
Chapter 15 

Information Theory and 
the Stock Market 

The duality between the growth rate of wealth in the stock market and 
the entropy rate of the market is striking. We explore this duality in this 
chapter. In particular, we shall find the competitively optimal and 
growth rate optimal portfolio strategies. They are the same, just as the 
Shannon code is optimal both competitively and in expected value in 
data compression. We shall also find the asymptotic doubling rate for an 
ergodic stock market process. 

15.1 THE STOCK MARKET: SOME DEFINITIONS 

A stock market is represented as a vector of stocks X = (X1, X,, . . . , X, 1, 
Xi 1 0, i = 1,2, . . . ) m, where m is the number of stocks and the price 
relative Xi represents the ratio of the price at the end of the day to the 
price at the beginning of the day. So typically Xi is near 1. For example, 
Xi = 1.03 means that the ith stock went up 3% that day. 

Let X - F(x), where F(x) is the joint distribution of the vector of price 
relatives. 

A portfolio b = (b,, b,, . . . , b,), bi I 0, C bi = 1, is an allocation of 
wealth across the stocks. Here bi is the fraction of one’s wealth invested 
in stock i. 

If one uses a portfolio b and the stock vector is X, the wealth relative 
(ratio of the wealth at the end of the day to the wealth at the beginning 
of the day) is S = b’X. 

We wish to maximize S in some sense. But S is a random variable, so 
there is controversy over the choice of the best distribution for S. The 
standard theory of stock market investment is based on the con- 
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460 INFORMATION THEORY AND THE STOCK MARKET 

sideration of the first and second moments of S. The objective is to 
maximize the expected value of S, subject to a constraint on the 
variance. Since it is easy to calculate these moments, the theory is 
simpler than the theory that deals wth the entire distribution of S. 

The mean-variance approach is the basis of the Sharpe-Markowitz 
theory of investment in the stock market and is used by business 
analysts and others. It is illustrated in Figure 15.1. The figure 
illustrates the set of achievable mean-variance pairs using various 
portfolios. The set of portfolios on the boundary of this region 
corresponds to the undominated portfolios: these are the portfolios 
which have the highest mean for a given variance. This boundary is 
called the efficient frontier, and if one is interested only in mean and 
variance, then one should operate along this boundary. 

Normally the theory is simplified with the introduction of a risk-free 
asset, e.g., cash or Treasury bonds, which provide a fixed interest rate 
with variance 0. This stock corresponds to a point on the Y axis in the 
figure. By combining the risk-free asset with various stocks, one obtains 
all points below the tangent from the risk-free asset to the efficient 
frontier. This line now becomes part of the efficient frontier. 

The concept of the efficient frontier also implies that there is a true 
value for a stock corresponding to its risk. This theory of stock prices is 
called the Capital Assets Pricing Model and is used to decide whether 
the market price for a stock is too high or too low. 

Looking at the mean of a random variable gives information about 
the long term behavior of the sum of i.i.d. versions of the random 
variable. But in the stock market, one normally reinvests every day, so 
that the wealth at the end of n days is the product of factors, one for 
each day of the market. The behavior of the product is determined not 
by the expected value but by the expected logarithm. This leads us to 
define the doubling rate as follows: 

Definition: The doubling rate of a stock market portfolio b is defined 
as 

Mean 

Risk -free 
asset 

Set of achievable 
mean -variance pairs 

/ 
Variance 

Figure 15.1. Sharpe-Markowitz theory: Set of achievable mean-variance pairs. 
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W(b, F) = 1 log btx /P(x) = E(log btX) . 

Definition: The optimal doubling rate W*(F) is defined as 

W*(F) = rnbax W(b, F), 

(15.1) 

(15.2) 

where the maximum is over all possible portfolios bi I 0, Ci bi = 1. 

Definition: A portfolio b* that achieves the maximum of W(b, F) is 
called a log-optimal portfolio. 

The definition of doubling rate is justified by the following theorem: 

Theorem 15.1.1: Let X,, X,, . . . ,X, be i.i.d. according to F(x). Let 

So = ~ b*tXi 
i=l 

(15.3) 

be the wealth after n days using the constant rebalanced portfolio b*. 
Then 

;1ogs:+w* with probability 1 . (15.4) 

Proof: 

~ log So = ~ ~~ log b*tXi 
i 

+W* with probability 1, 

(15.5) 

(15.6) 

by the strong law of large numbers. Hence, Sz G 2”w*. q 

We now consider some of the properties of the doubling rate. 

Lemma 151.1: W(b, F) is concave in b and linear in F. W*(F) is convex 
in F. 

