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SUMMARY: Conditional Neural Process (QNPy) has shown to be a good tool for modeling quasar
light curves. However, given the complex nature of the source and hence the data represented by light
curves, processing could be time-consuming. In some cases, accuracy is not good enough for further
analysis. In an attempt to upgrade QNPy, we examine the effect of the prepossessing quasar light curves
via the Self-Organizing Map (SOM) algorithm on modeling a large number of quasar light curves. After
applying SOM on the SWIFT/BAT data and modeling curves from several clusters, results show the
Conditional Neural Process performs better after the SOM clustering. We conclude that the SOM
clustering of quasar light curves could be a beneficial prepossessing method for QNPy.
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1. INTRODUCTION

Quasars are the luminous central regions of galax-
ies. (LaMassa et al. 2015). Their emission lines are
observed at all wavelengths from radio to gamma
rays. In all parts of electromagnetic spectra, variabil-
ity is strong, ranging from a few minutes to months
(Zhang et al. 2023). Optical lines are produced in
clouds of gas, rapidly moving in the potential of the
black hole - broad-line region (Urry and Padovani
1995). Analyzing the optical variability in quasars
has allowed us to understand the underlying physi-
cal processes (Wagner and Witzel 1995, Ulrich et al.
1997) and the structure of quasars (Antonucci 1993,
Richards et al. 2006, Bonfield et al. 2010, Shang et al.
2011). Spectroscopic analyses have been instrumen-
tal in investigating the composition and kinematics of
quasars. Complementary, quasar light curves provide

© 2024 The Author(s). Published by Astronomical Ob-
servatory of Belgrade and Faculty of Mathematics, University
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BY-NC-ND 4.0 International licence.

an integrated temporal spectrum, capturing the ag-
gregate spectral output as a function of time. These
temporal profiles reflect the flux variations due to the
dynamic astrophysical processes occurring in the ac-
cretion disk and surrounding environments of super-
massive black holes. Therefore, analyzing these light
curves is important for understanding the stochastic
and transient events that characterize quasar vari-
ability which is essential for constraining the physical
models that describe their emission mechanisms.

Quasar light curves are nonlinear, irregular,
sparse, and could have gaps and signatures of ex-
treme flares or noise. Such a structure could be
challenging to model. Several tools have been devel-
oped and used for their modeling: Damped Random
Walk (Kelly et al. 2009, Koz lowski 2017, Sánchez-
Sáez et al. 2018), Gaussian Process (GP) (Shapoval-
ova et al. 2017, Kovačević et al. 2019, Shapovalova
et al. 2019), Autoencoders (Tachibana et al. 2020,
Bank et al. 2021, Sánchez-Sáez et al. 2021), Con-
ditional Neural Process (Čvorović-Hajdinjak et al.
2022) and Latent Stochastic Differential Equations
(SDEs) (Fagin et al. 2024). Modeling of quasar light
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curves could be of great importance for further anal-
ysis (Jankov et al. 2022) and studying their struc-
ture. Deep learning of quasar light curves on a mas-
sive scale (Kovačević et al. 2023) is still improving.
Quasar light curves could vary significantly, and their
clustering before processing via deep-learning net-
works, might be beneficial to the performance of the
deep-learning quasar light curves process and results
(Kovačević et al. 2023). Namely, through its training
process, SOM groups similar light curves together.
Light curves with similar intrinsic variability patterns
will be located close to each other on the map, while
those that differ significantly (potentially due to ob-
servational noise or other factors) will be placed fur-
ther apart. Grouping light curves of similar patterns
together makes the subsequent modeling or analysis
with Neural Processes or other methods more effec-
tive by focusing on the similar variability patterns of
the quasars rather than being misled or obscured by
noise.

