
ChaDter 5 

Data Compression 

We now put content in the definition of entropy by establishing the 
fundamental limit for the compression of information. Data compression 
can be achieved by assigning short descriptions to the most frequent 
outcomes of the data source and necessarily longer descriptions to the 
less frequent outcomes. For example, in Morse code, the most frequent 
symbol is represented by a single dot. In this chapter we find the 
shortest average description length of a random variable. 

We first define the notion of an instantaneous code and then prove 
the important Kraft inequality, which asserts that the exponentiated 
codeword length assignments must look like a probability mass func- 
tion. Simple calculus then shows that the expected description length 
must be greater than or equal to the entropy, the first main result. Then 
Shannon’s simple construction shows that the expected description 
length can achieve this bound asymptotically for repeated descriptions. 
This establishes the entropy as a natural measure of efficient descrip- 
tion length. Th.e famous Huffman coding procedure for finding minimum 
expected description length assignments is provided. Finally, we show 
that Huffman codes are competitively optimal and that it requires 
roughly H fair coin flips to generate a sample of a random variable 
having entropy H. 
Thus the entropy is the data compression limit as well as the number of 
bits needed in random number generation. And codes achieving H turn 
out to be optimal from many points of view. 
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5.1 EXAMPLES OF CODES 

Definition: A source code C for a random variable X is a mapping from 
%‘, the range ofX, to 9*, the set of finite length strings of symbols from a 
D-ary alphabet. Let C(x) denote the codeword corresponding to x and let 
Z(x) denote the length of C(z). 

For example, C(Red) = 00, C( Blue) = 11 is a source code for %’ = {Red, 
Blue} with alphabet 9 = (0, 1). 

Dejkitiont The expected length L(C) of a source code C(x) for a random 
variable X with probability mass function p(=c) is given by 

UC) = It* pww , (5.1) 

where Z(x) is the length of the codeword associated with x. 

Without loss of generality, we can assume that the D-ary alphabet is 
9 = {O,l,. . . , D - 1). 

Some examples of codes follow. 

Example 6.1 .l: Let X be a random variable with the following dis- 
tribution and codeword assignment: 

Pr(X=1)=1/2, codeword C( 1) = 0 
Pr(X=2)=1/4, codeword C(2) = 10 
Pr(X=3)=1/8, codeword C( 3) = 110 (5.2) 

Pr(X=4)=1/8, codeword C(4) = 111. 

The entropy H(X) of X is 1.75 bits, and the expected length L(C) = EZ(X) 
of this code is also 1.75 bits. Here we have a code that has the same 
average length as the entropy. We note that any sequence of bits can be 
uniquely decoded into a sequence of symbols of X. For example, the bit 
string 0110111100110 is decoded as 134213. 

Example 6.1.2: Consider another simple example of a code for a 
random variable: 

Pr(X=1)=1/3, codeword C(l)=0 
Pr(X = 2) = l/3, codeword C(2) = 10 
Pr(X= 3) = l/3, codeword C(3) = 11. 

(5.3) 

Just as in the previous case, the code is uniquely decodable. However, in 
this case the entropy is log 3 = 1.58 bits, while the average length of the 
encoding is 1.66 bits. Here EZ(X) > H(X). 
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Example 5.1.3 (Morse code): The Morse code is a reasonably efficient 
code for the English alphabet using an alphabet of four symbols: a dot, a 
dash, a letter space and a word space. Short sequences represent 
frequent letters (e.g., a single dot represents E) and long sequences 
represent infrequent letters (e.g., Q is represented by “dash, dash, dot, 
dash”). This is not the optimal representation for the alphabet in four 
symbols-in fact, many possible codewords are not utilized because the 
codewords for letters do not contain spaces except for a letter space at 
the end of every codeword and no space can follow another space. It is 
an interesting problem to calculate the number of sequences that can be 
constructed under these constraints. The problem was solved by Shan- 
non in his original 1948 paper. The problem is also related to coding for 
magnetic recording, where long strings of O’s are prohibited [2], [184]. 

We now define increasingly more stringent conditions on codes. Let xn 
denote (x1, x2, . . . , x,). 

Definition: A code is said to be non-singular if every element of the 
range of X maps into a different string in G@ *, i.e., 

Xi#X~~C(Xi)#C(X~). (5.4) 

Non-singularity suffices for an unambiguous description of a single 
value of X. But we usually wish to send a sequence of values of X. In 
such cases, we can ensure decodability by adding a special symbol (a 
“comma”) between any two codewords. But this is an inefficient use of 
the special symbol; we can do better by developing the idea of self- 
punctuating or instantaneous codes. Motivated by the necessity to send 
sequences of symbols X, we define the extension of a code as follows: 

Definition: The extension C* of a code C is the mapping from finite 
length strings of %’ to finite length strings of 9, defined by 

where C(x,)C(x,) l l * C(x, ) indicates concatenation of the corresponding 
codewords. 

Example 5.1.4: If C(x,) = 00 and C(xz) = 11, then C(x,x,) = 0011. 

Definition: A code is called uniquely decodable if its extension is 
non-singular. 

In other words, any encoded string in a uniquely decodable code has 
only one possible source string producing it. However, one may have to 
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look at the entire string to determine even the first symbol in the 
corresponding source string. 

Definition: A code is called a prefix code or an instantaneous code if no 
codeword is a prefix of any other codeword. 

An instantaneous code can be decoded without reference to the future 
codewords since the end of a codeword is immediately recognizable. 
Hence, for an instantaneous code, the symbol xi can be decoded as soon 
as we come to the end of the codeword corresponding to it. We need not 
wait to see the codewords that come later. An instantaneous code is a 
“self-punctuating” code; we can look down the sequence of code symbols 
and add the commas to separate the codewords without looking at later 
symbols. For example, the binary string 01011111010 produced by the 
code of Example 5.1.1 is parsed as 0, 10, 111, 110,lO. 

The nesting of these definitions is shown in Figure 5.1. To illustrate 
the differences between the various kinds of codes, consider the follow- 
ing examples of codeword assignments C(X) to x E 8?’ in Table 5.1. 

For the non-singular code, the code string 010 has three possible 
source sequences: 2 or 14 or 31, and hence the code is not uniquely 
decodable. 

The uniquely decodable code is not prefix free and is hence not 
instantaneous. To see that it is uniquely decodable, take any code string 
and start from the beginning. If the first two bits are 00 or 10, they can 
be decoded immediately. If the first two bits are 11, then we must look 
at the following bits. If the next bit is a 1, then the first source symbol is 
a 3. If the length of the string of O’s immediately following the 11 is odd, 
then the first codeword must be 110 and the first source symbol must be 

Figure 5.1. Classes of codes. 
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TABLE 5.1. Classes of Codes 

DATA COMPRESSION 

Non-singular, but not Uniquely decodable, but 
X Singular uniquely decodable not instantaneous Instantaneous 

1 0 0 10 0 
2 0 010 00 10 
3 0 01 11 110 
4 0 10 110 111 

4; if the length of the string of O’s is even, then the first source symbol is 
a 3. By repeating this argument, we can see that this code is uniquely 
decodable. Sardinas and Patterson have devised a finite test for unique 
decodability, which involves forming sets of possible sufkes to the 
codewords and systematically eliminating them. The test is described 
more fully in Problem 24 at the end of the chapter. 

The fact that the last code in Table 5.1 is instantaneous is obvious 
since no codeword is a prefix of any other. 

5.2 KRAFT INEQUALITY 

We wish to construct instantaneous codes of minimum expected length 
to describe a given source. It is clear that we cannot assign short 
codewords to all source symbols and still be prefix free. The set of 
codeword lengths possible for instantaneous codes is limited by the 
following inequality: 

Theorem 5.2.1 (Kraft inequality): For any instantaneous code (prefi 
code) over an alphabet of size D, the codeword lengths I,, I,, . . . , I, must 
satisfy the inequality 

CD -lill. 6.6) 

Conversely, given a set of codeword lengths that satisfy this inequality, 
there exists an instantaneous code with these word lengths. 

Proof: Consider a D-ary tree in which each node has D children. Let 
the branches of the tree represent the symbols of the codeword. For 
example, the D branches arising from the root node represent the D 
possible values of the first symbol of the codeword. Then each codeword 
is represented by a leaf on the tree. The path from the root traces out 
the symbols of the codeword. A binary example of such a tree is shown 
in Figure 5.2. 
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Root 

Figure 5.2. Code tree for the Krafi inequality. 

The prefix condition on the codewords implies that no codeword is an 
ancestor of any other codeword on the tree. Hence, each codeword 
eliminates its descendants as possible codewords. 

Let Lla* be the length of the longest codeword of the set of codewords. 
Consider all nodes of the tree at level I,,,. Some of them are codewords, 
some are descendants of codewords, and some are neither. A codeword 
at level li has Dlmaxvzi descendants at level I,,,. Each of these de- 
scendant sets must be disjoint. Also, the total number of nodes in these 
sets must be less than or equal to Dlmax. Hence, summing over all the 
codewords, we have 

or 

CD 1 mar- ‘i 5 D ‘ma, (5.7) 

CD -li ( 
-1, (5.8) 

which is the Kraft inequality. 
Conversely, given any set of codeword lengths Z 1, I,, . . . , I, which 

satisfy the Kraft inequality, we can always construct a tree like the one 
in Figure 5.2. Label the first node (lexicographically) of depth Z, as 
codeword 1, and remove its descendants from the tree. Then label the 
first remaining node of depth I, as codeword 2, etc. Proceeding this way, 
we construct a prefix code with the specified I,, I,, . . . , Z,. Cl 

We now show that an infinite prefix code also satisfies the Kraft 
inequality. 
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Theorem 5.2.2 (Extended Kraft Inequality): For any countably infinite 
set of codewords that form a prefix code, the codeword lengths satisfy the 
extended Kraft inequality, 

cc 

CD 
-‘i ( -1. 

i=l 
(5.9) 

Conversely, given any l,, I,, . . . satisfying the extended Kraft inequality, 
we can construct a prefix code with these codeword lengths. 

Proof: Let the D-ary alphabet be (0, 1, . . . , D - l}. Consider the ith 
codeword y1y2 . . . yli. Let O.y,y, * * . yli be the real number given by the 
D-ary expansion 

li 

O’YlY2 - - .yl,= C yjD-‘. 
j=l 

This codeword corresponds to the interval 

(5.10) 

(5.11) 

the set of all real numbers whose D-ary expansion begins with 
O.YlY, - * * yl.. This is a subinterval of the unit interval [0, 11. By the 
prefix condition, these intervals are disjoint. Hence the sum of their 
lengths has to be less than or equal to 1. 