Proof: The doubling rate is 

W(b, F) = / log btx dF(x) . (15.7) 

Since the integral is linear in F, so is W(b, F). 
Since 
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lo& Ab, + (I- A)b,)tX 2 A log bt,X + (1 - A) log bt,X 3 (15.8) 

by the concavity of the logarithm, it follows, by taking expectations, that 
W(b, F) is concave in b. 

Finally, to prove the convexity of W*(F) as a function of F, let Fl and 
F, be two distributions on the stock market and let the corresponding 
optimal portfolios be b*(F,) and b*(F,) respectively. Let the log-optimal 
portfolio corresponding to AF, + (1 - A)F, be b*( AF, + (1 - A)F, ). Then 
by linearity of W(b, F) with respect to F, we have 

W*( AF, + (1 - A)F,) = W(b*( AF, + (1 - A)F,), AF, + (1 - A)F,) (15.9) 

= AW(b*( AF, + (1 - A)&), F,) + (I- A) 

x W(b*(AF, + (1 - AIF,), F2) 

5 AW(b*(F,), F,) + (1 - h)W*(b*(&), &> 3 (15.10) 

since b*(F, ) maximizes W(b, Fl ) and b*(Fz 1 mak-nizes W(b, F& 0 

Lemma 15.1.2: The set of log-optimal portfolios forms a convex set. 

Proof: Let bT and bz be any two portfolios in the set of log-optimal 
portfolios. By the previous lemma, the convex combination of bT and bg 
has a doubling rate greater than or equal to the doubling rate of bT or 
bg, and hence the convex combination also achieves the maximum 
doubling rate. Hence the set of portfolios that achieves the maximum is 
convex. q 

In the next section, we will use these properties to characterize the 
log-optimal portfolio. 

15.2 KUHN-TUCKER CHARACTERIZATION OF THE 
LOG-OPTIMAL PORTFOLIO 

The determination b* that achieves W*(F) is a problem of maximization 
of a concave function W(b, F) over a convex set b E B. The maximum 
may lie on the boundary. We can use the standard Kuhn-Tucker 
conditions to characterize the maximum. Instead, we will derive these 
conditions from first principles. 

Theorem 15.2.1: The log-optimal portfolio b* for a stock market X, i.e., 
the portfolio that maximizes the doubling rate W(b, F), satisfies the 
following necessary and sufficient conditions: 
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=l $ bT>O, 
51 if bT=o. (15.11) 

Proof: The doubling rate W(b) = E( log btX) is concave in b, where b 
ranges over the simplex of portfolios. It follows that b* is log-optimum 
iff the directional derivative of W(. ) in the direction from b* to any 
alternative portfolio b is non-positive. Thus, letting b, = (1 - A)b* + Ab 
for OrAS, we have 

d 
x W(b,)(,,,+ 5 0, bE 9 . (15.12) 

These conditions reduce to (15.11) since the one-sided derivative at 
h=O+ of W(b,) is 

-$ E(log(bt,XN h=O+ (1 - A)b*tX + AbtX 
b*tX 

(15.13) 

=E($n;log(l+A($&l))) (15.14) 

(15.15) 

where the interchange of limit and expectation can be justified using the 
dominated convergence theorem [20]. Thus (15.12) reduces to 

(15.16) 

for all b E %. 
If the line segment from b to b* can be extended beyond b* in the 

simplex, then the two-sided derivative at A = 0 of W(b, ) vanishes and 
(15.16) holds with equality. If the line segment from b to b* cannot be 
extended, then we have an inequality in (15.16). 

The Kuhn-Tucker conditions will hold for all portfolios b E 9 if they 
hold for all extreme points of the simplex 3 since E(btXlb*tX) is linear 
in b. Furthermore, the line segment from the jth extreme point (b : bj = 
1, bi = 0, i #j) to b* can be extended beyond b* in the simplex iff bT > 0. 
Thus the Kuhn-Tucker conditions which characterize log-optimum b* 
are equivalent to the following necessary and sufIicient conditions: 

=l if bT>O, q 
~1 if bT=O. (15.17) 

This theorem has a few immediate consequences. One surprising 
result is expressed in the following theorem: 
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Theorem 15.2.2: Let S* = b@X be the random wealth resulting from 
the log-optimal portfolio b *. Let S = btX be the wealth resulting from 
any other portfolio b. Then 

Conversely, if E(SIS*) 5 1 f or all portfolios b, then E log S/S* 5 0 for all 
b. 

Remark: This theorem can be stated more symmetrically as 

S 
Elnp- 

S 
(0, for all S H E;S;;-51, foralls. (15.19) 

Proof: From the previous theorem, it follows that for a log-optimal 
portfolio b* , 

(15.20) 

for all i. Multiplying this equation by bi and summing over i, we have 

5 biE(&)s2 bi=l, 
i=l i=l 

which is equivalent to 

E btX =E ’ 
b*tX Fsl* 

The converse follows from Jensen’s inequality, since 

S S 
ElogFs 1ogE -== logl=O. Cl 

S” - 

(15.21) 

(15.22) 

(15.23) 

Thus expected log ratio optimality is equivalent to expected ratio 
optimality. 