In this paper, we investigate the potential en-
hancement of the Conditional Neural Process frame-
work, specifically designed to model quasar light
curves in Python (QNPy; Čvorović-Hajdinjak et al.
2022, Pavlović et al. 2024). We propose an augmen-
tation of this framework by incorporating a prepro-
cessing step that employs clustering through the Self-
Organizing Map (SOM) algorithm. The clustering
implementation has been executed in Python via the
MiniSom library1. We aim to show that the SOM-
based clustering can improve the QNPy models of
variability of the SOM-clustered quasar light curves.

The structure of this paper is organized as follows.
The ‘Data’ section details the quasar light curves
datasets and preprocessing steps. In the ‘Methods’
Section, we explain the algorithmic approach and im-
plementation specifics of the Conditional Neural Pro-
cess with Self-Organizing Map clustering. The ‘Re-
sults’ and ’Conclusion’ Sections present our findings,
interpret the modeling outcomes, and explore their
implications. Finally, the ‘Future Work’ Section con-
cludes the paper with a recapitulation of the main
contributions and a prospective outlook on potential
research directions.

2. DATA

The SOM method was trained and tested with
quasar light curves, detected by the SWIFT Burst
Alert Telescope (9-Month BAT Survey, (Tueller et al.
2008)). Their optical light curves were taken from
the ASAS-SN (All-Sky Automated Survey for Super-
novae) database (Holoien et al. 2019), despite of its
inherent uncertainties, due to its wide coverage and
large dataset. Data points are the measured magni-
tude of selected objects in the g-band, in time (mod-

1More information on Minimalistic implementation of Self
Organizing Maps, along with project description and GitHub
page could be found at: https://pypi.org/project/MiniSom/

Fig. 1: Number of observations in quasar light curves

collected in the first nine months of the all-sky survey by

the Swift Burst Alert Telescope.

ified Julian date). The data set consists of 139 light
curves that have between 100 and 600 data points
(Fig. 1) and a cover range of up to 2000 days.

Optical light curves taken from the ASAS-SN
database (Shappee et al. 2014, Kochanek et al. 2017)
have a good representation of 80 percent sky cover-
age, and show particularities, such as flares, possi-
ble quasi-periodic oscillations, time gaps, and irreg-
ular cadence, enabling us to test our clustering with
challenging data sets. Testing QNPy on light curves
with large uncertainties helps to assess the robust-
ness and adaptability of the QNPy model. The ob-
servational errors have been incorporated as a part of
the data augmentation strategy to increase the diver-
sity of the training dataset, reduce the risk of over-
fitting, and enhance the model’s ability to generalize
to unseen data. Curves from this data set have been
used for training and testing the Conditional Neu-
ral Process (Čvorović-Hajdinjak et al. 2022), which
was upgraded (QNPy) for modeling the mass amount
of curves simultaneously. The need for such a tool
comes from an immense amount of data that will be
gathered by the next generation time domain sur-
veys, such as Vera Rubin Observatory Legacy Survey
of Space and Time (LSST) (LSST Science Collabo-
ration et al. 2009, Ivezić et al. 2019). This survey
will provide observations with different cadences over
ten years for millions of AGN sources (Brandt et al.
2018, Bianco et al. 2022) in six filters - ugrizy. Such a
significant amount of data will require efficient tools
for processing. Given that QNPy has already been
trained and tested on SWIFT/BAT light curves, pos-
sible benefits of SOM clustering on the processing ef-
ficiency of QNPy, would be most efficiently examined
on the same data set.

The SOM method can handle various data types
regardless of their structure and homogeneity, pro-
vided each input has a consistent tensor shape (e.g.
the same length or number of features). Ensuring
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all inputs have uniform dimensions without missing
values is crucial for the SOM processing (Kohonen
1990). Uniformity of input data is typically achieved
through padding or feature extraction (Rejeb et al.
2022). These techniques ensure that SOM can pro-
cess the data, even if the underlying data sources are
irregularly sampled or have varying lengths.

