
Chapter 16 

Inequalities in Information 
Theorv 

This chapter summarizes and reorganizes the inequalities found 
throughout this book. A number of new inequalities on the entropy rates 
of subsets and the relationship of entropy and 3” norms are also 
developed, The intimate relationship between Fisher information and 
entropy is explored, culminating in a common proof of the entropy power 
inequality and the Brunn-Minkowski inequality. We also explore the 
parallels between the inequalities in information theory and inequalities 
in other branches of mathematics such as matrix theory and probability 
theory. 

16.1 BASIC INEQUALITIES OF INFORMATION THEORY 

Many of the basic inequalities of information theory follow directly from 
convexity. 

Definition: A function f is said to be convex if 

f(Ax, + (1 - h)x,)l A/G,) + (1 - wo,) (16.1) 

for all 0 5 A 5 1 and all x1 and xta in the convex domain of r 

Theorem 16.1.1 (Theorem 2.6.2: Jensen’s inequality): If f is convex, 
then 

f(EX) 5 Ef(X) . (16.2) 
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Lemma 16.1.1: The function logx is a concave function and x logx is a 
convex function of x, for 0 52 x < 00. 

Theorem 16.1.2 (Theorem 2.7.1: Log sum inequality): For positive 
numbers, a,, a2,. . . , a,, and b,, b,, . . . , b,,, 

(16.3) 

with equality iff ; = constant. 

We have the following properties 

Definition: The entropy H(X) of 
defined by 

- 

of entropy from Section 2.1. 

a discrete random variable X is 

H(X) = - 2 p(x) log p(x) * 
XE.EL” 

(16.4) 

Theorem 16.1.3 (Lemma 2.1.1, Theorem 2.6.4: Entropy bound): 

Oef(X)s logl8q (16.5) 

Theorem 16.1.4 (Theorem 2.6.5: Conditioning reduces entropy): For 
any two random variables X and Y, 

H(xl Y) 5 mm , (16.6) 

with equality iff X and Y are independent. 

Theorem 16.1.5 (Theorem 2.5.1 with Theorem 2.6.6: Chain rule): 

with equality iff XI, X,, . . . , X, are independent. 

Theorem 16.1.6 (Theorem 2.7.3): H(p) is a corxave function of p. 

We now state some properties of relative entropy and mutual 
information (Section 2.3). 

Definition: The relative entropy or K&back Leibler distance be- 
tween two probability mass functions p(x) and q(x) on the same set E is 
defined by 
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(16.8) 

Definition: The mutual information between two random variables X 
and Y is defined by 

Pk Y) &X;Y)= c c P(z,Y)logp(x)p(y) =Wp(x, Y)llP(dP(YN * 
xElyE9 

(16.9) 

The following basic information inequality can be used to prove many 
of the other inequalities in this chapter. 

Theorem 16.1.7 (Theorem 2.6.3: Information inequality): For any two 
probability mass functions p and g, 

D(plJq) 22 0 (16.10) 

with equality iff p(x) = q(x) for all x E 85 

Corollary: For any two random variables, X and Y, 

Itx; Y) = &Ax, y>ll p(dp( yN 2 0 (16.11) 

with equality iff p(x, y) = p(x)p( y), i.e., X and Y are independent. 

Theorem 16.1.8 (Theorem 2.7.2: Convexity of relative entropy): 
D( p II q) is convex in the pair ( p, q). 

Theorem 16.1.9 (Section 2.4 ): 

I(x; Y) = H(X) - H(XIY) , 

I(X, Y) = H(Y) - H(YIX), 

(16.12) 

(16.13) 

ICE, Y) = H(X) + H(Y) - H(X, Y) , (16.14) 

I(X, X) = H(X) . (16.15) 

Theorem 16.1.10 (Section 2.9): For a Markov chain: 

1. Relative entropy D( p,, II &) decreases with time. 
2. Relative entropy D( p,II p) between a distribution and the 

stationary distribution decreases with time. 
3. Entropy H(X,) increases if the stationary distribution is uniform. 
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4. The conditional entropy H(X,IX,) increases with time for a 
stationary Markov chain. 

Theorem 16.1.11 (Problem 34, Chapter 2): Let X1,X2,. . . ,X, be i.i.d. 
- p(x). Let pn be the empirical probability mass function of 
XI, X2, . . . , X,. Then 

(16.16) 

16.2 DIFFERENTIAL ENTROPY 

We now review some of the basic properties of differential entropy 
(Section 9.1). 

Definition: The differential entropy h(X,, X,, . . . , XJ, sometimes 
written h( f ), is defined by 

h(X,,X, ,..., X,)= - f(x)logf(x)dx. (16.17) 

The differential entropy for many common densities is given in Table 
16.1 (taken from Lazo and Rathie [2651). 

Defitition: The relative entropy between probability densities f and g 
is 

DC f II g) = j- f(x) log ( fM/gbd) dx . (16.18) 

The properties of the continuous version of relative entropy are 
identical to the discrete version. Differential entropy, on the other hand, 
has some properties that differ from those of discrete entropy. For 
example, differential entropy may be negative. 

We now restate some of the theorems that continue to hold for 
differential entropy. 

Theorem 16.2.1 (Theorem 9.6.1: Conditioning reduces entropy): 
h(XIY) 5 h(X), with equality iff X and Y are independent. 