Maximizing the expected logarithm was motivated by the asymptotic 
growth rate. But we have just shown that the log-optimal portfolio, in 
addition to maximizing the asymptotic growth rate, also “maximizes” 
the wealth relative for one day. We shah say more about the short term 
optimality of the log-optimal portfolio when we consider the game 
theoretic optimality of this portfolio. 

Another consequence of the Kuhn-Tucker characterization of the 
log-optimal portfolio is the fact that the expected proportion of wealth in 
each stock under the log-optimal portfolio is unchanged from day to day. 
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Consider the stocks at the end of the first day. The initial allocation of 
wealth is b*. The proportion of the wealth in stock i at the end of the 
day is bTXilb*tX, and the expected value of this proportion is 

E z = bTE --& = bTl= by. (15.24) 

Hence the expected proportion of wealth in stock i at the end of the day 
is the same as the proportion invested in stock i at the beginning of the 
day. 

15.3 ASYMPTOTIC OPTIMALITY OF THE LOG-OPTIMAL 
PORTFOLIO 

In the previous section, we introduced the log-optimal portfolio and 
explained its motivation in terms of the long term behavior of a 
sequence of investments in a repeated independent versions of the stock 
market. In this section, we will expand on this idea and prove that with 
probability 1, the conditionally log-optimal investor will not do any 
worse than any other investor who uses a causal investment strategy. 

We first consider an i.i.d. stock market, i.e., Xi, X,, . . . , X, are i.i.d. 
according to F(x). Let 

S, = fi b:Xi 
i=l 

(15.25) 

be the wealth after n days for an investor who uses portfolio bi on day i. 
Let 

W* = rnp W(b, F) = rnbax E log btX (15.26) 

be the maximal doubling rate and let b* be a portfolio that achieves the 
maximum doubling rate. 

We only allow portfolios that depend causally on the past and are 
independent of the future values of the stock market. 

From the definition of W*, it immediately follows that the log-optimal 
portfolio maximizes the expected log of the final wealth. This is stated in 
the following lemma. 

Lemma 15.3.1: Let SW be the wealth after n days for the investor using 
the log-optimal strategy on i.i.d. stocks, and let S, be the wealth of any 
other investor using a causal portfolio strategy bi. Then 

E log S; =nW*rElogS,. (15.27) 
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Proof: 

max ElogS,= max (15.28) 
b,, b,, . . . , b, b,, b,, . . . , b, 

E ~ 1ogbrXi 
i=l 

n 

= c max 
i=l bi(X,, X2,. . . I Xi-l) 

E logbf(X,,X,, * * * ,Xi-,)Xi 

(15.29) 

= ~ E logb*tXi 
i=l 

=nW*, 

(15.30) 

(15.31) 

and the maximum is achieved by a constant portfolio strategy b*. Cl 

So far, we have proved two simple consequences of the definition of 
log optimal portfolios, i.e., that b* (satisfying (15.11)) maximizes the 
expected log wealth and that the wealth Sz is equal to 2nW* to first 
order in the exponent, with high probability. 

Now we will prove a much stronger result, which shows that SE 
exceeds the wealth (to first order in the exponent) of any other investor 
for almost every sequence of outcomes from the stock market. 

Theorem 15.3.1 (Asymptotic optimality of the log-optimal portfolio): 
Let x1,x,, . . . , X, be a sequence of i.i.d. stock vectors drawn according to 
F(x). Let Sz = II b*tXi, where b* is the log-optimal portfolio, and let 
S, = II bf Xi be the wealth resulting from any other causal portfolio. Then 

1 s 
lim sup ; log $ I 0 with probability 1 . (15.32) 

n-m n 

Proof: From the Kuhn-Tucker conditions, we have 

Hence by Markov’s inequality, we have 

Pr(S, > t,Sz) = Pr 
($ > 

1 
>t, <t. 

n 

Pr 
( 

1 S 1 
;1og$>-$ogt, 5’. 

n > n 

(15.34) 

(15.35) 
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Setting t, = n2 and summing over n, we have 

Then, by the Borel-Cantelli lemma, 

Pr 
( 

S 210gn 
i log $ > - 

n n ’ 
infinitely often 

> 
= 0 . 

(15.36) 

(15.37) 

This implies that for almost every sequence fgom i2nstock market, 
there exists an N such that for all n > N, k log $ < 7. Thus 

S 
lim sup i log -$ 5 0 with probability 1. Cl (15.38) 

n 

The theorem proves that the log-optimal portfolio will do as well or 
better than any other portfolio to first order in the exponent. 