This proves that 

m 

CD 
-li < -1. 

i=l 
(5.12) 

Just as in the finite case, we can reverse the proof to construct the code 
for a given I,, I,, . . . that satisfies the Kraft inequality. First reorder the 
indexing so that 1 1 11,~ . . . . Then simply assign the intervals in order 
from the low end of the unit interval. Cl 

In Section 5.5, we will show that the lengths of codewords for a 
uniquely decodable code also satisfy the Kraft inequality. Before we do 
that, we consider the problem of finding the shortest instantaneous 

5.3 OPTIMAL CODES 

In the previous section, we proved that any codeword set that satisfies 
the prefix condition has to satisfy the Kraft inequality and that the 
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Kraft inequality is a sufficient condition for the existence of a codeword 
set with the specified set of codeword lengths. We now consider the 
problem of finding the pref?ix code with the minimum expected length. 
From the results of the previous section, this is equivalent to finding the 
set of lengths I,, I,, . . . , I, satisfying the Kraft inequality and whose 
expected length L = C PiZi is less than the expected length of any other 
prefix code. This is a standard optimization problem: Minimize 

L = C pizi (5.13) 

over all integers 1, , I,, . . . , 1, satisfying 

CD -Ii ( -1. (5.14) 

A simple analysis by calculus suggests the form of the minimizing IT. 
We neglect the integer constraint on Zi and assume equality in the 
constraint. Hence, we can write the constrained minimization using 
Lagrange multipliers as the minimization of 

J = c piZi + A@ D-li> . 

Differentiating with respect to Zi, we obtain 

iIJ 
al=pi-AD-“lOg,D. 

1 

Setting the derivative to 0, we obtain 

D-1, - pi 
A log, D ’ 

(5.15) 

(5.17) 

Substituting this in the constraint to find A, we find A = l/log, D and 
hence 

pi = D-II , (5.18) 

yielding optimal codelengths 

/* = 1 -log* Pi * (5.19) 

This non-integer 
length 

choice of codeword lengths yields expected codeword 

(5.20) 
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But since the Zi must be integers, we will not always be able to set the 
codeword lengths as in (5.19). Instead, we should choose a set of 
codeword lengths Zi “close” to the optimal set. Rather than demonstrate 
by calculus that Zy = -log, pi is a global minimum, we will verify 
optimality directly in the proof of the following theorem. 

Theorem 5.3.1: The expected length L of any instantaneous D-ary code 
for a random variable X is greater than or equal to the entropy H,(X), 
i.e., 

L I H,(X) (5.21) 

with equality iff D-Ii = pi. 

Proof: We can write the difference between the expected length and 
the entropy as 

1 L - H,(X) = C pili - C Pi ‘Og,P 
i 

(5.22) 

= -c pi log, D-l’ + CPi log, Pi ’ (5.23) 

Letting ri = D --li/Cj D -G and c = C D -li, we obtain 

= D(pllrl + log, i (5.25) 

20 (5.26) 

by the non-negativity of relative entropy and the fact (Kraft inequality) 
that c 5 1. Hence L 2 H with equality iff pi = D -Ii, i.e., iff -log, pi is an 
integer for all i. Cl 

Definition: A probability distribution is called D-adic with respect to D 
if each of the probabilities is equal to D-” for some n. 

Thus we have equality in the theorem if and only if the distribution of 
X is D-adic. 

The preceding proof also indicates a procedure for finding an optimal 
code: find the D-adic distribution that is closest (in the relative entropy 
sense) to the distribution of X. This distribution provides the set of 
codeword lengths. Construct the code by choosing the first available 
node as in the proof of the Kraft inequality. We then have an optimal 
code for X. 
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However, this procedure is not easy, since the search for the closest 
D-adic distribution is not obvious. In the next section, we give a good 
suboptimal procedure (Shannon-Fano coding). In Section 5.6, we de- 
scribe a simple procedure (Huffman coding) for actually flnding the 
optimal code. 

5.4 BOUNDS ON THE OPTIMAL CODELENGTH 

We now demonstrate a code that achieves an expected description 
length L within 1 bit of the lower bound, that is, 

H(X)sLcH(X)+l. (5.27) 

Recall the setup of the last section: we wish to minimize L = C PiZi 
subject to the constraint that I,, I,, . . . , I, are integers and C D-Ii 5 1. 
We proved that the optimal codeword lengths can be found by finding 
the D-adic probability distribution closest to the distribution of X in 
relative entropy i.e., finding the D-adic r (ri = D-“lCj D-5) minimizing 

L-H,= D(pllr) - log( c D -li) 2 0 . (5.28) 

The choice of word lengths Zi = log, & yields L = H. Since logD & may 
not equal an integer, we round it up to give integer word length 
assignments, 

li = [lOgD( $)I ’ 
i 

(5.29) 

where [xl is the smallest integer LX. These lengths satisfy the Kraft 
inequality since 

This choice of codeword lengths satisfies 

1 
hh - 

1 

Pi 
Izi<log,-++l* 

Pi 

(5.30) 

(5.31) 

Multiplying by pi and summing over i, we obtain 

H,(X) 5 L < H,(X) + 1. (5.32) 

Since the optimal code can only be better than this code, we have the 
following theorem: 
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Theorem 6.4.1: Let I* I* 1, 2, . . . ,I: be the optimal codeword lengths for a 
source distribution p and a D-ary alphabet, and let L* be the associated 
expected length of the optimal CO& (L* = C pilT>. Then 

H,(X) 5 L* <H,(X) + 1. (5.333 

Proof: Let Zi = [log, &I . Then Zi satisfies the Kraft inequality and 
from (5.32) we have 

H,(X) 5 L = C pili CHD(x) + ’ * (5.34) 

But since L *, the expected length of the optimal code, is less than 
L = C pili, and since L* LH, from Theorem 53.1, we have the 
theorem. Cl 

In the preceding theorem, there is an overhead which is at most 1 bit, 
due to the fact that log & is not always an integer. We can reduce the 
overhead per symbol by spreading it out over many symbols. With this 
in mind, let us consider a system in which we send a sequence of n 
symbols from X. The symbols are assumed to be drawn i.i.d. according to 
p(x). We can consider these n symbols to be a supersymbol from the 
alphabet E”. 

Define L, to be the expected codeword length per input symbol, i.e., if 
I(+, x2, . . . , x, ) is the length of the codeword associated with 
(x1,x,, . . . ,x,J, then 

Ln l =- 
n CpCx,,x, ,..., .1G,Y(x+p,...,Q= ~EZCY,,X, ,... ,x,>. 

(5.35) 

We can now apply the bounds derived above to the code: 

mx1, x,, * * .,Xn)ri?3Z(X1,X2 ,..., X,)<H(X,,X, ,..., X,)+1. 

(5.36) 

Since X1,X,, . . . , X, are i.i.d., H(x,, X,, . . . , X, ) = C H(x, ) = nH(X). Di- 
viding (5.36) by n, we obtain 

1 
H(X)IL,cH(X)+;. (5.37) 

Hence by using large block lengths we can achieve an expected 
codelength per symbol arbitrarily close to the entropy. 

We can also use the same argument for a sequence of symbols from a 
stochastic process that is not necessarily i.i.d. In this case, we still have 
the bound 
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H(x,,x,, . .I’, xn)rzzz(xl,x2 ,..., X,><H(x,,x,,...,x,)+l. 

(5.38) 

Dividing by n again and defining L, to be the expected description 
length per symbol, we obtain 

H~&,X2,...,x,)IL 
n 

<H(x,,x,,...,x,) + 1 
-. (5.39) 

n n n 

If the stochastic process is stationary, then H(Xl, X,, . . . , X,Jln + H(Z), 
and the expected description length tends to the entropy rate as n + 00. 
Thus we have the following theorem: 

Theorem 5.4.2: The minimum expected codeword length per symbol 
satisfies 

Moreover, if Xl, X2, . . . ,X, is a stationary stochastic process, 

L:-+H(a”), (5.41) 

where H(Z) is the entropy rate of the process. 

This theorem provides another justification for the definition of 
entropy rate-it is the expected number of bits per symbol required to 
describe the process. 

Finally, we a,sk what happens to the expected description length if 
the code is designed for the wrong distribution. For example, the wrong 
distribution may be the best estimate that we can make of the unknown 
true distribution. 

We consider the Shannon code assignment Z(X) = [ log &1 designed 
for the probability mass function q(z). Suppose the true probability mass 
function is p(x). Thus we will not achieve expected length L = H(p) = 
- C p(x) log p(x). We now show that the increase in expected description 
length due to the incorrect distribution is the relative entropy D( p 11 q). 
Thus D( p 11 a) has a concrete interpretation as the increase in descriptive 
complexity due to incorrect information. 

Theorem 5.4.3: The expected length under p(x) of the code assignment 
l(x) = [log &l satisfies 

H(p)+D(pllq)rE,1(X)<H(p)+D(pllq)+l. (5.42) 
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Proof: The expected codelength is 

ICI(X) = c pO[log &)l x 
< c p(x) ( 1 

log - + 1 
x q(x) > 

p(x) 1 
=~P(z)lwqopo+l 

x 

(5.43) 

(5.45) 

(5.46) 

=D(p))q)+H(p)+l. (5.47) 

The lower bound can be derived similarly. q 

Thus using the wrong distribution incurs a penalty of D( p 11 q) in the 
average description length. 

5.5 KRAFT INEQUALITY FOR UNIQUELY DECODABLE CODES 

We have proved that any instantaneous code must satisfy the Kraft 
inequality. The class of uniquely decodable codes is larger than the class 
of instantaneous codes, so one expects to achieve a lower expected 
codeword length if L is minimized over all uniquely decodable codes. In 
this section, we prove that the class of uniquely decodable codes does not 
offer any further possibilities for the set of codeword lengths than do 
instantaneous codes. We now give Karush’s elegant proof of the follow- 
ing theorem. 

Theorem 5.5.1 (McMilZan): The codeword lengths of any uniquely de- 
codable code must satisfy the Kraft inequality 

CD -4 51, (5.48) 

Conversely, given a set of codeword lengths that satisfy this inequality, it 
is possible to construct a uniquely decodable code with these codeword 
lengths. 