Theorem 16.2.2 (Theorem 9.62: Chain rule): 

h(X,,X,, . . . , X,) = i h(XilXi-l,Xi-2,. . . ,X1)5 i h(X,) 
i=l i=l 

(16.19) 

with equality iff XI, X2, . . . , X, are independent. 
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TABLE 16.1. Table of differential entropies. All entropies are in nats. r(z) = 

St e-V-l dt. I,+(Z) = $ K’(z). y = Euler’s constant = 0.57721566. . . . B( p, q) = r( p)r( q)/ 
r(p + 9). 

Distribution I 

Name Density Entropy (in nats) 

f(w) = 
xP-l(l - g-1 

w PI 4) ’ 
Beta ln B( r-b 9) - ( p - 1) 

x I@(p)- $0 + @I 
05x51, p, q>o 34 - m/w - d p + 911 

Cauchy 

f(x) = ; & fl 

--oo<x<ag>O 

f(x) = 2 
x2 

2”‘*d l-+2/2) x 
n-1 e -202 

’ 
Chi ln or(n/2) 

75-- 
- Ly 1(1(g)+ 4 

x>o, n>O 

Chi-squared 

f(x) = 1 
2”‘*a”r(n/2) 

x;-‘e-&, 

In 2u*r(n /2) 
I x>O,n>O I -(l-g)+(g)+ 4 

Erlang 

Exponential 

F 

P" f(x) = (n xn-le-Px , 

x,p>o,n>o 

f(x) = f  e-f, x,h>O 

(1 - n)+(n) + In y  + n 

l+lnh 

In 2 B(y, 5) 
+ (1 - T)@( ?) 

Gamma 

-- 
a-1 ; 

f(x) = g&y/ 
1nW.W) + (1 - 4 

x, a, P ’ 0 x VW + a 

Laplace 
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TABLE 16.1. (Continued) 

Distribution 

Name Density Entropy (in nuts) 
--x 

f(x) = (1 +ee-')2' 

Logistic 2 
--oo<X<~ 

f(x) - l e-(*“;T2, 
UXVZ 

Lognormal m + $ ln(27rea2) 
x > 0, --cc,<m<~,a>O 

f(x) = & g X2e-Pr*, 

Maxwell-Boltzmann $ln$+r-4 

x,p>o 

(x-CL)* -- 
f(x) = & e 2a2 , 

Normal $ ln(27rea2) 
-~<x,p<~,u>O 

2p; a-l -px* ln r(z) 
f(x) = I x e I --sLp@(f)+sj 

Generalized normal 
2pf 

x, Qf, p ’ 0 

Pareto f(x) = $5, x?k>O,a>O lng+l+i 

f(x) = + e-$, 

Rayleigh l+ln$+g 
x,b>O 

n+l -- 

f(x) = (1 + x2/n) 2 

lhiB($, 5) ' 

Student-t y  e(y) - e(g) 

-m<x<m,n>O +lntiB(b, F) 

2x 

f( I={ 
-z- OSxra 

Triangular X - acxll 2(1- x) i -1n2 1-a 

Uniform f(x)= *, asxq ln(P - 4 

f(x, = c xc-le-:, 
a 

Weilbull lq!b+1,~+1 

x, c, a! > 0 
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Lemma 16.2.1: If X and Y are independent, then h(X + Y) zz h(X). 

Proof: h(X + Y) 2 h(X + YI Y) = h(XIY) = h(X). 0 

Theorem 16.2.3 (Theorem 9.6.5): Let the random vector X E R” have 
zero mean and covariance K= EXXt, i.e., Kii = EXiXj, 1 I i, j I n. Then 

h(X) 5 f log(2ne)“IKI , (16.20) 

with equality iff X - N(0, K). 

16.3 BOUNDS ON ENTROPY AND RELATIVE ENTROPY 

In this section, we revisit some of the bounds on the entropy function. 
The most useful is Fano’s inequality, which is used to bound away from 
zero the probability of error of the best decoder for a communication 
channel at rates above capacity. 

Theorem 16.3.1 (Theorem 2.11 .l: Fano’s inequality): Given two 
random variables X and Y, let P, be the probability of error in the best 
estimator of X given Y. Then 

H(p,)+p,log((~l-1)1H(X(Y). 

Consequently, if H(XIY) > 0, then P, > 0. 

(16.21) 

Theorem 16.3.2 (& bound on ent 
mass functions on % such that 

IIP - Sill = c 
XEZ 

Then 

bopy): Let p and q be two probability 

p(x) - qWI( f - (16.22) 

Imp) - H(q)1 5 - lip - all1 log ‘pl,p”l . (16.23) 

Proof: Consider the function fct) = - t log t shown in Figure 16.1. It 
can be verified by differentiation that the function fc.> is concave. Also 
fl0) = f(1) = 0. Hence the function is positive between 0 and 1. 

Consider the chord of the function from t to t + v (where Y I 4). The 
maximum absolute slope of the chord is at either end (when t = 0 or 
l- v). Hence for Ostrl- v, we have 

If@>-fct + 41 5 max{ fcv), fll - v)} = - v  log v  . (16.24) 

Let r(x) = I p(x) - q(x)(. Then 
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I I I I I I I I 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t 

Figure 16.1. The function fit) = -t log t. 

5 c I< -p(x) log p(x) + a(x) log a( (16.26) 
XEP 

5 c - &)log r(x) (16.27) 
XEX 

5 - IIP - QIII 1% IIP - 4111 + lb - ~111l~gl~l ’ (16.30) 

where (16.27) follows from (16.24). q 

We can use the concept of difTerentia1 entropy to obtain a bound on 
the entropy of a distribution. 