15.4 SIDE INFORMATION AND THE DOUBLING RATE 

We showed in Chapter 6 that side information Y for the horse race X can 
be used to increase the doubling rate by 1(X; Y) in the case of uniform 
odds. We will now extend this result to the stock market. Here, 1(X; Y) 
will be a (possibly unachievable) upper bound on the increase in the 
doubling rate. 

Theorem 15.4.1: Let X,, X2, . . . , X, be drawn i.i.d. - f(x). Let b*, be 
the log-optimal portfolio corresponding to f(x) and let bz be the log- 
optimal portfolio corresponding to sonae other density g(x). Then the 
increase in doubling rate by using b: instead of bz is bounded by 

AW= W(b$ F) - W(b,*, F)sD( f lig) (15.39) 

Proof: We have 

AW= f(x) log bftx - 
I 

f(x) log bfx (15.40) 

= flx)log 2 
I 8 

= fix) log bftx g(x) f(x) 
bfx fix) g(x) 

(15.41) 

(15.42) 
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= 
I 

f(x) log 2 g$ + D( fllg) 
8 

(2 log 
I 

f(x) 2 gs + NfJlg) 
g 

= log g(x)b*tx 
I 

b:fx +D(fllg) 
8 

(15.43) 

(15.44) 

(15.45) 

(b 1 
zs lwl+D(fllg) (15.46) 

=wlM (15.47) 

where (a) follows from Jensen’s inequality and (b) follows from the 
Kuhn-Tucker conditions and the fact that b$ is log-optimal for g. 0 

Theorem 15.4.2: The increase AW in doubling rate due to side 
information Y is bounded by 

AW I 1(X; Y) . (15.48) 

Proof: Given side information Y = y, the log-optimal investor uses 
the conditional log-optimal portfolio for the conditional distribution 
f(xlY = y). He rice, conditional on Y = y, we have, from Theorem 15.4.1, 

Averaging this over possible values of Y, we have 

AWI f(xly=Y)lW f<x> 
flxly = y’ dx dy 

(15.49) 

(15.50) 

(15.51) 

(15.52) 

(15.53) 

Hence the increase in doubling rate is bounded above by the mutual 
information between the side information Y and the stock market X. Cl 
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15.5 INVESTMENT IN STATIONARY MARKETS 

We now extend some of the results of the previous section from i.i.d. 
markets to time-dependent market processes. 

LetX,,X, ,..., X, ,... be a vector-valued stochastic process. We will 
consider investment strategies that depend on the past values of the 
market in a causal fashion, i.e., bi may depend on X,, X,, . . . , Xi -1. Let 

s, = fj b:(X,,X,, . . . ,X&Xi - 
i=l 

(15.54) 

Our objective is to maximize E log S, over all such causal portfolio 
strategies {b&a)}. Now 

b,, b,, . . . , b, 
max ElogS,=i max log b:Xi 

i=l bf(X,, X2,. . . , Xi-l) 
(15.55) 

= i logb*tX. i L 9 
i=l 

(15.56) 

where bT is the log-optimal portfolio for the conditional distribution of 
Xi given the past values of the stock market, i.e., bT(x,, x,, . . . , Xi_ 1) is 
the portfolio that achieves the conditional maximum, which is denoted 
bY 

maxbE[logb"X,I(X,,X,,... ,&-1)=(X1,X2,* a. ,xi-l)] 

= W*(Xi(Xl, X,, . . . ) Xi-l) (15.57) 

Taking the expectation over the past, we write 

w*(x,Ix,, x,9 * * . ,Ximl)= E mbm E[logb*tXiI(X,,X,, - * * ,&-,)I 

(15.58) 

as the conditional optimal doubling rate, where the maximum is over all 
portfolio-valued functions b defined on X,, . . . , Xi_1. Thus the highest 
expected log return is achieved by using the conditional log-optimal 
portfolio at each stage. Let 

W*(X1,X2,...,Xn)= max 
b,, b,, . . . , b, 

E log S, (15.59) 

where the maximum is over all causal portfolio strategies. Then since 
log SE = Cy!, log b:tXi, we have the following chain rule for W*: 

w*q, x,, ’ . ’ ) X,)= i W*(XiIX,>x,j *  l l ,Xi-l) 0 (15.60) 
i=l 
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This chain rule is formally the same as the chain rule for H. In some 
ways, W is the dual of H. In particular, conditioning reduces H but 
increases W. 

Definition: The doubling rate Wz is defined as 

if the limit exists 

Theorem 15.5.1: 
is equal to 

w* 
= 

m 

lim W”(X,,X,, .  .  .9X,) 

n-m n 

and is undefined otherwise. 

