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SUMMARY: This paper describes an artificial neural network for classification of asteroids into fam-
ilies. The data used for artificial neural network training and testing were obtained by the Hierarchical
Clustering Method (HCM). We have shown that an artificial neural networks can be used as a validation
method for the HCM on families with a large number of members.
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1. INTRODUCTION

The most commonly used method for classifica-
tion of asteroids into families is the Hierarchical Clus-
tering Method (HCM). In recent years, in its dif-
ferent versions, it has been used almost as the only
method for classification of asteroids. In this paper,
we propose an artificial neural network (ANN) for
classification of asteroid families. It will be shown
that this approach can be used as a supplementary
validation method with the HCM, however, with cer-
tain limitations. These limitations are set by the
number of asteroids accessible to the artificial neu-
ral network to learn.

This paper is organized as follows. In Section 2
we describe the related work on the HCM for clas-
sification of asteroids into families. Section 3 gives
the necessary theoretical background of the artificial
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servatory of Belgrade and Faculty of Mathematics, University
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neural networks, together with the learning methods
related to the deep learning algorithms. Deep learn-
ing represents a class of machine learning algorithms
that uses ANNs with multiple layers of neurons for in-
put data processing (Lecun et al. 2015). The dataset
used is described in Section 4, with a detail explana-
tion of the artificial neural network model used for
training. Section 5 presents the results and discus-
sion, particularly of the ANN training and testing,
and feature importance. The final Section 6. gives
the concluding remarks on the topics covered in the
paper.

2. RELATED WORK

One of the most used techniques for the classifica-
tion of asteroids into families is the HCM, presented
in (Zappala et al. 1990, 1994). The Wavelet Analysis
Method (WAM) is also used (Bendjoya et al. 1991,
Baluev and Rodionov 2020), and it is in accordance
with the HCM method (Bendjoya and Zappalà 2002,
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D. VUJIČIĆ et al.

Knežević 2015). The HCM may be applied in do-
mains of proper frequencies, for studying asteroid
families interacting with secular resonances (Carruba
and Michtchenko 2007, 2009).

Machine learning has been recently used for aster-
oid classification. In Carruba et al. (2019), the au-
thors used supervised machine learning hierarchical
clustering methods for identifying asteroid families
in low-number density regions with accuracy above
89.5%. In Carruba et al. (2020), the authors used
13 machine learning classification algorithms for up-
dating of the asteroid family membership. The ex-
tremely randomized trees algorithm had the highest
precision of 97%.

The HCM method is based on determination of
distances between asteroids in a three-dimensional
space of proper elements (ap, ep, ip), where: ap is the
proper semimajor axis of the asteroid’s orbit, ep is
the proper eccentricity of the asteroid’s orbit, and ip
is the proper inclination of the asteroid’s orbit.

Proper elements are quazi-integrals of the aster-
oid equations of motion and represent the motion
constants in linear approximation. They can be cal-
culated numerically or analytically, by removing the
short and long periodic perturbations of the asteroid
orbital elements. Proper elements were computed for
about 12,000 asteroids in (Milani and Knežević 1994),
followed by over 70,000 asteroids in (Knežević et al.
2002). Nowadays, the AstDys service* (Knežević and
Milani 2003) includes information about proper ele-
ments of more than 650,000 asteroids. This catalog
consists of more than 520,000 numbered objects and
more than 130,000 unnumbered objects.

The modified HCM method performs the clusteri-
zation by identifying the asteroid positions in proper
elements space that are within the cutoff distance.
When such asteroids are identified, each one of them
is used as a center around which asteroids with appro-
priate distances are identified. The procedure stops
once there are no more surrounding asteroids left to
belong to a cluster. The value of the cutoff distance
determines the number of asteroids being included in
a cluster. The greater the distance, the larger num-
ber of asteroids is included. Typically, this cutoff
distance is between 1 and 200 m/s (Nesvorný et al.
2005).

On the recent classification results, Novaković
et al. (2011) performed clusterization of more than
18,000 numbered high-inclination asteroids. In
Nesvorný et al. (2015), the authors identified 122
families with more than 100,000 members. Milani
et al. (2014) used a catalog with more than 330,000
numbered asteroids, categorizing them into 128 fami-
lies with around 87,000 members. Milani et al. (2016)
followed on and analyzed the dataset with more than
500,000 asteroids. They established 115 families with
more than 120,000 members and automated classifi-
cation updates.