Theorem 16.3.3 (Theorem 9.7. I ): 

H(P,,P,,...)S2 1 log(27re) i p *2 (i=l it - (zl iPi)‘+ A) * (16.31) 

Finally, relative entropy is stronger than the JTI norm in the following 
sense: 

Lemma 16.3.1 (Lemma 126.1): 

(16.32) 
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16.4 INEQUALITIES FOR TYPES 

The method of types is a powerful tool for proving results in large 
deviation theory and error exponents. We repeat the basic theorems: 

Theorem 16.4.1 (Theorem 12.1.1): The number of types with de- 
nominator n is bounded by 

I9+(n + ljz’. (16.33) 

Theorem 16.4.2 (Theorem 12.1.2): If X1,X,, . . . ,Xn are drawn i.i.d. 
according to Q(x), then the probability of xn depends only on its type and 
is given by 

Q”(x”) = 2- nWPzn)+D(Px~~~Q)) . (16.34) 

Theorem 16.4.3 (Theorem 12.1.3: Size of a type class T(P)): For any 
type PE pa, 

1 
(n + 1)‘“’ 2 

nH(P) 5 1 T(p)1 I znHtP) . (16.35) 

Theorem 16.4.4 (Theorem 12.1.4 ): For any P E 9n and any dis- 
tribution Q, the probability of the type class T(P) under Q” is 2-nD(p”Q) to 
first order in the exponent. More precisely, 

(n +‘l)lZ1 
2-nD(PitQ) ( Q”(T(p)) I 2-nD(PIIQ) . (16.36) 

16.5 ENTROPY RATES OF SUBSETS 

We now generalize the chain rule for differential entropy. The chain rule 
provides a bound on the entropy rate of a collection of-random variables 
in terms of the entropy of each random variable: 

M&,X,, . . . , X,>s i h(XJ. 
i=l 

(16.37) 

We extend this to show that the entropy per element of a subset of a set 
of random variables decreases as the size of the set increases. This is not 
true for each subset but is true on the average over subsets, as 
expressed in the following theorem. 

Definition: Let (XI, X2, . . . , X,) have a density, and for every S c 
w, ’ * a, n}, denote by X(S) the subset {Xi : i E S). Let, 
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1 WC3 N hen) = - 2 - 
k 

(;) S:ISI=k k ’ 
(16.38) 

Here ht’ is the average entropy in bits per symbol of a randomly drawn 
k-element subset of {X1,X,, . . . ,X,}. 

The following theorem by Han [130] says that the average entropy 
decreases monotonically in the size of the subset. 

Theorem 16.8.1: 

(n) h:“’ 2 h;’ 2. . .I h, . (16.39) 

Proof: We first prove the last inequality, h’,“’ 5 hrJl. We write 

M&,X,, . . -3 Xn)=h(Xl,X,,...,X,-,)+h(X,IX,,X,,...,Xn-~), 

h(X,,X,, . . . , x,>=h(x,,x, ,..., X,-g,&) 

+ h(X,-&,X,, l .  .  , x , - , , x , )  

sh(X,,X,,..., X,-,,X,> + M&-&,X,, . . . ,Xn-2), . 

M&X,, . . . , x,)sh(X,,X,,...,X,)+h(X,). 

Adding these n inequalities and using the chain rule, we obtain 

nh(X,,X,, . . . , X,&i h(X,,X,,... 
,  q-1, xi+19 l *  l ,  Xn) 

i=l 

+ h(X,,X,, . . . ,x,1 (16.40) 

or 

(16.41) 

which is the desired result ht’ 5 hz?, . 
We now prove that hp’ 5 hf’ll for all k 5 n by first conditioning on a 

k-element subset, and then taking a uniform choice over its (k - l>- 
element subsets. For each k-element subset, hr’ I hf!,, and hence the 
inequality remains true after taking the expectation over all k-element 
subsets chosen uniformly from the n elements. 0 
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Theorem 16.5.2: Let r > 0, and define 

h) l rh WC3 1) 
tk =- c 

(2) S:ISl=k 
e k . 

Then 

Proof: Starting from (16.41) in the previous 
both sides by r, exponentiate and then apply 
geometric mean inequality to obtain 

(16.42) 

(16.43) 

theorem, we multiply 
the arithmetic mean 

1 rh(X1, X2, . . . ,X,) 
rh(Xl,Xz,. .a ,Xi-~tXi+I*...~xn) 

en n-l 
(16.44) 

1” rh(Xl,Xz,. . a sXi-l,Xi+l, * * * TX,) 

I- c e n-l 

n i=l 
for all r 2 0 , 

(16.45) 

which is equivalent to tr ’ 5 t r? 1. Now we use the same arguments as in 
the previous theorem, taking an average over all subsets to prove the 
result that for all k 5 n, tr’ 5 trjl. Cl 

Definition: The average conditional entropy rate per element for all 
subsets of size k is the average of the above quantities for k-element 
subsets of { 1,2, . . . , n}, i.e., 

(n)- l 
gk c WCS $W” N 

(3 S:IS(=k k ’ 
(16.46) 

Here g&S’) is the entropy per element of the set S conditional on the 
elements of the set SC. When the size of the set S increases, one can 
expect a greater dependence among the elements of the set S, which 
explains Theorem 16.5.1. 