(15.61) 

For a stationary market, the doubling rate exists and 

w: = hiI W”(XnJX1,X,, . . . ,X,-J. (15.62) 

Proof: By stationarity, W*(X, IX,, X,, . . . , X, WI) is non-decreasing in 
n. Hence it must have a limit, possibly 00. Since 

W”(X,,X~, . . . ,X,) 1 n 
= ; Fl w*(x,)x,,x,, . . . ,Xivl>, (15.63) 

n I. 

it follows by the theorem of the Cesaro mean that the left hand side has 
the same limit as the limit of the terms on the right hand side. 

Hence Wz exists and 

w* lim w*(x,,x,9***2xn) = co = lim W*(Xn(X,,X2,. . . ,Xn-J . 0 
n 

(15.64) 

We can now extend the asymptotic optimality property to stationary 
markets. We have the following theorem. 

Theorem 15.5.2: Let Sz be the wealth resulting from a series of 
conditionally log-optimal investments in a stationary stock market (Xi>. 
Let S, be the wealth resulting from any other causal portfolio strategy. 
Then 

1 sn limsup;log-+O. (15.65) 
n-+w n 

Proof: From the Kuhn-Tucker conditions for the constrained maxi- 
mization, we have 

sn 
Ep’ (15.66) 
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which follows from repeated application of the conditional version of the 
Kuhn-Tucker conditions, at each stage conditioning on all the previous 
outcomes. The rest of the proof is identical to the proof for the i.i.d. stock 
market and will not be repeated. Cl 

For a stationary ergodic market, we can also extend the asymptotic 
equipartition property to prove the following theorem. 

Theorem 15.5.3 (AEP for the stock market): Let X1,X,, . . . ,X, be a 
stationary ergodic vector-valued stochastic process. Let 23; be the wealth 
at time n for the conditionally log-optimal strategy, where 

SE = fi bft(X1,Xz, . . . . X&Xi. 
i=l 

(15.67) 

Then 

1 
; 1ogs;+w* with probability 1 . (15.68) 

Proofi The proof involves a modification of the sandwich argument 
that is used to prove the AEP in Section 15.7. The details of the proof 
are omitted. El 

15.6 COMPETITIVE OPTIMALITY OF THE LOG-OPTIMAL 
PORTFOLIO 

We now ask whether the log-optimal portfolio outperforms alternative 
portfolios at a given finite time n. As a direct consequence of the 
Kuhn-Tucker conditions, we have 

SIl Ep, (15.69) 

and hence by Markov’s inequality, 

Pr(S,>ts~)+. (15.70) 

This result is similar to the result derived in Chapter 5 for the 
competitive optimality of Shannon codes. 

By considering examples, it can be seen that it is not possible to get a 
better bound on the probability that S, > Sz. Consider a stock market 
with two stocks and two possible outcomes, 
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Km= 
(1, 1 + E) with probability I- E , 
(1 0) with probability E . (15.71) 

? 

In this market, the log-optimal portfolio invests all the wealth in the 
first stock. (It is easy to verify b = (1,O) satisfies the Kuhn-Tucker 
conditions.) However, an investor who puts all his wealth in the second 
stock earns more money with probability 1 - E. Hence, we cannot prove 
that with high probability the log-optimal investor will do better than 
any other investor. 

The problem with trying to prove that the log-optimal investor does 
best with a probability of at least one half is that there exist examples 
like the one above, where it is possible to beat the log optimal investor 
by a small amount most of the time. We can get around this by adding 
an additional fair randomization, which has the effect of reducing the 
effect of small differences in the wealth. 

Theorem 15.6.1 (Competitive optimality): Let S* be the wealth at the 
end of one period of investment in a stock market X with the log-optimal 
portfolio, and let S be the wealth induced by any other portfolio. Let U* 
be a random variable independent of X uniformly distributed on [0,2], 
and let V be any other random variable independent of X and U with 
V?OandEV=l. Then 

Ku1 
1 

Pr(VS 2 u*s*) -C - 
-2. 

(15.72) 

Remark: Here U and V correspond to initial “fair” randomizations of 
the initial wealth. This exchange of initial wealth S, = 1 for “fair” 
wealth U can be achieved in practice by placing a fair bet. 