*https://newton.spacedys.com/astdys

3. ARTIFICIAL NEURAL NETWORKS

ANN consists of neurons and belonging synapses.
The neurons in an ANN are organized and function
similar to the actual neurons in the human brain. A
basic ANN consists of one input and output layer
of neurons and the presence of the hidden layers be-
tween them improves their precision. This form of
ANNs with hidden layers is the foundation of the
deep learning paradigm in artificial intelligence areas
(Lecun et al. 2015, Goodfellow et al. 2016).

Each neuron in the ANN, except the neurons in
the input layer, performs calculation of the weighted
sum, Eq. (1). The weights are numerical values as-
signed to individual synapses and they represent the
importance of the corresponding input neuron. In the
process of learning, the ANN adjusts these weights,
thus increasing or decreasing the importance of cer-
tain neurons in the networks:

weighted sum =

m∑
i=1

wiXi. (1)

In Eq. (1), weights are denoted as wi, while X sig-
nifies the input value to the neuron. This weighted
sum is calculated for m inputs. The inputs are in-
dependent variables and they represent values sup-
plied to the ANN. They need to be standardized or
normalized for proper scaling and ANN functioning.
The outputs are dependent variables and they repre-
sent the values that the ANN produces. In the case of
classification or clusterization, the number of output
values is equal to the number of categories.

Fig. 1 shows the ANN with three layers of neu-
rons. It is common to represent the input values as
separate input layer neurons, and the output value as
separate output layer neurons. This figure also shows
one hidden layer consisting of three neurons.

Besides the calculation of the weighted sum, the
neurons apply the activation function. This is a
function that produces the output from the neuron,
with the weighted sum as an input. If we denote
the weighted sum as x, then the rectifier activation
function, one of the mostly used activation functions
(Glorot et al. 2011), is given as in Eq. (2). Other
than that, other activation functions commonly used
in ANNs are the threshold function (Eq. (3)), sigmoid
function (Eq. (4)), and hyperbolic tangent function
(Eq. (5)):

f(x) = max(x, 0) , (2)

f(x) =

{
1 if x ≥ 0
0 if x < 0

)
, (3)

f(x) =
1

1 + e−x
, (4)

f(x) =
1 − e−2x

1 + e−2x
. (5)

The symbol ŷ in Fig. 1 represents the output or
predicted value, which is usually different from the
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Fig. 1: The ANNs, with five neurons in the input layer,

three neurons in the hidden layer, and one neuron in the

output layer.

actual output value. After the initial output calcula-
tion, the cost function (or loss function) is applied to
all weights in the ANN by the algorithm of backprop-
agation (Rumelhart et al. 1986). The cost function is
calculated using the difference between the predicted
and actual output values. Some of the cost functions
(C) mostly used in ANNs are a squared error (Eq. (6))
and cross-entropy (Eq. (7)). The value of j in these
equations indicates the individual training outputs,
from the total of n training outputs:

C =
1

2

n∑
j=1

(yj − ŷj)
2 , (6)

C = −
n∑

j=1

[yj ln ŷj + (1 − yj) ln(1 − ŷj)] . (7)

After calculation of the cost function, it is neces-
sary to find its minimum to get the best prediction
results possible. The optimization algorithm is ap-
plied to the cost function to find its minimum. This
algorithm usually begins with finding the gradient of
the cost function and is based on that the weights in
the ANN are updated. The optimization algorithm
operates until the minimum of the cost function is
achieved. The usual optimization algorithms used in
ANNs are Stochastic gradient descent (Bottou et al.
2018), AdaGrad (Duchi et al. 2011), RMSProp (Zou
et al. 2019), and Adam (Kingma and Ba 2014).

The learning process in an ANN starts with ini-
tialization of weights with values near zero. Then,
the first row of data is forwarded as input variables
and then forward propagated through the network.
The predicted result is compared with the actual re-
sult, the optimization algorithm is applied to the cost
function, and with the backpropagation, the weights
are updated. These steps are repeated for every ob-
servation (or row in the dataset) or after a subset

(batch) of observations. The learning process is shown
in Fig. 2.

Weights initialization

Forward single observation or batch 

of observations to the ANN

Get prediction result

Compare predicted result with actual 

result

Apply optimization algorithm to the 

cost function

BEGIN

END

One epoch 

done?

No

Yes

Obtain final prediction results

All epochs 

done?

No

Yes

Fig. 2: The learning process in the artificial neural net-

works.