In the case of the conditional entropy per element, as k increases, the 
size of the conditioning set SC decreases and the entropy of the set S 
increases. The increase in entropy per element due to the decrease in 
conditioning dominates the decrease due to additional dependence 
among the elements, as can be seen from the following theorem due to 
Han [130]. Note that the conditional entropy ordering in the following 
theorem is the reverse of the unconditional entropy ordering in Theorem 
16.51. 

Theorem 16.5.3: 

(16.47) 
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Proof: The proof proceeds on lines very similar to the proof of the 
theorem for the unconditional entropy per element for a random subset. 
We first prove that gt’ I gr!, and then use this to prove the rest of the 
inequalities. 

By the chain rule, the entropy of a collection of random variables is 
less than the sum of the entropies, i.e., 

M&,X,, . . . , X,>s i h(Xi). 
i=l 

Subtracting both sides of this inequality from nh(X,, X2, . 
have 

(n - l)h(X,,X,, . . . ,X,)2 &hlX,,X,, . . . ,x,> - W&N 
i=l 

Dividing this by n(n - l), we obtain 

. . 

(16.48) 

SW, we 

(16.49) 

(16.50) 

h(X,,&, . . . ,x,1 1 n h(X,,X,, . . . ,Xi-l,Xi+l,. . . ,XnlXi) L- 
n c n i=l n-l 9 

(16.51) 

which is equivalent to gr’ 2 gr? 1. 
We now prove that gt’ 1 grJl for all k 5 n by first conditioning on a 

k-element subset, and then taking a uniform choice over its (k - l)- 
element subsets. For each k-element subset, gf’ 2 gf?, , and hence the 
inequality remains true after taking the expectation over all k-element 
subsets chosen uniformly from the n elements. 0 

Theorem 16.5.4: Let 

Then 

(16.52) 

(16.53) 

Proof: The theorem follows from the identity 1(X(S); X(S” 1) = 
h(X(S)) - h(X(S))X(S”>> and Theorems 16.5.1 and 16.5.3. Cl 
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16.6 ENTROPY AND FISHER INFORMATION 

The differential entropy of a random variable is a measure of its 
descriptive complexity. The Fisher information is a measure of the 
minimum error in estimating a parameter of a distribution. In this 
section, we will derive a relationship between these two fundamental 
quantities and use this to derive the entropy power inequality. 

Let X be any random variable with density f(x). We introduce a 
location parameter 8 and write the density in a parametric form as 
f(;lc - 0). The Fisher information (Section 12.11) with respect to 8 is 
given by 

Jcs,=l~fcx-e)[~lnfcr-e,12dr. --bD 

In this case, differentiation with respect to x is equivalent to 
differentiation with respect to 8. So we can write the Fisher information 

(16.55) 

which we can rewrite as 

(16.56) 

We will call this the Fisher information of the distribution of X. Notice 
that, like entropy, it is a function of the density. 

The importance of Fisher information is illustrated in the following 
theorem: 

Theorem 16.6.1 (Theorem 12.11 .l: Cram&-Rao inequality): The mean 
squared error of any unbiased estimator T(X) of the parameter 8 is lower 
bounded by the reciprocal of the Fisher information, i.e., 

1 
var(T)z JO . (16.57) 

We now prove a fundamental relationship between the differential 
entropy and the Fisher information: 

Theorem 16.6.2 (de BruQn’s identity: Entropy and Fisher infor- 
mation): Let X be any random variable with a finite variance with a 
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density f(x). Let 2 be an independent normally distributed random 
variable with zero mean and unit variance. Then 

$h,(X+V?Z)=;J(X+tiZ), (16.58) 

where h, is the differential entropy to base e. In particular, if the limit 
exists as t + 0, 

$ h,(X + tiZ) = i J(X). 
t=o 2 

Proof: Let Yt = X + tiZ. Then the density of Yi is 

gt( y) = 1-1 fix) & e 
-- 

(y2t*)2 o?x . 

Then 

(16.59) 

(16.60) 

(16.62) 

We also calculate 

(16.63) 

= (16.64) 

and 

a2 
m 

1 a 
2 gt(y) = --m fix> - - - - 
dY I [ 

Y-xeA2z$ ~ 

6Zay t I (16.65) 

1 

00 
1 = 

[ 
1 -Qg + (y -x)2 

-Jx)m -p - t2 e 

-Qg I dx . (16 66) . 
Thus 

; g,(y) = 1 < g,(y) * 
2 aY 

(16.67) 
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We will use this relationship to calculate the derivative of the entropy 
of Yt , where the entropy is given by 

h,W,) = -1-1 gt(y) In g(y) dy . (16.68) 

Differentiating, we obtain 

(16.69) 

gt(Y) ln g,(y) dYrn (16.70) 

The first term is zero since s gt( y) dy = 1. The second term can be 
integrated by parts to obtain 

(16.71) 

The second term in (16.71) is %J(Y,). So the proof will be complete if we 
show that the first term in (16.71) is zero. We can rewrite the first term 
as 

a&) 
aY 

[2vmln I/Z31 . (16.72) 

The square of the first factor integrates to the Fisher information, and 
hence must be bounded as y+ + 00. The second factor goes to zero since 
3t:lnx+O as x-0 and g,(y)+0 as y+ fm. Hence the first term in 
(16.71) goes to 0 at both limits and the theorem is proved. 

