
Chapter 9 

Differential Entropy 

We now introduce the concept of differential entropy, which is the 
entropy of a continuous random variable. Differential entropy is also 
related to the shortest description length, and is similar in many ways 
to the entropy of a discrete random variable. But there are some 
important differences, and there is need for some care in using the 
concept. 

9.1 DEFINITIONS 

Definition: Let X be a random variable with cumulative distribution 
function F(x) = Pr(X I x). If F(x) is continuous, the random variable is 
said to be continuous. Let fix) = F’(x) when the derivative is defined. If 
J”co fb> = 1, th en fl 1 x is called the probability density function for X. The 
set where f(x) > 0 is called the support set of X. 

Definition: The differential entropy h(X) of a continuous random vari- 
able X with a density fix) is defined as 

h(X) = - f(x) log f(x) dx , 

where S is the support set of the random variable. 

(9.1) 

As in the discrete case, the differential entropy depends only on the 
probability density of the random variable, and hence the differential 
entropy is sometimes written as h(f) rather than h(X). 
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Remark: As in every example involving an integral, or even a 
density, we should include the statement if it exists. It is easy to 
construct examples of random variables for which a density function 
does not exist or for which the above integral does not exist. 

Example 9.1.1 (Uniform distribution): Consider a random variable 
distributed uniformly from 0 to a, so that its density is l/a from 0 to a 
and 0 elsewhere. Then its differential entropy is 

Mx)=-~~log+= loga. (9.2) 

Note: For a < 1, log a < 0, and the differential entropy is negative. 
Hence, unlike discrete entropy, differential entropy can be negative. 
However, 2 h(X) = 21°ga = a is the volume of the support set, which is 
always non-negative, as we expect. 

Example 9.1.2 (Normal distribution): Let X- 4(x) = (ln/27ru2) x 
-r=/2a= e . Then calculating the differential entropy in nats, we obtain 

(9.3) 

=- -lnVZZ] (9.4 

EX2 
=- 202 + i ln2*c2 2 

(9.5) 

1 1 
= 5 + 2 ln2?ra2 (9.6) 

1 1 
=21ne+$n2.rr(T2 (9.7) 

1 
= 2 In 27rea2 nats . (9.8) 

Changing the base of the logarithm, we have 

h(4) = 
1 
2 log 2rea2 bits . (9.9) 

9.2 THE AEP FOR CONTINUOUS RANDOM VARIABLES 

One of the important roles of the entropy for discrete random variables 
is in the AEP, which states that for a sequence of i.i.d. random variables, 
PK,X2, * l l 

, X, ) is close to 2-nHU) with high probability. This enables 
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us to define the typical set and characterize the behavior of typical 
sequences. 

We can do the same for a continuous random variable. 

Theorem 9.2.1: Let XI, X,, . . . , X,, be a sequence of random variables 
drawn i.i.d. according to the density fix). Then 

-;logflxl,x,,.. . , X,)4 E[ -log fcX>] = h(X) in probability . 

(9.10) 

Proof: The proof follows directly from the weak law of large num- 
bers. Cl 

This leads to the following definition of the typical set. 

Definition: For E > 0 and any n, we define the typical set A:’ with 
respect to f(x) as follows: 

ACn’ = 
l 

(x 
1 

x 1, 2?“‘, x,)EP: -,logflx,,x, ,..., z,)-h(X) 

(9.11) 

where fix,, x2, . . . ,Xn)=rlyzl f(xJ 

The properties of the typical set for continuous random variables 
parallel those for discrete random variables. The analog of the cardinali- 
ty of the typical set for the discrete case is the volume of the typical set 
in the continuous case. 

Definition: The volume Vol(A) of a set A E % n is defined as 

VoltA) = I chl dx2 - - - c&x,. (9.12) 

Theorem 9.2.2: The typical set A:’ has the following properties: 

1. Pr(Ar’) > 1 - E for n sufficiently large. 
2. Vol(AF’) I 2n(h(X)+c) for all n. 

3. Vol(A’(“‘) ~(1 - •)2~(~(~)-‘) for n sufficiently large. 

Proof: By the AEP, -ilogf’(x,,x,,...,x,)=-AClogf(xi)+h(X) 
in probability, establishing property 1. 