Proof: Consider Ck, the kth extension of the code, i.e., the code 
formed by the concatenation of k repetitions of the given uniquely 
decodable code C. By the definition of unique decodability, the kth 
extension of the code is non-singular. Since there are only D” different 
D-ary strings of length n, unique decodability implies that the number 
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of code sequences of length n in the Mh extension of the code must be no 
greater than D”. We now use this observation to prove the Kraft 
inequality. 

Let the codeword lengths of the symbols x E 2 be denoted by Z(X). For 
the extension code, the length of the code-sequence is 

The inequality that we wish to prove is 

CD --lCx) 5 1 . 
xE% 

(5.49) 

(5.50) 

The trick is to consider the lath power of this quantity. Thus 

= c D-l(X1)D-kC2). . . D-lb,) (5.52) 
,X2’. . . ,x&e-k 

=“c D - l(xk ) 
, (5.53) 

XkEBPk 

by (5.49). We now gather the terms by word lengths to obtain 

2 D-hk) = “5’ a(m)D-” , 
XkEFk m=l 

(5.54) 

where I,,, is the maximum codeword length and a(m) is the number of 
source sequences xk mapping into codewords of length m. But the code is 
uniquely decodable, so there is at most one sequence mapping into each 
code m-sequence and there are at most D” code m-sequences. Thus 
a(m) ID”, and we have 

(5.55) 

( ‘2X DmD-m (5.56) 
m=l 

= wnax (5.57) 

and hence 

c D-5 5 (kl,..$” . 
j 

(5.58) 
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Since this inequality is true for all k, it is true in the limit as k+m. 
Since (kl,,,) “‘+ 1, we have 

CD -5 51, (5.59) 

which is the Kraft inequality. 
Conversely, given any set of I,, I,, . . . , 1, satisfying the Kraft 

inequality, we can construct an instantaneous code as proved in Section 
5.2. Since every instantaneous code is uniquely decodable, we have also 
constructed a uniquely decodable code. Cl 

Corollary: 14 uniquely decodable code for an infinite source alphabet 
2 also satisfies the Kraft inequality. 

Proof: The point at which the preceding proof breaks down for 
infinite I%j is at (5.58), since for an infinite code I,,, is infinite. But 
there is a simple fix to the proof. Any subset of a uniquely decodable 
code is also uniquely decodable; hence, any finite subset of the infinite 
set of codewords satisfies the Kraft inequality. Hence, 

P 
CD -‘i = lim 2 D-Ii 5 1 . 
i=l N~oc i=l 

(5.60) 

Given a set of word lengths I,, I,, . . . that satisfy the Kraft inequality, 
we can construct an instantaneous code as in the last section. Since 
instantaneous codes are uniquely decodable, we have constructed a 
uniquely decodable code with an infinite number of codewords. So the 
McMillan theorem also applies to infinite alphabets. Cl 

The theorem implies a rather surprising result-that the class of 
uniquely decodable codes does not offer any further choices for the set of 
codeword lengths than the class of prefix codes. The set of achievable 
codeword lengths is the same for uniquely decodable and instantaneous 
codes. Hence the bounds derived on the optimal codeword lengths 
continue to hold even when we expand the class of allowed codes to the 
class of all uniquely decodable codes. 

5.6 HUFFMAN CODES 

An optimal (shortest expected length) prefix code for a given distri- 
bution can be constructed by a simple algorithm discovered by 
Huffman [1381. ‘We will prove that any other code for the same alphabet 
cannot have a lower expected length than the code constructed by the 
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algorithm. Before we give any formal proofs, let us introduce Huffman 
codes with some examples: 

Example 6.6.1: Consider a random variable X taking values in the set 
8Y = { 1,2,3,4,5} with probabilities 0.25, 0.25,0.2, 0.15,0.15, respective- 
ly. We expect the optimal binary code for X to have the longest 
codewords assigned to the symbols 4 and 5. Both these lengths must be 
equal, since otherwise we can delete a bit from the longer codeword and 
still have a prefix code, but with a shorter expected length. In general, 
we can construct a code in which the two longest codewords differ only 
in the last bit. For this code, we can combine the symbols 4 and 5 
together into a single source symbol, with a probability assignment 0.30. 
Proceeding this way, combining the two least likely symbols into one 
symbol, until we are finally left with only one symbol, and then 
assigning codewords to the symbols, we obtain the following table: 

Codeword 
length Codeword X Probability 

2 01 1 0.55 1 
2 10 2 0.45 7 
2 11 3 
3 000 4 
3 001 5 

This code has average length 2.3 bits. 

Example 5.6.2: Consider a ternary code for the same random variable. 
Now we combine the three least likely symbols into one supersymbol 
and obtain the following table: 

Codeword X Probability 

1 1 1 
2 2 
00 3 
01 4 
02 5 

This code has an average length of 1.5 ternary digits. 

Example 5.6.3: If D 2 3, we may not have a sufficient number of 
symbols so that we can combine them D at a time. In such a case, we 
add dummy symbols to the end of the set of symbols. The dummy 
symbols have probability 0 and are inserted to fill the tree. Since at each 
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stage of the reduction, the number of symbols is reduced by D - 1, we 
want the total number of symbols to be 1 + k(D - l), where k is the 
number of levels in the tree. Hence, we add enough dummy symbols so 
that the total number of symbols is of this form. For example: 

Codeword X Probability 

1 1.0 
2 
01 
02 
000 
001 
002 

This code has an average length of 1.7 ternary digits. 

A proof of the optimality of Huffman coding will be given in Section 5.8. 

5.7 SOME COMMENTS ON HUFFMAN CODES 

1. Equivalence of source coding and 20 questions. We now 
digress to show the equivalence of coding and the game of 20 
questions. 

Supposing we wish to find the most efficient series of yes-no 
questions to determine an object from a class of objects. Assuming 
we know the probability distribution on the objects, can we find 
the most efficient sequence of questions? 

We first show that a sequence of questions is equivalent to a 
code for the object. Any question depends only on the answers to 
the questions before it. Since the sequence of answers uniquely 
determines the object, each object has a different sequence of 
answers, and if we represent the yes-no answers by O’s and l’s, we 
have a binary code for the set of objects. The average length of this 
code is the average number of questions for the questioning 
scheme. 

Also, from a binary code for the set of objects, we can find a 
sequence of questions that correspond to the code, with the aver- 
age number of questions equal to the expected codeword length of 
the code. The first question in this scheme becomes “Is the first bit 
equal to 1 in the object’s codeword?” 

Since the Huffman code is the best source code for a random 
variable, the optimal series of questions is that determined by the 
Huffman code. In Example 5.6.1, the optimal first question is “Is X 
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equal to 2 or 3?” The answer to this determines the first bit of the 
Huffman code. Assuming the answer to the first question is ‘Yes,” 
the next question should be “Is X equal to 3?” which determines 
the second bit. However, we need not wait for the answer to the 
first question to ask the second. We can ask as our second question 
“Is X equal to 1 or 3?” determining the second bit of the Huffman 
code independently of the first. 

The expected number of questions EQ in this optimal scheme 
satisfies 

H(X)sEQcH(X)+l. (5.61) 

2. Huffman coding for weighted codewords. Huffman’s al- 
gorithm for minimizing C piZi can be applied to any set of numbers 
pi L 0, regardless of C pi. In this case, the Huffman code minimizes 
the sum of weighted codelengths C WiZi rather than the average 
codelength. 

Example 6.7.1: We perform the weighted minimization using the 
same algorithm. 

X Codeword Weights 

In this case the code minimizes the weighted sum of the codeword 
lengths, and the minimum weighted sum is 36. 

3. Huffban coding and “slice” questions. We have described the 
equivalence of source coding with the game of 20 questions. The 
optimal sequence of questions corresponds to an optimal source 
code for the random variable. However, Huffman codes ask arbi- 
trary questions of the form “Is X E A?” for any set A c 
(1,2, . . . , m). 

Now we consider the game of 20 questions with a restricted set 
of questions. Specifically, we assume that the elements of 8F = 
(192, l *  l Y 

m} are ordered so that p1 2pz 2 . . . “pm and that the 
only questions allowed are of the form “Is X > a?” for some a. 

The Huffman code constructed by the Huffman algorithm may 
not correspond to “slices” (sets of the form {x :x c a} ). If we take 
the codeword lengths (I, 5 I, I l l l I I,, by Lemma 5.8.1) derived 
from the Huffman code and use them to assign the symbols to the 



96 DATA COMPRESSlON 

code tree by taking the first available node at the corresponding 
level, we will construct another optimal code. However, unlike the 
Huffman code itself, this code is a “slice” code, since each question 
(each bit of the code) splits the tree into sets of the form {x :x > a} 
and {x:x <a}. 

We illustrate this with an example. 

Example 6.7.2: Consider the first example of Section 5.6. The 
code that was constructed by the Huffman coding procedure is not 
a “slice” code. But using the codeword lengths from the Huffman 
procedure, namely, {2,2,2,3,3}, and assigning the symbols to the 
first available node on the tree, we obtain the following code for 
this random variable: 

l-+00, 2-+01, 3-+10, 4-+110, 5+111 

It can be verified that this code is a “slice” code. These “slice” 
codes are known as alphabetic codes because the codewords are 
alphabetically ordered. 

4. Huffman codes and Shannon codes. Using codeword lengths of 
[log $1 (which is called Shannon coding) may be much worse than 
the oitimal code for some particular symbol. For example, consider 
two symbols, one of which occurs with probability 0.9999 and the 
other with probability 0.0001. Then using codeword lengths of 
[log & 1 implies using codeword lengths of 1 bit and 14 bits 
respectively. The optimal codeword length is obviously 1 bit for 
both symbols. Hence, the code for the infrequent symbol is much 
longer in the Shannon code than in the optimal code. 

Is it true that the codeword lengths for an optimal code are 
always less than [log & I? The following example illustrates that 
this is not always true. 

Example 6.7.3: Consider a random variable X with a distribution 
( Q, +,I, & ). The Huffman coding procedure results in codeword 
lengths of (2,2,2,2) or (1,2,3,3) (depending on where one puts 
the merged probabilities, as the reader can verify). Both these 
codes achieve the same expected codeword length. In the second 
code, the third symbol has length 3, which is greater than [log & 1. 
Thus the codeword length for a Shannon code could be less than 
the codeword length of the corresponding symbol of an optimal 
(Huffman) code. 