Proof: We have 

Pr(VS L U*S*) = Pr &u*) (15.73) 

=Pr(WrU*), (15.74) 

where W = 3 is a non-negative valued random variable with mean 

EW=E(V)E($l, (15.75) 
n 

by the independence of V from X and the Kuhn-Tucker conditions. 
Let F be the distribution function of W. Then since U* is uniform on 

Km, 
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1 = Pr(W>w)2dw 

I 
2 = l-F(w) dw 

0 2 

5 l-F(w) dw 
2 

=;EW (15.80) 

1 
5- 

2’ 

using the easily proved fact (by integrating by parts) that 

EW= lo?1 - F(w)) dw (15.82) 

for a positive random variable W. Hence we have 

1 
Pr(VS 1 U*S*) = Pr(W 2 U*) 5 2 . Cl 
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(15.76) 

(15.77) 

(15.78) 

(15.79) 

(15.81) 

(15.83) 

This theorem provides a short term justification for the use of the 
log-optimal portfolio. If the investor’s only objective is to be ahead of his 
opponent at the end of the day in the stock market, and if fair 
randomization is allowed, then the above theorem says that the investor 
should exchange his wealth for a uniform [0,2] wealth and then invest 
using the log-optimal portfolio. This is the game theoretic solution to the 
problem of gambling competitively in the stock market. 

Finally, to conclude our discussion of the stock market, we consider 
the example of the horse race once again. The horse race is a special 
case of the stock market, in which there are m stocks corresponding to 
the m horses in the race. At the end of the race, the value of the stock 
for horse i is either 0 or oi, the value of the odds for horse i. Thus X is 
non-zero only in the component corresponding to the winning horse. 

In this case, the log-optimal portfolio is proportional betting, i.e. 
bT = pi, and in the case of uniform fair odds 

W*=logm-H(X). (15.84) 

When we have a sequence of correlated horse races, then the optimal 
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portfolio is conditional proportional betting and the asymptotic doubling 
rate is 

W”=logm-H(Z), (15.85) 

where H(Z) = lim kH(x,, X2, . . . , X,), if the limit exists. Then Theorem 
155.3 asserts that 

s; &pm . (15.86) 

15.7 THE SHANNON-McMILLAN-BREIMAN THEOREM 

The AEP for ergodic processes has come to be known as the Shannon- 
McMillan-Breiman theorem. In Chapter 3, we proved the AEP for i.i.d. 
sources. In this section, we offer a proof of the theorem for a general 
ergodic source. We avoid some of the technical details by using a 
“sandwich” argument, but this section is technically more involved than 
the rest of the book. 

In a sense, an ergodic source is the most general dependent source for 
which the strong law of large numbers holds. The technical definition 
requires some ideas from probability theory. To be precise, an ergodic 
source is defined on a probability space (a, 9, P), where 9 is a sigma- 
algebra of subsets of fi and P is a probability measure. A random 
variable X is defined as a function X(U), o E 42, on the probability space. 
We also have a transformation 2’ : Ln+ a, which plays the role of a time 
shift. We will say that the transformation is stationary if p(TA) = F(A), 
for all A E 9. The transformation is called ergo&c if every set A such 
that TA = A, a.e., satisfies p(A) = 0 or 1. If T is stationary and ergodic, 
we say that the process defined by X,(w) = X(T”o) is stationary and 
ergodic. For a stationary ergodic source with a finite expected value, 
Birkhoffs ergodic theorem states that 

XdP with probability 1. (15.87) 

Thus the law of large numbers holds for ergodic processes. 
We wish to use the ergodic theorem to conclude that 

1 
-~lOg~(x,,X,,...,xn-l)= 12 = - L y log p(X Ixi-ll i 0 

i 0 

+ ;iIJJ EL-log p<x,Ixp)l. 
(15.88) 

But the stochastic sequence p<x,IXb-‘) is not ergodic. However, the 
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closely related quantities p(X, IX: 1: ) and p(X, IXrJ ) are ergodic and have 
expectations easily identified as entropy rates. We plan to sandwich 
p(X, IX;-‘, b e t ween these two more tractable processes. 

We define 

Hk =E{-logp(X,(x&,,x&,, . . . ,X,>} (15.89) 

= E{ -log p(x,Ix-,, x-2, . * * ,X-J , (15.90) 

where the last equation follows from stationarity. Recall that the 
entropy rate is given by 

H = p+~ H” (15.91) 

1 
n-1 

= lim - 2 Hk. 
n+m n kEO 

(15.92) 

Of course, Hk \ H by stationarity and the fact that conditioning does 
not increase entropy. It will be crucial that Hk \ H = H”, where 

H”=E{-logp(X,IX,,X-,, . . . )} . (15.93) 

The proof that H” = H involves exchanging expectation and limit. 
The main idea in the proof goes back to the idea of (conditional) 

proportional gambling. A gambler with the knowledge of the k past will 
have a growth rate of wealth 1 - H”, while a gambler with a knowledge 
of the infinite past will have a growth rate of wealth of 1 - H”. We don’t 
know the wealth growth rate of a gambler with growing knowledge of 
the past Xi, but it is certainly sandwiched between 1 - H” and 1 - H”. 
But Hk \ H = H”. Thus the sandwich closes and the growth rate must 
be 1-H. 