Since SWIFT/BAT light curves2 vary in the num-
ber of observations (points), each light curve has been
padded by adding the mean magnitude value of that
curve at the end so that all curves have the same num-
ber of points as the light curve with the maximum
number of points. Additionally, the curves have been
scaled to improve the clustering performance. Dur-
ing the testing phase, it was concluded that the best
scaler for the SWIFT/BAT data was MinMax, which
normalized the curves to the interval [0,1].

3. METHOD

Neural networks consist of a collection of con-
nected units or nodes/neurons, that loosely model
the neurons in a biological brain. Neurons are
grouped to form layers (Liu 2023). Clustering is a
type of unsupervised learning, which is used to dis-
cover patterns and relationships within data. There
are many clustering algorithms: K-Means (Ordovás-
Pascual and Sánchez Almeida 2014), Gaussian mix-
tures (Tóth et al. 2019), Spectral clustering (Ng et al.
2001), Hierarchical clustering (Yu and Hou 2022),
etc. Among the many machine learning algorithms,
Self-Organizing Map (SOM) stands out as a power-
ful tool for data visualization, clustering, and dimen-
sion reduction (Fig. 2). SOM has been used in as-
tronomy mostly for mapping the empirical relation
of galaxy color to red-shift (Buchs et al. 2019), and
visualization and computation of the estimation of
galaxy physical properties (Hemmati et al. 2019).

The application of SOMs for clustering quasar
light curves presents an advantageous approach due
to several characteristics of SOMs. Firstly, SOMs
are good at reducing the dimensionality of complex
data while preserving topological and metric rela-
tionships, making them ideal for handling the high-
dimensional nature of quasar light curves. This is
particularly beneficial for identifying underlying pat-
terns and structures within the light curves, which
may not be readily apparent. SOMs can capture
non-linear and non-stationary variability in quasar
light curves by clustering similar light curves based
on their intrinsic properties, such as variability am-
plitude, and time scales of variability. By organiz-
ing the light curves into clusters, SOM facilitates a
more targeted modeling approach where each cluster
represents a different archetype of variability. Mod-
eling each cluster separately allows for the construc-
tion of more specialized and accurate models that

2More information on light curve sources can be found on:
https://swift.gsfc.nasa.gov/results/bs9mon/

Fig. 2: Self-organizing maps are a type of neural net-

work that is trained using unsupervised learning to pro-

duce a low-dimensional representation of the input space

of the training samples, called a feature map. The fea-

ture map in this figure is an output of SOM clustering of

SWIFT/BAT data. Values x1, x2, ..., xn are vectors (in

our case - light curves) that are passed to the input layer.

can account for the specific characteristics and noise
properties of each group. This specificity can lead to
more robust predictions and insights into the physi-
cal processes governing quasar variability. Moreover,
it can improve the efficiency of the modeling process
by focusing computational resources on distinct sub-
sets of the data, each with its unique features, rather
than applying a one-size-fits-all model to the entire
dataset.

The SOM, also known as the Kohonen network
(Kohonen 1990) is based on competitive learning.
The neurons (or nodes) compete to decide which one
will be activated over a set of inputs and this neuron
is called the winner or the best matching unit (BMU).

Each neuron is connected to a weight vector that
has the same dimensions as the input data. At the
beginning of the SOM process, the weights are ini-
tialized with random values. During forward propa-
gation, input values are compared with nodes (Fig. 3)
using the ”neighborhood function”, which calculates
the weights of the neighborhood of a position in the
map. The Minisom has several options for neighbor-
hood function, but for the SWIFT/BAT data Gaus-
sian function (with parameter sigma determining the
influence on neighboring nodes of SOM, set to 2.0),
showed the best results. During training progress, the
algorithm calculates the Euclidean distance between
every weight and the current training item:

d(x,wj) =

√√√√p−1∑
i=0

(xi − wij)2 (1)

Vector x = (x0, . . . , xp−1) presents the input val-
ues and wij weight for node j. Distance determines
the difference between two vectors of the same size.
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Fig. 3: The figure from (Kohonen 1990) is adapted for

our SOM implementation. In the SOM algorithm, the in-

put data item X is compared to a set of nodes Mi. The

node Mc, which matches the most X is the winning one.