This example also illustrates the fact that the set of codeword 
lengths for an optimal code is not unique (there may be more than 
one set of lengths with the same expected value). 
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Although either the Shannon code or the Huffman code can be 
shorter for individual symbols, the Huffman code is shorter on the 
average. Also, the Shannon code and the Huffman code differ by 
less than one bit in expected codelength (since both lie between H 
and H + 1.) 

5. Fano codes. Fano proposed a suboptimal procedure for construct- 
ing a source code, which is similar to the idea of slice codes. In his 
method, we first order the probabilities in decreasing order. Then 
we choose k such that 1 Cf= 1 pi - Cy’!, + 1 pi 1 is minimized. This 
point divides the source symbols into two sets of almost equal 
probability. Assign 0 for the first bit of the upper set and 1 for the 
lower set. Repeat this process for each subset. By this recursive 
procedure, ‘we obtain a code for each source symbol. This scheme, 
though not optimal in general, achieves L(C) 5 H(X) + 2. (See 
n371.1 

5.8 OPTIMALITY OF HUFFMAN CODES 

We prove by induction that the binary Huffman code is optimal. It is 
important to remember that there are many optimal codes: inverting all 
the bits or exchanging two codewords of the same length will give 
another optimal code. The Huffman procedure constructs one such 
optimal code. To prove the optimality of Huffman codes, we first prove 
some properties of a particular optimal code. 

Without loss of generality, we will assume that the probability 
masses are ordered, so that p1 L pz 1. l * up,. Recall that a code is 
optimal if Z PiZi is minimal. 

Lemma 5.8.1: For any distribution, there exists an optimal instanta- 
neous code (with minimum expected length) that satisfies the following 
properties: 

1. Ifpj>p,, then lj(l,. 
2. The two longest codewords have the same length. 
3. The two longest codewords differ only in the last bit and corre- 

spond to the two least likely symbols. 

Proof: The proof amounts to swapping, trimming and rearranging, 
as shown in Figure 5.3. Consider an optimal code C,: 

l If pj >pk, then Zj 5 I,. Here we swap codewords. 
Consider Ck , 

Then 
with the codewords j and k of C, interchanged. 
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Figure 5.3. Properties of optimal codes. We will assume that p1 z-p2 2 - - - 1 p,. A possible 
instantaneous code is given in (a). By trimming branches without siblings, we improve the 
code to (Z-J 1. We now rearrange the tree as shown in (c) so that the word lengths are ordered 
by increasing length from top to bottom. Finally, we swap probability assignments to 
improve the expected depth of the tree as shown in (d). Thus every optimal code can be 
rearranged and swapped into the canonical form (d). Note that E, I I, I - - * I I,, that 
1 m-l = Z,, and the last two codewords differ only in the last bit. 

L(CA) - L(C, ) = c p,z; - c Pi4 (5.62) 

= Pjzk + Phzj - Pjlj - Pk’k (5.63) 

= (Pj -pk)(zh -  lj> l (5.64) 

But pj -pk > 0, and since C, is optimal, UC;) - UC,) 2 0. 
Hence we must have I, 1 Zj. Thus C, itself satisfies property 1. 

l The two Zongest codewords are of the same Length. Here we trim the 
codewords. 

If the two longest codewords are not of the same length, then one 
can delete the last bit of the longer one, preserving the prefix 
property and achieving lower expected codeword length. Hence the 
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two longest codewords must have the same length. By property 1, 
the longest codewords must belong to the least probable source 
symbols. 

l The two longest codewords differ only in the last bit and correspond 
to the two least likely symbols. Not all optimal codes satisfy this 
property, but by rearranging, we can find a code that does. 

If there is a maximal length codeword without a sibling, then we 
can delete the last bit of the codeword and still satisfy the prefix 
property. This reduces the average codeword length and contradicts 
the optimality of the code. Hence every maximal length codeword in 
any optimal code has a sibling. 

Now we can exchange the longest length codewords so the two 
lowest probability source symbols are associated with two siblings 
on the tree. This does not change the expected length C pili. Thus 
the codewords for the two lowest probability source symbols have 
maximal length and agree in all but the last bit. 

Summarizing, we have shown that if p1 2p2 2 - l l rpn, then there 
exists an optimal code with 1 1 5 1, I - - - Ed 1, -1 = I,, and codewords 
C(X, _ 1 ) and C(X,) that differ only in the last bit. Cl 

Thus we have shown that there exists an optimal code satisfying the 
properties of the lemma. We can now restrict our search to codes that 
satisfy these properties. 

For a code C, satisfying the properties of the lemma, we now define a 
“merged” code C,- 1 for m - 1 symbols as follows: take the common 
prefix of the two longest codewords 
symbols), and allot it to a symbol 
other codewords remain the same. 
following: 

(corresponding to the two least likely 
with probability p, -I + p,. All the 
The correspondence is shown in the 

Pl 
P2 

. 

. . 

cn-1 cl 
w; 1; w, = w; 1, = 1; 
wa 16 w, = w; 1, = 1; 

. . . . 

. . . . 

. . . . (5.65) 
pm-2 w;-2 IA-2 w,-2 = WA-2 L-2 = IA-2 

p,-1 +p, WA-1 Q-1 w,-I= WA-,o I,-, = IA-1 + 1 

Wnl = w;-J kn = lAmI + 1 

where w  denotes a binary codeword and 1 denotes its length. The 
expected length of the code C, is 

L(C,)= 2 Pi’i 
i=l 

(5.66) 
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m-2 

= 2 pi/?: +p,-l(Z~.-l + 1) +Pm(zL-l + ‘1 

i=l 

m-l 

= Ld Pil: + Pm-1 +Pm -s 

i=l 

=.L(C,-1) +Pm-1 +Pm * 

(5.67) 

(5.68) 

Thus the expected length of the code Cm differs from the expected length 
of Cm -1 by a fixed amount independent of Cmbl. Thus minimizing the 
expected length L( Cm> is equivalent to minimizing UC, _ l). Thus we 
have reduced the problem to one with m - 1 symbols and probability 
masses (pl, p2>. . . , pm -2, pm -1 + pm). This step is illustrated in Figure 
5.4. We again look for a code which satisfies the properties of Lemma 
5.8.1 for these m - 1 symbols and then reduce the problem to finding the 
optimal code for m - 2 symbols with the appropriate probability masses 
obtained by merging the two lowest probabilities on the previous 
merged list. Proceeding this way, we finally reduce the problem to two 
symbols, for which the solution is obvious, i.e., allot 0 for one of the 
symbols and 1 for the other. Since we have maintained optimality at 

(4 (b) 

0 l 
PI 

0 
p4 + P5 

1 

‘c 

0 
1 p2 

1 p3 

Figure 5.4. Induction step for Huffman coding. Let p1 zpl 2 * * * ‘ps. A canonical optimal 
code is illustrated in (a). Combining the two lowest probabilities, we obtain the code in (b 1. 
Rearranging the probabilities in decreasing order, we obtain the canonical code in (c) for 
m - 1 symbols. 
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every stage in the reduction, the code constructed for m symbols is 
optimal. Thus we have proved the following theorem for binary al- 
phabets. 

Theorem 6.8.1: Huffman coding is optimal, i.e., if C* is the Huffman 
code and C’ is any other code, then L(C*) 5 L(C’). 

Although we have proved the theorem for a binary alphabet, the proof 
can be extended to establishing optimality of the Huffman coding 
algorithm for a D-ary alphabet as well. Incidentally, we should remark 
that Huffman coding is a “greedy” algorithm in that it coalesces the two 
least likely symbols at each stage. The above proof shows that this local 
optimality ensures a global optimality of the final code. 

5.9 SHANNON-FANO-ELIAS CODING 

In Section 5.4, we showed that the set of lengths Z(X) = [log &I satisfies 
the Kraft inequality and can therefore be used to construct a uniquely 
decodable code for the source. In this section, we describe a simple 
constructive procedure which uses the cumulative distribution function 
to allot codewords. 

Without loss of generality we can take %’ = { 1,2, . . . , m}. Assume 
p(x) > 0 for all X. The cumulative distribution function F(X) is defined as 

F(x) = C p(a) . 

05X 

(5.70) 

This function is illustrated in Figure 5.5. Consider the modified cumula- 
tive distribution function 

Figure 5.5. Cumulative distribution function and Shannon-Fano-Elias coding. 
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1 
F(x)= c p(a)+ yj p(x), 

a<x 

(5.71) 

where F(x) denotes the sum of the probabilities of all symbols less than x 
plus half the probability of the symbol X. Since the random variable is 
discrete, the cumulative distribution function consists of steps of size 
P(X). The value of the function F(X) is the midpoint of the step corre- 
sponding to X. 

Since all the probabilities are positive, F(a) # F(b) if a # b, and hence 
we can determine x if we know F(X). Merely look at the graph of the 
cumulative distribution function and find the corresponding X. Thus the 
value of 2%) can be used as a code for x. 

But in general F(X) is a real number expressible only by an- infinite 
number of bits. So it is not efficient to use the exact value of F(X) as a 
code for X. If we use an approximate value, what is the required 
accuracy? 

Assume that we round off&) to Z(X) bits (denoted by [&)l I(x)). Thus 
we use the first Z(X) bits of F(X) as a code for X. By definition of rounding 
off, we have 

1 

If Z(X) = [log & 1 + 1, then 

‘<Ply 
21’“’ = F(x) - F(x - 1)) (5.73) 

and therefore &>J ICX) lies within the step corresponding to X. Thus Z(X) 
bits suffice to describe x. 

In addition to requiring that the codeword identify the corresponding 
symbol, we also require the set of codewords to be prefix-free. To check 
whether the code is prefix-free, we consider each codeword zlza . . . zI to 
represent not a point but the interval [O.z,z, . . . zl, O.z,z, . . . z1 + $1. 
The code is prefix-free if and only if the intervals corresponding to 
codewords are disjoint. 

We now verify that the code above is prefix-free. The interval corre- 
sponding to any codeword has length 2-‘““‘, which is less than half the 
height of the step corresponding to x by (5.73). The lower end of the 
interval is in the lower half of the step. Thus the upper end of the 
interval lies below the top of the step, and the interval corresponding to 
any codeword lies entirely within the step corresponding to that symbol 
in the cumulative distribution function. Therefore the intervals corre- 
sponding to different codewords are disjoint and the code is prefix-free. 

Note that this procedure does not require the symbols to be ordered 
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in terms of probability. Another procedure that uses the ordered prob- 
abilities is described in Problem 25 at the end of the chapter. 

