to survive the cut. Thus the win- 
nowed list becomes 

(P ;, xi, 7-h;) = (10111,1110,5), 
(p&, n;) = (11, l&2), 
(p;, a& n;) = (0, 1110, I), 
(pi, xi, n;> = (1010,1111,4), 
(p;, $, n;) = (100, 1,3), 

(7.94) 

The assignment of the winnowed list to nodes of the tree is illustrated in 
Figure 7.3. In the example, we are able to find nodes at level nk + 1 to 
which we can assign the triplets. Now we shall prove that there are 
always enough nodes so that the assignment can be completed. We can 
perform the assignment of triplets to nodes if and only if the Kraft 
inequality is satisfied. 

We now drop the primes and deal only with the winnowed list 
illustrated in (7.94). We start with the infinite sum in the Kraft 
inequality corresponding to (7.94) and split it according to the output 
strings: 

m 

22 -(nk+l) = c 2 2-%+1). 
k=l xe{O, l}* k:xk =x 

(7.95) 

Xl = 1110 

111 

Figure 7.3. Assignment of nodes. 
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We then write the inner sum as 

(nk+l) 4-l c 2-k (7.96) 
k :Xk=X 

5232 ~logP,(x)J + 2 ~logP&)l -1 + 2 llogP&)J -2 + . . .) 

(7.97) 

(7.98) 

(7.99) 

-,(x), (7.100) 

where (7.97) is true because there is at most one node at each level that 
prints out a particular X. More precisely, the nk’s on the winnowed list 
for a particular output string x are all different integers. Hence 

c 
k 2- 

(nk+l) (7.101) 

and we can construct a tree with the nodes labeled by the triplets. 
If we are given the tree constructed above, then it is easy to identify a 

given x by the path to the lowest depth node that prints x. Call this node 
i. (By construction, I( log & + 2.) To use this tree in a program to 
print x, we specify p” and ask the computer to execute the above 
simulation of all programs. Then the computer will construct the tree as 
described above, and wait for the particular node p” to be assigned. Since 
the computer executes the same construction as the sender, eventually 
the node p” will be assigned. At this point, the computer will halt and 
print out the x assigned to that node. 

This is an effective (finite, mechanical) procedure for the computer to 
reconstruct x. However, there is no effective procedure to find the lowest 
depth node corresponding to x. All that we have proved is that there is 
an (infinite) tree with a node corresponding to x at level [log &J 1 + 1. 
But this accomplishes our purpose. 

With reference to the example, the description of x = 1110 is the path 
to the node (p3, x,, n3), i.e., 01, and the description of x = 1111 is the 
path 00001. If we wish to describe the string 1110, we ask the computer 
to perform the (simulation) tree construction until node 01 is assigned. 
Then we ask the computer to execute the program corresponding to node 
01, i.e., p3. The output of this program is the desired string, x = 1110. 

The length of the program to reconstruct x is essentially the length of 
the description of the position of the lowest depth node p”-corresponding 
to x in the tree. The length of this program for x is I( p”> + c, where 
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1 1 
Z(p”) 5 1% p,(x) - +l, 1 

and hence the complexity of 31: satisfies 

175 

(7.102) 

(7.103) 

Thus we have proved the theorem. 0 

7.12 THE KOLMOGOROV SUFFICIENT STATISTIC 

Suppose we are given a sample sequence from a Bernoulli(B) process. 
What are the regularities or deviations from randomness in this se- 
quence? One way to address the question is to find the Kolmogorov 
complexity K(P 1 n), which we discover to be roughly nH,(9) + log n + c. 
Since, for 8 # i, this is much less than n, we conclude that xn has 
structure and is not randomly drawn Bernoulli(~). But what is the 
structure? The first attempt to find the structure is to investigate the 
shortest program p * for xn. But the shortest description of p * is about as 
long as p* itself; otherwise, we could further compress the description of 
P, contradicting the minimality of p*. So this attempt is fruitless. 

A hint at a good approach comes from examination of the way in 
which p* describes xn. The program “The sequence has k l’s; of such 
sequences, it is the ith” is optimal to first order for Bernoulli(B) 
sequences. We note that it is a two-stage description, and all of the 
structure of the sequence is captured in the first stage. Moreover, xn is 
maximally complex given the first stage of the description. The first 
stage, the description of k, requires log(n + 1) bits and defines a set 
S = {x E (0, l}” : C xi = k}. The second stage requires log ISl= log( E ) = 
nH,(Z,) = nH,(O) bits and reveals nothing extraordinary about xn. 