An epoch is done when all the data from the
dataset have passed through the ANN. An epoch in
the ANN context represents the completion of the
training procedure for all available observations. To
make better predictions, this whole process is re-
peated for an arbitrary number of epochs (Nielsen
2015).

4. DATASET AND MODEL
DESCRIPTION

The dataset consists of 124,478 asteroids divided
into 110 families and is obtained from the AstDys
website�. The data for each asteroid consists of its
proper semimajor axis (ap), proper inclination sinus
(sin(ip)), proper eccentricity (ep), absolute magni-
tude (H), and the family name. The asteroid families
in the dataset can be divided into subsets based on
the number of members. The huge families, which
contain over 10,001 elements, are Eos (16,038 mem-
bers), Hertha (15,983 members), and Vesta (10,612
members). Other than these, there are 22 large fam-
ilies with 1,001 to 10,000 members, 39 medium fami-
lies with 101 to 1,000 members, and 46 small families
with up to 100 members.

�https://newton.spacedys.com/astdys
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Fig. 3: The distribution of asteroids in the (ap, sin(ip)) plane.

Fig. 4: The distribution of asteroids in (ap, H) plane.

The distribution of asteroids in the (ap, sin(ip))
plane is given in Fig. 3. The distribution of data in
the (ap, H) plane is given in Fig. 4. From Fig. 4 it can
be seen that few asteroids have H < 14, which can
be used as a training subset since most asteroids that
have H < 14 are close to the family center (Carruba
et al. 2020). We found that the number of asteroids
that satisfy this condition is 12.041, with 6 families
not being represented, so we didn’t use this method
for determining the training subset. Instead, we used

the entire dataset with 80% of data used for training,
and 20% for testing, making sure that every family is
included.

The ANN model is realized in Python program-
ming language, using Keras (Chollet et al. 2018) and
Sklearn (Pedregosa et al. 2011) libraries. The input
layer consisted of three neurons, for the three input
variables (proper semimajor axis, proper eccentricity,
and proper inclination sinus). The output layer con-
sisted of 110 neurons, which is equal to the number
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Fig. 5: Binary encoding of six asteroids belonging to three asteroid families.

of families to be classified. A good practice is to use
the arithmetic mean of the number of input and out-
put layer neurons for the hidden layer, so we used 56
neurons for the hidden layer.

After loading the data, the independent and de-
pendent variables were set. The input independent
variables needed to be scaled and normalized to get
better prediction results. Since we got categorical
values for the dependent output variable, we needed
to encode them with the binary encoder. In this
way, instead of a one-column output variable (family
name), we got a 110-column output variable. The
column equal to one represents the membership of
a given asteroid to the corresponding family, while
other columns are equal to zero. This process is
shown in Fig. 5, in an example of six asteroids be-
longing to three asteroid families.

The next step was to split the original dataset
into training and testing subsets. We opted for 80%
of data to belong to the training subtest, and the
remaining 20% to the testing subset. This split was
randomly performed, but in a way that every family
is represented in both subsets. The training subset
was used for the ANN training and learning, while
the testing subset was used as new data to the ANN,
to get the prediction results.

The best results were obtained using the rectifier
function as the hidden layer activation function, and
the sigmoid function as the output layer activation
function. The cross-entropy cost function was used
since it provided the best results. As for the opti-
mization algorithm, several algorithms were tested.
The test was performed using 20 epochs for the ANN
training. The training accuracies achieved on the
training subset are given in Table 1. The accuracy
is Keras metric for measuring the performance of the
ANN model. It is calculated as the percentage of
the training subset data that were successfully pre-
dicted. Regarding asteroid family classification, the
accuracy represents the percentage of correctly pre-
dicted family members out of the total number of
asteroids used in the training subset. From now on,
we will use the term “training accuracy” for the ac-

curacy of the training data, and the term “testing
accuracy” for the accuracy of the test data.

Table 1: Training accuracies of the optimization algo-

rithms used.

Optimization algorithm Training accuracy
RMSProp 95.14 %
AdaGrad 97.09 %
Stochastic Gradient Descent 98.09 %
Adam 99.17 %

As can be seen from Table 1, the Adam optimiza-
tion algorithm outperformed the other three, so it
was used in the next step. Since we opted for the
Adam optimization algorithm, we needed to perform
k-fold cross-validation. This is a technique in which
the training subset is divided into k equal folds. With
every cross-validation, the different k − 1 folds are
used for training and the remaining one fold for test-
ing. The optimal number of folds is 10, so we used
this number for cross-validation.