In the proof, we have exchanged integration and differentiation in 
(16.61), (16.63), (16.65) and (16.69). Strict justification of these ex- 
changes requires the application of the bounded convergence and mean 
value theorems; the details can be found in Barron [Ml. q 

This theorem can be used to prove the entropy power inequality, 
which gives a lower bound on the entropy of a sum of independent 
random variables. 

Theorem 16.6.3: (Entropy power inequality): If X and Y are inde- 
pendent random n-vectors with densities, then 

zh(x+Y) 
2” 

zh(X, zh(Y, 
12” +2” . (16.73) 
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We outline the basic steps in the proof due to Stam [257] and 
Blachman [34]. The next section contains a different proof. 

Stam’s proof of the entropy power inequality is based on a 
perturbation argument. Let X, =X+mZ1, Y,=Y+mZ,, where 
2, and 2, are independent N(0, 1) random variables. Then the entropy 
power inequality reduces to showing that s( 0) I 1, where we define 

s(t) = 
2 2hWt) + 22MY,) 

2 OA(X,+Y,) l 

(16.74) 

If fit>+ 00 and g(t) + 00 as t + 00, then it is easy to show that s(w) = 1. If, 
in addition, s’(t) ~0 for t 10, this implies that s(O) 5 1. The proof of the 
fact that s’(t) I 0 involves a clever choice of the functions fit> and g(t), 
an application of Theorem 16.6.2 and the use of a convolution inequality 
for Fisher information, 

1 1 1 
J(x+Y)~Jo+J(Y)’ 

(16.75) 

The entropy power inequality can be extended to the vector case by 
induction. The details can be found in papers by Stam [257] and 
Blachman [34]. 

16.7 THE ENTROPY POWER INEQUALITY AND THE 
BRUNN-MINKOWSKI INEQUALITY 

The entropy power inequality provides a lower bound on the differential 
entropy of a sum of two independent random vectors in terms of their 
individual differential entropies. In this section, we restate and outline 
a new proof of the entropy power inequality. We also show how the 
entropy power inequality and the Brunn-Minkowski inequality are 
related by means of a common proof. 

We can rewrite the entropy power inequality in a form that 
emphasizes its relationship to the normal distribution. Let X and Y be 
two independent random variables with densities, and let X’ and Y’ be 
independent normals with the same entropy as X and Y, respectively. 
Then 22h’X’ = 22hCX” = (2ve)& and similarly 22h’Y’ = (2ge)&. Hence 
the entropy power inequality can be rewritten as 

2 2h(X+Y) 2 (2re)(ai, + a;,) = 22h(X’+Y’) , 

since X’ and Y’ are independent. Thus we have a new statement of the 
entropy power inequality: 
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Theorem 16.7.1 (Restatement of the entropy power inequality): For two 
independent random variables X and Y, 

h(X+Y)zh(X’+Y’), (16.77) 

where X’ and Y’ are independent normal random variables with h(X’) = 
h(X) and h(Y’) = h(Y). 

This form of the entropy power inequality bears a striking 
resemblance to the Brunn-Minkowski inequality, which bounds the 
volume of set sums. 

Definition: The set sum A + B of two sets A, B C %n is defined as the 
set {x+y:x~A,y~B}. 

Example 16.7.1: The set sum of two spheres of radius 1 at the origin is 
a sphere of radius 2 at the origin. 

Theorem 16.7.2 (Brunn-Minkowski inequality): The volume of the set 
sum of two sets A and B is greater than the volume of the set sum of two 
spheres A’ and B’ with the same volumes as A and B, respectively, i.e., 

V(A+ B,&f(A’+ B’), (16.78) 

where A’ and B’ are spheres with V(A’) = V(A) and V(B’) = V(B). 

The similarity between the two theorems was pointed out in [%I. A 
common proof was found by Dembo [87] and Lieb, starting from a 
strengthened version of Young’s inequality. The same proof can be used 
to prove a range of inequalities which includes the entropy power 
inequality and the Brunn-Minkowski inequality as special cases. We 
will begin with a few definitions. 

Definition: Let f andg 
convolution of the two 
defined by 

be two densities over % n and let f * g denote the 
densities. Let the 2Zr norm of the density be 

Ilf II, = (1 f’(x) dz)l” - (16.79) 

Lemma 16.7.1 (Strengthened Young’s inequality): For any two den- 
sities f and g, 

IIf*J4lr~ (~)n’211fllpll~ll, 9 (16.80) 
P 
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where 111 -=- +--1 
r P Q 

c_pp 1+l-1 
P 19 

p/p' 
p j7- ' 

(16.81) 

(16.82) 

Proof: The proof of this inequality is rather involved; it can be found 
in [19] and [43]. Cl 

We define a generalization of the entropy: 

Definition: The Renyi entropy h,(X) of order r is defined as 

h,(X) = & log[l f’B)dr] (16.83) 

for 0 < r < 00, r # 1. If we take the limit as r + 1, we obtain the Shannon 
entropy function 

h(X) = h,(X) = - f(x) log f(x) o?x . (16.84) 

If we take the limit as r+ 0, we obtain the logarithm of the volume of 
the support set, 

h,(X) = log( /L{X : fix> > 0)) . (16.85) 

Thus the zeroth order Renyi entropy gives the measure of the support 
set of the density f. We now define the equivalent of the entropy power 
for Renyi entropies. 