We mimic this process for general sequences by looking for a simple 
set S that contains x”. We then follow it with a brute force description of 
xn in S using logIS 1 bits. 

We begin with a definition of the smallest set containing xn that is 
describable in no more than k bits. 

Definition: The Kolrnogorov structure function Kk(xn In) of a binary 
string x E (0, l}” is defined as 

Kk(XnId = p m& loglsl 
Qi,, n)=S 

nnEs~{O,l)n 

(7.104) 
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The set S is the smallest set which can be described with no more 
than k bits and which includes x”. By %(p, n) = S, we mean that 
running the program p with data n on the universal computer % will 
print out the indicator function of the set S. 

Definition: For a given small constant c, let k* be the least k such that 

K,(x”In)+ksK(x”1n)+c. (7.105) 

Let S** be the corresponding set and let p** be the program that prints 
out the indicator function of S**. Then we shall say that p** is a 
Kolmogorov minimal sufficient statistic for xn. 

Consider the programs p* describing sets S* such that 

KK(xnln) + k = K(x”In) . (7.106) 

All the programs p* are “sufficient statistics” in that the complexity of 
xn given S* is maximal. But the minimal sufficient statistic is the 
shortest “sufficient statistic.” 

The equality in the above definition is up to a large constant depend- 
ing on the computer U. Then k* corresponds to the least k for which the 
two-stage description of xn is as good as the best single stage description 
of xn. The second stage of the description merely provides the index of xn 
within the set S**; this takes Kk(xn In) bits if xn is conditionally 
maximally complex given the set S **. Hence the set S** captures all the 
structure within xn. The remaining description of xn within S** is 
essentially the description of the randomness within the string. Hence 
S** or p** is called the Kolmogorov sufficient statistic for xn. 

This is parallel to the definition of a sufhcient statistic in mathemati- 
cal statistics. A statistic 2’ is said to be sufficient for a parameter 8 if the 
distribution of the sample given the sufficient statistic is independent of 
the parameter, i.e., 

e-+ T(xb+x (7.107) 

forms a Markov chain in that order. For the Kolmogorov sticient 
statistic, the program p** is sufficient for the “structure” of the string 
x”; the remainder of the description of xn is essentially independent of 
the “structure” of xn. In particular, xn is maximally complex given S**. 

A typical graph of the structure function is illustrated in Figure 7.4. 
When k = 0, the only set that can be described is the entire set (0, l}“, so 
that the corresponding log set size is n. As we increase k, the size of the 
set drops rapidly until 

k + K,(x”ln> = K(x”ln) . (7.108) 
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Figure 7.4. Kolmogorov sufficient statistic. 

After this, each additional bit of k reduces the set by half, and we 
proceed along the line of slope - 1 until k = K(x” 1 n). For k L K(x” 1 n), the 
smallest set that can be described that includes xn is the singleton {x”}, 
and hence Kk(3tn 1 n) = 0. 

We will now illustrate the concept with a few examples. 

1. Bernoulli(B) sequence. Consider a sample of length n from a Ber- 
noulli sequence with an unknown parameter 8. In this case, the 
best two-stage description consists of giving the number of l’s in 
the sequence first and then giving the index of the given sequence 
in the set of all sequences having the same number of 1’s. This 
two-stage description clearly corresponds to p** and the corre- 
sponding k** = log n. (See Figure 7.5.) Note, however, if 8 is a 
special number like $ or e/?r2, then p** is a description of 6, and 
k**cc . 

n 

log n nH&) + logn 
- 

k 

Figure 7.5. Kolmogorov sufficient statistic for a Bernoulli sequence. 
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I I 
Figure 7.6. Mona Lisa. 

2. Sample from a Markov chain. In the same vein as the preceding 
example, consider a sample from a first-order binary Markov 
chain. In this case again, p** will correspond to describing the 
Markov type of the sequence (the number of occurrences of 00’s, 
01’s, 10’s and 11’s in the sequence); this conveys all the structure 
in the sequence. The remainder of the description will be the index 
of the sequence in the set of all sequences of this Markov type. 
Hence in this case, k* = 2 log n, corresponding to describing two 
elements of the conditional joint type. (The other elements of the 
conditional joint type can be determined from these two.) 