Neighboring nodes are more similar to X than nodes out-

side the circled neighborhood. To determine the winning

node, we have used a Gaussian neighborhood function in

rectangular topology.

The least distance is BMU. The weight vectors are
updated by the algorithm to adapt to the distribu-
tion of the data by:

wij(t+ 1) = wij(t) + θj(t)α(t)(xi(t)− wij(t)), (2)

where i = 0, .., p − 1, t shows iteration, θj(t) is the
neighbourhood function and 0 < α(t) < 1 that de-
creases monotonically in time is the learning rate.
The neighborhood function determines to which ex-
tent each output node receives a training adjustment
from the current training pattern. The Gaussian
function is a common choice for a neighborhood func-
tion:

f(x, µ, σ) =
1

σ
√

2π
e−

1
2 (
x−µ
σ )2 , (3)

where x represents input, while µ and σ are the mean
and the standard deviation (respectively).

The Minisom method also gives options to choose
a topology for clustering, between rectangular and
hexagonal, as well as different scalers (’minmax’,
’standard’, ’robust’), learning rate, etc. After careful
testing with various sets of parameters and analyz-
ing the results, it has been concluded that for the
SWIFT/BAT light curves the best set of parameters
is:
(i) scaler = ’minmax’ - normalization function, used

in preprocessing phase
(ii) neighborhood function = ’gaussian’ - neighbor-

hood function, used for updating weights
(iii) epochs = 50000 - number of epochs to train SOM
(iv) topology = ’rectangular’ - topology of SOM
(v) learning rate = 0.01

(vi) sigma = 2.0 - influence on neighboring nodes of
SOM

Minmax scaler is developed in
sklearn.preprocessing.MinMaxScaler3 and trans-
forms input to range [0,1]. Transformations are
given by the equation:

xstd =
x− xmin

xmax − xmin
(4)

xscaled = xstd(max−min) + min (5)

where min and max determine the range in which we
want to scale our features (in our case min = 0 and
max = 1). Clustering of this dataset wasn’t compu-
tationally demanding. The whole training/clustering
process lasted ≈ 5 minutes.

During testing with various sets of parameters it
has been noted that aside from the scaler used for re-
shaping (preprocessing), topology defining the shape
of clusters, and sigma (influence on neighboring nodes
of SOM), the SOM is sensitive to outliers in light
curves. Small sets of badly classified curves led to the
significantly diminished performance of QNPy. After
considering this, additional preprocessing has been
done by removing outliers with the Z-Score function:

z = |m− µ
σ
| (6)

where m is the magnitude of observation, µ is the
mean value of magnitudes and σ is the standard de-
viation. Every point (observation) that had the z
value below 2.0 was considered an outlier.

The number of clusters is also a hyperparameter
in the SOM method (Kohonen 2013, 2014). The for-
mula for calculating clusters was fine-tuned through
many experiments on different data sets to get an
equation suitable for various light curve data. It was
important to avoid getting a large number of small
clusters, containing very similar curves because that
could lead to overfitting during the QNPy process-
ing. On the other hand, a very small number of gen-
eralized clusters would not improve the QNPy per-
formance. The length of the input data determines
the number of clusters. More specifically, the padded
curve length specifies the number of grids that cre-
ate a cluster map. This value is calculated with the
following equation:

g = Ru(

√√
n) (7)

where g is the number of grids that create a cluster
map, Ru(x) is a function that returns the smallest
integer greater than or equal to x, and n is the length
of padded curves.

3More information on MinMaxScaler can be found
on: https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.MinMaxScaler.html
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Fig. 4: Number of curves in each cluster, before (green)

and after (blue) removing outliers from the SWIFT/BAT

quasar light curves.