5. RESULTS AND DISCUSSION

5.1. Results of artificial neural network
training

Cross-validation is useful for validation of the
ANN model, particularly regarding the stability of
the model with introduction of new data. After per-
forming the 10-fold cross-validation, with 20 training
iterations (epochs) in each, the obtained training ac-
curacies are shown in Fig. 6.

The worst obtained training accuracy was 98.82%,
and the best was 99.33%. The arithmetic mean of
all training accuracies was 99.15% with a standard
deviation of 0.17%. These numbers indicate a stable
model with a low standard deviation from the mean
value of training accuracies (Efron 1983).
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Fig. 6: The training accuracies in 10-fold cross-validation.

5.2. Results of artificial neural network
testing

After validating the model with the training data,
the next step in ANN validation is the measurement
of the accuracy of the test data, which can be thought
of as new data for the ANN. The usual technique is
the confusion matrix representation of prediction out-
put on the test data. The confusion matrices were
formed for each family of asteroids. The rows in
the confusion matrix represent the predicted results,
while the columns represent the actual results. The
confusion matrix consists of a number of true positive
(TP), true negative (TN), false positive (FP), and
false negative (FN) predictions, Fig. 7. True positive
is the number of family members that both the HCM
and our model identified. True negative is the num-
ber of non-family members that both methods identi-
fied. False positive is the number of family members
that only our model identified as such. False nega-
tive is the number of family members not identified
as such only by our method.

TP FP

TNFN

Real results

Predicted 

results

Positive     Negative

Positive  

Negative

Fig. 7: The confusion matrix.

The testing accuracy of the classification algo-
rithm can be defined as Fawcett (2006):

testing accuracy =
TP + TN

TP + TN + FP + FN
. (8)

Few other metrics can be used to provide more
information on ability of the algorithm to correctly
predict asteroid families’ members. Those are, among

others, precision, recall, merit, and F1-score (Caru-
ana and Niculescu-Mizil 2006). Precision is the mea-
sure of the algorithm ability to avoid false data, and
is calculated as:

precision =
TP

TP + FP
. (9)

Recall, or sensitivity or completeness (Carruba
et al. 2020) is the measure of the algorithm ability to
retrieve all known family members. It is calculated
as:

recall =
TP

TP + FN
. (10)

Another metric that is used for validation of pre-
cision and recall is F1-score (Fawcett 2006). It is
calculated as:

F1 = 2 × precision × recall

precision + recall
. (11)

Table 2 shows the testing accuracies over some
representatives of asteroid families, along with the
values of precision, recall, and F1-score. Besides
the asteroid family names and confusion matrices-
based testing accuracies obtained, the total number
of members in all shown families and the number
of members used in testing are given. This is done
to show that approximately 20% of family members
were used as test data, as previously stated.

The testing accuracy of 0% means that none of
the asteroids used in testing was correctly classified,
while the testing accuracy of 100% represents that all
the asteroids used in testing were correctly classified.
From Table 2, we can see that for families with a small
number of members, the ANN model scored a very
large set of accuracies. The largest family with 0%
testing accuracy was (31811) 1999 NA41, and of 46
families with less than 100 members, the 0% testing
accuracy was achieved in 6 cases. The largest family
with a testing accuracy of less than 90% was (5026)
Martes.

Precision, recall, and F1-score are in agreement
with the accuracy results. However, as can be seen
from Table 2, recall is equal to 100% for some families
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Table 2: Accuracies, precision, recall, and F1-score obtained from confusion matrices for some asteroid families.

Asteroid Total number Number of members Precision Recall F1–score Testing
family of members used in testing accuracy (%)