3. Mona Lisa. Consider an image which consists of a gray circle on a 
white background. The circle is not uniformly gray but Bernoulli 
with parameter 8. This is illustrated in Figure 7.6. 

In this case, the best two-stage description is to first describe 
the size and position of the circle and its average gray level and 
then to describe the index of the circle among all the circles with 
the same gray level. In this case, p** corresponds to a program 
that gives the position and size of the circle and the average gray 
level, requiring about log n bits for each quantity. Hence k* = 
3 log n in this case. 

SUMMARY OF CHAPTER 7 

Definition: The Kolmogorov complexity K(x) of a string x is 

K(x) = p :!g=* z(p) ’ (7.109) 

K(xlZ(xN = p : cu~iLh w - (7.110) 

Universality of Kolmogorov complexity: There exists a universal compu- 
ter %, such that for any other computer d, 

K,(x) 5 K,(x) + c, , (7.111) 
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for any string x, where the constant c, does not depend on x. If 011 and & are 
universal, IX,(x) - K,(x)1 I c for all x. 

Upper bound on Kolmogorov complexity: 

K(x 1 Z(x)) 5 Z(x) + c . (7.112) 

K(x) 5 K(xIZ(x)) + 2 log Z(x) + c (7.113) 

Kolmogorov complexity and entropy: If X1, X2, . . . are i.i.d. integer 
valued random variables with entropy H, then there exists a constant c, such 
that for all n, 

(7.114) 

Lower bound on Kolmogorov complexity: There are no more than 2k 
strings x with complexity K(x) < k. If X1, Xz, . . . , X, are drawn according to a 
Bernoulli( i ) process, then 

Pr(K(X,X, . . . X,ln)ln - k)12-k. (7.115) 

Definition: A sequence x,, x,, . . . , x, is said to be incompressible if 
K(x,,x,, . . . ,x,(n)ln+ 1. 

Strong law of large numbers for incompressible sequences: 

mx,, x,, * * * 3 x,) 

n 
,l~~~xi-~. 

i 1 
(7.116) 

Definition: The universal probability of a string x is 

P,(x) = x 2-z’p’ = Pr(%(p) = x) . 
p: Up)=2 

(7.117) 

Universality of P%(x): For every computer S& 

P,(x) 22 c,P&) (7.118) 

for every string x E (0, l}*, where the constant CA depends only on % and J& 

Deflnition: Cn = C, : LplCPj halts 2- l(P) = Pr(%( p) halts) is the probability that the 
computer halts when the input p to the computer is a binary string drawn 
according to a Bernoulli( ‘2) process. 

Properties of 0: 

1. fl is not computable. 
2. 0 is a “Philosopher’s Stone”. 
3. 0 is algorithmically random (incompressible). 
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Equivalence of K(x) and log +: There exists a constant c, independent of 
x, such that 

1 
log P,(x) 

- -K(x) 5 c , (7.119) 

for all strings x. Thus the universal probability of a string x is essentially 
determined by its Kolmogorov complexity. 

Definition: The Kolmogorou structure function K,(x”ln) of a binary string 
x E (0, l}” is defined as 

II (7.120) 

Definition: Let k* be the least k such that 

K,,(x”ln> + k* = KWIn) . (7.121) 

Let S** be the corresponding set and let p ** be the program that prints out 
the indicator function of S**. Then p** is the Kolmogorov minimal suficient 
statistic for 3~. 

PROBLEMS FOR CHAPTER 7 

1. Kolmogorov complexity of two sequences. Let x, y E (0, l}*. Argue that 
K(x, y) I K(n) + K(y) + c. 

2. Complexity of the sum. 
(a) Argue that K(n) I log n + 2 log log n + c. 
(b) Argue that K( n, +n,>~K(n,)+K(n,)+c. 
(c) Give an example in which n, and n, are complex but the sum is 
relatively simple. 