4. RESULTS

To determine whether the clustering of our set of
light curves will improve their modeling via the QNPy
neural network, the following steps have been taken:
(1) the whole data set, containing all 139 light curves

has been modeled via QNPy, and the results were
saved for letter analysis,

(2) the whole data set, containing all 139 curves has
been processed via the SOM algorithm. This
process included: padding the light curves to
maximum length, reshaping them to the inter-
val [0,1] via MinMax scaler, and clustering,

(3) analyzing results and changing parameters, until
achieving the best possible results,

(4) selecting several clusters for further analysis,
(5) taking original curves (as they were before

padding and reshaping) from each of those clus-
ters and running QNPy only on those curves,

(6) comparing results of modeling for curves before
and after clustering.

Removing outliers, finding the optimal set of pa-
rameters, and careful preprocessing resulted in a
more even distribution of light curves in clusters
(Fig. 4), as well as fewer misclassified curves. The
SOM method divided the SWIFT/BAT set into 16
clusters (Fig. 5).

Visualization of curves in clusters (Fig. 6) shows
the complexity and how the SOM algorithm man-
aged to cluster them according to similarities (gradi-
ent changes) in their structure. We can see that in
some clusters (3, 4, 8, 9, 11, 12, 14) padding is taking
a big part of reshaped curves. Although 16 distinct
clusters were initially identified (Fig. 6), further anal-
ysis demonstrated that these clusters could be aggre-
gated into 4 general groups without significant loss of
detail, based on high intra-group similarity and low
inter-group similarity:
(1) Clusters with Low Variability (C-LV): Clusters

4, 10, and 14 exhibit tightly grouped light curves

Fig. 5: Number of curves in each cluster, after the SOM

processing of clean (padded, normalized, removed out-

liers) SWIFT/BAT quasar light curve data.

with minimal spread among individual observa-
tions, indicative of homogeneous behavior and
suggesting lower intrinsic variability or observa-
tional noise.

(2) Clusters with Moderate Variability (C-MV):
Clusters 2, 5, 6, 9, 12, and 13 demonstrate
a moderate level of variability. Despite some
spread, individual light curves within these clus-
ters maintain a coherent pattern, categorizing
them into an intermediate variability level.

(3) Clusters with High Variability (C-HV): Marked
by significant divergence from the mean, Clus-
ters 1, 3, 7, 11, and 15 display pronounced vari-
ability. This suggests a high degree of intrin-
sic quasar variability or substantial observational
noise.

(4) Unique Clusters (C-U): Cluster 8 presents a no-
table trend distinct from other clusters, poten-
tially indicating a different variability type or
systematic data effect, thus categorizing it as
unique. The ’S’ shaped pattern observed in Clus-
ter 8 might indicate quasi-periodic oscillations
(QPOs). This oscillatory behavior suggests an
underlying periodic process that could be associ-
ated with accretion disk dynamics or interactions
with the central supermassive black hole’s mag-
netic field, meriting detailed analysis in a sepa-
rate paper.

Moreover, Cluster 16 exhibits a flare-like feature
within its mean curve, characterized by a sharp in-
crease in brightness followed by a gradual decrease.
This pattern might suggest transient brightening
events, which are significant for understanding the
dynamics and physical processes within quasars. The
presence of such a flare-like appearance warrants fur-
ther investigation to discern the nature of these tran-
sient events and their astrophysical implications. Ad-
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ditionally, some clusters consist of curves that were
padded with very different numbers of points (2, 5, 6).
This could have influenced the clustering of padded
curves. To determine whether clustering would im-
prove the QNPy modeling of the SWIFT/BAT data
set, the following clusters were selected based on sev-
eral reasons (Table 1), which should cover different
types and give an overview of the pros and cons of
the SWIFT/BAT data set SOM clustering.

Cluster 4 is an example of a cluster with Low Vari-
ability (C-LV). This cluster consists of 6 curves with
very similar structures and distinctive slopes. Fig. 7
shows the difference in modeling when 3C273 is mod-
eled as part of the whole data set (left) and as a part
of Cluster 4 (right). Loss function and mean squared
error (MSE) are much smaller when QNPy processes
only Cluster 4. Both modeled curves (blue lines) fol-
low the main gradient change, but after clustering the
model goes nicely through the mean of data points on
the lower and upper part of the curve.