(69559) 1997 UG5 17 1 0 0 0 0
(260) Huberta 26 2 100 100 100 100
(22805) 1999 RR2 20 3 20 67 31 45
(116763) 2004 EW7 24 4 67 50 57 70
(153) Hilda 18 5 100 100 100 100
(14916) 1993 VV7 17 7 0 0 0 0
(159) Aemilia 62 8 0 0 0 0
(4203) Brucato 41 10 54 70 61 60
(2) Pallas 45 12 67 100 80 72
(43176) 1999 XM196 75 15 32 53 40 45
(6769) Brokoff 58 17 0 0 0 0
(618) Elfriede 97 20 67 100 80 87
(11882) 1990 RA3 87 22 67 100 80 74
(1338) Duponta 133 27 93 100 96 95
(31811) 1999 NA41 144 28 0 0 0 0
(18466) 1995 SU37 257 44 79 100 88 80
(1303) Luthera 232 51 80 100 89 82
(5026) Martes 481 98 73 100 84 86
(110) Lydia 898 175 99 100 99 99
(2076) Levin 1534 315 99 99 98 97
(490) Veritas 2139 425 99 100 99 99
(10) Hygiea 3145 628 99 100 99 99
(24) Themis 5612 1189 100 100 100 100
(158) Koronis 7390 1446 100 100 100 100
(4) Vesta 10612 2038 100 100 100 100
(15) Eunomia 9856 2064 100 100 100 100
(221) Eos 16038 3169 99 99 99 99
(135) Hertha 15983 3233 99 100 100 99

where accuracy and precision are much lower. This
would indicate that, for these families, the algorithm
was available to retrieve all family members.

The results presented in Table 2 show that the re-
alized ANN can be successfully used as a validation
method, supplementing the HCM method. However,
it also shows that the number of asteroids in a fam-
ily significantly affects the ANN prediction. This is
something that is expected – the more data the ANN
can be trained on, the better testing accuracies it
will produce. To summarize the testing accuracies re-
garding the family size, Table 3 was created. Table 3
shows the average testing accuracy over the subsets
of asteroid families, along with a total number of fam-
ilies in each subset, lowest testing accuracy obtained,
number of testing accuracies equal to 0%, number of
testing accuracies between 1% and 90%, number of
testing accuracies between 90% and 99%, and num-
ber of testing accuracies equal to 100%.

The data shown in Table 3 clearly shows that the
ANN can perform very well, but with asteroid fami-
lies with a large number of members. The acceptable
results are achieved with medium size families, except
for Martes. On the other hand, this ANN model

cannot be applied to small families, and likewise, can-
not be properly used for validation of the HCM re-
sults for families with a small number of members.

5.3. Feature importance

To better explain the ANN model, i.e. to deter-
mine which inputs have a major contribution to the
ANN training accuracy, we used three different com-
binations of input parameters. In the first combina-
tion (C1), the proper semimajor axis was omitted, in
the second (C2), the proper eccentricity was omitted,
and in the third (C3), the proper inclination sinus was
omitted. The ANN model remained the same as in
the first part of the training. The results are shown
in Table 4.
As can be seen from Table 4, the best training accu-
racy was obtained for the C2 combination of input
parameters. This means that proper eccentricity of
the asteroid has the least impact on determination of
the belonging family. Also, the worst training accu-
racy was obtained for the C3 combination of input
parameters, meaning that the proper inclination si-
nus has the greatest importance in determination of
the corresponding family.
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Table 3: Statistics for subsets of asteroid families.

Family Total Lowest Number of 0 % Number of testing Number of testing Number of 100 % Average
subset number testing testing accuracies between accuracies between testing testing

of families accuracy accuracies 1 % and 90 % 90 % and 99 % accuracies accuracy

Small 46 0 % 6 13 2 24 79.61 %
Medium 39 0 % 1 3 4 31 95.31 %
Large 22 97 % 0 0 4 18 99.73 %
Huge 3 99 % 0 0 2 1 99.33 %

Table 4: The training accuracies for the different input

parameters.

Input Training
parameters accuracy
combination %

C1 = (ep, sin(ip)) 91.31
C2 = (ap, sin(ip)) 93.59
C3 = (ep, ap) 83.92

The asteroids inclinations are associated with the
z–component of the angular momentum of asteroids
and they tend to be less affected by dynamical mo-
bility than asteroid eccentricities. Usually, asteroid
families are much more compact in inclination than
in eccentricity.

6. CONCLUSION

In this paper, we presented an artificial neural
network for classification of asteroids into families.
The data used in the learning and testing process
were obtained by the HCM method and described
in AstDys site�. The proposed ANN model can be
used as a validation supplement to the HCM method.
However, as we have shown, the ANN model can be
used with good results only with families with more
than 1,000 members. The satisfactory results were
obtained with families with 101 to 1,000 members,
while the proposed ANN cannot be used for smaller
families since it produces unsatisfactory results.

Given the good results obtained with the asteroid
members of large families, this method can be used
as a method for quick analysis of the unlabeled as-
teroids membership status. The artificial neural net-
works work best if they have a large amount of data
to be trained on. Since this is the case with asteroids
belonging to large families, our method can be used
for quick determination of unlabeled asteroids.