Definition: The Renyi entropy power V,(X) of order r is defined as 

I 
[J f’(x) dx$ :, O<rlcfJ,r#l,j+~=l 

V,(X) = exp[ %(X)1, r= 1 (16.86) 

p((x: flx,>o),i, r= 0 

Theorem 16.7.3: For two independent random variables X and Y and 
any Orr<mand any OrAll, we have 
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Proof: If we take the logarithm of Young’s inequality (16.80), we 
obtain 

; log V,(X + Y) 2 I logv,(X) + -+ logV,(Y) 
P’ 

+ log c, - log CP - log c4 . (16.88) 

Setting A = r’lp’ and using (16.81), we have 1 - A = f/q’, p = + 
and q = r+(LAXl-r). Thus (16.88) becomes 

log V,(X + Y) 1 A log V,(X) + (1 - A) log v,(Y) + clogr- log r’ 

-$logp+< 
P 

logp’$ log Q + ; logq’ (16.89) 

= A logV,(X) + (1 - A) logv,(Y) + :logr-(A+l-A)logr’ 

-blogp+Alogp’-$logq+(l-A)logq’ (16.90) 

1 
=AlogV,(X)+(l-A)logV,(Y)+ xlogr+H(A) 

_ r + A(1 - r) 
r-l 

log r 
r+A(l-r) 

_ r + (1 - A)(1 - r) 
1% 

r 
r-l r + (1 - A)(1 - r) 

(16.91) 

(16.92) 

= AlogV,(X) + (1 - A)logV,(Y) + H(A) 

+ EM r+;y,r’)-H(&)], (16.93) 

where the details of the algebra for the last step are omitted. 0 

The Brunn-Minkowski inequality and the entropy power inequality 
can then be obtained as special cases of this theorem. 
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l The entropy power inequality. Taking the limit of (16.87) as r --) 1 
and setting 

v,w> 
* = V,(X) + V,(Y) ’ 

(16.94) 

we obtain 

v,<x + Y) 2 V,(X) + V&Y>, (16.95) 

which is the entropy power inequality. 
l The Brunn-Minkowski inequality. Similarly letting r--, 0 and 

choosing 

(16.96) 

we obtain 

Now let A be the support set of X and B be the support set of Y. 
Then A + B is the support set of X + Y, and (16.97) reduces to 

[pFL(A + B)ll’” 1 Ep(A)ll’n + [p(B)l”” , (16.98) 

which is the Brunn-Minkowski inequality. 

The general theorem unifies the entropy power inequality and the 
Brunn-Minkowski inequality, and also introduces a continuum of new 
inequalities that lie between the entropy power inequality and the 
Brunn-Minkowski inequality. This furthers strengthens the analogy 
between entropy power and volume. 

16.8 INEQUALITIES FOR DETERMINANTS 

Throughout the remainder of this chapter, we will assume that K is a 
non-negative definite symmetric n x n matrix. Let IX1 denote the 
determinant of K. 

We first prove a result due to Ky Fan [1031. 

Theorem 16.8.1: 1oglKl is concaue. 
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Proof: Let XI and X, be normally distributed n-vectors, Xi - 
N( 0, Ki ), i = 1,2. Let the random variable 8 have the distribution 

Pr{e=l}=h, (16.99) 

Pr{8=2}=1-A, (16.100) 

for some 0 5 A 5 1. Let t?, X, and X, be independent and let Z = X,. Then 
2 has covariance Kz = AK, + (1 - A& However, Z will not be 
multivariate normal. By first using Theorem 16.2.3, followed by 
Theorem 16.2.1, we have 

(16.101) 

1 h(ZJB) (16.102) 

= Ai log(2re)“IKlI + (1 - A); log(2?re)“&( . 

(AK, +(l-A)K,IrIK,IAIKzll-A, (16.103) 

as desired. Cl 

We now give Hadamard’s inequality using an information theoretic 
proof [68]. 

Theorem 16.8.2 (HMZUmUrd): IKI 5 II Kii, with equality iff Kij = 0, 
i #j. 

Proof: Let X - NO, K). Then 

f log(2~e)“IK]= h(X,,X,, . . . , xp&>5C h(Xi)= i i lOg27TelKiiI, 
i=l 

(16.104) 

with equality iff XI, X,, . . . , X, are independent, i.e., Kii = 0, i Z j. Cl 

We now prove a generalization of Hadamard’s inequality due to Szasz 
[196]. Let K(i,, i,, . . . , k i ) be the k x k principal submatrix of K formed 
by the rows and columns with indices i,, i,, . . . , i,. 

Theorem 16.8.3 (&a&: If K is a positive definite n x n matrix and Pk 
denotes the product of the determinants of all the principal k-rowed 
minors of K, i.e., 
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Pk = rI IK( i,, i,, . . . , iJ , (16.105) 
l~il<i2<..‘<i~zssn 

then 

p, 2 p;‘(“i’ ) 2 p;‘(T) 2 . . . 1 p, . (16.106) 

Proof: Let X - N(0, K). Then the theorem follows directly from 
Theorem 16.5.1, with the identification hr’ = & log Pk + 
i log2re. q 

We can also prove a related theorem. 