Cluster 13 is an example of a cluster with Moder-
ate Variability (C-MV). This cluster consists of 12
curves with very similar structures and distinctive
gradient changes. Fig. 8 shows the difference in mod-
eling when Mrk6 is modeled as part of the whole data
set (left) and as a part of Cluster 13 (right). Loss
function and mean squared error (MSE) are smaller
when QNPy processes only Cluster 16. Both mod-
eled curves (blue lines) follow gradient changes, but
after clustering the model fits data better through the
whole length. While the first modeled curve manages
to model the gradient change in the middle, it stays
near the mean. The second curve nicely follows the
whole pattern of the curve, but still does not reach
the top of the first maximum and the minimal values
in the middle.

Cluster 1 is an example of a cluster with High
Variability (C-HV). This cluster consists of 11 curves
with very variable structures. Fig. 9 shows the differ-
ence in modeling when IC4329A is modeled as part
of the whole data set (left) and as a part of Cluster 1
(right). Loss function and mean squared error (MSE)
are larger when QNPy processes only Cluster 1. Both
modeled curves (blue lines) follow the mean of the
main gradient change, but neither of them captures
details of the light curve. While the first modeled
curve shows small gradient changes in more dense
regions, the second one is completely smooth. This
indicates that for clusters that contain highly vari-
able curves, modeling results are close to the model-
ing of the whole set, which is still impressive given
the significantly smaller number of curves for learn-
ing, making it much more efficient (considering the
time it takes to model this cluster is several minutes,
whereas for the whole set on the same machine takes
a couple of hours).

Cluster 8 is an example of a Unique Cluster (C-
U). This cluster consists of 5 curves with very dis-
tinctive structures. Fig. 10 shows the difference in
modeling when IRAS09149m6206 is modeled as part

of the whole data set (left) and as a part of Clus-
ter 8 (right). Loss function and mean squared error
(MSE) are higher when QNPy processes only Clus-
ter 8. Both modeled curves follow the main gradi-
ent of the light curve, but the first case (modeling
of the whole set) has more details and small gradient
changes in the more dense regions. The second graph
(modeling curves from Cluster 8) is a smooth repre-
sentation of the main data trend. This indicates that
for clusters that contain unique curves (some possibly
misclassified), especially if they consist of very few ex-
amples (6 curves), modeling results are less accurate
than those of modeling the whole set.

Cluster 16 consists of 8 curves and a very peculiar
mean model. After further analysis of light curves
that were classified in this cluster, it was apparent
that some of them were misclassified. The most ob-
vious example was the light curve 3C382 (Fig. 11),
which should have been classified in Cluster 4. After
running QNPy on Cluster 16, the results varied from
model to model. Fig. 11 shows that modeling of the
whole data set gives better results if clustering is not
accurate.

The first model follows the main gradient change
and overall data structure while the second one
stays closer to the mean value following the gradient
changes of the first part of the curve. It is also
visible that loss and MSE could have lower values for
a less accurate model. This could be caused by the
fact that testing and validation sets are very small
for clustered curves and there is a larger probability
that they will randomly get the curves that fit the
model better. This indicates that there is still a need
for further improvement of the clustering algorithm.

5. CONCLUSION

Quasars are one of the most powerful sources in
the Universe. Their radiation covers the whole elec-
tromagnetic spectrum in a very complex manner.
The gathering and analysis of quasar light curves
have been revealing the structure of these complex
objects and continue to do so with the development
of more powerful observing technologies. We need
to perfect our programming tools to keep up with
the immense amount of data that the most powerful
telescopes can now harbor. Conditional Neural Pro-
cess, which has shown to be a good modeling tool for
capturing variability and complexity of quasar light
curves, still struggles with modeling a large number
of these complex data sets. To improve its perfor-
mance, we examined the SOM clustering as a means
of preprocessing and selecting batches of quasar light
curves, which would give better and faster results.