We will prove the theorem based on lemmas that will follow the proof. 

Theorem 15.7.1 (AEP: The Shannon-McMillan-Breiman theorem): 
If H is the entropy rate of a finite-valued stationary ergodic process (X, >, 
then 

1 
- ; log p(x,, - * - , Xnel)+ H, with probability 1 (15.94) 

ProoE We argue that the sequence of random variables - A log 
p(X”,-’ ) is asymptotically sandwiched between the upper bound Hk and 
the lower bound H” for all k 2 0. The AEP will follow since Hk + H” and 
H”=H. 

The kth order Markov approximation to the probability is defined for 
n2k as 
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n-l 

pk(x",-l) =p(x",-') &Fk p<X,lxf~:) ' 

From Lemma 157.3, we have 

1 
lim sup ; log 

pkwyl) (o 
n-m p(x;-l) - ’ 

(15.95) 

(15.96) 

which we rewrite, taking the existence of the limit A log pk(Xi) into 
account (Lemma 15.7.1), as 

1 
lim sup i log 

1 1 
5 iiin ; log 

1 =Hk 
n-m p(x”o-l) pka”o-l 1 

for k = 1,2,. . . . Also, from Lemma 15.7.3, we have 

which we 

1 
lim sup i log 

p(x”,-l) <o 
n-- p(x”,-‘IxI:) - ’ 

rewrite as 

1 1 
lim inf ; log - 

1 
2 lim ; log 

1 

p(x:-‘) p(x;-l(xI:) = H” 

(15.97) 

(15.98) 

(15.99) 

from the definition of H” in Lemma 15.7.1. 
Putting together (15.97) and (15.99), we have 

H”sliminf- 1 1 n ogp(X”,-l)rlimsup 
1 

- n logp(X”,-‘)sH’ for all k. 

(15.100) 

But, by Lemma 15.7.2, Hk+ H” = H. Consequently, 

1 
lim-ilogp(X”,)=H. Cl (15.101) 

We will now prove the lemmas that were used in the main proof. The 
first lemma uses the ergodic theorem. 

Lemma 15.7.1 (Markov approximations): For a stationary ergodic sto- 
chastic process (X, >, 

- i log pk(X;-‘)+ Hk with probability 1 , (15.102) 

- ; log p(X”,-lIXT;)+ H” with probability 1 , (15.103) 
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Proof: Functions Y, = f(x”-J of ergodic processes {Xi} are ergodic 
processes. Thus p<x, [X:1: ) and log p(X, IX,+ Xnm2, . . . , ) are also er- 
godic processes, and 

1 - n log pk(xyl) = - i log p<x”,-‘> - - ; ;I log p(xJXfI:) (15.104) 
I 

+ O+Hk, with probability 1 (15.105) 

by the ergodic theorem. Similarly, by the ergodic theorem, 

-; logp(x”,-l~x_,,x~, ,... )= - ; ~~~logP(x,Ix:I:,x~~,x-I. . . .I 
i 

(15.106) 

+ H” with probability 1 . (15.107) 

Lemma 15.7.2 (No gap): H’ \ H” and H = H”. 

Proof: We know that for stationary processes, H’ \ H, so it remains 
to show that H’ L H”, thus yielding H = H”. Levy’s martingale 
convergence theorem for conditional probabilities asserts that 

p(x,lXT~)+p(x,lXI~) with probability 1 (15.108) 

for all x, E 2. Since %’ is finite and p log p is bounded and continuous in 
p for all 0 5 p 5 1, the bounded convergence theorem allows interchange 
of expectation and limit, yielding 

lim Hk = lim E{ - 2 
k+m k-m “0 ELF 

p(3colx~:) log p&IXI:)} 

= E{ -.;% p(x,lxr:) log P(x,lX3 
0 

=H”. 

ThusHk\H=Hm. Cl 

Lemma 15.7.3 (Sandwich): 

1 
lim sup 6 log 

pkw”,-l> (o 
n-m ptx”,-9 - ’ 

lim sup i log 
ptx;-‘1 

p(x”,-lIxIJ 5 O * 

(15.109) 

(15.110) 

(15.111) 

(15.112) 

(15.113) 
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Proof: Let A be the support set of p(Xi-‘). Then 

= c pk(x;f-l) 
le;-kA 

= p’(A) (15.116) 

51. (15.117) 

Similarly, let &XI:) denote the support set of p( l 1x1:). Then, we have 

pa;-9 
p(X;-lIxr:> 

(15.120) 

Il. (15.121) 

By Markov’s inequality and (15.117), we have 

pr Pk(G1) >t <1_ 
1 pcx”,-‘) - n I - t, 

or 

Pr 
1 

1 
; log 

pk(x”,-l) 1 
I 

1 

p(X;-l) - n 
=---log& ‘r. 