3. Images. Consider an n x n array x of O’s and l’s . Thus x has n2 bits. 

Find the Kolmogorov complexity K(x In) (to first order) if 
(a) x is a horizontal line. 
(b) x is a square. 
(c) x is the union of two lines, each line being vertical or horizontal. 
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4. Monkeys on IZ computer. Suppose a random program is typed into a 
computer. Give a rough estimate of the probability that the computer 
prints the following sequence: 
(a) 0” followed by any arbitrary sequence. 
(b) w~v,... v,, followed by any arbitrary sequence, where ri is the 

ith bit in the expansion of 7~. 
(c) O”1 followed by any arbitrary sequence. 
(d) wloz... o, followed by any arbitrary sequence. 
(e) (Optional) A proof of the 4-color theorem. 

5. Kolmogorov complexity and ternary programs. Suppose that the input 
programs for a universal computer % are sequences in { 0, 1,2} * 
(ternary inputs). Also, suppose 0% prints ternary outputs. Let 
X(x11(=2)) = min,,,, I(rjj=x Z(p). Show that 
(a) K(xnl,)l~+c. 
(b) #{x” E (0, l}*:K(x”ln)< k} < 3! 

6. Do computers reduce entropy? Let X = %(P), where P is a Bernoulli 
(l/2) sequence. Here the binary sequence X is either undefined or is 
in (0, l}*. Let H(X) be the Shannon entropy of X. Argue that 
H(X) = 00. Thus although the computer turns nonsense into sense, the 
output entropy is still infinite. 

7. A law of large numbers. Using ternary inputs and outputs as in 
Problem 5, outline an argument demonstrating that if a sequence 3t is 
algorithmically random, i.e., if K(xIZ(x)) = Z(x), then the proportion of 
O’s, l’s, and 2’s in x must each be near l/3. You may wish to use 
Stirling’s approximation n! = (n/e)“. 

8. huge complexity. Consider two binary subsets A and 23 (of an n x n 
grid). For example, 

Find general upper and lower bounds, in terms of K(A(n) and K(B In), 
for 
(a> KW In). 
(b) K(A u BJn). 
(c) K(A n Bin). 

9. Random program. Suppose that a random program (symbols i.i.d. 
uniform over the symbol set) is fed into the nearest available com- 
puter. 

To our surprise the first n bits of the binary expansion of l/fl are 
printed out. Roughly what would you say the probability is that the 
next output bit will agree with the corresponding bit in the expansion 
of l/ID! 
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10. The face vase illusion. 

(a) What is an upper bound on the complexity of a pattern on an 
m x m grid that has mirror image symmetry about a vertical axis 
through the center of the grid and consists of horizontal line 
segments? 

(b) What is th e complexity K if the image differs in one cell from the 
pattern described above? 

HISTORICAL NOTES 

The original ideas of Kolmogorov complexity were put forth independently and 
almost simultaneously by Kolmogorov [159,158], Solomonoff [256] and Chaitin 
[50]. These ideas were developed further by students of Kolmogorov like Martin- 
Lijf [187], who defined the notion of algorithmically random sequences and 
algorithmic tests for randomness, and by Gacs and Levin [177], who explored the 
ideas of universal probability and its relationship to complexity. A series of 
papers by Chaitin [53,51,52] develop the relationship between Kolmogorov 
complexity and mathematical proofs. C. l? Schnorr studied the universal notion 
of randomness in [234,235,236]. 

The concept of the Kolmogorov structure function was defined by Kolmogorov 
at a talk at the Tallin conference in 1973, but these results were not published. 
V’yugin (2671 has shown that there are some very strange sequences X” that 
reveal their structure arbitrarily slowly in the sense that &(x”(n) = n - k, k < 
K(x”( n). Zurek [293,292,294] addresses the fundamental questions of Maxwell’s 
demon and the second law of thermodynamics by establishing the physical 
consequences of Kolmogorov complexity. 

Rissanen’s minimum description length (MDL) principle is very close in spirit 
to the Kolmogorov sufficient statistic. Rissanen [221,222] finds a low complexity 
model that yields a high likelihood of the data. 

A non-technical introduction to the different measures of complexity can be 
found in the thought-provoking book by Pagels [206]. Additional references to 
work in the area can be found in the paper by Cover, G&s and Gray [70] on 
Kolmogorov’s contributions to information theory and algorithmic complexity. 