Also, 
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1 = Sn f-xX1, x2, - - ., xn) dx, & . * ’ Q& I 
(9.13) 

(9.14) 

L 
I A(n) 2- nu2(X)+r) &, di, * . . dx, (9.15) 

c 

=2- n(h(X)+e) 
I *(n) hl h2 * * * d&a (9.16) 

c 
=2- dh(X)+c) Vol(AF’) . (9.17) 

Hence we have property 2. 
We argue further that the volume of the typical set is at least this 

large. If n is suffkiently large so that property 1 is satisfied, then 

l--E5 A(“)f(3C1,X2,..*,Xn)~l~2...~, 
I 

(9.18) 
45 

5 I p 2- n(h(X)-c) dx, dx, . . . dx, (9.19) 
c 

= 2 -n(h(X)-E) 
J *CR) 6 h2 l * ’ &l 

E 

=2- n(h(x)-f) Vol(A~‘) , 

establishing property 3. Thus for n sufficiently large, we have 

(1 - 42n(h(X)-c) 5 Vol(AI”‘) 5 2n(hCX)+r) . f-J 

(9.20) 

(9.22) 

Theorem 9.2.3: The set A:’ is the smallest volume set with probability 
2 1 - E, to first order in the exponent. 

Proof: Same as in the discrete case. q 

This theorem indicates that the volume of the smallest set that 
contains most of the probability is approximately 2”h. This is an n- 
dimensional volume, so the corresponding side length is (anh)‘ln = 2h. 
This provides an interpretation of the differential entropy: it is the 
logarithm of the equivalent side length of the smallest set that contains 
most of the probability. Hence low entropy implies that the random 
variable is confined to a small effective volume and high entropy 
indicates that the random variable is widely dispersed. 

Note: Just as the entropy is related to the volume of the typical set, 
there is a quantity called Fisher information which is related to the 
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surface area of the typical set. We will say more about this in Section 
16.7. 

9.3 RELATION OF DIFFERENTIAL ENTROPY TO DISCRETE 
ENTROPY 

Consider a random variable X with density f(x) illustrated in Figure 9.1. 
Suppose we divide the range of X into bins of length A. Let us assume 

that the density is continuous within the bins. Then by the mean value 
theorem, there exists a value xi within each bin such that 

Consider the quantized random variable X*, which 

X*=Xi) if iAsX<(i + 1)A 

Then the probability that X* = Xi is 

Pi = f<X) ~ = f(xi)A . 

The entropy of the quantized version is 

H(X*) = -i pi log Pi 
--m 

= -~ f(3ti)A lOg( f(Xi )A) 
-ca 

(9.23) 

is defined by 

(9.24) 

(9.25) 

(9.26) 

(9.27) 

Figure 9.1. Quantization of a continuous random variable. 
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= -~Af(xi)log~(xi)-~ flxi)AlogA (9.28) 

=-&%i)logflxi)- logA, (9.29) 

since C &)A = s f(x) = 1. If fix) log fix) is Riemann integrable (a condi- 
tion to ensure the limit is well defined [272]), then the first term 
approaches the integral of -fix) log f(x) by definition of Riemann integ- 
rability. This proves the following. 

Theorem 9.3.1: If the density f(x) of the random variable X is Riemann 
integrable, then 

H(X*)+logA+h(f)=h(X), as A-,0. (9.30) 

Thus the entropy of an n-bit quantization of a continuous random 
variable X is approximately h(X) + n. 

Examples: 

1. If X has a uniform distribution on [0, 11, and we let A = 2-“, then 
h = 0, H(X*) = n and n bits suffice to describe X to n bit accuracy. 

2. If X is uniformly distributed on [0, $1, then the first 3 bits to the 
right of the decimal point must be 0. To describe X to n bit 
accuracy requires only n - 3 bits, which agrees with h(X) = -3. 

In the above two examples, every value of X requires the same 
number of bits to describe. In general, however h(X) + n is the number 
of bits on the average required to describe X to n bit accuracy. 

The differential entropy of a discrete random variable can be consid- 
ered to be ---co. Note that 2-” = 0, agreeing with the idea that the volume 
of the support set of a discrete random variable is zero. 

9.4 JOINT AND CONDITIONAL DIFFERENTIAL ENTROPY 

As in the discrete case, we can extend the definition of differential 
entropy of a single random variable to several random variables. 