n 

(15.122) 

(15.123) 

Letting t, = n2 and noting that C~=l $ < 00, we see by the Borel-Cantelli 
lemma that the event 

1 
1 ; log pk(x”,-l) 1 

2 - log t, 
p(x”,-‘> n I 

occurs only finitely often with probability 1. Thus 

(15.124) 

1 
lim sup ; log 

p?x”,-l) 

p(x”,-‘) 
5 0 with probability 1 . (15.125) 
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Applying the same arguments using Markov’s inequality to (l&121), we 
obtain 

1 
lim sup ; log 

pw;-9 

p(x;-‘Ix::) 
5 0 with probability 1, 

(15.126) 

proving the lemma. q 

The arguments used in the proof can be extended to prove the AEP 
for the stock market (Theorem 15.5.3). 

SUMMARY OF C-R 16 

Doubling rate: The doubling rate of a stock market portfolio b with respect 
to a distribution F(x) is defined as 

W(b, F) = 1 log btx &i’(x) = E(log btX) . (15.127) 

Log-optimal portfolio: The optimal doubling rate is 

W*(F) = rnb”” W(b, F) (15.128) 

The portfolio b* that achieves the maximum of W(b, F) is called the Zog- 
optimal portfolio. 

Concavity: W(b, F) is concave in b and linear in F. W*(F) is convex in F. 

Optimality conditions: The portfolio b* is log-optimal if and only if 

(15.129) 

Expected ratio optimality: Letting SE = II:= 1 b*lXi, S, = II:==, bfXi, we 
have 

sn 
EP* (15.130) 

Growth rate (AEP): 

i log Sz + W “(8’) with probability 1 . (15.131) 

Asymptotic optimality: 

lim sup A log 
S 
6 I 0 with probability 1. (15.132) n- n n 
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Wrong information: Believing g when f is true loses 

AW = W(bT, F) - W(b;, F) 5 D( f llg) . 

Side information Y: 

AW I 1(X, Y) . 

Chain rule: 

W*(X,IX,,X,, . . . ,Ximl) = max 
bi(X~,XZ,. . . 

E log b:X, 
,X"i-1) 

w*m,,x,, - * * , x,>= i w*(x,Ixl,x,, . *. pxi-l) * 
i=l 

Doubling rate for a stationary market: 

w*-lirn w*(xl,x,, . . . ,X,) 
m- n 

Competitive optimal@ of log-optimal portfolios: 

1 
Pr(VS 2 U”S”) -= - 

-2. 

(15.133) 

(15.134) 

(15.135) 

(15.136) 

(15.137) 

(15.138) 

AEP: If {Xi} is stationary ergodic, then 

- ; logp(X,,X,, . . . ,X,)+H(%) with probability 1 . (15.139) 

PROBLEMS FOR CHAPTER 15 

1. Doubling rate. Let 

x = 
(1, a>, with probability l/2 
(1,1/a), with probability l/2 ’ 

where a > 1. This vector X represents a stock market vector of cash vs. 
a hot stock. Let 

W(b, F) = E log btX, 

and 

W* = my W(b, F) 

be the doubling rate. 
(a) Find the log optimal portfolio b*. 

(b) Find the doubling rate W*. 
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(c) Find the asymptotic behavior of 

2. 

3. 

S, = fi bt Xi 
i=l 

for all b. 

Side information. Suppose, in the previous problem, that 

‘= 1 
1, if(X,,X,)~(l, 11, 
0, if (X,,X,>l<l, 1). 

Let the portfolio b depend on Y. Find the new doubling rate W** and 
verify that AW = W** - W* satisfies 

Stock market. Consider a stock market vector 

X=(&,X,) * 

Suppose XI = 2 with probability 1. 
(a) Find necessary and sufficient conditions on the distribution of 

stock Xz such that the log optimal portfolio b* invests all the 
wealth in stock X,, i.e., b* = (0,l). 

(b) Argue that the doubling rate satisfies W* L 1. 

HISTORICAL NOTES 

There is an extensive literature on the mean-variance approach to investment in 
the stock market. A good introduction is the book by Sharpe [250]. Log optimal 
portfolios were introduced by Kelly [150] and Latane [172] and generalized by 
Breiman [45]. See Samuelson [225,226] for a criticism of log-optimal investment. 
An adaptive portfolio counterpart to universal data compression is given in 
Cover [66]. 

The proof of the competitive optimality of the log-optimal portfolio is due to 
Bell and Cover [20,21]. The AEP for the stock market and the asymptotic 
optimality of log-optimal investment are given in Algoet and Cover [9]. The AEP 
for ergodic processes was proved in full generality by Barron [18] and Orey [202]. 
The sandwich proof for the AEP is based on Algoet and Cover [B]. 