The ANN used in this paper consists of one input,
hidden, and output layer. The average training ac-
curacy obtained was 99.15% and the model was con-
firmed as stable in a 10-fold cross-validation process.
However, the testing accuracies vary significantly de-
pending on the size of the family, hence the limitation
on the ANN usage in the HCM validation.

�https://newton.spacedys.com/astdys/index.php?pc=7.0

Through changing the input parameters, we have
shown that proper eccentricity of the asteroid has the
least significance in determination of family member-
ship. On the other hand, the proper inclination sinus
was shown as having the greatest importance in fam-
ily classification.

Since we used 80% of all asteroids as a training
subset, most of them will be asteroids with H > 14,
which may be affecting the ANN results. We intended
to develop a single ANN that would be capable of
classifying asteroids into families. By not choosing
only asteroids with H < 14 as a training subset, the
chaining issue of dynamic families (Milani et al. 2016,
Carruba et al. 2020) may be affecting the results and
cause overlaps between near groups. For future work,
we plan to develop several ANNs for different family
subsets (from small to huge) by selecting asteroids
with H < 14 as a training subset.
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Bendjoya, P. and Zappalà, V. 2002, Asteroid Family Iden-

tification (Tuscon: University of Arizona Press), 613
Bottou, L., Curtis, F. E., and Nocedal, J. 2018, SIAM

Review, 60, 223
Carruba, V. and Michtchenko, T. A. 2007, A&A, 475,

1145
Carruba, V. and Michtchenko, T. A. 2009, A&A, 493, 267
Carruba, V., Aljbaae, S., and Lucchini, A. 2019, MNRAS,

488, 1377

46

https://newton.spacedys.com/astdys/index.php?pc=7.0
https://link.springer.com/article/10.1007%2Fs10569-020-09976-2
https://link.springer.com/article/10.1007%2Fs10569-020-09976-2
https://ui.adsabs.harvard.edu/abs/1991A&A...251..312B
https://ui.adsabs.harvard.edu/abs/1991A&A...251..312B
https://ui.adsabs.harvard.edu/abs/2007A&A...475.1145C
https://ui.adsabs.harvard.edu/abs/2007A&A...475.1145C
https://ui.adsabs.harvard.edu/abs/2007A&A...475.1145C
https://ui.adsabs.harvard.edu/abs/2009A&A...493..267C
https://ui.adsabs.harvard.edu/abs/2009A&A...493..267C
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.1377C
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.1377C


CLASSIFICATION OF ASTEROID FAMILIES WITH ARTIFICIAL NEURAL NETWORKS

Carruba, V., Aljbaae, S., Domingos, R. C., Lucchini, A.,
and Furlaneto, P. 2020, MNRAS, 496, 540

Caruana, R. and Niculescu-Mizil, A. 2006, in Proceed-
ings of the 23rd International Conference on Machine
Learning, ICML ’06 (New York, NY, USA: Association
for Computing Machinery), 161

Chollet, F. et al. 2018, Keras: The Python Deep Learning
library

Duchi, J., Hazan, E., and Singer, Y. 2011, Journal of
Machine Learning Research, 12, 2121

Efron, B. 1983, Journal of the American Statistical Asso-
ciation, 78, 316

Fawcett, T. 2006, Pattern Recognition Letters, 27, 861
Glorot, X., Bordes, A., and Bengio, Y. 2011, in Proceed-

ings of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics, 315

Goodfellow, I., Bengio, Y., and Courville, A. 2016, Deep
Learning (Cambridge, Mass.: MIT press)

Kingma, D. P. and Ba, J. 2014, arXiv:1412.6980
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Knežević, Z. 2015, in IAU General Assembly, 29, 2247028
Lecun, Y., Bengio, Y., and Hinton, G. 2015, Natur, 521,

436
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Originalni nauqni rad

U radu su primeǌene vextaqke neuron-
ske mre�e za proveru klasifikacije astero-
ida u familije koje su dobijene primenom
HCM metoda. Ulazni podaci korix�eni u neu-
ronskim mre�ama su podeǉeni u dve grupe:

jedna grupa je korix�ena za uqeǌe neuronske
mre�e dok je druga upotrebǉena za ǌeno tes-
tiraǌe. U radu je pokazano da su neuronske
mre�e pouzdane kada se primeǌuju na fami-
lije sa velikim brojem qlanova.
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