Definition: The differential entropy of a set X1, X2,. . . ,X, of random 
variables with density flxl, x,, . . . , x, ) is defined as 

h(X,,&, . . . ,X,> 

= - f(xl, x2, . . . , x,)log flxl, x2, . . . , x,J dx, dx, . . , dx, . (9.31) 
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Definition: If X, Y have a joint density function f(;lt, y), we can define 
the conditional differential entropy h(XIY) as 

h(XIY) = -1 fix, y) log flxly) dx dy . (9.32) 

Since in general flxlu) = fix, y)lfly), we can also write 

h(X(Y) = h(X, Y) - h(Y), (9.33) 

But we must be careful if any of the differential entropies are infinite. 
The next entropy evaluation is frequently used in the text. 

Theorem 9.4.1 (Entropy of a multivariate normal distribution): Let 
Xl, x2, ’ - . , X, have a multivariate normal distribution with mean p and 
covariance matrix K. (We use .Nn( E.C, K) or N( p, K) to denote this dis- 
tribution.) Then 

h(X,, X2, . . . ,X,) = h(cN;,@, K)) = f log(a?re)“lK( bits, 

where IKI denotes the determinant of K. 

Proof: The probability density function of X1, Xz, . . . , X, is 

Then 

h(f I= -1 fW[ - i (x - ~)~K-l(x - p) - ln(G)“lK11’2] dx 

= i E[z (xi - &(KS1)Jxj - @] + i ln(2r)“IKI . . I 

= i E[i (xi - ELi)(X~ - 4)(K-‘),] + i ln(27$IKI . 

=$( x.i . . - ~j)(xi - pi)l(K-‘)u + k ln(2n)nlKl 

= a i x&$,(K-‘), + $ln(27$lKl . . 

= i ;: (KK’), + i ln(27r)“lKI 
j 

= a XI, + i ln(2m)“IKI 
i 

(9.34) 

(9.35) 

(9.36) 

(9.37) 

(9.38) 

(9.39) 

(9.40) 

(9.41) 

(9.42) 
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=- 1 + f ln(27r)“IK( 

1 
= 2 ln(27re)“lKl nats 

1 
= 2 log(2ve)” IX1 bits . 0 
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(9.43) 

(9.44) 

(9.45) 

9.5 RELATIVE ENTROPY AND MUTUAL INFORMATION 

We now extend the definition of two familiar quantities, D( f 11 g) and 
1(X, Y), to probability densities. 

Definition: The relative entropy (or K&back Leibler distance) D( f llg) 
between two densities f and g is defined by 

(9.46) 

Note that D( f 11 g) is finite only if the support set off is contained in 
the support set of g. (Motivated by continuity, we set 0 log 8 = 0.) 

Definition: The mutual information I(X, Y) between two random vari- 
ables with joint density fix, y) is defined as 

(9.47) 

From the definition it is clear that 

1(x; Y) = h(X) - h(XIY) = h(Y) - h(Y(X) (9.48) 

and 

I(& Y) = D< fb, y>ll fldfl y)) . (9.49) 

The properties of D( f llg) and 1(X, Y) are the same as in the discrete 
case. In particular, the mutual information between two random vari- 
ables is the limit of the mutual information between their quantized 
versions, since 

I(XA; Y”) = IIf - H(XAIYA) (9.50) 

= h(X) - log A - (h(XI Y) - log A) (9.51) 

= I(X, Y) , (9.52) 
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Certain authors (e.g., Gallager [120]) prefer to define the mutual 
information between two continuous random variables directly as the 
above limit, and not consider differential entropies at all. 

9.6 PROPERTIES OF DIFFERENTIAL ENTROPY, RELATIVE 
ENTROPY AND MUTUAL INFORMATION 

Theorem 9.6.1: 

with equality iff f = g almost everywhere (a.e.). 

Proof: Let S be the support set of fi Then 

I log (by Jensen’s inequality) 

(9.53) 

(9.55) 

(9.56) 

4ogl=O. (9.57) 

We have equality iff we have equality in Jensen’s inequality, which 
occurs iff f = g a.e, Cl 

Corollary: Z(X, Y) ~0 with equality iff X and Y are independent. 

Corollary: h(X(Y) zs h(X) with equality iff X and Y are independent. 