SWIFT/BAT data was selected since it gives a
good starting point for determining the applicabil-
ity of SOM clustering on complex, stochastic, irregu-
lar, and very different sources. This data set consists
of 139 very complex, variable, inhomogeneous light
curves with many gaps and different structures and
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Table 1: Clusters selected for analysis of the SOM clustering effect on QNPy modeling performance.

Cluster number Number Selection reason
of curves

4 (C-LV type ) 6 a small number of curves and a peculiar structure with one big gradient change
13 (C-MV type) 12 the largest number of variable curves, the mean model has a visible structure
1 (C-HV type) 11 highly variable curves, with different degrees of padding
8 (C-U type) 11 distinct from other clusters potentially indicating different variability types
16 (specific) 8 the mean model has a very peculiar flare-like feature within its mean curve

Fig. 6: Visualisation of each of 16 clusters, with average curve structure in blue. The SOM method requires all

curves to be the same length (length of maximum curve). Curves are padded with mean magnitude value. After

padding, curves are mapped to [0,1]x[0,600] intervals and clustered.

lengths. The same data set was used for training
and testing the Conditional Neural Process on which
QNPy has been built. Testing Neural Processes on
light curves with large uncertainties helps assess the
robustness and adaptability of the QNPy model.

The SOM algorithm was selected for this task
since it is not a very complex machine-learning al-
gorithm for unsupervised learning and it works fast,

which is essential for preprocessing purposes. It is
trained through a competitive neural network (neu-
rons in the output layer compete among themselves to
be activated). The competitive process is to search
for the most similar neuron (BMU) with the input
pattern. The BMU and its neighbors adjust their
weights. We have used the MiniSom implementation
of the Self Organizing Maps (SOM) and attempted to
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Fig. 7: The QNPy modeling of the 3C273 light curve using 3000 iterations. Data is transformed to the [-2,2][-2,2]

interval during the QNPy preprocessing phase. The light red area is the one-sigma confidence interval. The left

graph shows the results of the modeling of 3C273 during the processing of the whole data set, while the right side

graph shows the modeling of 3C273 during the processing of Cluster 4. Cluster 4 is an example of a cluster with low

variability (C-LV). The mean model is shown as a blue line.

Fig. 8: The QNPy modeling of the Mrk6 light curve using 3000 iterations. Data is transformed to the [-2,2][-2,2]

interval during the QNPy preprocessing phase. The light red area is the one-sigma confidence interval. The left

graph shows the results of the modeling of Mrk6 during the processing of the whole data set, while the right side

graph shows the modeling of Mrk6 during the processing of Cluster 13. Cluster 13 is an example of a cluster with

moderate variability (C-MV). The mean model is shown as a blue line.

make the best clustering of the SWIFT/BAT curves.
Curves from several selected clusters were modeled
via QNPy and results were compared with the origi-
nal clustering of the whole set.

It was noted that the SOM parameters (neighbor-
hood function, topology, scaler, etc) contribute sig-
nificantly to the clustering process and results. Ad-
ditionally, the SOM method required the reshaping of
light curves via normalization (minmax) and trans-
formation to the same interval. Removing outliers in
light curves is beneficial for better classification and a

more even distribution of light curves among clusters.
The results indicate that curves from clusters

whose mean value has distinctive features, with low
and medium variability (C-LV, C-MV), show more
improvement in modeling via QNPy than those with
highly variable mean functions (C-HV) or unique
structures(C-U), especially if such cluster contains
a small number of curves. Comparing the results
of modeled light curves before and after cluster-
ing, showed that good clustering could contribute to
greater extant performance of the QNPy modeling
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Fig. 9: The QNPy modeling of IC4329A light curve using 3000 iterations. Data is transformed to the [-2,2][-2,2]

interval during the QNPy preprocessing phase. The light red area is the one-sigma confidence interval. The left

graph shows the results of the modeling of IC4329A during the processing of the whole data set, while the right side

graph shows the modeling of IC4329A during the processing of Cluster 1. Cluster 1 is an example of a cluster with

moderate variability (C-HV). The mean model is shown as a blue line.