Since we use Z(x) = [log &l + 1 bits to represent x, the expected 
length of this code is 

L = c p(x)Z(x) = 2 p(x)( [log --&I + 1) < H(X) + 2 ’ (5.74) x x 

Thus this coding scheme achieves an average codeword length that is 
within two bits Iof the entropy. 

Example 6.9.1: We first consider an example where all the prob- 
abilities are dyadic. We construct the code in the following table: 

x p(x) F(x) Rx> F(x) in binary l(x) = [log ,&l + 1 Codeword 

1 0.25 0.25 0.125 0.001 3 001 
2 0.5 0.75 0.5 0.10 2 10 
3 0.125 0.875 0.8125 0.1101 4 1101 
4 0.125 1.0 0.9375 0.1111 4 1111 

In this case, the average codeword length is 2.75 bits while the entropy 
is 1.75 bits. The Huffman code for this case achieves the entropy bound. 
Looking at the codewords, it is obvious that there is some inefficiency- 
for example, the last bit of the last two codewords can be omitted. But if 
we remove the last bit from all the codewords, the code is no longer 
prefix free. 

Example 5.9.2: We now give another example for the construction for 
the Shannon-Fano-Elias code. In this case, since the distribution is not 
dyadic, the representation of F(x) in binary may have an infinite number 
of bits. We denote 0.01010101 . . . by 0.01. 

We construct the code in the following table: 

X p(x) F(x) m F(x) in binary I(x)= [log--&] + 1 Codeword 

1 0.25 0.25 0.125 0.001 3 001 
2 0.25 0.5 0.375 0.011 3 011 
3 0.2 0.7 0.6 0.10011 4 1001 
4 0.15 0.85 0.775 0.1100011 4 1100 
5 0.15 1.0 0.925 0.1110110 4 1110 

The above code is 1.2 bits longer on the average than the Huffman code 
for this source (Example 5.6.1). 

In the next section, we extend the concept of Shannon-Fano-Elias 
coding and describe a computationally efficient algorithm for encoding 
and decoding called arithmetic coding. 
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5.10 ARITHMETIC CODING 

From the discussion of the previous sections, it is apparent that using a 
codeword length of log Pi for the codeword corresponding to x is nearly 
optimal in that it has an expected length within 1 bit of the entropy. The 
optimal codes are Huffman codes, and these can be constructed by the 
procedure described in Section 5.6. 

For small source alphabets, though, we have efficient coding only if 
we use long blocks of source symbols. For example, if the source is 
binary, and we code each symbol separately, we must use 1 bit per 
symbol irrespective of the entropy of the source. If we use long blocks, 
we can achieve an expected length per symbol close to the entropy rate 
of the source. 

It is therefore desirable to have an efficient coding procedure that 
works for long blocks of source symbols. Htiman coding is not ideal for 
this situation, since it is a bottom-up procedure that requires the 
calculation of the probabilities of all source sequences of a particular 
block length and the construction of the corresponding complete code 
tree. We are then limited to using that block length. A better scheme is 
one which can be easily extended to longer block lengths without having 
to redo all the calculations. Arithmetic coding, a direct extension of the 
Shannon-Fano-Elias coding scheme of the last section, achieves this 
goal. 

The essential idea of arithmetic coding is to efficiently calculate the 
probability mass function p(x” ) and the cumulative distribution function 
F(x”) for the source sequence xn. Using the ideas of Shannon-Fano-Elias 
coding, we can use a number in the interval (F(x”> - p(x”), F(x”)] as the 
code for xn. For example, expressing F(x”) to an accuracy of [log A1 
will give us a code for the source. Using the same arguments as in the 
discussion of the Shannon-Fano-Elias code, it follows that the codeword 
corresponding to any sequence lies within the step in the cumulative 
distribution function (Figure 5.5) corresponding to that sequence, So the 
codewords for different sequences of length n are different. However, the 
procedure does not guarantee that the se! of codewords is prefix-free. We 
can construct a prefix-free set by using F(x) rounded off to [log &1 + 1 
bits as in Section 5.9. In the algorithm described below, we will keep 
track of both F(x” ) and p(x” ) in the course of the algorithm, so we can 
calculate F(x) easily at any stage. 

We now describe a simplified version of the arithmetic coding al- 
gorithm to illustrate some of the important ideas. We assume that we 
have a fixed block length n that is known to both the encoder and the 
decoder. With a small loss of generality, we will assume that the source 
alphabet is binary. We assume that we have a simple procedure to 
calculate p(xl, x2, . . . , xn) for any string x1, x2, . . . , x,. We will use the 
natural lexicographic order on strings, so that a string x is greater than 
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a string y if xi 7 1, yi = 0 for the first i such that xi # yi. Equivalently, 
x > y if Ci ~~2~” > Ci yi2-l, i.e., if the corresponding binary numbers 
satisfy 0.x > 0.~. We can arrange the strings as the leaves of a tree of 
depth n, where each level of the tree corresponds to one bit. Such a tree 
is illustrated in Figure 5.6. In this figure, the ordering x > y corresponds 
to the fact that x is to the right of y on the same level of the tree. 

From the discussion of the last section, it appears that we need to 
find p( y” ) for all yn I xn and use that to calculate F(x” ). Looking at the 
tree, we might suspect that we need to calculate the probabilities of all 
the leaves to the left of xn to find F(x” ). The sum of these probabilities is 
the sum of the probabilities of all the subtrees to the left of xn. Let 
T 

Xl%2 
. . .rk- ,0 be a subtree starting with x,x, - - . xk _ ,O. The probability of 

this subtree is 

and hence can be calculated easily. Therefore we can rewrite F(P) as 

Figure 5.6. Tree of strings for arithmetic coding. 
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m”)= c p(f) (5.77) 
ynl;xn 

= c p(T) (5.78) 
T : Tia to the left of xn 

(5.79) 

Thus we can calculate F(xn) quickly from pkx” >. 

Example S.lO.1: If X,, X2, . . . , X, are Bernoulli(B) in Figure 5.6, then 

F(O1llO)=p(T1)+p(T,)+p(T,)=p(OO)+p(O1O)+p(O1lO) (5.80) 

= (I- ej2 + e(i - ej2 + e2(i - ej2 . (5.81) 

Note that these terms can be calculated recursively. For example, 
e3(i - ej3 = (e2(i - e)2)e(i - e). 

To encode the next bit of the source sequence, we need only calculate 
p(x’q + 1 > and update F(x”x, + 1 ) using the above scheme. Encoding can 
therefore be done sequentially, by looking at the bits as they come in. 

To decode the sequence, we use the same procedure to calculate the 
cumulative distribution function and check whether it exceeds the value 
corresponding to the codeword. We then use the tree in Figure 5.6 as a 
decision tree. At the top node, we check to see if the received codeword 
F(x” > is greater than p(0). If it is, then the subtree starting with 0 is to 
the left of P and hence x, = 1. Continuing this process down the tree, we 
can decode the bits in sequence. Thus we can compress and decompress 
a source sequence in a sequential manner. 

The above procedure depends on a model for which we can easily 
compute p(C). Two examples of such models are i.i.d. sources, where 

(5.82) 

and Markov sources, where 

(5.83) 

In both cases, we can easily calculate p(x”x, +1) from p(x” ). 
Note that it is not essential that the probabilities used in the 

encoding be equal to the true distribution of the source. In some cases, 
such as in image compression, it is difficult to describe a “true” dis- 
tribution for the source. Even then, it is possible to apply the above 
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arithmetic coding procedure. The procedure will be efficient only if the 
model distribution is close to the empirical distribution of the source 
(Theorem 5.4.3). A more sophisticated use of arithmetic coding is to 
change the model dynamically to adapt to the source. Adaptive models 
work well for large classes of sources. The adaptive version of arithmetic 
coding is a simple example of a universal code, that is, a code that is 
designed to work with an arbitrary source distribution. Another exam- 
ple is the Lempel-Ziv code, which is discussed in Section 12.10. 

The foregoing discussion of arithmetic coding has avoided discussion 
of the difficult implementation issues of computational accuracy, buffer 
sizes, etc. An introduction to some of these issues can be found in the 
tutorial introduction to arithmetic coding by Langdon [170]. 

5.11 COMPETITIVE OPTIMALITY OF THE SHANNON CODE 

We have shown that Huffman coding is optimal in that it has minimum 
expected length. But what does that say about its performance on any 
particular sequence? For example, is it always better than any other 
code for all sequences? Obviously not, since there are codes which assign 
short codewords to infrequent source symbols. Such codes will be better 
than the Huffman code on those source symbols. 

To formalize the question of competitive optimality, consider the 
following two-person zero sum game: Two people are given a probability 
distribution and are asked to design an instantaneous code for the 
distribution. Then a source symbol is drawn from this distribution and 
the payoff to player A is 1 or -1 depending on whether the codeword of 
player A is shorter or longer than the codeword of player B. The payoff 
is 0 for ties. 

Dealing with Htiman codelengths is difficult, since there is no 
explicit expression for the codeword lengths. Instead, we will consider 
the Shannon code with codeword lengths Z(x) = [log & 1. In this case, we 
have the following theorem: 

Theorem 5.11.1: Let Z(x) be the codeword lengths associated with the 
Shannon code and let l’(x) be the codeword lengths associated with any 
other code. Then 

1 
Pr(Z(X) 2 I ‘(X) + c) 5 2c-l . (5.84) 

Thus, for example, the probability that Z’(X) is 5 or more bits shorter 
than Z(X) is less than $. 



108 DATA COMPRESSZON 

Proof: 

Pr(Z(X) 1 Z’(X) + c) = Pr ([ -&l rZ’O+c) (5.85) log 

5 Pr 
1 

bp(X) --+Z’(X)+c-1 (5.86) 

= pr(p(X) 5 g-“~‘-‘+l) (5.87) 

= c p(x) (5.88) 
x : p(le)s2 -I’(z)-c+l 

22 c 2 -I'(x)-(c-1) 

2 :  &&)92 -I’(x)-c+l 

I c p(z)cp-l) (5.90) 
x 

12 -(c-l) 
9 (5.91) 

since C 2-1’(“) 5 1 by the Kraft inequality. 0 

Hence, no other code can do much better than the Shannon code most 
of the time. 