Theorem 16.8.4: Let K be a positive definite n x n matrix and let 

pz) l 
k 

=- 
c 

( ; ) 12sil <i2<..‘<iksn 
Im 

i19 i2y * * 
. , ik)lllk . (16.107) 

Then 

1 
; tr(K) = Sr) I St) 2.. .z SF) = IKI l/n 

. (16.108) 

Proof: This follows directly from the corollary to Theorem 16.5.1, 
with the identification tr’ = (277e)Sr’ and r = 2. Cl 

Theorem 16.8.5: Let 

IKI 
Qk=(,:~z, IK(s”>I 

(16.109) 

Then 

n 

( > 

l/n 

l-I tT ;  =Q1~Q2~ l -  . I Qnml I Q, = IKll’n . (16.110) 
i=l 

Proof: The theorem follows immediately from Theorem 16.5.3 and 
the identification 

IKI h(X(S)IX(S”)) = i log(2re)k - IKW>l ’ •I (16.111) 

The outermost inequality, Q1 5 Q,, can be rewritten as 
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where 
IKI 

u’ = IK(1,2.. . , i - 1, i + 1,. . . , n)l 
(16.113) 

is the minimum mean squared error in the linear prediction of Xi from 
the remaining X’s, Thus 0: is the conditional variance of Xi given the 
remaining Xj’S if XI, X,, . . . ,X, are jointly normal. Combining this with 
Hadamard’s inequality gives upper and lower bounds on the 
determinant of a positive definite matrix: 

Corollary: 

nKii~IKJrrZ*$. (16.114) 
i i 

Hence the determinant of a covariance matrix lies between the 
product of the unconditional variances Kii of the random variables Xi 
and the product of the conditional variances a;. 

We now prove a property of Toeplitz matrices, which are important as 
the covariance matrices of stationary random processes. A Toeplitz 
matrix K is characterized by the property that Kti = K,., if I i - jl = I r - s I. 
Let Kk denote the principal minor K(1,2, . . . , k). For such a matrix, the 
following property can be proved easily from the properties of the 
entropy function. 

Theorem 16.8.6: If the positive definite n x n matrix K is Toeplitz, then 

IKJ L IK,I”” 10. . . I IK,J1’(n-l) I IK,I”” 

and lKhl/lKk-J is decreasing in k, and 

IK I 
liilKnl”” = lii IK_ . 

n 1 

(16.116) 

Proof: Let <x1,x2,. . . , X,) - N(O, K,). We observe that 

h(X,IX,-1, * * . ,xl)=h(Xk)-h(Xk-l) (16.117) 

(16.118) 

Thus the monotonicity of I Kk I / IK, _ 1 I follows from the monotonocity of 
wqX&,, * * . , Xl), which follows from 

h(X,IX&,,. . . ,x1> = h(X,+,lX,, ‘0 ’ ,x2> (16.119) 

zh(&+llX,, * - - ,&,X,L (16.120) 
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where the equality follows from the Toeplitz assumption and the in- 
equality from the fact that conditioning reduces entropy. Since 
wqX,-1, * * . , X, > is decreasing, it follows that the running averages 

&Xl,. . . ,x,> = ; $ h(XJXi-1, . . . ,x1> (16.121) 
i 1 

are decreasing in k. Then (16.115) follows from h(X,, X,, . . . , Xk ) = 
fr log(2rre)‘)K,I. Cl 

Finally, since h(X, IX,- 1, . . . , XI) is a decreasing sequence, it has a 
limit. Hence by the Cesaro mean theorem, 

lim W~,X,, ’ * * ,x,1 
= lim - 

n-+m n 
n~m I, klil WkIXk-I,. . .,X1) 

= ;irr h(X,IX,-1, . . . ,x,>. 

Translating this to determinants, one obtains 

IK I fir. IKyn = lii i$J . 
n 1 

Theorem 16.8.7 (Minkowski inequality [195]): 

IKl + KZllln 2 IK$‘” + IK,l”n. 

(16.123) 

Proof: Let X,, X, be independent with Xi - JV( 0, Ki ). Noting that 
X, + X, - &(O, KI + K,) and using the entropy power inequality 
(Theorem 16.6.3) yields 

(2ne)JK, + K,( 1’n = 2(2’n)h(X1+X2) (16.125) 

> 2(2/n)h(X1) + pnMX2) 
- (16.126) 

= (2ne)lKII”” + (2re)lK211’n. 0 (16.127) 

16.9 INEQUALITIES FOR RATIOS OF DETERMINANTS 

We now prove similar inequalities for ratios of determinants. Before 
developing the next theorem, we make an observation about minimum 
mean squared error linear prediction. If (Xl, X2, . . . , X,> - NO, K, ), we 
know that the conditional density of X, given (Xl, X2, . . . , X, _ 1 ) is 
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univariate normal with mean linear in X,, X,, . . . , X,- 1 and conditional 
variance ai. Here 0: is the minimum mean squared error E(X, - X,>” 
over all linear estimators Xn based on X,, X2, . . . , X,_,. 

Lemma 16.9.1: CT: = lK,l/lKnsll. 

Proof: Using the conditional normality of X,, we have 

(16.128) 

=h(X,,X, ,..., x,>--h(X,,X, ,“‘,x,-1) (16.129) 

= k log(2re)“lK,( - i log(2ne)“-’ IK,-,I (16.130) 

= f log2~elK,IIIK,-,J . Cl (16.131) 

Minimization of ai over a set of allowed covariance matrices {K,} is 
aided by the following theorem. Such problems arise in maximum 
entropy spectral density estimation. 

Theorem 16.9.1 (Bergstrtim [231): lo& IK, I /JK,-, 1) is concaue in K,. 