Theorem 9.6.2= Chain rule for differential entropy: 

h(X,, X2,. . .p X,>= i h(XiJX,,Xz, * * * ,Xi-1) 
i=l 

(9.58) 

Proof: Follows directly from the definitions. Cl 

Corollary: 

h(X,,&, . . . , X,)lZ h(X,), (9.59) 

with equality iff XI, X2, . . . , X, are independent. 
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Proof: Follows directly from Theorem 9.6.2 and the corollary to 
Theorem 9.6.1. El 

Application (Hadumard’s inequality): If we let X - N(0, K) be a multi- 
variate normal random variable, then substituting the definitions of 
entropy in the above inequality gives us 

(9.60) 

which is Hadamard’s inequality. A number of determinant inequalities 
can be derived from information theoretic inequalities in this fashion 
(Chapter 16). 

Theorem 9.6.3: 

h(X + c) = h(X) . (9.61) 

Translation does not change the differential entropy. 

Proof: Follows directly from the definition of differential en- 
tropy. Cl 

Theorem 9.6.4: 

h(aX) = h(X) + logla 1 . (9.62) 

Proof: Let Y=aX. Then&(y)= h&(Z), and 

h(aX) = - 
I fu(Y) 1% fu(Y) dY (9.63) 

= -( j$ fx($%(~ fx(s>) dY (9.64) 

=- fx(x) log f,(d + h&l (9.65) 

= h(X) + loglal y (9.66) 

after a change of variables in the integral. Cl 

Similarly we can prove the following corollary for vector-valued 
random variables: 
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coroIIary: 

h(AX) = h(X) + loglA1, (9.67) 

where IAl is the absolute value of the determinant. 

We will now show that the multivariate normal distribution maxi- 
mizes the entropy over all distributions with the same covariance. 

Theorem 9.6.5: Let the random vector XE R” have zero man and 
covariance K = EXX’, i.e., KU = EXiXj, 1 I i, j I n. Then h(X) I 
$ log(27re)“(KI, with equality iff X- N(O, K). 

proof: Let g(X) be any density satisfying J g<n>=cixj dx = KU, for all 
i, j. Let & be the density of a NO, K) vector as given in 9.35, where we 
set p = 0. Note that log #K(~) is a quadratic form and J Xixj4Kcx> dx = 
KU. Then 

O~m?ll~K) (9.68) 

= g log(g/+K) (9.69) 

=-h(g)-- glog& I (9.70) 

(9.71) 

= -h(g) + h(#+& 9 (9.72) 

where the substitution j’ g log & = J’ & log & follows from the fact that 
g and & yield the same moments of the quadratic form log &(x). El 

9.7 DIFFERENTIAL ENTROPY BOUND ON DISCRETE ENTROPY 

Of all distributions with the same variance, the normal maximizes the 
entropy. So the entropy of the normal gives a good bound on the 
differential entropy in terms of the variance of the random variable. We 
will use this bound to give a bound on the discrete entropy of a random 
variable. It will not be in terms of the variance of the random variable 
itself, since a discrete random variable can have arbitrarily small 
variance and still have high discrete entropy. Instead, the bound is in 
terms of an integer-valued random variable with the same probabilities 
(and hence the same entropy). 
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Let X be a discrete random variable on the set SY = {a 1, u2, . . . } with 

Pr(X= a,> =pi . (9.73) 

Theorem 9.7.1: 

mp,, Pz, * * J 5 i log(2ve) i p i2 (i-, i - (IgPJ” + &). (9-W 

Moreover, for every permutation u, 

Proof: Define two new random variables. The first, X0, is an integer- 
valued discrete random variable with the distribution 

Pr(X, = i> =pi . (9.76) 

Let U be a random variable uniformly distributed on the r_ange [0, 11, 
independent of X0. Define the continuous random variable X by 

2=X,+& (9.77) 

The distribution of the r.v. X is shown in Figure 9.2. 
It is clear that H(X) = H(X,), since discrete entropy depends only on 

the probabilities and not on the values of the outcomes. Now 

H(Xfj) = m&Z1 Pi log Pi (9.78) 

Figure 9.2. Distribution of 2. 
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= h(g), 

since f%(x) = pi for i 5 X < i + 1. 
Hence we have the following chain of inequalities: 

H(X) = m&J 

= h(g) 

I f log(27re)Var&) 

= a log(2ve)(Var(X,) + VaGJ)) 

=- i log(27re) 2 p (i=l ii2e($liPi)2+ A)* q 

(9.79) 

(9.80) 

(9.81) 

(9.82) 

(9.83) 

(9.84) 