We now strengthen this result in two ways. First, there is the term 
+ 1 that has been added, which makes the result non-symmetric. Also, 
in a game theoretic setting, one would like to ensure that Z(x) < Z’(x) 
more often than Z(x) > Z’(x). The fact that Z(x) 5 Z’(x) + 1 with probability 
L f does not ensure this. We now show that even under this stricter 
criterion, Shannon coding is optimal. Recall that the probability mass 
function p(x) is dyadic if log &J is an integer for all x. 

Theorem 5.11.2: For a dyadic probability mass function p(x), let Z(x) = 
log & be the word lengths of the binary Shannon code for the source, 
and let Z’(x) be the Lengths of any other uniquely decodable binary code 
for the source. Then 

Pr(Z(X) C Z ‘(X)) 2 Pr(Z(X) > Z ‘(X)) , (5.92) 

with equality iff Z’(x) = Z(x) for all x. Thus the code length assignment 
Z(x) = log &j is uniquely competitiveZy optimal. 

Proof: Define the function sgn(t) as follows: 

1 if t>O 
sgnw = 0 ift=O. 

-1 if t<O 

Then it is easy to see from Figure 5.7 that 

(5.93) 
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Figure 5.7. The sgn function and a bound. 

sgn(t) 5 2t - 1 for t = 0, kl, *2, . . . . (5.94) 

Note that though this inequality is not satisfied for all t, it is satisfied at 
all integer values of t. 

We can now write 

W’(X) < Z(X)) - Pr(Z’W > Z(X)) = C p(x) - 2 p(x) (5.95) 
x : Z’(X)CZ(X) x : Z’(x)>Z(x) 

= c p(x) sgrdw - Z’(d) (5.96) 
x 

= E sgn(Z(X) - Z'(X)> (5.97) 

0 c p(x)(p’-“~d - 1) (5.98) 

=c (2 
2 2- 

Z(x) Z(x)-Z'(x) -1) (5.99) 

= c x 2-Z”“’ _ 2 2-z’“’ (5.100) 
X 

= 22 
-Z’(x) _ 1 

X 
(5.101) 

(b) 
I l-l (5.102) 

= 0, (5.103) 
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where (a) follows from the bound on sgn(x) and (b) follows from the fact 
that Z’(x) satisfies the Kraft inequality. 

We have equality in the above chain only if we have equality in (a) 
and (b). We have equality in the bound for sgn(t) only if t is 0 or 1, i.e., 
Z(x) = I ‘(x) or Z(x) = I ‘(x) + 1. Equality in (b) implies that Z ‘(x) satisfy the 
Kraft inequality with equality. Combining these two facts implies that 
Z’(x) = Z(x) for all x. Cl 

CoroUaxy: For non-dyadic probability mass functions, 

Esgn(Z(X)-Z’(X)-1)sO (5.104) 

where Z(x) = [log & 1 and Z’(x) is any other code for the source. 

Proof: Along the same lines as the preceding proof. Cl 

Hence we have shown that Shannon coding is optimal under a variety 
of criteria; it is robust with respect to the payoff function. In particular, 
for dyadic p, E(Z - I’) I 0, E sgn(Z - I’) 5 0, and by use of inequality 
(5.94), Ef(Z - I’) 5 0, for any function f satisfying f(t) I 2t - 1, t = 0, + 1, 
*2 , . . . . 

5.12 GENERATION OF DISCRETE DISTRIBUTIONS FROM FAIR 
COINS 

In the early sections of this chapter, we considered the problem of 
representing a random variable by a sequence of bits such that the 
expected length of the representation was minimized. It can be argued 
(Problem 26) that the encoded sequence is essentially incompressible, 
and therefore has an entropy rate close to 1 bit per symbol. Therefore 
the bits of the encoded sequence are essentially fair coin flips. 

In this section, we will take a slight detour from our discussion of 
source coding and consider the dual question. How many fair coin flips 
does it take to generate a random variable X drawn according to some 
specified probability mass function p? We first consider a simple ex- 
ample: 

Example 6.12.1: Given a sequence of fair coin tosses (fair bits), sup- 
pose we wish to generate a random variable X with distribution 

a with probability i , 
X = b with probability $ , (5.105) 

c with probability a . 
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It is easy to guess the answer. If the first bit is 0, we let X = a. If the 
first two bits are 10, we let X = b. If we see 11, we let X = c. It is clear 
that X has the desired distribution. 

We calculate the average number of fair bits required for generating 
the random variable in this case as i 1 + $2 + $2 = 1.5 bits. This is also 
the entropy of the distribution. Is this unusual? No, as the results of this 
section indicate. 

The general problem can now be formulated as follows. We are given 
a sequence of fair coin tosses Z,, Z,, . . . , and we wish to generate a 
discrete random variable X E %’ = { 1,2, . . . , m} with probability mass 
function p = (pl, p2, . . . , p,). Let the random variable 2’ denote the 
number of coin flips used in the algorithm. 

We can describe the algorithm mapping strings of bits Z,, Z,, . . . , to 
possible outcomes X by a binary tree. The leaves of the tree are marked 
by output symbols X and the path to the leaves is given by the sequence 
of bits produced by the fair coin. For example, the tree for the dis- 
tribution ( $, f , a ) is shown in Figure 5.8. 

The tree representing the algorithm must satisfy certain properties: 

1. The tree should be complete, i.e., every node is either a leaf or has 
two descendants in the tree. The tree may be infinite, as we will 
see in some examples. 

2. The probability of a leaf at depth k is 2? Many leaves may be 
labeled with the same output symbol-the total probability of all 
these leaves should equal the desired probability of the output 
symbol. 

3. The expected number of fair bits ET required to generate X is 
equal to the expected depth of this tree. 

There are many possible algorithms that generate the same output 
distribution. For example, the mapping: OO+ a, 01 + b, lo+ c, 11 --) a 
also yields the distribution ( 5, i, a ). However, this algorithm uses two 
fair bits to generate each sample, and is therefore not as efficient as the 
mapping given earlier, which used only 1.5 bits per sample. This brings 
up the question: What is the most efficient algorithm to generate a given 
distribution and how is this related to the entropy of the distribution? 

a 

Figure 5.8. Tree for generation of the distribution (I, i, I). 
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We expect that we need at least as much randomness in the fair bits 
as we produce in the output samples. Since entropy is a measure of 
randomness, and each fair bit has an entropy of 1 bit, we expect that the 
number of fair bits used will be at least equal to the entropy of the 
output. This is proved in the following theorem. 

We will need a simple lemma about trees in the proof of the theorem. 
Let 9 denote the set of leaves of a complete tree. Consider a distribution 
on the leaves, such that the probability of a leaf at depth k on the tree is 
2? Let Y be a random variable with this distribution. Then we have the 
following lemma: 

Lemma 5.12.x: For any complete tree, consider a probability dis- 
tribution on the leaves, such that the probability of a leaf at depth k is 
2-k. Then the expected depth of the tree is equal to the entropy of this 
distribution. 

Proof: The expected depth of the tree 

ET = 2 k(y)2-k’Y’ 
YE% 

and the entropy of the distribution of Y is 

H(Y)=-2 
YE9 

&%& 

(5.106) 

(5.107) 

= 2 k(y)2-k(y) > (5.108) 
YE9 

where k(y) denotes the depth of leafy. Thus 

H(Y)=ET. Cl (5.109) 

Theorem 5.12.1: For any algorithm generating X, the expected number 
of fair bits used is greater than the entropy H(X), i.e., 

ET 2 H(X). (5.110) 

Proof: Any algorithm generating X from fair bits can be represented 
by a binary tree. Label all the leaves of this tree by distinct symbols 
y E 9 = {1,2,. . . }. If the tree is infinite, the alphabet 3 is also infinite. 

Now consider the random variable Y defined on the leaves of the tree, 
such that for any leafy at depth k, the probability that Y = y is 2-k. By 
Lemma 5.12.1, the expected depth of this tree is equal to the entropy of 
Y, i.e., 

ET = H(Y). (5.111) 

Now the random variable X is a function of Y (one or more leaves map 
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onto an output symbol), and hence by the result of Problem 5 in Chapter 
2, we have 

H(X) 5 H(Y) . (5.112) 

Thus for any algorithm generating the random variable X, we have 

H(X)sET. cl (5.113) 

The same argument answers the question of optimality for a dyadic 
distribution. 

Theorem 5.12.2: Let the random variable X have a dyadic distribution. 
The optimal algorithm to generate X from fair coin flips requires an 
expected number of coin tosses precisely equal to the entropy, i.e., 

ET = H(X). (5.114) 

Proof: The previous theorem shows that we need at least H(X) bits 
to generate X. 

For the constructive part, we use the Huffman code tree for X as the 
tree to generate the random variable. For a dyadic distribution, the 
Huffman code is the same as the Shannon code and achieves the entropy 
bound. For any x E BY, the depth of the leaf in the code tree correspond- 
ing to x is the length of the corresponding codeword, which is log p~. 
Hence when this code tree is used to generate X, the leaf will have a 
probability 2- log (1’p(x)) = p(x). 

The expected number of coin flips is the expected depth of the tree, 
which is equal to the entropy (because the distribution is dyadic). Hence 
for a dyadic distribution, the optimal generating algorithm achieves 

ET=H(X). 0 (5.115) 

What if the distribution is not dyadic? In this case, we cannot use the 
same idea, since the code tree for the Huffman code will generate a 
dyadic distribution on the leaves, not the distribution with which we 
started. Since all the leaves of the tree have probabilities of the form 
2-&, it follows that we should split any probability pi that is not of this 
form into atoms of this form. We can then allot these atoms to leaves on 
the tree. 

To minimize the expected depth of the tree, we should use atoms with 
as large a probability as possible. So given a probability pi, we find the 
largest atom of the form 2-& that is less than pi, and allot this atom to 
the tree. Then we calculate the remainder and find that largest atom 
that will fit in the remainder. Continuing this process, we can split all 
the probabilities into dyadic atoms. This process is equivalent to finding 
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the binary expansions of the probabilities. Let the binary expansion of 
the probability pi be 

pi = c pij’ , 
j21 

(5.116) 

where plj’ = 2-j or 0. Then the atoms of the expansion are the {pi” : i = 
1,2, . . . , na,jLl). 

Since Ci pi = 1, the sum of the probabilities of these atoms is 1. We 
will allot an atom of probability 2--’ to a leaf at depth j on the tree. The 
depths of the atoms satisfy the Kraft inequality, and hence by Theorem 
5.2.1, we can always construct such a tree with all the atoms at the 
right depths. 