Proof: We remark that Theorem 16.31 cannot be used because 
lo& IK, I l/K,-, I) is the difference of two concave functions. Let 2 = X,, 
where X, -N(O,S,), X2-.N(O,T,), Pr{8=l}=h=l-Pr{8=2} and 
let X,, X2, 8 be independent. The covariance matrix K, of 2 is given by 

K, = AS, + (1 - A)T, . (16.132) 

The following chain of inequalities proves the theorem: 

A ~log(2~eYIS,l/IS,-,) + (1 - A) i log(27re)PIT,IIIT,-J 

+ Cl- M&,,,&,n-1,. . . ,X2,+,+& 1, . . . ,X2, 4 (16.133) 

= h(Z,, q-1, .  *  l ,zn-p+lJzl, *  *  l ,zn-p 0) (16.134) 

(b) 
~h(Z,,Z,-1,. l l ,zn-p+lpl,. .  .  , z , - ,>  (16.135) 

(cl 1 IK I 5 2 log(2ve)P - 
ILpl 9 (16.136) 
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where(a) follows from h(X,, XnB1, . . . , Xn-P+llXI, . . . , Xn-J = h(X,, . . . , 
x,)--ml,.. . , X,_, ), (b) from the conditioning lemma, and (c) follows 
from a conditional version of Theorem 16.2.3. Cl 

Theorem 16.9.2 (Bergstram [23]): IK, 1 /(IQ-, I is concuue in K,, 

Proof: Again we use the properties of Gaussian random variables. 
Let us assume that we have two independent Gaussian random n- 
vectors, X- N(0, A,) and Y- N(0, B,). Let Z =X + Y. 

Then 

IA . ,Z,) (16.137) 

(2) h(Z,pn4, Zn-2, . . * , z,, xn-l, x-2, -  -  l ,  Xl, L-1, Yz-2, ’ ’ * 9 y,) 

(16.138) 

%(Xn + YnIXn4,Xn-2,. . . ,x1, Y,-1, Y,-2, - - - , Y,> (16.139) 

‘% f log[27reVar(X, + YnIXn+Xn-2,. . . ,X1, Ynml, Ynm2,. . . , YJI 

(16.140) 

%!S i log[27re(Var(XJX,-,,X,-,, . . . ,X1) 

+VdY,IY,-,, Ynd2,. . . , YINI (16.141) 

(f) 1 
=E slog 

( ( 
271-e IA I IB I 

La + lB,1Il >> 
1 

=2log 2re 
( ( 

IA I IB I 
cl+ lBn:Il >> ’ 

(16.142) 

(16.143) 

where 

(a) follows from Lemma 16.9.1, 
(b) from the fact the conditioning decreases entropy, 
(c) from the fact that 2 is a function of X and Y, 
(d) since X, + Y, is Gaussian conditioned on XI, X2, . . . , XnmI, 

YIP yz, * -  l 9 
Y,- 1, and hence we can express its entropy in terms of 

its variance, 
(e) from the independence of X, and Y, conditioned on the past 

Xl,- X2,. . . ,JL, Yl, Y2, . . . p YL, and 
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(f) follows from the fact that for a set of jointly Gaussian random 
variables, the conditional variance is constant, independent of the 
conditioning variables (Lemma 16.9.1). 

Setting A = AS and B = IT’, we obtain 

IhS, + hT,I Is I IT I 
I~%, + K-II 1 * Is,l,l + h lT,1,l ’ 

(16.144) 

i.e., lK,l/lK,-ll is concave. Simple examples show that IK, I / IK, -p 1 is not 
necessarily concave for p 12. q 

A number of other determinant inequalities can be proved by these 
techniques. A few of them are found in the exercises. 

Entropy: H(X) = -c p(x) log p(x). 

Relative entropy: D( p 11 q) = C p(x) log P$$. 

Mutual information: 1(X, Y) = C p(x, y) log a, 

Information inequality: D( p 11 q) ~0. 

Asymptotic equipartition property: - A log p(X,, X2, . . . , X,>+ H(X). 

Data compression: H(X) I L * < H(X) + 1. 

Kolmogorov complexity: K(x) = min,,,,=, Z(P). 

Channel capacity: C = maxP(z, 1(X, Y). 

Data transmission: 

l R -C C: Asymptotically error-free communication possible 
l R > C: Asymptotically error-free communication not possible 

Capacity of a white Gaussian noise channel: C = 4 log(1 + fj ). 

Rate distortion: R(D) = min 1(X; X) 
over all p(iIx) such that EP~z)p(b,rId(X, X) I D. 

Doubling rate for stock market: W* = maxbe E log btX. 
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PROBLEMS FOR CHAPTER 16 

1. Sum of positive definite matrices. For any two positive definite matrices, 
KI and K,, show that ]K, + Kz] 1 ]&I. 

2. Ky Fan inequality [IO41 for ratios of determinants. For all 1 “p I n, for a 
positive definite K, show that 

I4 fi IK(i, p + 1, p + 2,. . . , n>l 
IK(p + 1, p + 2,. . . , n)l S i=l IK(p + 1, p + 2,. . . , dl ’ U6’145) 

HISTORICAL NOTES 

The entropy power inequality was stated by Shannon [238]; the first formal 
proofs are due to Stam [257] and Blachman [34]. The unified proof of the entropy 
power and Brunn-Minkowski inequalities is in Dembo [87]. 

Most of the matrix inequalities in this chapter were derived using information 
theoretic methods by Cover and Thomas [59]. Some of the subset inequalities for 
entropy rates can be found in Han [130]. 