Fig. 10: The QNPy modeling of IRAS09149m6206 light curve using 3000 iterations. Data is transformed to [-2,2][-

2,2] interval during the QNPy preprocessing phase. The light red area is the one-sigma confidence interval. The left

graph shows the results of the modeling of IRAS09149m6206 during the processing of the whole data set, while the

right side graph shows the modeling of IRAS09149m6206 during the processing of Cluster 8. Cluster 8 is an example

of a Unique Cluster (C-U). The mean model is shown as a blue line.

process. However, the SOM has shown to be very
sensitive to some data features which could lead to
wrongly clustered curves. In the case of wrongly clus-
tered light curves, the QNPy modeling shows far less
reliable results than the modeling of the full set of
data. Not only because there is less data to ”learn”
from, but because most data have certain features
that are not present in misclassified light curves.

The clustering of quasar light curves as a means of
preprocessing could significantly improve the model-
ing via QNPy, but clustering itself could be improved
to achieve the most optimal results. The SOM could
be used for this task, but it needs further analysis
and testing on various datasets, with careful tuning
of its parameters and good preparation of input data.
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Fig. 11: The QNPy modeling of 3C382 light curve using 3000 iterations. Data is transformed to the [-2,2][-2,2]

interval during the QNPy preprocessing phase. The light red area is the one-sigma confidence interval. The left

graph shows the results of the modeling of 3C382 during the processing of the whole data set, while the right side

graph shows the modeling of 3C382 during the processing of Cluster 16. The mean model is shown as a blue line.

6. FUTURE WORK

The SOM algorithm could be tested on a set
of light curves that have a similar number of data
points in the same period so that reshaping and
padding don’t change the structure of light curves be-
fore clustering. The ZTF (Zwicky Transient Facility)
data would be a good choice for this analysis since
they have fewer uncertainties, which makes them a
good sample for further exploring the effectiveness of
QNPy and creating a comprehensive analysis, offer-
ing deeper insights into light curve behaviors.

Padding could be done via interpolation, reflective
padding, or replication. The selection of the num-
ber of clusters could be explored further. Cluster-
ing could be done via other methods to determine
the one that would make the best clustering results
and hence contribute more to the improvement of the
QNPy process.
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UDK 524.7
Originalni nauqni rad

Uslovni neuronski procesi su se pokaza-
li kao mo�ni alat za modelovaǌe krivih sja-
ja kvazara. Imaju�i u vidu slo�enu priro-
du ovih objekata, a samim tim i podataka ko-
ji nam od ǌih sti�u, modelovaǌe krivih sja-
ja mo�e biti vremenski veoma zahtevno. Re-
zultati modelovaǌa nekada nisu dovoǉno pre-
cizni da bi se na ǌima vrxila daǉa ana-
liza. U ciǉu unapre�eǌa modelovaǌa krivih
sjaja, u ovom radu je ispitan efekat grupi-
saǌa velikog broja krivih sjaja kvazara ko-

rix�eǌem Samoorganizuju�ih mapa (SOM), u
procesu koji bi prethodio neuronskom modelo-
vaǌu. Rezultati primene SOM metode na sku-
pu krivih sjaja kvazara, prikupǉenih u prog-
ramu ASAS-SN, i ǌihovo kasnije modelovaǌe,
pokazuju da uslovni neuronski procesi rade
boǉe nakon prethodne obrade podataka SOM
metodom. Zakǉuqak ovog rada je da grupisa-
ǌe krivih sjaja kvazara SOM metodom, pre
modelovaǌa uslovnim neuronskim procesima,
unapre�uje rezultate modelovaǌa.
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