We illustrate this procedure with an example: 

Example 6.12.2: Let X have the distribution 

x = a with probability 8 , 
b with probability Q . (5.117) 

We find the binary expansions of these probabilities: 

2 
~=0.10101010..., (5.118) 

1 
3 = 0.01010101. . .2 (5.119) 

Hence the atoms for the expansion are 

(5.120) 

(5.121) 

These can be allotted to a tree as shown in Figure 5.9. 

This procedure yields a tree that generates the random variable X. 
We have argued that this procedure is optimal (gives a tree of minimum 

a 

Figure 5.9. Tree to generate a ( f , & ) distribution. 
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expected depth), but we will not give a formal proof. Instead, we bound 
the expected depth of the tree generated by this procedure. 

Theorem 5.123: The expected number of fair bits required by the 
optimal algorithm to generate a random variable X lies between H(X) 
and H(X) + 2, i.e., 

H(X&ET<H(X)+2. (5.122) 

Proof: The lower bound on the expected number of coin tosses is 
proved in Theorem 512.1. 

For the upper bound, we write down an explicit expression for the 
expected number of coin tosses required for the procedure described 
above. We split all the probabilities ( pI, pa, . . . , p, ) into dyadic atoms, 
e.g., 

(1) (2) 
P1+(P1 ,Pl 7-J, (5.123) 

etc. Using these atoms (which form a dyadic distribution), we construct 
a tree with leaves corresponding to each of these atoms. The number of 
coin tosses required to generate each atom is its depth in the tree, and 
therefore the expected number of coin tosses is the expected depth of the 
tree, which is equal to the entropy of the dyadic distribution of the 
atoms. Hence 

ET = H(Y), (5.124) 

(1) where Y has the distribution, (py),py), . . . ,p2 ,pf), . . . , PE’, PE’, - - a 1. 
Now since X is a function of Y, we have 

H(Y) = H(Y, X) = H(X) + H(YIX), (5.125) 

and our objective is to show that H(YIX) < 2. We now give an algebraic 
proof of this result. Expanding the entropy of Y, we have 

H(Y) = - 2 c p;j’ log pij’ 
i=ljzl 

(5.126) 

= 2 C j2-j) 

i=l + 
j:pi (‘) >o 

(5.127) 

since each of the atoms is either 0 or 2-” for some k. Now consider the 
term in the expansion corresponding to each i, which we shall call Ti, 
i.e., 

Ti= C j2-‘. (5.128) 
j:Pi (j) >o 

We can find an n such that 2-(“-l) > pi 2 2’“, or 



116 DATA COMPRESSION 

(5.129) 

Then it follows that py’ > 0 only ifj 2 n, so that we can rewrite (5.128) 
as 

Ti= 2 j2-‘. (5.130) 
j:jZn, py) >0 

We use the definition of the atom to write pi as 

Pi = c 
j 

Cj) ,02- 
. (5.131) 

j: jrn, pi 

In order to prove the upper bound, we first show that 7’i < -pi Iog pi + 
2pi. Consider the difference 

(5.132) 

= Ti - (n - 1 + 2)pi (5.133) 

= c W’ -b+l) C 2-j (5.134) 
j: jrn, pi Cj) ,. j: jzn, plj’ >O 

= C (j-n-1)2-j (5.135) 
j: jrn, pi Cj) ,. 

=-2-“+o+ c <j - n - 1)2-j (5.136) 
j: jrn+2 py’ >O , 

(b) 
= -2-n + 

c 
k2-(k+n+l) (5.137) 

k .kzl p!k+n+l) * ‘I >O 

62) I _ 2-n + c &-pk+n+l) (5.138) 
k:k ~1 

= -2-n + 2-h+19 (5.139) 

=0, (5.140) 

where (a) follows from (5.129), (b) from a change of variables for the 
summation and (c) from increasing the range of the summation. Hence 
we have shown that 

Ti < -pi log pi + 2Pi * (5.141) 

Since ET = Ci Ti, it follows immediately that 

ET<-CPi10gPi”CPi=H’X”2 
i i 

(5.142) 

completing the proof of the theorem. Cl 
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SUMMARY OF CHAPTER 5 

Kr& inequality: Instantaneous codes e C Deli 5 1 

McMillan inequality: Uniquely decodable codes @ C Da”’ 5 1 

Entropy bound on data compression (Lozuer bound): 

L ~ ~ pili 1: H,(X). (5.143) 

Shannon code: 

li = [log, $1 
, 

LcH,(X)+l. 

(5.144) 

(5.145) 

H&an code: 

L*= min 
Z D%l 

C Pili ’ 

H,(X) 5 L” <H,(X) + 1. 

(5.146) 

(5.147) 

Wrong code: X - p(x), Z(x) = [log & 1, L = C p(x)Z(x): 

H(p)+D(p(lq)=L<H(p)+D(pl(q)+l. (5.148) 

Stochastic processes: 

H(x,,X, ,... ,X,> <L - n 
<H(x,,& ,..., XJ + 1 -. 

n n n 

Stationary proceeses: 

L,-,HW). 

(5.149) 

(5.160) 

Competitive optimality: Z(x) = [log ,4;i 1 (Shannon code) versus any other 
code I ‘(x): 

Pr(Z(X) 2 Z’(X) + c) 5 & . (6.151) 

Generation of random variables: 

H(X)sdKh~(X)+24 (6.152) 
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PROBLEMS FOR CHAPTER 5 

1. Uniquely decodable and instantaneous codes. Let L = Cy=“=, pilrO’ be the 
expected value of the 100th power of the word lengths associated with 
an encoding of the random variable X. Let L, = min L over all 
instantaneous codes; and let L, = min L over all uniquely decodable 
codes. What inequality relationship exists between L, and L,? 

2. How many fingers has a Martian? Let 

s= p:;“’ p . ( 
S &?I 

-a*, m 1 

The S,‘s are encoded into strings from a D-symbol output alphabet in 
a uniquely decodable manner. If m = 6 and the codeword lengths are 
(I,, z,, * - * , I,) = (1, 1,2,3,2,3), find a good lower bound on D. You 
may wish to explain the title of the problem. 

3. Slackness in the Kraft inequality. An instantaneous code has word 
lengths I,, I,, . . . , I, which satisfy the strict inequality 

2 D-“<I . 
i=l 

The code alphabet is 9 = (0, 1,2, . . . , D - 1). Show that there exist 
arbitrarily long sequences of code symbols in 9* which cannot be 
decoded into sequences of codewords: 

4. Huffman coding. Consider the random variable 

(a) Find a binary Huffman code for X. 
(b) Find the expected codelength for this encoding. 
(c) Find a ternary Huffman code for X. 

5. More Huffman codes. Find the binary Huffman code for the source 
with probabilities (l/3, l/5, l/5, 2/15, 2/E). Argue that this code is 
also optimal for the source with probabilities (l/5,1/5,1/5, l/5, l/5). 

6. Bad codes. Which of these codes cannot be Huffman codes for any 
probability assignment? 

(4 (0, 10,11}. 
(b) {OO,Ol, 10,110). 

Cc) {01,10}. 

7. Huffman 20 Questions. Consider a set of n objects. Let Xi = 1 or 0 
accordingly as the i-th object is good or defective. Let X1, Xz, . . . , X, 
beindependent withPr{X,=l}=pi; andp,>p,> . . . >p,>1/2. 
We are asked to determine the set of all defective objects. Any yes-no 
question you can think of is admissible. 
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(a) Give a good lower bound on the minimum average number of 
questions required. 

(b) If the longest sequence of questions is required by nature’s 
answers to our questions, what (in words) is the last question we 
should ask? And what two sets are we distinguishing with this 
question? Assume a compact (minimum average length) sequence 
of questions. 

(c) Give an upper bound (within 1 question) on the minimum average 
number of questions required. 

8. Simple optimum compression of a Markov source. Consider the S-state 
Markov process U1, U2, . . . having transition matrix 

Sl l/2 l/4 l/4 
s, l/4 l/2 l/4 
s3 0 l/2 l/2 

Thus the probability that S, follows S, is equal to zero. Design 3 
codes C,, C,, C, (one for each state S,, S,, S, ), each code mapping 
elements of the set of S,‘s into sequences of O’s and l’s, such that this 
Markov process can be sent with maximal compression by the follow- 
ing scheme: 
(a) Note the present symbol Si. 
(b) Select code Ci. 
(c) Note the next symbol S’ and send the codeword in Ci correspond- 

ing to Sj. 
(d) Repeat for the next symbol. 
What is the average message length of the next symbol conditioned 
on the previous state S = Si using this coding scheme? What is the 
unconditional average number of bits per source symbol? Relate this 
to the entropy rate H(% ) of the Markov chain. 

9. Optimal code lengths that require one bit above entropy. The source 
coding theorem shows that the optimal code for a random variable X 
has an expected length less than H(X) + 1. Give an example of a 
random variable for which the expected length of the optimal code is 
close to H(X) + 1, i.e., for any E > 0, construct a distribution for which 
the optimal code has L > H(X) + 1 - e. 

10. Ternary codes that achieve the entropy bound. A random variable X 
takes on m values and has entropy H(X). An instantaneous ternary 
code is found for this source, with average length 
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(a) Show that each symbol of X has a probability of the form 3-i for 
some i. 

(b) Show that m is odd. 

11. Suffix condition. Consider codes that satisfy the suf6x condition, 
which says that no codeword is a suffix of any other codeword. Show 
that a suffix condition code is uniquely decodable, and show that the 
minimum average length over all codes satisfying the suffix condition 
is the same as the average length of the Huffman code for that 
random variable. 

12. Shannon codes and Huffman codes. Consider a random variable X 
which takes on four values with probabilities ( i, 4, a, & >. 
(a) Construct a Huffman code for this random variable. 
(b) Show that th ere exist two different sets of optimal lengths for the 

codewords, namely, show that codeword length assignments 
(1,2,3,3) and (2,2,2,2) are both optimal. 

(c) Conclude that there are optimal codes with codeword lengths for 
some symbols that exceed the Shannon code length [log ,&I. 

13. Twenty questions. Player A chooses some object in the universe, and 
player B attempts to identify the object with a series of yes-no 
questions. Suppose that player B is clever enough to use the code 
achieving the minimal expected length with respect to player A’s 
distribution. We observe that player B requires an average of 38.5 
questions to determine the object. Find a rough lower bound to the 
number of objects in the universe. 