(9.85) 

(9.86) 

(9.87) 

Since entropy is invariant with respect to permutation of pl, p2, . . . , 
we can also obtain a bound by a permutation of the pi’s, We conjecture 
that a good bound on the variance will be achieved when the high 
probabilities are close together, i.e, by the assignment . . . , p5, 
P3, PI, P29 P49 * l l 

forp, Zp2L’*-. 
How good is this bound? Let X be a Bernoulli random variable with 

parameter 3, which implies that H(X) = 1. The corresponding random 
variable X0 has variance 2, so the bound is 

H(X) 5 i log(2qe) = 1.255 bits. (9.88) 

SUMMARY OF CHAPTER 9 

h(X) = h(f) = - 
I s f(x) log fld dx . 

RX”) h aenhcX) , a.e. 

Vol(A’“‘) & gnh(X) 
I? . 

(9.89) 

(9.90) 

(9.91) 
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H([Xl,-,) = h(X) + n . (9.92) 

h(N(0, a2)) = L 2 log2rrea2 . 

h(Jlr,( p, K)) = i log(27re)” IX1 . 

D(fllg)=~flog~‘o. 

M&,X,, * - * , xn)= i h(xilxl,x2, * * * ,xi-l) * 
i=l 

h(XIY) 5 h(X). 

(9.93) 

(9.94) 

(9.95) 

(9.96) 

(9.97) 

h(ux) = h(X) + loglal . (9.98) 

Icy;y)=I Ax, y)log#) 20. 

max h(X) = k log(2re)“IKI . 
EXX’=K 

(9.100) 

2 H(X) is the effective alphabet size for a discrete random variable. 
2 h(X) is the effective support set size for a continuous random variable. 
2c is the effective alphabet size of a channel of capacity C. 

PROBLEMS FOR CHAPTER 9 

I. Differential entropy. Evaluate the differential entropy h(X) = -s f ln f 
for the following: 
(a) The exponential density, fcx) = he-“: z 2 0. 
(b) The Lap1 ace density, fix) = fr AeeA’“! 
(c) The sum of XI and X2, where XI and X2 are independent normal 

random variables with means CLi and variances a;, i = 1,2. 

2. Concavity of determinants. Let XI and X2 be two symmetric nonnega- 
tive definite n x n matrices. Prove the result of Ky Fan [103]: 

IhK,+~~21rIK,IAJK,I’, forOSASl,h=l-A, 

where IX1 denotes the determinant of K. 
Hint: Let Z = X,, where X, - N(0, K,), X2 - N(0, X2) and 8 = Ber- 

noulli( A). Then use H(ZlO) I H(Z). 

3. Mutual information for correlated normals. Find the mutual information 
1(X, Y), where 
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4. 

Evaluate 1(X; Y) for p = 1, p = 0, and p = -1, and comment. 

Uniformly distributed noise. Let the input random variable X for a 
channel be uniformly distributed over the interval -l/2 5 x I + l/2. 
Let the output of the channel be Y = X + 2, where the noise random 
variable is uniformly distributed over the interval -a/2 I z I + a/2. 
(a) Find 1(X, Y) as a function of a. 
(b) For a = 1 find th e capacity of the channel when the input X is 

peak-limited; that is, the range of X is limited to -l/2 I x 5 + l/2. 
What probability distribution on X maximizes the mutual inforrna- 
tion 1(X; Y)? 

(c) (Optional) Find the capacity of the channel for all values of 
a, again assuming that the range of X is limited to - l/2 I x I 
+1/2. 

5. Quantized random variables. Roughly how many bits are required on 
the average to describe to 3 digit accuracy the decay time (in years) of 
a radium atom if the half-life of radium is 80 years? Note that half-life 
is the median of the distribution. 

6. Scaling. Let h(X) = -J f(x) log fix) dx. Show h(AX) = logldet(A)) + 
h(X). 

HISTORICAL NOTES 

Differential entropy and discrete entropy were introduced in Shannon’s original 
paper [238]. The general rigorous definition of relative entropy and mutual 
information for arbitrary random variables was developed by Kolmogorov [156] 
and Pinsker [212], who defined mutual information as supP, ,I([X],; [Y],), where 
the supremum is over all finite partitions P and Q. The differential entropy 
bound on discrete entropy was developed independently by J. Massey (un- 
published) and by F. Willems (unpublished). 