14. Huffman code. Find the (a) binary and (b) ternary Huffman codes for 
the random variable X with probabilities 

(c) Calculate L = C pili in each case. 

15. Classes of codes. Consider the code (0, 01} 
(a) Is it instantaneous? 
(b) Is it uniquely decodable? 
(c) Is it nonsingular? 

16. The game of Hi-Lo. 
(a) A computer generates a number X according to a known prob- 

ability mass function p(x), x E { 1,2, . . . , lOO} . The player asks a 
question, “Is X = i ?” and is told ‘Yes”, ‘You’re too high,” or 
‘You’re too low.” He continues for a total of six questions. If he is 
right (i.e. he receives the answer ‘Yes”) during this sequence, he 
receives a prize of value v(X) . How should the player proceed to 
maximize his expected winnings? 

(b) The above doesn’t have much to do with information theory. 
Consider the following variation: X-p(x), prize = u(x), p(x) 
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17. 

18. 

19. 

20. 

21. 

known, as before. But arbitrary Yes-No questions are asked 
sequentially until X is determined. (“Determined” doesn’t mean 
that a “Yes” answer is received.) Questions cost one unit each. 
How should the player proceed? What is his expected return? 

(c) Continuing (b), what if u(x) is fixed, but p(x) can be chosen by the 
computer (and then announced to the player)? The computer 
wishes to minimize the player’s expected return. What should&) 
be? What is the expected return to the player? 

Huffman cocZes with costs. Words like Run! Help! and Fire! are short, 
not because they are frequently used, but perhaps because time is 
precious in the situations in which these words are required. Suppose 
that X = i with probability pi, i = 1,2, . . . , m. Let Zi be the number of 
binary symbols in the codeword associated with X = i, and let ci 
denote the cost per letter of the codeword when X = i. Thus the 
average cost C of the description of X is C = Cy=“,, piciZi. 
(a) Minimize C over all I,, I,, . . . , I, such that C 2-l’ I 1. Ignore any 

implied integer constraints on Zi. Exhibit the minimizing 
z;, z;, . . . ) ZL and the associated minimum value C*. 

(b) How would you use the Huffman code procedure to minimize C 
over all uniquely decodable codes? Let CHuffman denote this 
minimum. 

(c) Can you show that 

c*sc Huffman 5 C* + I? PiCi? 
i=l 

Conditions for unique decodability. Prove that a code C is uniquely 
decodable if (and only if) the extension 

Cbl, x,, - * . ,x,) = C(X1)C(Xz)~ * * ax,) 

is a one-to-one mapping from 8!? to D* for every k 2 1. (The only if 
part is obvious.) 

Average length of an optima2 code. Prove that Up,, . . . , p, 1, the 
average codeword length for an optimal D-ary prefix code for prob- 
abilities { pl, . . . , p, }, is a continuous function of pl, . . . , p, . This is 
true even though the optimal code changes discontinuously as the 
probabilities vary. 

Unused code sequences. Let C be a variable length code that satisfies 
the Kraft inequality with equality but does not satisfy the prefix 
condition. 
(a) Prove that some finite sequence of code alphabet symbols is not 

the prefix of any sequence of codewords. 
(b) (Optional) Prove or disprove: C has infinite decoding delay. 

Optima2 codes for uniform distributions. Consider a random variable 
with m equiprobable outcomes. The entropy of this information 
source is obviously log,m bits. 
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(a) Describe the optimal instantaneous binary code for this source 
and compute the average codeword length L,. 

(b) For what al v ues of m does the average codeword length L, equal 
the entropy H = log, m? 

(c) We know that L <H + 1 for any probability distribution. The 
redundancy of a variable length code is defined to be p = L - H. 
For what value(s) of m, where 2’ 5 m 5 2k+1, is the redundancy of 
the code maximized? What is the limiting value of this worst case 
redundancy as m + m? 

22. Optimal codeword lengths. Although the codeword lengths of an opti- 
mal variable length code are complicated functions of the message 
probabilities {pl, pz, . . . , p,}, it can be said that less probable 
symbols are encoded into longer codewords. Suppose that the mes- 
sage probabilities are given in decreasing order pI > p2 2 * . . 1 p,. 
(a) Prove that f or any binary Huffman code, if the most probable 

message symbol has probability p1 > 2/5, then that symbol must 
be assigned a codeword of length 1. 

(b) Prove that f or any binary Huffman code, if the most probable 
message symbol has probability p1 < l/3, then that symbol must 
be assigned a codeword of length 2 2. 

23. Merges. Companies with values WI, Wz, . . . , W, are merged as fol- 
lows. The two least valuable companies are merged, thus forming a 
list of m - 1 companies. The value of the merge is the sum of the 
values of the two merged companies. This continues until one super- 
company remains. Let V equal the sum of the values of the merges. 
Thus V represents the total reported dollar volume of the merges. 
For example, if W= (3,3,2,2), the merges yield (3,3,2,2)-+ 
(4,3,3)+ (6,4)+ (lo), and V= 4 + 6 + 10 = 20. 
(a) Argue that V is the minimum volume achievable by sequences of 

pair-wise merges terminating in one supercompany. (Hint: Com- 
pare to Huffman coding.) 

(b) Let W = C Wi, tii = Wi/W, and show that the minimum merge 
volume V satisfies 

WH(ik) I V = WH&) + W . (5.154) 

24. The Sardinas-Patterson test for unique decodability. A code is not unique- 
ly decodable iff there exists a finite sequence of code symbols which 
can be resolved in two different ways into sequences of codewords. 
That is, a situation such as 

I Al I A, I 43 m-0 A, I 
I 4 I 4 I 4 . . . 4 I 
must occur where each A; and each B, is a codeword, Note that B, 
must be a prefk of A, with some resulting “dangling suffix,” Each 
dangling sufBx must in turn be either a prefix of a codeword or have 
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another codeword as its prefix, resulting in another dangling suEix. 
Finally, the last dangling suffix in the sequence must also be a 
codeword. Thus one can set up a test for unique decodability (which is 
essentially the Sardinas-Patterson test [2281) in the following way: 
Construct a set S of all possible dangling suffixes. The code is 
uniquely decodable iff S contains no codeword. 
(a) State the precise rules for building the set S. 
(b) Suppose the codeword lengths are Z,, i = 1,2, . . . , m. Find a good 

upper bound on the number of elements in the set S. 
(c) Determine which of the following codes is uniquely decodable: 

i. {O,lO, 11). 
ii. {O,Ol, 11). 
iii. {O,Ol, 10). 
iv. (0, Ol}. 
v. {OO,Ol, 10, ll}. 

vi. (110, 11, lo}. 
vii. { 110, 11, 100, 00, lo}. 

(d) For each uniquely decodable code in part (c), construct, if possible, 
an infinite encoded sequence with a known starting point, such 
that it can be resolved into codewords in two different ways. (This 
illustrates that unique decodability does not imply finite de- 
codability.) Prove that such a sequence cannot arise in a prefix 
code. 

25. Shannon code. Consider the following method for generating a code 
for a random variable X which takes on m values { 1,2, . . . , m} with 
probabilities pl, pa, . . . , p,. Assume that the probabilities are or- 
dered so that p1 2 pz 2 - - * 2 p,. Define 

i-l 

Fi = E Pi 3 
k=l 

(5.155) 

the sum of the probabilities of all symbols less than i. Then the 
codeword for i is the number Fi E 10, 1 J rounded off to Zi bits, where 
Zi= rlOg~]. 

(a) Show that the code constructed by this process is prefix-free and 
the average length satisfies 

WX&LcH(X)+l. (5.156) 

(b) Construct the code for the probability distribution (0.5, 0.25, 
0.125, 0.125). 

26. Optimal codes for dyadic distributions. For a Huffman code tree, define 
the probability of a node as the sum of the probabilities of all the 
leaves under that node. Let the random variable X be drawn from a 
dyadic distribution, i.e., p(x) = 2-‘, for some i, for all x E %‘. Now 
consider a binary Huffman code for this distribution. 
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(a) Argue that f or any node in the tree, the probability of the left 
child is equal to the probability of the right child. 

04 Let&X,,..., Xn be drawn i.i.d. -p(x). Using the Huffman code 
for p(x), we map Xl, X2, . . . , Xn to a sequence of bits Yl , Yz, . . . , 
Y kCX,,X,,.. .,X,Y (The length of this sequence will depend on the 
outcome X1, Xz, . . . , X,.) Use part (a) to argue that the sequence 
Yl, yz, - * * , forms a sequence of fair coin flips, i.e., that Pr{ Yi = 0) 
= Pr{ Yi = 1) = 4, independent of Yr, Yz, . . . , Yi-r. 
Thus the entropy rate of the coded sequence is 1 bit/symbol. 

(c) Give a heuristic argument why the encoded sequence of bits for 
any code that achieves the entropy bound cannot be compressible 
and therefore should have an entropy rate of 1 bit per symbol. 

HISTORICAL NOTES 

The foundations for the material in this chapter can be found in Shannon’s 
original paper [238], in which Shannon stated the source coding theorem and 
gave simple examples of codes. He described a simple code construction proce- 
dure (described in Problem 25), which he attributed to Fano. This method is now 
called the Shannon-Fan0 code construction procedure. 

The Kraft inequality for uniquely decodable codes was first proved by 
McMillan (1931; the proof given here is due to Karush (1491. The Huffman coding 
procedure was first exhibited and proved to be optimal by Huffman [138]. 

In recent years, there has been considerable interest in designing source codes 
that are matched to particular applications such as magnetic recording. In these 
cases, the objective is to design codes so that the output sequences satisfy certain 
properties. Some of the results for this problem are described by Franaszek [116], 
Adler, Coppersmith and Hassner [2] and Marcus [184]. 

The arithmetic coding procedure has its roots in the Shannon-Fan0 code 
developed by Elias (unpublished), which was analyzed by Jelinek [146]. The 
procedure for the construction of a prefix-free code described in the text is due to 
Gilbert and Moore (121). Arithmetic coding itself was developed by Rissanen 
[217] and Pasco [207]; it was generalized by Rissanen and Langdon [171]. See also 
the enumerative methods in Cover [61]. Tutorial introductions to arithmetic 
coding can be found in Langdon [170] and Witten, Neal and Cleary [275]. We will 
discuss universal source coding algorithms in Chapter 12, where we will describe 
the popular Lempel-Ziv algorithm. 

Section 5.12 on the generation of discrete distributions from fair coin flips 
follows the work of Knuth and Yao [155]. 


